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1. Introduction

Do input prices affect the observed variability of the input-output
coefficients? Classical theory of production tells us they ought to, while
Leontief claims they don’t make any difference since substitution is
infeasible, though the essence of his claim is an empirical one [Leontief
(1951, p. 40)]: “The assumption of fixed coefficient of production neces-
sarily entails the existence of some disparity between our theoretical
scheme and the actual industrial setup it is intended to represent.
Empirical investigation alone can reveal how significant the disparity
actually is.” .

A very extensive literature has developed, investigating the stability of
these coefficients, and the best summary of the state of the arts is
probably still the one given by Barna (1963, p. 6): ““It is by now generally
recognized that input—output coefficients are not constant. But there is a
great deal of stability in these coefficients and the practical question is to
what extent and with what modifications the input—output model may be
used in empirical applications.”

Some researchers have tried, by various methods, to test the Leontief
Hypothesis, starting with Leontief (1951) himself. Others have looked
for other factors, mainly aggregation errors and changing industry tech-

*1 wish to thank D. McFadden for valuable assistance at various stages of this work.
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nology, to help explain the observed variations. The role of relative
factor prices, however, has seldom been studied.

Cameron (1952) finds that: “There is significantly little evidence of
substitution relations between inputs, and still less of diminishing tech-
nical marginal rates of substitution” and “‘evidence of price substitution
is surprisingly meager.” He does not tell, however, how he reached
these conclusions.

In their thorough analysis, Arrow and Hoffenberg (1959, p. 43)
ignored prices, giving the following explanation:

“From the usual viewpoint of economic theory, the omission of
relative prices as explanatory variables for change in input-output
coefficients is very conspicuous. The hypothesis is indeed made that
in the short-run methods of production cannot respond to price
variations. The basic reason for making this assumption is simpli-
city, i.e., the gain in degrees of freedom obtained by omitting some
variables.”

In the introduction to the 1954 Norwegian input-output tables,
Sevaldson (1960, p. 53) writes:

“Studies done in connection with the preparation of part II of this
publication (i.e., with the empirical preparation of the input-output
table) show that for almost all industries, the input coefficients are
more influenced by changes in the product mix than by input
substitution. The conclusion would be that substitution only ex-
ceptionally plays a significant role, with the degree of precision
offered by a 100-150 sector table. Lack of sector homogeneity
makes product mix the dominant source of changes in the
coefficients. There is, however, one sort of substitution which
cannot be ignored, i.e. the substitution among domestic and im-
ported goods.”

In another study, Sevaldson (1963) talks about theoretically possible
price substitution, but he does not find any empirical evidence of a price
effect.

In her extensive study on the changing structure of the U.S. economy,
Ann Carter (1970, p. 13) writes: “Input structures of individual industries
are apparently sensitive to changes in relative prices in the inputs.” In
only a few places does she document these findings, and in these cases
the price changes seem to be entirely technologically induced during the
11 years between the two tables she is comparing (1947 and 1958).

There is one large body of literature concerning the effect of prices on
input coefficients: the whole theory and estimation of neoclassical

production functions on all levels of aggregation. Unfortunately this
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literature has generally limited itself to the primary factors of produc-
tion, usually capital and labor, ignoring the intermediate inputs. The
evidence seems to indicate that the substitution among capital and labor
is significant, and there is no a priori reason to believe that substitution
should be limited to these two inputs.

The first attempts at testing the applicability of the Generalized
Leontief model were done by Diewert on the Canadian labor market,
allowing for substitution between different kinds of labor and capital
(Diewert {1969a), and on primary inputs in the aggregate U.S. economy
(Diewert 1969b), both excluding the intermediate inputs.

There is one other body of literature relevant to the present analysis.
While Leontief’s theory is generally formulated in physical terms and
tested in constant prices, Klein (1952—-1953) has shown that stability of
the value coefficients is implied by a Cobb-Douglas production function,
which, of course, admits substitution among all the inputs. Tests of the
relative stability of the input coefficients expressed in constant and
current prices have been carried out by Haldi, Sevaldson, and Tilanus.

In a study of the U.S. boot and shoe industry between 1919 and 1954,
Haldi (1959) found the value coefficient significantly more stable in the
case of labor, while it was insignificantly so in the case of materials’
input. Sevaldson (1963) finds on the whole the materials’ input (cork)
more stable in volume terms, while labor appears more stable in value
terms in his study of the Norwegian cork industry.

The Dutch input-output tables were originally available in current
prices only, and most of Tilanus’ (1966) experiments were performed on
these tables. But he did also derive sectoral price deflators, and
compared the predictions achieved by the two methods. He found mean
square value prediction errors one year ahead smaller than the volume
prediction errors in 18 out of 27 sectors, and concluded that: ‘“‘the
classical input—output assumption that volume coefficients are constants
is less workable than the hypothesis ... that value coefficients are
constant.””! And “‘medianwise, mean square volume prediction errors are
some 15% larger than mean square value prediction errors.’”

2. The Model

We will rely on the Generalized Leontief (G.L.) cost function [Diewert
(1971)] to analyze and test the price responsiveness of the input—output
‘Tilanus (1966, p. 80). As he states, his results might be partly due to the unsatisfactory

quality of some of the price indices he is forced to use.
Tilanus (1966).
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coefficients. Assuming constant returns to scale, the function is

Clyp) =y 2 2, bipp)'™, (1)

i=1 j=i

where p is the input price vector, y is output, and b; = b;. The linearity
of the function in the unknown coefficients makes it well suited for
empirical investigation, and it further reduces to the Leontief fixed
coefficient cost function when b; =0, i#].

Differentiating equation (1) with respect to p; and dividing by the
output rate, we obtain from Shephard’s Lemma (1953)

y

where x;(y,p) are the factor demand equations. The set of equations (2)
express the input—output coefficients as functions of the input prices.?
The by, i# j, coefficients in equation (1) are generally required to be
non-negative since this is a sufficient condition for the cost function to
be concave in prices. Several of the estimated b; coefficients, however,
turn out to be negative. This would indicate a complementary relation-
ship between the ith and the jth input, because the demand for the ith
input would then become a decreasing function of the price of the jth

input, i.e.,

‘ m 112
x(y.p) _ 2. by (%) . i=1l,..m, )
ji= 1

ZER) 2 yby(pi) ™ <0. )
With negative b; coefficients, it becomes necessary to test whether the
estimated functions are concave in a reasonable neighborhood of the
observed prices. Diewert (1971, pp. 501-503) gives a detailed discussion
of these conditions. It is cumbersome to carry out the full test, and I
have limited myself to the following two partial tests. Concavity of
equation (1) requires that the Hessian matrix be negative semi-definite,

’The G.L. production function was formulated with an exponent equal one half, and this
formulation is used below. The function could however be generalized to the form

Ciy.p)=y 2. 2. bipip) 7,
i=1j=
with a € [0.1] (even further generalization is possible). Linearity in the coefficients is lost if
« is to be estimated from the data, while it is difficult to obtain a priori estimates of this
coefficient. Some experiments with different values of a showed the coefficients b; to be
very sensitive to significant changes in a (« ~ .1), while the sum of squared residuals varied

very little.
For a derivation and analysis of the complete test see Lau, Appendix A.4 in Volume 1.
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and the first-order principal minor of this Hessian is just

a*C(y, 1& i .
__5_}’ p) =- ‘2‘2 b;jp}’2p53’250, i=1,...m, 4)
api =
j#i
which must be non-positive.
The second test is provided by the estimated shadow elasticities of
substitution (SES). The SES between the ith and the jth inputs can be
written

—Cilx%+ 2(Cyl xx;) — Cilx}

SES; = 1px; + 1ppx;
2.2 0 xi x
=1_/;)_il_¥+_‘?l;7—,—x— X; C,',' C,',‘ =0, (5)
o I G G

where the determinant on the right-hand side is the lowest-order prin-
cipal minor of the bordered Hessian (i.e., subject to the constraint that
total cost remain constant) of equation (1). If the cost function is
concave, this determinant and the SES must be positive.’

3. The Data

The data for this study have all been taken from the two volumes
“National Accounts, Classified by Fourteen and Five Industrial Sectors,
1949-1961" published by the Central Bureau of Statistics of Norway in
1965 (Vol. I) and 1966 (Vol. II). The Bureau obtained this data by
aggregation from substantially more detailed tables.

These publications contain 13 annual input-output tables for the
Norwegian economy, presented in constant (1955) prices, together with
the price indices for each interindustry transaction for each year. The
second volume presents supplementary data on capital and labor inputs.
The tables have 14 industrial sectors with inputs analogously subdivided,
but further distinguished as to whether they are domestic or imported.®
As explained below, three of these sectors were chosen for the following

study.’

SSee McFadden (1963, p. 74, footnote 4).
*For a study of the behavior of the input—output coefficients derived from these and the

more disaggregated tables, see Sevaldson (1970).

71949, the first year of the period being studied, is generally regarded as representing the
beginning of a four-year period of normalization of the economy, after the post-war
reconstruction effort.
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The data, as presented in the publications, are all in buyers’ prices.
But the theory of production tells us that the cost of bringing the output
to the consumer ought not to affect the cost minimizing input decisions
of the producer. It would, of course, enter into his profit calculations.
Deliveries from sector 55 (‘“trade, transport, and communication”) in-
clude the gross trade margins of the various industries. These trade
margins, which in many cases exhausted the deliveries from sector 55,
were therefore not considered as an input in the production process.
Except for this correction, and some aggregation of the input sectors,
the data for the intermediate inputs were used as they appear in the

tables.

3.1. Labor Input

In all the input—output tables, primary inputs are aggregated into value-
added, and its volume and price index is defined residually given the
volume and value of the intermediate inputs and the output. Labor input
is presented separately in man-years both for wage-earners and the
self-employed, and so is the current wage rate. For the labor input, I
used both wage-earners and the self-employed, imputing to the latter the
average industry wage. That such a procedure is not always justified is
illustrated by the sector agriculture (not estimated below), for which
such an imputation more than exhausts the value added.

3.2. Capital Input

The input of capital has been assumed proportional to the capital stock
at the beginning of the year. This would seem reasonable since the
period was characterized by a steady expansion of output (GNP
declined only in 1968, and then by 1.8% in volume terms), and in the
three industries considered below, net investment was negative only for
one industry (textiles) in one year (1958). I am further implicitly assum-
ing that the input of capital services in any one year is optimal given the
prices and the output level. This assumption can probably best be
defended as a first approximation. A superior alternative would perhaps
be to take the capital stock as given, and minimize cost subject to the
available capital stock, or to introduce a more realistic investment

theory.
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If one believed that static perfect competition prevailed, one could
compute the price of capital services (c¢) residually so as to preserve the

equality

g-y = C(y;p,w,c) = §_:I pi-xi(y;p,w,c) + w-L(y;p,w,c)
+ ¢ K(y;p,w,c), (6)

where p is the vector of the intermediate input prices, q the output price,
w the wage rate, y the output, and x;, L, and K the cost minimizing
intermediate, labor, and capital inputs, respectively. This ‘“‘rate of return”
method has been used in some of the computations below. I have at
other times broken the left-hand equality in equation (6), and determined
the cost of capital by the user cost expression,?

c(t) = p;(t)(r(t) + d(2)), 7

where p;(f) is the cost of capital goods in period ¢, r(t) a rate of interest,
and d(t) the rate of depreciation in period ¢t. Norwegian statistics on the
rate of interest are, particularly for the first part of the period, somewhat
incomplete. To obtain a series extending over the whole period, I have
spliced together two different series’ which were overlapping in the
years 1954 and 1955.

4. Estimation

The cross equation constraints imposed by the condition that the
coefficient matrix B be symmetric [see equation (1)] necessitate the
simuitaneous estimation of the whole system of n equations. If one feels
it warranted to believe that X ®I; =o0’l,;, ordinary least square
becomes the appropriate estimation method, and gives rise to the
coefficient estimate,'

b= (P'P)"'Pa, (8)

$See Jorgensen (1967). I have ignored the capital gains term, and corporate income tax
considerations.

The two series are (i) weighted average on current yield of various 2.5% government
bonds for the years 1949-1955 (IMF 1966/67), and (ii) the average lending rate for all
commercial banks for the years 1954 to 1961 [Norway (1954-61)], the latter series
determining the level of the combined series.

'“This method was used for some early estimates primarily for ease of computation. The
estimated coefficients are fairly sensitive to the method of estimation.
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where P is an (nT)x3n(n+ 1) matrix of the square roots of relative
prices. But since the input-output coefficients may vary by a factor of 10
for different inputs, it is not a plausible assumption. A study of the
residuals also tends to indicate that the error terms for a given year are
significantly correlated. Generalized least squares is called for, and since
the contemporaneous covariance matrix is unknown, Zellner’s (1962)
two-stage procedure was utilized. The estimate 3 of 3 was obtained by
ordinary least squares regression on the individual equation (2), without
the imposition of symmetry constrained and then estimating the vectors
¢, of residuals. Forming the matrix E = (&,.8,...,&,), we get the following
unbiased estimate of the covariance matrix:

— 1 2 7
=7 EE,

and the two-stage coefficient estimate becomes
b* =P 3 QINP) PR ®Ira 9)

If 3 tends in probability to % as T tends to infinity, the estimator b* will
be asymptotically equivalent to the Aitken estimator (i.e., assuming X
were known).!" Thus b* is a consistent estimator of b, and Kakwani
(1967) has shown that b* will also be unbiased if the error terms are
symmetrically distributed.

Hypothesis Testing

We will frequently below test the validity of restrictions imposed upon
the coefficients of the B matrix. By application of the Chow (1960) test,
this would be a straightforward task if the errors were normally dis-
tributed and their covariance matrix £ = % @ Iy were known. Let Qo=
ei()'e, be the weighted sum of squares residuals resulting from the
estimation of n factor demand equations involving k coefficients, and let
Q, =i} ‘e, be the weighted sum of squares residuals after the imposition
of g constraints. Then, under the assumption that the constraints are true,

F= Qlé‘OQO an- k (10)

See Malinvaud (1966, pp. 286-290). The variance of the estimate b* is approximated by

PE ' RIPI.
to an order of smaliness of 1/T [Zeliner (1962, p. 352)].
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will have an F distribution with g and nT — k degrees of freedom.

We do not know the distribution of the error terms, including €, and
are thus forced to rely, somewhat unsatisfactorily given the small size of
our sample, on asymptotic properties. Zellner (1962) again suggests
replacing ) by its consistent estimator Q. The resulting statistic will
have an asymptotic F distribution, if the constraint is true.

5. Empirical Results

Three industrial sectors were chosen for the present study, and for each
G.L. factor demand equations were estimated. The three sectors are:
textiles, construction and metals.'?

Textiles. This sector was chosen because it seemed to be a relatively
homogeneous sector producing essentially consumer goods. The textile
output declined in three of the years in the sample, while net investment
was negative in one. The capital input and its price were only computed
using the “rate of return” method [see equation (6)]. Two sets of G.L.
production functions were computed. In one case aggregating to domes-
tically produced and imported inputs, plus capital and labor, and in the
other, to six exhaustive sectors of intermediate inputs.

Construction. This was the first sector to be studied because, at the
time, it seemed to be the only sector providing all the necessary data. Its
output was strongly regulated during the period under study, and
declined in three of those years. In this case only the “user cost’” of
capital {see equation (7)] was used. The level of capital stock was very
low in the beginning of the period, and the net rate of return on capital
varied from 178% to 14%. The intermediate inputs were aggregated
according to the five-sector tables, and over imported and domestically
produced inputs, giving four intermediate and two primary input sectors.

Metals. This industry produces almost entirely goods for export, and
was thus believed to reflect competitive behavior more strongly than the
other two more protected industries. It includes the output of most
metals, ores, fertilizers and carbides, and of the total output of
2589 mill.kr. in 1961, 18% were intermediate deliveries, and 78% were
exported. The output increased uniformly over the period. Only the four
largest intermediate inputs were included in the estimation of the G.L.
factor demand equations, thus assuming the inputs of the smaller sectors

'ZD_etailed results are presented in Section 10.1, together with an explanation of the
classification system.
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to be used in fixed proportions. Both the ‘rate of return” and the “user
cost” of capital were used.

The estimated results, and particularly the estimates of the individual
b; coefficients, are of somewhat mixed quality. This is probably in part
an identification problem. Many of the off-diagonal coefficients are
negative, indicating an apparent complementary relationship among the
relevant inputs. It is unlikely that complementarity is so prevalent at this
high level of aggregation: its appearance might indicate the presence of
other factors which the model, in its present form, does not account for.

The expected evidence for substitution among domestic and imported
inputs, where this distinction was maintained, did not materialize. It is
inconclusive for textiles (xD versus xF, Appendix — Table A.1, and x14
versus x64, Table A.2; see Section 10), and contradicted in the case of
metals (x4 versus x64, Table A.6). The level of aggregation and a
significant difference in the composition of goods within these
supposedly equivalent categories, may well explain this inconsistency.
Labor and capital, on the other hand, do show in all cases the expected
substitution relationship.

The estimated cost functions were all strictly increasing in the input
prices. For 1955, the base year of the price system with p; = 1.00, this
condition which is equivalent to the non-negativity of the estimated
demand equations, becomes

xi(;r,p) =3 b;=0, i=1..n (I
i=1

The expression is the fitted coefficient value for that year. It also
presents a measure of the relative importance of the input, and is
presented along with the estimated symmetric G.L. functions in Tables
A.1, A.2, and A.4 through A.6 in Section 10.

Are the estimated factor demand equations derived from a cost
function which is concave in the prices? Section 2 gave two necessary
conditions of which the first [see equation (4)] in the base year becomes
equivalent to

Y b;=0, i=1,..n (12)
iR
This condition is violated in about one out of six cases."
A further test of concavity is provided by the estimated shadow
“These off-diagonal sums are presented in the symmetric G.L. tables (Tables A.1, A2

and A.4 through A.6 in Section 10). The variance of the sum was estimated in a few,
mainly “negative” cases, and never found significantly different from zero.
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elasticities of substitution, since the numerator of the SES is just a
quadratic form of the Hessian of the cost function, subject to the
constraint that cost is constant [see equation (5)]). The SES for textiles,
construction, and metals for the year 1955 are presented in Table 1. Out
of the 36 elasticities of substitution, four turn out to be negative, and
three of these occur in the construction industry.

TABLE 1
1955 shadow elasticities of substitution.

(a) Textiles

xD xF xK xL
xD 1.1990 1.0416 1.4620
xF 0.0754 0.6413
xK 0.7197

xL

xD and xF are domestically produced and imported intermediate inputs, respectively.
xK is capital and xL is labor.
Source: Table A.1.

{b) Construction

x1 x2 x3 x5 xK xL
x1 0.0691 0.1781 0.2345 1.1943 1.1573
x2 0.5636 -0.1527 1.0216 —-0.3711
x3 -0.1323 0.8766 0.0804
x5 0.5704 0.0345
xK 1.3689

xL

x1, x2, x3, x4 are intermediate inputs of consumer goods, capital goods, export goods,
and services, respectively. All six “intermediate” shadow elasticities of substitution
were positive when only the four intermediate inputs were included in the estimation.
Source: Table A.4.

(c) Metals
xi4 x53 x64 x83 xK xL

xi4 0.2560 —-0.9392 0.9779 0.8991 1.1122
x33 1.8630 0.8432 1.1465 1.4307
x64 2.2139 1.5620 1.6008
x83 0.7384 1.2251
xK 0.7467
xI.

x14, x53, x64, and x83 are intermediate inputs of “‘other consumer goods™, “‘electricity”,
“imported other consumer goods”, and “imported metals”, respectively.
Source: Table A.6.
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5.1. The Symmetry Condition

The existence of a production function implies an ability on the part of
the producer to allocate his resources in a technically efficient manner.
The existence of a cost function implies in addition that production is so
structured as to produce a given output at the lowest possible cost.
Such a cost function will imply a symmetry constraint in the response of
the producer to changes in the factor prices.

In the case of the G.L. cost function, these constraints are satisfied if
the B matrix is symmetric, i.e., b; = b; for all i and j. Thus, in order to
test for cost-minimizing behavior, we have to test for the validity of the
condition b; = b;, which is a simple parametric restriction on the
coefficients of the unconstrained factor demand equations [see equation
(10))."

The results presented in Table 2 are inconclusive, but it is clear that

TABLE 2
F tests of the symmetry condition.”

Textiles Construction Metals

6 intermediate 4 intermediate & 4 intermediate &

inputs 2 primary inputs 2 primary inputs
Intermediate Incl. primary
inputs inputs as fixed
only coefficient F(15.66)=0.05 F(6.60)=5.4 F(6.60)=14
sectors F* = 1.82/2.33 F*=225/3.12 F*=225/3.12
Not incl. F(15.42) = 0.56 F(6.36)= 184 F(6,36)=2.5
primary inputs * = 1.92/2.50 F*=236/3.35 F*=12.36/3.35
2 intermediate &
2 primary inputs
Intermediate Estimation
and primary using ‘‘user F(1542)=23 F(15.42) = 0.96
inputs cost” F*=1.92/2.50 F*=1.92/2.50
Estimation
using “‘rate F(6.36)=5.4 F(1542)=2.72
of return™ F*=2.36/3.35 * =1.92/2.50

aF* is the critical value of the F statistic at the 5% and 1% confidence level,
respectively.

"“The matrix B = (b;), when introduced in the definition of the G.L. function, need not be
symmetric, but only the sum b; + b; would then be identified. When estimating the derived
factor demand equations, however, the symmetry condition is necessary, as otherwise
these demand functions would not be integrable into a cost function.
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rejection of the symmetry condition does not, without further in-
vestigation, permit rejection of cost minimization for the industries
studied. Some or all of the following conditions might also contribute to

the rejection of symmetry:

(1) The G.L. production function is an inappropriate specification, and
it might be that the true cost function is best approximated by a
non-symmetric G.L. function.

(2) The data have been aggregated over firms, commodities, and capital
goods, which might lead to significant distortions.

(3) The price indices used, particularly for capital, might be faulty.

(4) The static character of the analysis might be, and probably is
inappropriate, particularly, perhaps, its stipulation of an always
optimal level of capital.

Textiles. The symmetry condition is rejected (F = 5.4) when aggre-
gated to the level of four inputs: domestic intermediate, imported
intermediate, capital, and labor. Visual examination of the estimated
coefficients indicate that all inputs fare about equally badly, with per-
haps capital relatively worse. When intermediate inputs are dis-
aggregated, the picture changes (F = 0.56) despite (because of?) the fact
that primary inputs are excluded with, one would expect, important
price variables. This might suggest that rejection was partly due to
aggregation: much of the variability in the component price variables
was in this case lost in the aggregation.

Construction. Symmetry is again rejected at the 5%, but not at the
1% level. It is more clearly rejected when only the intermediate inputs
are included.”

Metals. This sector gave the “‘best” results: F = 2.7 using the rate of
return cost of capital, and F = 0.96 using the rate of interest. The main
difference seems to be the greater ability of the rate of return cost of
capital in the unconstrained version to “explain” the input of imported
metals.

One reason for the frequent rejection of symmetry seems to be that
many of the price variables do become proxy variables for other
excluded determinants of coefficient variability when the symmetry
constraint is not imposed. Several price variables move rather uniformly

“In the analysis I have always taken the input prices as exogenous and dealt separately
with each sector of the economy, where prices and output will generally be determined
simultaneously. Only the import prices would seem to be legitimate exogenous variables. It
is hard to evaluate this simultaneous equation effect on the results.
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and could act as time trends. The imposition of symmetry tends to
reduce such errant behavior by the price variable.

It would, in concluding, tentatively seem that disaggregation tends to
improve the results, that the exclusion of certain sectors tends to worsen
them, and, perhaps, that some important variables are still excluded.

5.2. The Leontief Hypothesis

Does this extension and complication, almost beyond recognition, of the
simple Leontief model provide a better insight into the variability of
interindustry flows? Table 3 presents a test of the Leontief hypothesis
within the broader G.L. framework. By imposing the restriction that all
the off-diagonal elements be zero, i.e., b; =0 for all i# j, and applying
the Chow test, we get the F statistics shown in the table.' I have tested
the Leontief model against the G.L. model (and not against the unsym-
metric factor demand equations) so as to remain within a system that
can be derived from a cost function.

There would seem to be little doubt that the Leontief assumption
would have to be rejected: when all the inputs are included, the F

TABLE 3
F tests of Generalized Leontief versus Leontief.*
Textiles Construction Metals
Intermediate  Incl. primary
inputs inputs as fixed F(6,66) = 4. F(6,66)=1.8°
only coefficient sectors F*=224/309 F*=224/3.09
Not incl. F(6,42)=56 F(6,42)=3.0
primary inputs F*=232/326 F*=2.32/3.26
Intermediate  Estimation
and primary using ‘‘user F(557y=100 FQ1557)=124
inputs cost” F*=1285/2.38 * = 1.85/2.38
Estimation
using ‘‘rate F(6,42)=14.7 F(15,57)=13.1
of return” F*=1232/3.26 F*=185/2.38

*F* is the critical value of the F statistic at the 5% and 1% confidence level,

respectively.
bVolume of capital input determined using the rate of return.

'“When all the inputs are not included in the G.L. estimation, the question arises whether
the omitted sectors ought to be ignored or included as fixed coefficients sectors in
estimating the F statistics.
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statistics are in all cases greater than 10. Only for metals, using inter-
mediate inputs only, is there some doubt. If the last year of the sample is
excluded, the F statistics change from 3.0 to 3.8 and from 1.8 to 2.0, the
former now significant at the 1% level. The problem is partly caused by
input of imported metals (x83), the input coefficient of which makes a
drastic and unexplained drop in 1961. Also, the input coefficient for labor
declines steadily over the period giving the labor input, in the Leontief
case, a very high sum of squared residuals. When labor is included as a
fixed coefficient sector in the estimation of the intermediate inputs G.L.
function, it alone alters the F statistic by a factor of 0.5.

The existence of such trends in the input coefficients, trends which the
price variables may help explain either as the true explanatory variables
or as proxy variables, is one of the main reasons for the improved
performance of the G.L. function. On the whole the greatest changes
have occurred in the capital and labor coefficients, and this explains the
great difference in the test statistics between the instances where these

inputs were included or excluded.

6. 1961 Predictions

An alternative test of the Generalized Leontief model, and one of
special interest for its potential applications, is its ability to predict the
input-output coefficients of a given year. Table 4 summarizes some of
the results of reestimating the G.L. functions for the period 1949-1960
and using the estimated B matrix to forecast the 1961 input-output
coefficients."”

Traditional input-output forecasts require knowledge of the final
demand vector, and so would in practice the G.L. method. In the
following I am, however, only predicting the 1961 coefficients, and since
the whole system is linear homogeneous, “‘only” a knowledge of the
price vector of the year to be predicted is required.

Several different forecasting methods have been tested and compared:

(a) the “average coefficient” for the period 1949-1960;

(b) the “1960 coefficient™;
(c) the “average coefficient with time trend”, i.e., estimating the

function a;(t)=d;+d}-t, t = 1949, 1950,...,1960, and using the
estimated values of d; and d’; to predict the 1961 value of a;.

"The detailed results are presented in Tables A.7-A.9 in Section 10.
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The above methods are among the traditional input—output forecasting
methods,”® and we are primarily interested in comparing their perfor-
mance with methods which allow for variations in the relative prices.
The first two such methods presented below are:

(d) the “Generalized Leontief™ function;
(e) the “unsymmetric Generalized Leontief” function, i.e., applying the
G.L. function estimate without the imposition of the symmetry

constraint.

The utilization of method (e) presents us with an ad hoc test of the
effect of changing relative prices. These functions, however, cannot be
derived from any underlying cost function. Tables A.7-A.9 in Section 10
present the actual 1961 input-output coefficients and the 1961 relative
prediction errors (RPE) for each input, where

Prediction — Realization
Realization ’

RPE =

The weighted average (weighted by the 1961 coefficients) of the absolute
values of the relative prediction errors are presented in Table 4 as
summary statistics. It is felt that the latter is a better measure of the
seriousness of the forecasting errors, since it takes into account the
relative size of the various input sectors.

TABLE 4
Summary of 1961 predictions:* weighted average of relative prediction errors.
Prediction method Textiles® Construction Metals®
(a) Traditional methods
1949-1960 average coefficient 0.1462 0.1325 0.2696
1949-1960 average coefficient with
time trend 0.0553 0.0429 0.2470
1960 coefficient 0.0704 0.0579 0.2440
(b} Generalized Leontief
Symmetric 0.1031 0.0259 0.2813
Unsymmetric N.A. 0.0276 N.A.
(¢c) G.L.: 19601961 coefficient change
Symmetric 0.0879 0.0163 0.2837
Unsymmetric N.A. 0.0276 N.A.

*For more detail. see Tables A.7-A.9.
*Using two aggregate intermediate inputs (xD, xF), and capital and labor.
“Using the “‘user cost™ of capital.

13Gee for example Titanus (1966).
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Looking first at the three traditional forecasting methods, it is seen
that the average coefficient is clearly inferior to the other two methods.
Among the latter the “average coefficient with trend” does better than
the “1960 coefficient” in two of the three industries, while it is a tie in
the third.”

Returning to the G.L. function we find a set of rather mixed results.
The G.L. function does very well when applied to the construction
industry, reducing considerably the weighted average RPE. Comparing
the symmetric and the unsymmetric G.L. forecasts, the former does
slightly better despite its inability to predict the increased level of capital
input, contradicting to some extent the rejection of the symmetry
condition at the 1% level. Applied to the textile industry, the G.L.
function is inferior to the 1960 coefficient and the trend forecasts when
four aggregated inputs are considered. The comparison improves
somewhat when the inputs are disaggregated.

As for the metals industry, every method does poorly and the G.L.
method does slightly worse than the three traditional methods. This
industry presents a rather erratic picture in 1961, with the input of
imported consumer goods, not elsewhere classified, (x64) increasing by
118% and the input of imported metals (x83) decreasing by 24% as
compared with 1960.° The addition of the two primary sectors to the
four intermediate sectors does, however, seem to improve upon the
results.

As an alternative forecasting method one may use the estimated factor
demand functions to predict the coefficient change from 1960 to 1961
rather than the 1961 coefficient level, i.c.,

P _ P
ae = gLA6 ~ 6LAs0 T Ao, (13)

where al, is the predicted 1961 coefficient using the present method,
oLals is the G.L. predicted 1961 coefficient, Lae is the G.L. 1960 fitted
value, and ag is the actual 1960 coefficient.

"This is somewhat at variance with Tilanus (1966, Ch. 7), who generally finds the last
available input coefficients to give superior results, when compared with trend ex-
trapolations. Ten out of sixteen input sectors were in our case found to have statistically
significant time trends. In the construction industry all but the small sector x5 had
significant trends.

2The direction of the price response is also contrary to the experience over the first
twelve vears, when the two inputs were estimated to be insignificantly complementary.
Adding 1961 to the sample renders the two inputs significant substitutes. This changing
relationship only worsens the 1961 G.L. predictions as compared with those methods that
do not allow for price effects.
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If the 1960 G.L. fitted value and the 1960 coefficient were identical, the
present method would lead to the same results as presented above. They
are likely to differ because of the random error, but also because of
technological change and factor substitution. The observed 1960
coefficient would incorporate these changes up through that year, allow-
ing the present method to partly incorporate these factors in predicting
the 1961 coefficient. Further the 1960 coefficients might not be optimal
due to lags in the adjustment of factor inputs, particularly that of capital.
These lags are likely to persist and also affect the 1961 coefficient,
suggesting again that theoretically the method of equation (13) may
represent an improvement. Equation (13) can also be justified simply on
the grounds that it incorporates into the 1961 forecast the most recent
information on this variable.

Several estimates were performed, and they are again presented in
Tables A.7-A.9 in Section 10. The method does not seem, generally, to
lead to any improvement in the estimate, with the significant exception
of the symmetric G.L. function applied to the construction industry. The
weighted average of the RPE’s is in the latter case reduced from 0.026 to
0.016, mainly because of a greater ability to account for the changing
capital and labor coefficients. The G.L. function (both the symmetric and
the unsymmetric version) is further abie to predict correctly the direc-
tion of change of the coefficients, including the one turning point.

For the textile industry all three turning points are missed at the most
aggregated level, while two out of four were wrongly predicted when
estimating intermediate inputs only. The predicted direction of change
was correct in those cases where the trend persisted. Again the im-
provement is predominantly in the capital and labor sectors.

The metal industry again presents the worst picture with about half
the directions of change wrongly predicted. Every direction of change is
wrongly predicted when estimating intermediate inputs only, suggesting
again the significance of including also the primary inputs.

In conclusion, the results of the investigation are somewhat mixed,
though they do seem to indicate that relative prices have a significant
effect on the variability of the input-output coefficients. The standard
Leontief model is rather clearly rejected. The test of the symmetry
condition is inconclusive, and the forecasting results are better or equal
to those achieved by the more traditional methods. There is also some
evidence that the usual explanatory variables: “‘aggregation errors’ and
“technical change” are significant.
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7. Inconsistent Shadow Elasticities of Substitution

I will, in the final three sections of this paper, analyze one specific
problem of aggregation: the use of inconsistent price aggregates, that is
price aggregates that explicitly or implicitly make the wrong assumptions
about the substitutability of the disaggregated inputs. The usual Paasche
price indices, which were used in the previous sections, tend to overes-
timate the true shadow elasticity of substitution by a factor of two.*' The
following argument will formalize the intuitive feeling that an overes-
timate of the substitutability at the lowest level may introduce an
opposite bias in the substitution parameters at the aggregate level, and
that the shadow elasticities of substitutions presented in Table 1 under-

estimate the true elasticities.”
Let the production structure be described by the cost function,

C = C(y:P1,P2s-->Pn)> (14)
which is assumed to be weakly separable with respect to the partition
{N;:i = 1,...,r} of the index set N={1,...,n}.” It is further assumed that
there exists linearly homogeneous consistent price aggregates p’ so that
the cost function can be written as

C = €ly;:p'®@).0*®"....p (®")], (15)
where p° =(pi:k €N,), v=1,...,r. The functions p° will normally be
unknown and in practice an inconsistent price aggregate 7° will be used.
By so doing we are postulating the existence of an inconsistently
aggregated cost function B defined implicitly by

C = B(y;w',7%,...7"), (16)

where the value of C on the left-hand side is given by (14). The function
B is a function not only of the 7°’s (and the p;’s), but also of the change
in these variables (i.e., d=® and dp.). The partial derivative of B w.r.t. =°
is defined by

4C  where d,C= Y x dp.

d=® KER,

B, =

Zigee equation (22) in Section 7. An even more extreme example of a “‘wrong”
aggregation procedure is the Laspeyres quantity index with its implicit assumption of an

infinite elasticity of substitution.
2This is probably not, however, the main reason that some of the SES’s are negative.

' BSeparability is introduced in part to simplify the derivation, but more importantly to
insure the existence of uniquely defined consistent aggregate elasticities of substitution by
which the bias may: be judged.
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We are interested in analyzing the inconsistently aggregated shadow
elasticities of substitution of B defined, in a manner analogous to the
consistently aggregated SES, by
B _ B B,‘ 7T' ' _ dB,/B, et dB,/BJ

SES; =~p,d (E)/ 5d(5) =Gt {an
holding total cost, output, and the price aggregates m*, k#-i,j, constant.
The price changes are thus limited to movements along the aggregate
factor price frontier with B; d=w' = —B;d7’.

To concentrate the analysis on the consequences of misspecifying the
second-order parameters of the aggregating functions, it will be assumed
that these functions satisfy the first-order conditions for consistent
aggregation for the point (called the base point) at which the analysis
occurs, i.e., that

am' Jom'  ap' Jap'  x |

— === klEN.,.

opi/ opr  op/ i X (18)
This condition is for example satisfied, for small price changes around
the base point, by the usual Paasche (current weighted) price index,

wi= plxl/z pixl, (19)
KEN, Ken,

where 0 indicates the base period and 1 the current period. Let 3; be the
true SES between sectors i and j in the consistently aggregated cost
function €(y:p'.....p"). Let oy be the SES between sectors k and ! in the
same separable input set N, (this will also be the SES between the same
two inputs in the consistent price aggregate p°), and let ok be the
(implicit) aggregation SES between the same two inputs for the in-
consistent price aggregate 7°. Define

@ = PiXi / D, PsXs

sEN,

_dpdp —dpip .
Pk( = dUC/Cv R k,l c N,,, v =1L

Cc*= Z px and d,C= z Xx dpi.

kEN, kEN,
It can then be shown that®

_ (/CHA; + (1ICHA; _ )
SESE=3;+ CTI0 1= 3.+ 4y, (20)

%See Frenger (1975, pp. 110-119). The derivation there is mainly in terms of the
production function and the direct elasticity of substitution, but the two are mathematic-
ally dual.
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where 4; is defined by the right-hand equality and 4,, v = i,j, is given by

A=l [(ak +aou-ol)-a S (a+a)ow — o)

4,&, &, sEN,
[k s#k

~a; O (o4 +a,Na, — o)
sGNIL.
s#

‘a2 2 (o +a )Xoy — 02’:)] Pi. (21)

SEN, teN,
t#s

A, is linearly homogeneous of degree 0 in prices and inputs. For small
deviations from the base point, the inconsistently aggregated SES differs
from the true SES by a factor which is a weighted average of the
sectoral error terms 4,. These error terms are seen to be functions of the
misspecification of the second-order parameters of the inconsistent price
aggregates, i.e., of the difference (o, —of), and of the difference be-
tween the relative price changes of the disaggregated inputs. There are
two extreme cases under which the error terms A, will vanish:

(1) If o = of for every k,l EN,, i.e., if consistent price aggregates have
been used.

(2) If dp/p. = dpidp; for every k,I EN,, i.e., if all price changes within
the sector are proportional. This is just Hicks’ (1946, p. 33) condition
for censistent aggregation.

The empirical part of this paper uses Paasche price aggregates. Frenger
(1975, p. 93) shows that in this case the implicit (aggregation) SES oy
will be given by

0'[1"[ = 20’“, (22)
and the sectoral error terms become

A, =- ! 2 2 [(ak + a))ou — 2 (ax + as)o

4 k€N, IEN SEN,
1=k s#k
2
—a 2 (u+a)o, +aey > D (a,+ a;)cry] Py
SEN, SEN, tEN,
s#l [£.X]
1
—_— e — 2 2 2
= 42 2 P Zasts—zasP!s
KEN, IEN, SEN, SEN,
{7k s>k s
2
+ > a.aP s,] (e + oy, v=1,.,r (23)
SEN, IEN,

[E
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If the consistent aggregates were of the CES variety or, somewhat
weaker, if all oy =0, for k,IEN,, k#I, at the base point, then the
sectoral error terms reduce to

A=-1q S > Pl v=1..r (24)

27 &, &R,
1%k

If further there are only two inputs in the ith and the jth input group,
ie., N;={1,2} and N; ={3,4},” then the inconsistently aggregated SES
reduces to

B_ v _ |onaia; dPl/Pl“dP2/P2)2 T 340304
SES?Z=3, [ = ( by Spilee  Tues
dPs/Ps"dP4/P4)2](1 1\
x( d,CIC’ C'+C‘) : (25)
where
C' = x\p1 + X2p2, C’' = x3p3+ Xaps,

d,C = x,dp, + x;dp,, d;C = x3dp;+ x4dps,
and
d,‘C = -diC.

Following are two examples of what can happen when the price changes
are not proportional. Let us first simplify (25) further by assuming that
p1=p>=p3=ps=1 at the base point, and that p,x, = p3X; = p3X3 = paXs,
i.e., that each input sector is of the same magnitude. This gives

B _ .__1[ (dp.—dpz)2 (dps—dm)z]
SESU th 2 (e 2] dP|+dp2 + oy d—_—_p3+dp4 . (26)

Example 1: Assume that only one input price changes, e.g., dp, >0
and dp,=dp;=dp,=0. We then first have to normalize this price
change to insure that we remain on the factor price frontier. The
normalized price changes will become dp;= —3idpi, k = 2,3,4. Since the
prices in N, change proportionately, A; will vanish, and the in-
consistently aggregated SES becomes

SESE = Z,‘j - 20’|2.

5This example does not require the consistent aggregate to be of the CES variety, but
with only two inputs the CES price aggregate will give a second order approximation for
any aggregate at the base point.
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Example 2: Assume that dp, = dp,= 0 and that p, and p; change in
opposite direction such that dp; = —dp,. Then

SES{ = 3; — ian+ o).

It is easy to see from either of these examples that the inconsistently
aggregated SES could become negative for many plausible values of X
and the o’'s. It should also be noted that as long as oy = o, for every
k,l €N,, then 4, =0 [see equation (24)], and the inconsistent method of
estimation will underestimate the true value of 3; No such definite
conclusion can be drawn when oy # o, for some k,(,s,t € N,, because
there will then exist price changes for which 4, would be positive, but 4,
will be negative for most price changes.

If one knows, or is prepared to make sufficient assumptions about the
disaggregated elasticities of substitution ou, k! €N,, then the error
terms 4,, v = 1,...,r, can be computed from the observed price changes.
In order to determine the error term 4; [see equation (20)] however, the
additional condition d;,C = —d,;C and d,C =0, k# i,j, had to be imposed.
An arbitrary price change will in general not satisfy this condition, but is
rather likely to be a change in most, if not all, prices. All we can do is to
reduce by suitable normalization the price change so that it is limited to
the tangent plane to the factor price frontier, i.e., so that total cost
remains unchanged.

A more general approach which will allow for an arbitrary price
change is needed. This will be developed in Section 9, but first we need
to define a shadow elasticity of substitution for an arbitrary price
change, and such a directional SES will be introduced in the next
section.

8. A Directional Shadow Elasticity of Substitution

There are several possible definitions of the Shadow Elasticity of
Substitution (SES). The usual one is formulated in terms of the percen-
tage change in the input ratio resulting from a percentage change in the
price ratio, holding everything else constant. Let

C = C(y;pl’--"pm) (27)

be a cost function defined as a function of the output rate y and the
input prices p;, i =1,....,m. Then the SES between the ith and the kth
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input is defined by

d(Ci{ Cy) /d(pidpx) C = ac (28)

SESu =~ Ci Cy pip: T apy”

holding total cost, y, and p;, j# ik, constant. Holding total cost and
output constant insures that the resulting change represents a movement
along the factor price frontier.

This definition, however, does not lend itself well to generalization
when more than two prices change and we are interested in the curva-
ture of the factor price frontier in the direction of this price change. The
concept of a percentage change in an input ratio or a price ratio ceases
to be very meaningful. But there is an alternative definition of the SES
which can be more readily generalized. The factor price frontier defined
by (27) holding total cost and output constant defines impticitly a
function between any one price, say pi, and the remaining prices;

Pk = Rk(Pls---,Pi,---,Pm), i¢ k- (29)

Holding p;, j# ik, constant, the function R* defines a relationship
between p; and p,, which will be a curve on the factor price frontier in
the (i,k) plane. The shadow elasticity of substitution can now be defined

by

2pk 2
3°R*/api /(3]p)(pilpi) (30)

SESu =R api pul pi

8.1. Definition of DSES

Let us assume that all prices change simultaneously in such a manner as
to leave us on the same factor price frontier, i.e., output and total cost
remain constant. We can define this price change by the following vector
valued function of the scalar variable ¢t (which may be identified as
time),

p(t) =p°+ tv, (3D

where p° is the base point at which we will evaluate the directional SES.
Around t = 0, (31) will describe a curve on the factor price frontier in the
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direction
aplat=v,

where only m — 1 of the components of v are free, the remaining, say vk

is determined by the condition that we remain on the factor price
frontier, 1.e.,
k X & iVi-
i%k
Let R*(Piy..c.Dise-sPm), i7 k, D€ the function defined by (29), but now
regarded as a function of ¢, then as ¢ changes, (31) will determine a curve
on the factor price frontier,

r(t) =[p}+to;...;pt+ top.. R+ tuys..;
p?+tv,~;...;p‘,’,.+tv,,,);...',p[,’,,+ tv,), i#k, (32)

and we are interested in the behavior of r(¢) at the point p° in the

direction of the vector v. )
Let x° be the vector of factor demand equations at p’. let

a; = x?v,-/z x(}v,- i=1,...m, I[#Kk,
=k
(note that the a;’s need not lie between 0 and 1), and define for each
point p° and each direction v the linearly homogeneous (since Sa;i=1)
“Cobb-Douglas™ type price aggregate,

ok(t) = exp [I (21 x%; %/2 x?u,-) dt]
ik ik

= E [pi(D1%,  w#0. (33)
ixk

Definition. Given the cost function (27) and the price function (29),
the Directional Shadow Elasticity of Substitution in the direction v
is

d2R¥/dt?* /(d]d)(pd ")
dRYdz pdeo"

DSES(v) = (34)

holding output constant.
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Theorem. Expressed in terms of the shadow elasticities of substi-
tution oy, the Directional SES can be written as

DSES() = ~3 (3, 3, (voi+ xpen 2o/ 3 o). (35)

]#l

SllbjeCt to 2:11 Xiv; = 0.
Proof: See Section 10.2.

Even though the definition of DSES(v) [equation (34)] was expressed
in terms of a dependent price variable (in that case py), equation (35),
which could also have been taken as the definition, is symmetric in its
treatment of all the variables. This shows that the resulting value of the
DSES(v) is independent of which price was chosen as the dependent
variable in the definition.

8.2. Properties of the DSES

Lemma 1. The Directional SES is non-negative, i.e., DSES(v) >0
for every vector v.

Proof: Since the cost function is concave in prices, the function R*
will be convex, and the quadratic form [(A.4) in Section 10.2] will be
positive semidefinite, i.e.,

2pk m m
dR 22 ,,v,v,>0.

i=1 j=1

ik j=k

Using equations (A.3) and (A.6) from the proof of the theorem, the
DSES(v) becomes

DSES(v) = %2;/— Li xivi)/'— (i Xv; g"/i xivi)

X i=1 i=1 il =1
ink i#k
dzR"/l > X; )
=73 —_— D s
dt szl 1( ')

where both numerator and denominator are positive. It may be noted
that we have at the same time proved that the quadratic form of the
substitution terms is negative semidefinite for every price change in the
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tangent plane, 1.€.,

3

m

> > dpxvixp; <0 for every xuvi,
i=1 j=1

ik

such that 27 xv; = 0.
Define the coefficients

1 viv; [ v
.. o e e . - . . _‘..—L _S.
a;(v) 3 ((x.p, + x;p;) P; / s§=:1 XsUs p,)’
ij=1,..m, i#] (36)

We then have

-
]
—

and the directional SES can be written as

DSES(V) = . 5: a,','(V)O'.',', (37)

i.e., the DSES is a weighted average (though not necessarily with
positive weights) of the individual shadow elasticities of substitution. An
SES will have a negative weight if the related prices change in the same
direction, and a positive weight if they change in opposite direction. If
only two prices, say p; and p;, were to change, then the DSES reduces to
the SES, i.e., we have the following lemma:

Lemma 2. Let v =[0,...,04...,0,05...,0], i.e., V' is 2 direction vector
with only its ith and jth components different from zero, then

DSES(V') = Tjj.

Proof: We must have that v; = —(x/x;)v; to insure that we stay on the
factor price frontier; and with v, =0, k# i,j, (35) becomes

_ (xipi + xpp)oivd pi) (= Xivd Xipy) _
xvivdpi) + (il pxivi

i

DSES(v') =
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We further have:

Lemma 3. At any point in the price space, the DSES(v) is the
same in every direction if and only if the SES’s are all equal, and
DSES(v) and SES will then have the same value.

Proof: If o = o for every i,j =1...., i# j, then

DSES(V) = i f: a,','(V)O',',‘ =T 5‘: ) a,-,-(v) =a.
i i

i=1j=1 Ci=1 =
jei j=i

The “‘only if”’ part follows from Lemma 2.

9, Inconsistent Directional Shadow Elasticity of Substitution

We will now return to the task left unfinished at the end of Section 7.
Proceeding in a manner analogous to Section 8, we can use the factor
price frontier of the inconsistently aggregated cost function B [equation
(16)] to define a function R* between the inconsistent price aggregate 7*
and the remaining inconsistent price aggregates 7', i# k, i.e.,

7“ = R(='....7'...,.7). | (38)
Further, assuming d=*# 0, define the price aggregate
o' =T (=,
ik

where
ai = B; dw"/z B dm = d,-C/_Z 4C. (39)
2 ot
Then the inconsistently aggregated directional shadow elasticity of
substitution can be defined [analogously to equation (34)] as

2ok k
/e o

DSES®(d=) =

%1y was the a priori requirement of the “if”" part of this lemma, or equivalently the
condition that
m m
> av)=1,
=1 j_=!
jzi

that led to the definition of the price aggregate ¢* along the lines of equation (33).
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Lemma 4. Expressed in terms of the shadow elasticities of substi-
tution X; of the consistently aggregated cost function €(y; PP
and the error terms 4, [see equation (21)], the inconsistently aggre-
gated DSES can be written as

8 =_l(' S (4 O _d__QEIJE)/ > d. QI_Q)
DSES®(@m) =5 (3, 3, €'+ 5 &6 (Zl acs
j#i

4 d,.C 4 d.C
+ (:5-'-:1 d;C—CTA;)/(; d.C C’ ) 41
Proof: See proof of theorem above and Frenger (1975, pp. 110-119).

The first term on the r.h.s. of equation (41) is the DSE::Sg(d'rr), the
consistently aggregated DSES of the cost function €. Define the direc-

tional error term
Adm =3 dc %6 a, / 3 ac 4. 42)
i=1 C i=1 C

The equation (41) can be written more concisely as

DSES?(dw) = DSES4(dm) + A{dm). (43)

Assume that only the ith and jth component of d= change, (ie.,
B;dn‘=—B;dn’, and d=* =0, k# i,j), and call this vector d=’, then

4JC + 4JCT_ (44)

Aldm) = a0 =

Combining equation (44) and Lemma 2, we have just proved the follow-
ing lemma:

Lemma 5. Let dn’ be defined as above, then the inconsistently
aggregated DSES reduces to the inconsistently aggregated SES, i.e.,

DSES?(dwm’) = SESZ, (45)

and the expression for SES{ is given by equation (20). The converse
is also true, i.e.:

Lemma 6. Let dm be any price change, then DSES?(dw) can be
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obtained directly from SESZ, i,j = 1,...,r, by applying equation (35),
i.e.,

DSES?(d)
- —%(i}:‘,(cwcr")SEsﬁ dc? —’—/EdC ) 46)

I=1 j=t
i

Proof: Just substitute (20) into the r.h.s. of (46), and (41) will result.

The estimates presented in Section 4 of this paper all include these
aggregation errors, i.e., all the estimates refer to the inconsistently
aggregated function B and not to the true aggregated cost function €.
(We will assume that the disaggregated cost function is weakly separable
so that consistent aggregates do exist. This assumption can best be
defended as a first approximation in order to make the following
application possible.)

As explained in Section 7 [equation (19)] it is reasonable to expect the
Paasche-Laspeyres aggregates to satisfy the first-order condition for
consistent price aggregates [equation (18)] for the base period of the
price index, in our case 1955. It is for this reason that the following
computations are limited to the price change between 1955 and 1956.

The SES presented in Table 1 are the inconsistently aggregated SES,
i.e., SES{, and using equation (46) we can then compute the in-
consistently aggregated DSES in the direction of the 1955-1956 price
change. These are”

Textiles:
DSES?(dm) = 0.1347,
Construction:
DSES®(dm) = 0.8088. (47)

By assuming (for the sake of illustration) that all the elasticities of
substitution within an aggregation group are equal, i.e., o;; = o, for every
i,j € N,, we can use (24) to derive the sectoral error terms and then (42)
to compute the directional error term (in this last step I am assuming
that o, = o for v = 1,...,r). We then have

YIn the case of metals, the estimate was performed on the principal disaggregated
sectors, so no aggregation was involved and A(dw)=0. The sector has therefore been
excluded from the following computations.
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Textiles:

Ap = —1.23500p, A = —0.084107F,
A(dw) = —0.05660,

Construction:
4,=-0.15100,, A, =—2.83750,, 4;=—1.18120,
(As=0 since dsC =0),
A(dw) = —0.26550.

Note also that we did not conduct any aggregation within the sectors
capital and labor, and hence 4, =4, =0 for both textiles and con-

struction.
Rewriting equation (43) as

DSES*(dw) = DSES?(dm) — A(dn),
we have the expression for the consistent directional SES, and it is
Textiles:

DSES¢(d=) = 0.1347 + 0.05660,

Construction:
DSES*(dw) = 0.8088 + 0.26550. (48)

These figures indicate that if o =1 the inconsistent aggregation would
result in an underestimate of the “true” directional SES of 30% for
textiles and 25% for construction, in the direction of the 1955-1956 price
change, thus confirming the suspicion expressed at the beginning of
Section 7.

These last computations are only intended as a realistic example of
how inconsistent aggregation might affect the value of the substitution
parameters of the cost function. It should also be remembered that the
analysis of the last three sections has been limited to small changes
around the base point, while the estimates of Table 1 are obviously
affected by the behavior of the disaggregated variables over the entire
sample period.

These arguments do, however, point out some of the difficulties
involved in reaching good estimates of the aggregate elasticities of
substitution, they show how serious biases can arise, and the need for
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giving special attention to the aggregation elasticities of substitution.
And, lastly, they point out that it is not sufficient for the production
structure to be separable (and weak separability of the aggregated input
sets was assumed above), but we must also know the disaggregated
elasticities of substitution in order to estimate correctly the aggregate
elasticities of substitution.

10. Appendix
10.1. The Industrial Classification and Tables

This section explains the classification system used in the Norwegian
input-output tables [Norway (1965)] and the abbreviations used in the
text and the following tables.

The inputs are divided according to whether their origin is domestic or
foreign, and the following numerical code is used:

Industry code

Domestic Foreign Industry

11 61 Agriculture and dairy products

12 62 Food industries, excl. dairy products,
canning, and fish processing

13 63 Textiles, footwear, and other apparel

14 64 Other consumer goods

21 71 Manufacturing of investment goods

22 Construction

31 81 Forestry, wood pulp, paper, and paper
products

32 83 Fish and fish products, whaling

33 83 Metal mining, metals, ferro-alioys
fertilizers, carbide

41 91 Water transport

53 93 Electricity supply

54 94 Real estate, dwelilings

55 95 Trade and transport, excl. water
transport

56 96 Service industries n.e.c.
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It has been necessary to aggregate several input sectors prior to
estimation. The most common procedure has been to aggregate the
inputs according to the one digit classification system, and over domestic
and imported commodities, giving rise to the following industrial
sectors:

(1) Consumer goods
(2) Capital goods

(3) Export goods

(4) Water transport
(5) Service industries

No direct deliveries from Sector 4 appear in the three industries
presently studied. The inputs from Sector 08, unspecified deliveries,
have for simplicity always been assumed to be used in fixed proportions
to output, and thus ignored in all the estimates. In the text and in the
tables the industry code numer is preceded by an x to indicate an input
from the xth sector or by a p to indicate it is the price index of the input
from the xth sector.
The following special aggregates were used in the textile industry:

(i) All domestically produced inputs aggregated into xD and all im-
ported inputs aggregated to xF.

(ii) All domestic sectors, except Sector 14, aggregated into xrD, while all
imported sectors, except Sectors 61, 63, and 64 were aggregated into
xrF.

In metals the principal inputs were included in the G.L. formulation,
while the inputs from the other sectors were assumed used in fixed
proportions to output.

The estimates are for the full period 1949-1961; and were estimated
using generalized least squares (GLSQ) [see equation (9) in Section 4].
The matrices below present the estimated b; coefficients with their
standard deviation in parenthesis below the estimate. Each row thus
represents the factor demand equation for the input, whose symbol is
given on the left. The column heading represents the numerator p; in the
relative price term (p/p:)'"?, the denumerator being the same for each
row. Only the upper diagonal elements are shown in those cases where
the symmetry constraint was imposed.

The tables give the square of the correlation coefficient (RY, the
Durbin—-Watson statistic (DW), and the sum of squared residuals (SSR)



TABLE A.l
Textiles - Symmetric B matrix; 1949-1961.

pD pF pKB pL
xD —02000  0.1013 0.0603 0.1671
(0.2498) (0.1699) {0.0466) (0.0993)
xF 0.2318 -0.1124 0.1499
0.1247) (0.0405) (0.0704)
xKB 0.0407 0.1387
(0.0510) (0.0390)
xL —-0.1104
(0.0623)
> by > b; SSR
it i=1
xD 0.3287 0.1287 179.8 x 107*
xF 0.1389 0.3707 487 .8
xKB 0.0866 0.1273 136.2
xL 0.4557 0.3453 692.9
1496.7
R2=09799 DW=1.5913 SSR=1496.7x107
TABLE A.2
Textiles — Symmetric B matrix, 6 intermediate inputs; 1949-1961.
pld prD pél p63 p64 prF
x4 —0.0064 -0.0622 -0.1073 0.1799 -0.0022 0.0581
(0.0871) (0.0486) (0.0588) (0.0312) (0.0745) (0.0268)
xrD 0.0512 0.0209 —0.0386 0.0787 0.0179
(0.0568) (0.0394) (0.0289) (0.0557) (0.0285)
x61 —-0.0153 0.2327 -0.0260 —0.0490
(0.0519) (0.0292) (0.0522) (0.0236)
x63 —0.1669 0.0334 0.0042
(0.0330) (0.0318) (0.0209)
x64 0.0274 -0.0491
(0.0894) (0.0287)
xrF 0.0239
(0.0279)
2 b; 2 b; SSR
iei i=t
x4 0.0664 0.0600 38.0x 107
xrd 0.0167 0.0679 34.1
x61 0.0714 0.0561 40.2
x63 0.4117 0.2448 153.2
x64 0.0348 0.0622 13.8
xrF -0.0179 0.0060 6.1
285.4
R*=0.9924 DW = 2.3252 SSR = 285.4x 107}
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for each of the estimated equations. The sum of squared residuals is
shown for each factor demand equation also when the B matrix was
constrained to be symmetric, even though the factor demand equations

were estimated simultaneously.
Further, for those cases where the matrix B is constrained to be

symmetric, the tables present two coefficient sums:

Y b; ~ The sum of the off-diagonal coefficients. For the base year 1955
i (with p; = 1.00) this becomes a test of the concavity of the
estimated cost function [see equations (4) and (12)].

2 b; — This is just the fitted value of the ith factor demand equation for

= the base year. It shows the magnitude of the input-output
coefficient of that sector, and is a test of the theoretical require-
ment that the cost function be non-decreasing in the input prices
[see equation (11)].

TABLE A3
Construction — Unconstrained B matrix; 1949-1961.
pl p2 p3 p3 pK pL
xl -0.1963 0.0567 0.0506 0.1976 0.0174 0.0357
(0.1084) (0.1487) (0.1269) (0.1929) (0.0379) (0.2741)
x2 0.189%6 —0.3336 0.4497 0.1952 -0.0398 -0.2411
(0.1803) (0.2467) (0.2117) (0.3251) (0.0634) (0.4620)
x3 0.0232 0.1408 0.3083 0.1933 —0.0874 -0.4012
(0.1038) (0.1443) (0.1214) (0.1883) (0.0367) (0.2679)
x5 —0.0221 0.0817 -0.0995 0.0070 0.0149 0.0524
(0.0250) (0.0354) (0.0300) (0.0470) (0.0093) (0.0670)
xK ~0.1289 0.0562 —0.0801 0.1032 0.0104 0.0605
(0.0388) (0.0499) (0.0410) (0.0619) {0.0118) (0.0862)
xL 0.3964 0.1336 -0.3926 —0.4296 0.0223 0.6043
(0.0787) 0.1119) (0.0946) (0.1484) (0.0292) (0.2117)
R? DW SSR
xI 0.9474 2.0369 27.1x 1077
x2 0.6717 2.4045 78.0
x3 0.4651 2.1236 258
x5 0.7976 2.1831 1.6
xK 0.9880 2.0927 2.7
xL 0.9830 2.9608 16.1

1513




TABLE A4

Construction — Symmetric B matrix: 1949-1961.

pl p2 p3 ps pK pL
xl -0.0520 -0.0991 -0.0707 0.0440 0.0149 0.3250
0.0931) (0.0739) (0.0821) (0.0236) (0.0286) (0.0500)
x2 0.2942 0.2381 —0.0064 -0.0086 -0.1911
(0.1065) (0.0874) (0.0285) (0.0259) (0.0588)
x3 0.1515 —0.0084 -0.0375 -0.0931 .
(0.1038) (0.0252) (0.0275) (0.0611)
x5 0.0421 —0.0044 -0.0332
(0.0243) (0.0113) (0.0343)
xK -0.0314 0.0903
(0.0137 (0.0183)
xL 0.2277
(0.0663)
> by 2. by SSR
=i i=
xl 0.2141 0.1621 77.4x107°
x2 —0.0671 0.2271 466.9
x3 0.0284 0.1799 48.2
x5 -0.0084 0.0337 6.0
xK 0.0547 0.0233 15.0
xL 0.097% 0.3256 176.6
790.1
TABLE A.S
Metals — Unconstrained B matrix, with “‘user cost™ of capital; 1949-1961.
pl4 p53 p64 p83 pKA pL
xi4 —0.0484 -0.0639 -0.0616 0.0168 0.1144 0.0693
(0.0358) (0.0686) (0.0629) (0.0380) {0.0556) (0.0364)
x53 ~0.0244 -0.1103 -0.0913 0.0504 0.0845 0.1431
(0.0367) (0.0717) (0.0636) {0.0845) (0.0562) (0.0377)
x64 ~0.2652 0.2363 —0.1409 0.1989 0.1824 -0.1347
(0.0969) (0.1816) (0.1716) (0.1037) (0.1482) (0.0975)
x83 0.1557 -0.5851 0.2594 -0.1022 0.0545 0.4983
(0.2516) (0.4644) (0.4428) (0.2680) {0.3849) (0.2486)
xKA 0.0424 ~0.0381 -0.0267 0.0687 0.0023 0.0951
(0.0584) (0.1119) (0.1018) (0.0615) (0.0893) (0.0595)
xL 0.0336 0.1531 0.2242 0.1031 -0.1272 ~0.1944
(0.0895) (0.1784) (0.1542) (0.0929) (0.1381) (0.0930)
R? DW SSR
x14 0.8930 1.5043 9.1x107*
X353 0.8363 3.2460 9.8
x64 0.8488 2.4860 68.7
x83 0.6217 1.8320 443.1
xKA 0.5344 2.1299 24.0
xL 0.9651 1.8873 60.4

615.1




Factor Substitution in the Interindustry Model

305

TABLE A6
Metals - Symmetric B matrix, with “‘user cost” of capital; 1949-1961.
pld p53 p64 p83 PKA pL
x4 ~0.0056 —0.0399 —0.1863 0.1087 0.0509 0.0972
(0.033D) {0.0316) (0.0488) (0.0327) (0.0287) (0.0381)
x53 -0.0623 0.0691 —0.0534 0.0469 0.0945
(0.0643) (0.0541) (0.0392) (0.0459) (0.0440)
x64 -0.1902 0.2487 0.1144 0.0213
(0.1049) (0.0710) (0.0483) (0.0490)
x83 —0.1245 —-0.0588 0.1589
(0.0739) (0.0379) (0.0434)
xKA -0.0111 0.0034
0.0479) (0.0361)
xL —-0.1868
(0.0466)
> b; > b; SSR
F*®i 1=1
x4 0.0306 0.0250 18.4%10°°
x53 0.1181 0.0558 28.6
x64 0.2672 0.0770 110.3
x83 0.4041 0.2796 573.7
xKA 0.1563 0.1457 53.6
xL 0.3753 0.1885 83.7
868.3
TABLE A.7
Textiles — Predicted 1961 input—output coeefficients.
1961 relative prediction errors
1961 1960 194560 Avg. coeff.
coeff. coeff. avg. coeff. witrend
xD? 0.1339° 0.0254 —0.0083 -0.0151
xF 0.3973 -0.1223 -0.0903 —0.0814
xK 0.1214 —0.0008 0.0189 0.1071
xL 0.2665 0.0473 0.3568 0.0131
Avg. 0.0490 0.1186 0.0542
Wet. avg. 0.0704 0.1462 0.0553
xl4 0.0654 —-0.0535
xrD 0.0685 0.1007
x61 0.0573 -0.1204
x63 0.2640 —0.1534
x64 0.0648 0.0448
xrF 0.0112 —0.3750
Avg. 0.1413
Wght. avg. 0.1222
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TABLE A.7 (continued)

1960-61 coeff. change

Symm. GL Symm. GL
xD 0.2636 0.1583
xF —0.0489 -0.1162
xKB 0.1450 0.0008
xL 0.0841 —0.0499
Avg. 0.1354 0.0813
Wght. avg. 0.1031 0.0879
xi4 —0.1131 —0.0336
xrD 0.0832 0.1080
x61 -0.0733 —0.1606
x63 —0.1269 —0.1530
x64 0.0478 0.0324
xrF -0.1964 -0.2857
Avg. 0.1068 0.1288
Wght. avg. 0.1056 0.1214

2See the industry classification for explanation of code.
*These are the actual 1961 input—output coefficients.

TABLE A.8
Construction - Predicted 1961 input—output coefficients.

1961 relative prediction errors

1961 1960 1949-60 Avg. coeff.
coeff. coeff. avg. coeff. witrend
xI® 0.1963° —0.0680 -0.1972 -0.0158
x2 0.2478 ~0.0588 -0.1217 —0.0483
x3 0.1672 0.0794 0.0259 0.0941
x5 0.0318 0.0540 0.0414 0.0178
xK 0.0486 -0.1122 —0.5252 -0.1337
xL 0.2925 0.0295 0.1040 0.0151
Avg. 0.0670 0.1629 0.0541
Wght. avg. 0.0579 0.1325 0.0429
Unsymm. GL Symm. GL
xl1 0.0010 —0.0051
x2 —0.0606 —0.0052
x3 0.0385 0.0353
x3 0.0207 —0.0031
xK -~0.0575 —0.2140
xL —0.0071 0.0232
Avg. 0.0309 0.0472

Wght. avg. 0.0276 0.0259




TABLE A.8 {continued)

1960-61 coeff. change

Unsymm. GL Symm. GL
x1 -0.0056 -0.0020
ox2 -0.0420 —0.0032
x3 0.0455 0.0490
x5 0.0283 0.0283
xK ~0.0288 —0.1091
xL -0.0198 —0.0017
Avg. 0.0309 0.0322
Wght. avg. 0.0276 0.0163

3Gee the industry classification for explanation of code.
PThese are the actual 1961 input-output coefficients.

TABLE A9
Metals — Predicted 1961 input—output coefficients.

1961 relative prediction errors

1961 1960 194960 Avg. coeff.

coeff. coeff. avg. coeff. witrend
xi4* 0.0492° -0.2297 —0.4878 -0.3394
x53 0.0633 0.0284 —-0.1817 —0.0348
x64 0.1429 -0.5416 —0.4612 —0.4843
x83 0.2405 0.3231 0.1343 0.3489
xKA® 0.1339 0.0545 0.0739 0.1060
xKB® 0.2636 0.0545 0.0739 0.1060
xL 0.1410 0.0894 0.4553 0.0298
Avg. 0.2100 0.2990 0.2239
Weght. avg. w/ KA 0.2440 0.2696 0.2470
Weht. avg. w/KB 0.2164 0.2414 0.2267
Weht. avg. intermed. inputs only 0.3385 0.2696 0.3469

Symmetric Generalized Leontief
Intermed.

“User cost™ *Rate of return™ tnputs only
x14 —0.4065 —0.3455 —0.8415
x53 -0.1864 0.2370 0.0126
x64 0.5444 —0.4920 -0.6718
x83 0.3326 0.2960 0.2603
xKA 0.0321
xKB —0.1885
xL 0.1631 0.1610
Avg. 0.2775 0.2867 0.4466
Wght. avg. w/KA 0.2813
Weht. avg. w/KB 0.2764
Wght. avg. intermed. 0.3823 0.3499 0.4049

inputs only
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TABLE A.9 (continued)

1960-61 coefl. change
Symmetric Generalized Leontief

Interm.
“User cost™ “Rate of return”™ inputs only
x4 —0.2825 --0.1748 -0.5122
x53 —0.1501 -0.1706 0.2839
x64 -0.5892 -0.5374 —0.6704
x83 0.3601 0.3289 0.3721
xKA 0.0314
xKB : —-0.2246
xL 0.1440 0.1532
Avg. 0.259% 0.2649 0.4602
Wght. avg. w/KA 0.2837
Weght. avg. w/ KB 0.2844
Wght. avg. intermed. 0.3916 0.3535 0.4610
inputs only

3See the industry classification for explanation of code.

*These are the actual 1961 input—output coefficients.

‘xK A represents an estimate using the “user cost™ of capital, xKB using the “rate
of return™ cost of capital.

10.2. Proof of Theorem

Rewrite the cost function (27) as
C = C(y;p1"-~kas---7pi’---vpm)1 i# k-

Differentiating implicitly w.r.t. p; gives

_ IR* _ k
0=C;+C; 3, = x; + xR,

or

X; Ci(yiP1r.esR D)
Mo . A.l
Xi Ci(y:p1r-sR" e sPm) (A-1)

Differentiating R w.r.t. p;, j= k, gives
1
Ri=— I [Ci(C;i + CuR%) — Ci(Cy; + CuR%)],
and substituting for C,, C;, and R*,

R5=ﬁﬁ[£i+ﬁt_£i_£kk_]. (A.2)
Xk LXiXk XiXxk XiXj  XpXg
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Expressed in terms of the substitution terms dj, where
Gy Ci GCj ..
dij=-—+ 22—~ =4, 1#],
x, XiX; i
the second derivatives become

1 XiX; ..
Rﬁ' [d.k +dy —d;], i#],
&==£1 .
R; "y di.

Returning to the derivatives of R* w.r.t. t we have

=2 R} :if;' 2 Rivi=- —E Xivi, (A.3)
::llt :;II( c#k
dZRk m m
— = 2 2 Rf‘,v,vJ
dt i=1 j=1
ik j#k
= _l_ z 2 x!x](dlk + d]k du)v U, + 2 xzdukvn
2 &=
ik j#ki l#k
= (2 2 dixiv:X;v; — 2 duxivi 2, Xiv
2x \=1 7=t =t
izk ]#k: z#k j#k.i
- dlkxlvl 2 XU — 2 z dekx iV )
1#1 l#k} ,#k
== Z_xk 2 ; diptivix;o. (A4)
=i

In terms of the shadow elasticities of substitution

XiPiXiP; d
X;pi + X;p;

the second derivative of R* becomes

ij = ijs

2x =51 = iPi

and the numerator of DSES(v) can be written as
d’R* /dR*
dt*/ dt
(2 > (xipi + X;p;)0ij Pﬁ/z xivi)- (A.5)
Pl £

i=1 j=1
ILdi



the denumerator of DSES(v) becomes

ﬂi(m)=im_ 1 do*
pe dt \@%/ " p. dt @ dt

Ug “h
= (_ (—xevy) — 2 XiU;
Pk i=1
i%k
m m
v;
== 2 XV — 2 Xivj,
i=1 Pil =1
i%k
where
1 m
Up = — — Xiv;
Xk i=1
ink
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v
PIT
(A.6)

Taking the ratio of (A.5) over (A.6) gives (35).



