PROBLEM SET II

- This question refers to the notation and equations of Appendix A.1 of D. McFadden "Definite Quadratic Forms Subject to Constraints" in M. Fuss and D. McFadden <u>Production</u> <u>Economics</u>, Vol. 1.
 Prove that if G_x(x) in (SND) does not have maximal rank, then L_{x,p}(x̄, p̄) has zero determinant - evaluated at the critical point (x̄, p̄).
- 2. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = ax^2 + by^2 + 2cxy + d$. For what values of *a,b,c* and *d* is *f* concave?
- Let {f_i: i ∈ I} be a set (finite or infinite) of functions from a convex set D ⊆ Rⁿ to R which are convex and bounded on D. Show that the function f defined by: f(x) = sup f_i(x) is also convex. What about the function g defined by: g(x) = inf f_i(x)? Is this one convex? Why or why not?
- 4. Let $T \ge 1$ be a finite integer. Consider the following problem:

$$\max \sum_{t=1}^{T} u(c_t)$$

subject to

 $c_{1} + x_{1} = x$ $c_{t} + x_{t} = f(x_{t-1}) \qquad t = 2,..,T$ $c_{t}, x_{t} \ge 0 \qquad t = 1,..,T$

where $x \in R_+$ and u, f are non-decreasing continuous functions of the form $R_+ \to R_+$.

- a) Write the problem in matrix notation.
- b) Derive the Lagrangean first-order conditions for this problem.
- c) Explain under what circumstances these conditions would be sufficient.
- 5. A consumer with a fixed income of I > 0 consumes two commodities. If he purchases q_i units of commodity i (i = 1, 2), the price he pays would be $p_i(q_i)$, where $p_i(\cdot)$ is a strictly

increasing C^1 function. The consumer's utility function is given: $u(q_1, q_2) = \ln q_1 + \ln q_2$

- a) Write down the consumer's utility maximization problem.
- b) Does the Weierstrass theorem apply to yield existence of a maximum? Write down the Lagrangean first-order conditions for a maximum.
- c) Under what conditions on $p_1(\cdot)$ and $p_2(\cdot)$ are these conditions also sufficient? (Specify the most general conditions that you can think of).
- d) Suppose $p_1(q_1) = \sqrt{q_1}$ and $p_2(q_2) = \sqrt{q_2}$. Are the sufficient conditions you have given in part (b) met by this specification? Calculate the optimal consumption bundle in this case.
- 6. An agent who consumes three commodities has a utility function given by: $u(x_1, x_2, x_3) = x_1^3 + \min\{x_2, x_3\}$

Given an income of I and prices p_1 , p_2 and p_3 , write down the consumer's utility maximization problem. Can the Weierstrass and/or the Lagrangean theorems be used to obtain and characterize a solution? (Explain why or why not).