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HICKS’ AGGREGATION THEOREM AND THE EXISTENCE
OF A REAL VALUE-ADDED FUNCTION*

W. ERWIN DIEWERT

University of British Columbia

1. Introduction

The received theory of consumer demand, which deals with the case of
a decision-making unit which maximizes a utility function subject to a
budget constraint, treats ‘“‘commodities” as well-defined and distinct.
However, when we look at empirical applications of this theory, we find
that the ‘“commodities” are actually aggregates of distinct goods and
services, and thus we may ask whether the received theory of consumer
demand has any empirical relevance, or alternatively, we must look for
conditions which will justify using aggregate commodities in place of
micro commodities.

It turns out that this use of aggregates in the theory of consumer
demand can be justified, provided that all price changes within an
aggregate are proportional. This result is known as Hicks’ Aggregation
Theorem. Somewhat imprecise statements and proofs of this theorem
may be found in Hicks (1946, pp. 312-313) and Wold (1953, pp. 109-110),
while a rather more precise statement of the theorem may be found in
Gorman (1953, pp. 76-77).

*This work was partially supported by the National Science Foundation Grant GS-2874-
Al at the Institute for Mathematical Studies in the Social Sciences, Stanford University,
and by a Canada Council Grant S. I am indebted to E.R. Berndt, C. Blackorby, L, Epstein,
D. McFadden and A.D. Woodland for helpful discussions. This paper is a revised version
of IMSSS Technical Report 84, January 1973.
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In Section 2 of this chapter, we will state and prove a version' of
Hicks® Aggregation Theorem which is similar to Gorman’s version,
except that we relax his rather strong regularity conditions on the micro
utility function.®? We then ask the obvious question: what are the
properties of the ‘“‘aggregated” or “macro” utility function when prices
within a subgroup do not vary in strict proportion? In Section 3, we
answer this question and we note that there is a duality between direct
“micro” utility functions and “macro” [or ‘conditional indirect”
Pollak’s (1969) terminology or “variable indirect” using Epstein’s (1975)
terminology} utility functions.

Differentiation of a conditional indirect utility function with respect to
prices yields Pollak’s (1969) conditional demand functions. We exhibit
some convenient functional forms for the conditional indirect utility
function and derive the corresponding conditional demand functions. If
we econometrically estimate the parameters of these conditional demand
functions and if all of the parameters of the conditional indirect utility
function appear in these demand functions, then by duality, we will have
estimated a representation of the consumer’s direct utility function.
Thus if we identify the conditional goods as public goods,’ an ap-
propriate choice of functional form for the conditional indirect utility
function can be used to solve one of the most vexing problems in the
public finance literature: how can we get people to reveal their pref-
erences about public goods? This use of conditional demand functions to
solve the “‘free rider” problem was suggested by Pollak (1969, p. 63).

We conclude Section 3 by establishing the implications of concavity
of the direct utility function on the conditional indirect utility function,
and the implications of convexity in prices of the conditional indirect
utility function on the direct utility function. These implications are
useful in the analysis of risk aversion in a many-commodity world [e.g.,
see Stiglitz (1969) and Hanoch (1977)].

In Section 4 of this chapter, we develop an analogue to Hicks’
Aggregation Theorem in the context of production theory. More

'Our treatment of Hicks' Aggregation Theorem largely parallels that of Pollak (1969, pp.
74-75) and the Arrow-Hahn (1971, pp. 144—145) treatment of the first period derived utility
function which arose in their treatment of the temporary equilibrium.

*Gorman’s regularity conditions on the micro utility function are: f is a continuous.
strictly increasing, strictly quasi-concave, once differentiable function defined over the
non-negative orthant which also has the property that each indifference surface does not
intersect the coordinate planes.

3Samuelson (1969a, Sec. 5) defines a public good as one that enters two or more persons’
utility.
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specifically, we reconsider the old problem* of attempting to represent
the “real output” of an industry by using some sort of deflated value-
added concept. This deflation problem is of some empirical importance,
since virtually all (non-fixed coefficients) production function studies use
deflated value-added (rather than deflated gross output) as their measure
of real output. How has this substitution of value-added for gross output
been justified in the context of production function studies?

Consider the following highly aggregated example. Let Y represent
teal gross output, K real capital input, L labour input, and M inputs of
new materials, energy and other intermediate commodities. Suppose that
the technology of the firm or industry can be represented by the
production function f where Y = f(K,L,M).

One method of justifying the substitution of value-added for gross
output has been to assume that the production function f is weakly
separable5 and can thus be written as f(K,L,M)=g(h(K,L),M) in which
case we can identify h(K,L) as real value-added. This separability
approach has been studied by Corden (1969), Sims (1969) and Arrow
(1974), and we will not pursue it in the present paper.®

Another approach to the problem of measuring real value-added has
been to define nominal value-added V as the solution to a profit
maximization problem and then to apply Hicks” Aggregation Theorem.
That is, we may define nominal value-added V as follows, where py is
the price of one unit of gross output, py is the price of one unit of raw
materials, and all other variables have been defined above,

(11) V(K,L,py,pM) = rr‘}?dx{py ‘Y — PMm M:Y = f(K,L,M)}

Now if py and py vary in strict proportion, and we let p=a-py + b-py
be a price index in the prices py and py with fixed weights a and b
chosen so that p is positive for the base period, then it turns out that the
deflated value-added function v(K,L)= V(K,L,py,pm)}/p does not
depend on the prices py and py and moreover, the function v satisfies
the usual neoclassical production function properties in K and L, if f

“The literature on this problem includes Geary (1944), Berlinguette and Leacy (1961),
and David (1966).

5See Goldman and Uzawa (1964) and Blackorby, Primont, and Russell (1978) for a
treatment of weak separability.

*Frequently, the separability assumption is implicitly or explicitly strengthened to read
Y = f(K.L.M)=g(h(K,L),M) where g is a Leontief or fixed coefficients type production
function. In this latter case, either Y, M or Y —~ M may be used as an index of real
value-added.
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satisfies suitable regularity conditions. Thus if producers behave in a
profit-maximizing manner, and if the prices of outputs and intermediate
inputs vary in proportion, then the replacement of gross output Y by
deflated value-added v =(py-Y — py-M)/p can indeed be justified from
the viewpoint of production function studies. This second method of
justifying the substitution of real value-added for gross output is due to
Khang (1971) and Bruno (Chapter III.1).

In Section 4 of the present chapter, we pursue the approach of Khang
and Bruno, allowing for joint production and non-differentiable produc-
tion functions. We simply note that a nominal or money value-added
function [such as V(K,L,py,py) defined by equation (1.1)] is a special
case of a variable profit function,” and thus known results may be used
in order to characterize the properties of the value-added function with
respect to prices and quantities. We then show that if all output prices
and intermediate input prices vary in strict proportion, then the deflated
value-added function has the properties of a neoclassical production
function.

In Section 5, we consider the problem of minimizing the cost of
producing one unit of nominal value-added and develop a duality
theorem between the resulting cost function and the value-added
function.®

In Section 6, we conclude by.engaging in some armchair empiricism
and we suggest that most postwar production function studies using
deflated value added as output are probably somewhat biased.

Section 7 presents proofs for the longer theorems.

In the remainder of the present section, we review some mathematical
theorems which will be utilized in the following sections of the chapter.

(1.2) Definition. A function f defined on §, a subset of Euclidean M
space, is said to be continuous from below at a point x" € § if for
every € >0, there exists a neighbourhood U(x" such that x&

U (x%) implies f(x) > f(x%) — €.

(1.3) Definition. A numerical function f defined on S is said to be
continuous from above at a point X’ € § if for every € >0 there

"The variable profit function was introduced into the economics literature by Samuelson
(1953-54, p. 20). Its properties were more formally studied by Gorman (1968a) who called ita
gross profit function, Diewert (1973a), McFadden (Chapter 1.1), who uses the terminology
restricted profit function, and Lau (1976a).

*Denny (1972) has independently studied aspects of this duality relationship in the
context of a non-constant returns to scale production function. Woodland (1977) has
extensively applied this duality in the context of international trade theory.
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exists a neighbourhood U (x") such that x € U(x°) implies f(x) <
fx)+e

Note that f is continuous at x° if and only if it is continuous from
below and above.’

We say that a function f is continuous from above over § if it is
continuous from above at each point of S.

(1.4) Lemma [Berge (1963, p. 76), Rockafellar (1970, p. 51)]. The
' function f is continuous from above over § if and only if the set
{x:f(x)=a; XE 8§} is closed in § for every scalar a.

(1.5) Theorem [Berge (1963, p. 76)]. If § is a compact (i.e., closed
and bounded) subset of Euclidean M space, then a continuous
from above function f attains in § the value M = sup{f(x):x € §}.

In the following definitions, let § denote a subset of R™ T a subset of
RY, {x"} a sequence of points of § and {y"} a sequence of points of T.

(1.6) Definition. ¢ is a correspondence from S into T if for every
x € 8§, there exists an image set ¢(x) which is a subset of T.

(1.7) Definitions. A correspondence ¢ is upper semicontinuous at the
point x’ € § if lim x" = x%; y" € ¢(x"); lim y" = y° implies y° € ¢ (x).
A correspondence ¢ is lower semicontinuous at x" € § if limx" =
x%; v’ € ¢ (x°) implies that there exists a sequence {y"} such that
y"E é(x") and limy" =y°. A correspondence ¢ is continuous at
x’ € § if it is both upper and lower seficontinuous at x°.

(1.8) Upper Semicontinuity Maximum Theorem [Berge (1963, p. 116}].
Let f be a continuous from above function defined for (x,y) such
that x € § and y € T where T is a compact subset of R". Suppose
that ¢ is a correspondence from § into T and that ¢ is upper
semicontinuous at x" € S. Then the function g defined by g(x)=
max,{f(x,y):y € &(x)} is continuous from above at x".

(19) Maximum Theorem [Debreu (1952, pp. 889-890, and 1959, p.
19), Berge (1963, p. 116)]. Let f be a continuous real valued
function defined for (x,y) such that x€S§ and yE T where T is a
compact subset of R". Suppose that ¢ is a correspondence from

*The property of continuity from above is often called upper semicontinuity [cf. Berge
(_196‘3. p. 74) or Rockafellar (1970, p. 51)]. However, we will use the term upper semicon-
tinuity to describe a property of a correspondence.
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S into T and that ¢ is continuous at x* € §. Define the maximum
g(x°) = max,{f(x°,y):y € 6(x%} and the set of maximizers £¢(x%=
{y:y € ¢(x°) and f(x",y) = g(x°)}. Then the function g is continuous
at x’ and the correspondence ¢ is upper semicontinuous at x°.

Now that we have disposed of the mathematical preliminaries, we are
in a position to prove a very general version of Hicks’' Aggregation
Theorem.

2. Hicks’ Aggregation Theorem in the Consumer Context

Consider the following micro or disaggregated utility maximization
problem, where f is the consumer’s utility function, x =0, is a non-
negative M-dimensional vector of commodity rentals,”” y=0x is a
non-negative N-dimensional vector of commodity rentals, w3 0y is an
M-dimensional vector of positive rental prices, p> 0Ox is an N-dimen-
sional vector of positive rental prices and Y =0 is the consumer’s
“income”,

(2.1) max{f(x,y):x=0y, y=0y;w x+p'y= Y}
X.y

Observe that if w>0y, p>0x, Y =0 and the utility function f is
continuous from above, then at least one solution x*,y* to the dis-
aggregated utility maximization problem 2.1 will exist, using Theorem
1.5. Thus in what follows, a minimum regularity condition we will
impose on the micro utility function f is that it be continuous from
above.

Suppose that the prices w, which correspond to the first group of
commodities, satisfy the relationship w = poa where a3 0y is a fixed
vector of constants and p, >0 is a scalar. In other words, from period to
period, po and p may vary in an arbitrary fashion, but the variation in the
price vector w is limited by the equation w = pea. This vector of fixed
constants o 1s used in order to define the following aggregated utility
function:

(2.2) Ud(yo,y) = max{f (x,y):x = Oy, o' x =y},

®Notation: 0, denotes an M-dimensional column vector of zeroes. x’ denotes the
transpose of the column vector x. x = 0y means each component of x is non-negative, and
x > 0y means each component is positive.
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where y = 0n, yo=0, a> 0y, and f is the micro utility function. We note
that if the micro utility function is continuous from above, then Theorem
1.5 implies that the aggregated (over commodities) utility function de-
fined by equation 2.2 will be well defined as a maximum since the set
{x:x = 0y, " x < yo} is compact if &> 0y and yo=0.

Now given the macro utility function U, po>0, p>0n, Y =0, the
macro or aggregated utility maximization problem is defined as follows:

(2.3) max{Ua(yo,y):Poyo+p y= Y; =0,y =0x}.

Yo.¥

(2.4) Hicks® Aggregation Theorem [Hicks (1946, pp. 312-313), Wold
(1953, pp. 109-110), Gorman (1953, pp. 76-77)]. Let the micro
utility function f be continuous from above, let po>0, a> 0y,
w = poat, p>O0x and Y =0. Then (i) the macro utility function Uq
defined by equation 2.2 is also continuous from above (and thus
the macro utility maximization problem given by equation 2.3 has
a solution), (ii) if (x*,y*) is any solution to the disaggregated utility
maximization problem 2.1, then (y§.,y*) is a solution to the aggre-
gated utility maximization problem 2.3 where y% =a’x* =w'x*/p,
(and thus the usual procedure of defining an aggregate commodity
as expenditure on a group of commodities divided by a price
index is justified), and (iii) if the micro utility function f has any
of the properties (a) to (e) below in addition to continuity from
above, then the macro utility function U, defined by equation 2.2
also has the corresponding properties: (a) local non-satiation,'’ (b)
continuity, (c¢) non-decreasing” in its arguments, (d) quasi-
concavity,” (e) strict quasi-concavity.

A proof of the above theorem is given in Section 7."
We note that if a micro utility function f has the properties of
continuity from above plus local non-satiation, then data generated as

"'The wutility function f(z) where z =0y, is subject to local non-satiation if for every
2°=0y.~ and 8 > 0. there exists z =0y, such that (z—2°7(z—2z" = 8" and f(z) > f(z").

“The utility function f is non-decreasing if 0y.x =z' <z’ implies f(z') = f(2°).

“The utility function f is quasi-concave if and only if for every scalar & the set
Lky={z:fz) = k: 2= 0y} is convex: f is strictly quasi-concave if and only if for every
k. L(k) is a strictly convex set. A function f is quasi-convex if and only if —f is
quasi-concave. . .

“One can also show. using some results due to Danskin (1967, p. 24). that if the micro
utility function f has the properties of local non-satiation, strict quasi-concavity and in
addition is twice continuously differentiable with respect to its arguments, then the macro
utility function will also be twice continuously differentiable with respect to its arguments,
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solutions to the micro utility maximization problem 2.1 will satisfy the
strong axiom of revealed preference.” Hence Theorem 2.4 implies that
the aggregated data will also satisfy the strong axiom of revealed
preference, provided that prices of the goods in the aggregate vary in
strict proportion over time. Thus if the last condition is satisfied, the use
of an aggregate commodity in place of the micro commodities can be
justified from the viewpoint of the received theory of consumer demand.

If the vector a does not remain constant over time, then the macro
utility function Uu(ye,y) defined by equation 2.2 will be a function of a.
In the following section, we determine the properties of U with respect
to o.

3. Duality between Direct and Conditional Indirect Utility Functions

We now allow the vector of parameters a found in Definition 2.2 to vary
and we determine the properties of the macro utility function Ua(ye.y)
with respect to a.

(3.1) Theorem. Let the micro utility function f(x,y) be continuous
from above with respect to x>0y for a fixed y=0y and let
Ud(yo,y) be defined by equation 2.2 for a > Oy, o =0, y =0n. Then
for fixed yo and y, Ua(¥e,y) is (i) continuous from above with
respect to «, (ii) non-increasing with respect to o, and (iii) a
quasi-convex function of a over the set §={a:a> 0y}. (iv) For
fixed y, Ud(yo,y) is homogeneous of degree zero in (a,yo), i.e., if
a> 0y, A >0, yo=0, then Ura(Ayo,¥) = Ualyo,y). (v) If the micro
utility function f is a continuous function over the non-negative
(M + N)-dimensional orthant, then Uu(yo,y) is jointly continuous
with respect to &> 0p, v0 =0, and y = 0.

A proof of the above theorem is given in Section 7. Note that
Theorem 3.1 yields the properties of the indirect utility function as a
special case (i.€., let N = 0 and the vector y vanishes from Definition 2.2,
and then y, may be interpreted as “income’) and thus Theorem 3.1
generalizes somewhat some aspects of the duality theorems between

“See Houthakker (1950. p. 163) for a statement of the strong axiom of revealed
preference. :
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direct and indirect utility (or production) functions due to Newman
(1965, pp. 138-172), Lau (1969a), Weddepohl (1970, p. 125) and Shephard
(1970, pp. 13-23, 105-111, 301-305)." If we look at U.(yo,y) as a
function of e, Theorem 3.1 tells us that the set of “prices” {a: Ua(y0,y) =
k: a>0y} will be a convex, closed (in the positive orthant), “non-
backward-bending” set, provided only that the micro utility function is
continuous: i.e., the set {a:Ua(yo,y)=k; a>0y} will look like an
ordinary indifferent-or-preferred-to set. However, note that as k in-
creases, the set {a: Uq(vo,¥) = k; a > 0y} will generally move towards the
origin instead of away from it; i.e., as the “prices” a become smaller,
the set of feasible x’s in Definition 2.2 becomes larger and thus we
would expect Ua(yo,¥) to increase.

The macro utility function U.(yey) is called a conditional indirect
utility function by Pollak (1969), or a variable indirect utility function by
Epstein (1975). Epstein also showed that the properties of the macro
utility function which occurred in Theorems 2.4 and 3.1 completely
characterize a certain class of prefsrences. That is, suppose the direct
utility function f(x,y) is a continuous, non-decreasing, quasi-concave
function of (x,y) over x=0y, y =0y and the conditional indirect utility
function Ugd(ye,y) is defined by equation 2.2. Then Ua(yo.y) is: (i) a finite
continuous real valued function over the set § = {(e,¥,¥):¢ > 0y, Y0 =0,
y =0y}, (ii) non-increasing and quasi-convex in «a> 0y for every yo.y,
(ili) homogeneous of degree zero in (a,yo) for every y, and (iv) non-
decreasing and quasi-concave in (yoy) for every a. Now extend the
domain of definition of Ud(yo,y) to =0y by continuity. (The resulting
function need not be finite if any component of a is zero.) Define the
direct utility function f* using the conditional indirect utility function U.
for x =0, and y> Oy as follows:

(3.2) f*(x,y)=min{Us(L,y):a’x =1,a =0y}

Then Epstein shows that f =f*; ie., the conditional indirect utility

1The main difference between Theorem 3.1 and the results of Newman, Lau and
Shephard lies in the extremely weak regularity conditions we have imposed on the direct
utility function f. However, there are other minor differences. Newman (1965, p. 160)
appears to have the curvature of the level sets of the indirect utility function going the
wrong way, Lau (1969a, p. 376) asserts that the indirect utility function is a convex function
in prices rather than a quasi-convex function and Shephard (1970, p. 106) is able to prove
that the indirect utility function is continuous from below (rather than being continuous
from above). However, Shephard's result can be traced to the fact that he defines the
indirect utility functions as a sup rather than as a maximum.
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function U, completely characterizes the direct utility function f."” For
applications and further extensions of this duality between conditional
indirect and direct utility functions, see Blackorby, Primont and Russell
(1977b, 1978). ,

As Hanoch has noted in Chapter 1.2, in the production theory context,
the analogue of the indirect utility function is the indirect production
function. Thus we analogously define the conditional indirect production
function (while introducing a more traditional notation) as

(3.3) g(v.y)=max{f(x,y):v x=1,x =0y},

where f is the direct production function, x is an M-dimensional vector
of variable inputs, y=0x is an N-dimensional vector of fixed inputs,
v=p/Y is a vector of normalized prices, p> 0y is a vector of variable
input rental prices, while Y >0 is expenditure on the variable inputs,
and g is the conditional indirect production function. Thus g(v,y) is the
analogue to U,(l,y) and the same duality theorem as held between f(x,y)
and U.(1,y) will hold between f and g, except that it is natural to assume
that output be positive if all inputs are positive which in turn will imply
that g(v,y) is positive for positive arguments. We denote output as
u = f(x,y), since later in this section, we will interpret u as utility and f
and g as direct and conditional indirect utility functions, respectively.

Looking at equation 3.3, we see that the conditional indirect produc-
tion function g(v,y) gives the solution to the problem of maximizing
output u = f(x,y) given an expenditure constraint on variable inputs x of
the form p'x=7Y (or v'x=1 where v=p/Y) and given the vector of
fixed inputs y. On the other hand, given a conditional indirect production
function g satisfying the appropriate regularity conditions, the cor-
responding direct production function f can be calculated as the solution
to the following minimization problem (which is the counterpart to
equation 3.2):

(34) f(x,y)=min{g(v,y):v'x<1,v=0y}.

In the theory of production, it is often assumed that-the production
function f is positively, linearly homogeneous; i.e., for every x =0y,
y =0y and scalar A >0, f(Ax,Ay) = Af(x,y). The following theorem noted

Epstein also notes that the continuity problems which were discussed in Diewert

(1974a, pp. 121-123) also occur in the present context but that the same techniques that
were used in Diewert can be used in the present context.
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by Epstein (1973b) indicates the implications of linear homogeneity of f
on g.

(3.5) Theorem [Epstein (1973b)]. Let the direct production function f
and its dual conditional indirect production function g satisfy
Epstein’s regularity conditions. Then f is positively linearly
homogeneous if and only if for every v>0y, y=0n, A >0, we
have

(3.6) g(A"'v,Ay) = Ag(v.y).

If we define a transformed conditional indirect production function g*
for v>0y by g*(v ', y)=g(vy), where v'i=(v7',03,...,0%) is a vector
which has as components the reciprocals of the components of v=
(v;,02,...,Um ), then the thrust of Theorem 3.5 is that the direct production
function f is positively linearly homogeneous if and only if g* 1s
positively linearly homogeneous in its arguments.

Just as linear homogeneity places certain restrictions on the first- and
second-order partial derivatives of a direct production function, the
homogeneity property defined by equation 3.6 places restrictions on the
first- and second-order partial derivatives of g. Assuming that g is twice
continuously differentiable at a point v* >0y, y*> 0y, if we partially
differentiate equation 3.6 with respect to A and set A = 1, we obtain the
following restriction on the first-order partials of g:

BT —v¥TV.g(v ,y*) +y* Vg (viy*) = g(v*.y),

where V.,g(v*,y*) denotes the vector of first-order partial derivatives of g
with respect to v evaluated at v*, y* and V,g(v*,y*) denotes the partial
derivatives of g with respect to the components of y.

On the other hand, if we partially differentiate the identity equation
3.6 with respect to the components of v and then partially differentiate
" the resulting M equations with respect to A, upon setting A =1, we
obtain the following M equations:

(3.8) —Vig(v*y* v+ Vig(v* y )y* = 2V.g(v:.y"),

where Vi,g(v*y*) denotes the M by M matrix of second-order partial
derivatives of g with respect to v while Vig(v*y*) denotes the M by N
matrix of second-order partial derivatives of g with respect to the
components of v and y.

Finally, if we partially differentiate equation 3.6 with respect to the
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components of y, then partially differentiate the resulting N equations
with respect to A, and then set A =1, we obtain the following N
equations:

(.9 —Vig(W*y*)v*+ Vig(v:y*)y* = On.

Since g is assumed to be twice continuously differentiable at (v*y*),
the matrices of second-order partial derivatives Vig(v*y*) and
V,z,,g(v*,y*) will be symmetric. Thus these symmetry conditions and the
(1+ M + N) restrictions 3.7 to 3.9 imply that there are M(M —1)/2+
N(N -1)/2+(1+ M + N) linear restrictions on the first- and second-
order partial derivatives of g (and the level of g), evaluated at the point
(v*,y*). Thus it can be seen that the following functional form for a
conditional indirect production function due to Epstein (1973b) can
provide a second-order differential’® approximation to an arbitrary twice
continuously differentiable conditional indirect production function
which has the homogeneity property 3.6 (and thus corresponds to a
constant returns direct production function):

(3.10) u=gvy)= E z amt i Poi P+ 2 2 2 Crnt 22y 12

m=1k=l m=]n=

SRS 2,172

1 1

+EZ buryn ¥:°,
n=1r=1

where am. = aw. for every m, k, and b,, = b, for every n,r. It is easy to
verify that the functions v.? and y}?y"? are concave in y and that the
functions v, and v;"v;"? are convex in v.*° Thus if all of the
coefficients an, b, and c.. are non-negative, it can be verified that g
defined by equation 3.10 is (i) non-negative, (ii) non-increasing and
convex (and hence quasi-convex) in v for fixed y, (ili) non-decreasing
and concave (and hence quasi-concave) in y for fixed v, and (iv) g
satisfies the homogeneity property 3.6. Thus g is dual to a well-behaved
linearly homogeneous direct production function.”

BThe term is due to Lau (1974), but the concept is discussed by McFadden (Chapter
I1.2) and is termed the second-order approximation property.

®It is easier to see that the functional form defined by equation 3.10 provides a
second-order differential approximation to a twice continuously differentiable transformed
conditional indirect production function, g*(v™',y) = g*(z), since g(z) defined by equation
3.10 is a Generalized Leontief functional form in z=(z"'.y) and thus the ‘‘flexibility”
theorem of Diewert (1974a, p. 117) applies.

It is well-known that the reciprocal of a positive concave function is convex; e.g., see
Zangwill (1969, p. 60).

If some of the coefficients of g defined by equation 3.10 are negative. then g can still
satisfy the appropriate regularity conditions over a region and be a valid representation of
technology over that region. See Epstein (1973b) and Diewert (1973a, pp. 305-306).
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Roy’s Identity?” may be used in order to generate the firm’s system of
M conditional or short-run demand functions x(v*y*) at any point
(v*,y*) where the conditional indirect production function is differenti-

able,
3B.11) x(v*y*)= V.o (v:,y*)Iv*T Vg (v*,y%).

If the firm’s conditional indirect production function is defined by
equation 3.10, then the firm’s output maximizing demands x=
(x1,X2,...,xn) for variable inputs given the expenditure constraint v x < 1
are defined by the following equation (upon application of Roy’s Identity

3.11):

M N
~3/2. —1/2 -3 .12
_z AmiVm Vi —Ecmnvm ynf
k=1 =1
(3-12) xm = M -

o 2, -1 ™ X 2.2
-1 -1/2 ~-1/2..1
"2 a;v; vy 2 2 CnkUn " Yk

i=1j=1 h=1 k=1

?

for m =1,2,...M.

Given data on output u, variable inputs Xx, fixed inputs y and variable
input prices p (so that normalized variable input prices v= p/p x can be
calculated), we may use equation 3.10 and the M variable input demand
equations 3.12 (only M — 1 of them are independent) in order to estimate
the parameters of technology, am b, and Cmn.

Suppose now that the firm can periodically vary its fixed inputs y. For
example, we might suppose that output and the short-run inputs are
chosen every week, but that once a year long-run inputs are also
changed. Suppose that the firm faces long-run input rental prices q =
(g1,92,-.--qn) and that it wishes to spend no more than E >0 dollars on
fixed inputs during the week when long-run inputs are chosen. Then
given short-run input prices p and a budget of Y >0 dollars to spend on
short-run inputs, the firm will wish to choose the vector of long-run
inputs y which solves the following maximization problem:

(3.13) max{g(p/Y.y):q"y=E,y=0n}= max{g(v;y):w y=1,y=0x},
y ¥

where v=p/Y is the vector of short-run normalized prices, w=g/E is
the vector of long-run normalized input prices, and g is the producer’s

conditional indirect production function.
The producer’s system of long-run inverse demand functions w(v*.y*)

2Gee Roy (1942), Konyus and Byushgens (1926), or Diewert (1974a, p. 124).
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can be defined as the set of normalized long-run prices such that y* =0y
is a solution to the constrained output maximization problem 2.13 when
v =v* and w = w(v*,y*). If the conditional indirect production function g
is non-decreasing, quasi-concave and once differentiable in y, then the
producer’s system of long-run inverse demand functions can be cal-
culated by using Wold’s Identity,”

(3.14)  w(v*y*) = V,g(v*,y")/y* V,g(v*,y*).

If the firm’s conditional indirect production function is defined by
equation 3.10, then application of Wold’s Identity yields the following
system of long-run inverse demand functions:

N M
-12,,12 =12, 172
nr)’nIYr +2 CmunUm Yn
m=1

b
r=1
> PR SES IR
1 -
EEbif)’i yj +h21k2 ChkUh YK
i=1j=1 =1 k=1

Given data on output u, variable inputs x, “fixed” inputs y, variable
input prices p (recall v=p/p’x) and “fixed” input prices q (recall
w=q/q"y), then the “weekly” equations 3.10 and 3.12 along with the N
“annual” equations 3.14 (only N —1 of them are independent) can be
used in order to estimate the unknown parameters dmk, bnr, and cmp.

The idea of producers maximizing output subject to one or two
expenditure constraints on inputs is perhaps not intuitively appealing.’
It is more natural to think of producers as maximizing short-run profits
with respect to variable outputs and inputs and then choosing fixed
inputs to maximize long-run profits. In this case, the natural way to
describe technology is by means of a variable profit function (a concept
which will be discussed in the following section).”

w, =

(3.15)

)

BSee Konyus and Byushgens (1926), Hotelling (1935), and Wold (1944, pp. 69-71) for
proofs in the context of consumer theory. The proof consists of setting up the Lagrangean
for the constrained maximization problem 3.13, partially differentiating and then eliminat-
ing the Lagrange multiplier.

1t is, however, logically consistent with competitive profit maximization, since the
producer will always want to produce a given amount of output at minimum short- (and
long-) run cost.

“Moreover, the use of the variable profit function instead of the conditional indirect
production function can lead to a system of short-run input demand and output supply
functions which are linear in the parameters of technology (instead of a nonlinear system
like 3.12) if one uses an appropriate functional form and Hotelling’s lemma as in Diewert
(1974a, pp. 137-139). Furthermore, use of the variable profit function can lead te systems
of long-run inverse demand functions which are also linear in the parameters of tech-
nology. See Diewert (1974a, p. 140).
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However, the real usefulness of the concept of the conditional indirect
production function lies not so much in the producer context but in the
consumer context where the variable profit concept cannot be used -
interpret output « as utility, x and y as short- and long-run commodity
rentals with p and q being the corresponding vectors of rental prices, f
as the direct utility function and g as the consumer’s conditional indirect
utility function. The main difference between the consumer and
producer interpretations of the basic model is that while output can be
observed utility cannot be observed. Thus in the consumer context, we
cannot use equation 3.10 to aid us in the econometric estimation of the
unknown parameters of the consumer’s preferences.

Moreover since equations 3.12 and 3.15 are homogeneous of degree
zero in the unknown parameters, in the consumer context when equation
3.10 is unavailable for econometric purposes, it will be necessary to
make a normalization on the parameters (in order to determine the scale
for utility) such as

M M M N N N
(16) 2 2 am+2 2 X cmnt 2 2 b = 1.

If units of measurement are chosen so that v, =1, m=1,2_..M, and
ya =1, n =1,2,...,N, during a base period, then the effect of the normal-
ization 3.16 is to make utility equal to unity during the base period.

For an application of the above functional form to the problem of
estimating a consumer’s preferences under uncertainty, see Epstein
(1973b, pp. 12—-18). The above model assumes that the underlying direct
production or utility function is linearly homogeneous. This restriction
can be relaxed by introducing an additional fixed good, y; say, which
always takes the value unity. ThlS is equivalent to adding terms of the
form 23 Covi?+ beo +23 0 lb,.oy}.” to the conditional indirect
function defined by equation 3.10.* We leave it to the reader to use
Roy’s Identity 3.11 and Wold’s Identity 3.14 in order to derive the
resulting short-run and long-run inverse demand functions. The
parameter bg will not be identifiable in the consumer context.

Let us now suppose that the consumer” has preferences defined over

®The resulting conditional indirect function generally has the second-order ap-
proximation property.

7 A similar analysis can be applied in the producer context (toll-free roads come to mind
as an obvious public good in the producer context), but again it is easier from an
econometric point of view to phrase the analysis in terms of the variable profit function
(where the fixed inputs include the public goods) in place of the conditional indirect
production function.
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market goods x and public goods y. The above model can be applied
except that the consumer cannot generally optimize his choice of public
good inputs, so that the maximization problem 3.13 is not applicable in
the present context, and thus we cannot derive equations 3.15 to aid in
the econometric estimation of the unknown parameters of preferences.
We will be left with only equations 3.12 (or their counterparts in the case
of nonhomothetic preferences) and thus the parameters b,, which occur
in equation 3.10 cannot be identified econometrically.

The following functional form for a conditional indirect utility
function leads to a system of short-run derived demand functions which
does not suffer from the above lack of identifiability problem:

61D sp=23 S o w(z yr)2 3 5 cponmyie

m=1 k=1 m=1n=

123 S byl (2 07'?) +4 E aomv 7™ (2 v

n=1r=1 m=1

N M M
+4 bo,.y,',"‘(z v,}’l‘)+ao+4 > anv; (E y”‘)
m=1

m=1

N M
+4 2 bay 4 (Z u;”‘),
m=1

where amk = @um, bar = by, @mm =0 for m =1,2,....M, and b,, =0 for
n = 1,2,...,N. These last two sets of restrictions are necessary in order to
identify the parameters cm,. If all of the parameters are non-negative,
then it is easy to verify that g defined by equation 3.17 satisfies the
Diewert-Epstein regularity conditions for a conditional indirect function
globally. The function defined by equation 3.17 generally has the second-
order approximation property to an arbitrary twice differentiable condi-
tional indirect function. Moreover, if the parameters a,, m =0,1,....M,
and b,, n = 1,2,...,N, are set equal to zero, the resulting function has the
homogeneity property 2.6 and can generally”® differentially approximate
an arbitrary twice differentiable conditional indirect function which
corresponds to a linearly homogeneous direct function.

We leave to the reader the task of applying Roy’s Identity 3.11 to the
function defined by equation 3.17 in order to derive the variable input
demand functions x(v,y). If we make a normalization on the parameters
of equation 3.17 which makes utility equal to unity for a base obser-

*The proof is similar to Lemma 5.9 in Diewert (1973a). We require that a certain matrix
whose coefficients are functions of the initial normalized prices and fixed guantities be

nonsingular.
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vation (and set ao=0), then it will turn out that the remaining
parameters of g can be econometrically estimated using just the variable
input demand functions x(v,y). Thus a consumer’s preferences over
market goods x and public goods y can be identified econometrically
using only the market goods demand functions, provided that the
consumer’s preferences can be adequately represented by a condittonal
indirect utility function of the type defined by equation 3.17.

We conclude this section by discussing the implications of concavity
-of the direct utility or production function (as opposed to the weaker
property of quasi-concavity) on the conditional indirect function, and
the implications of convexity in normalized prices of the conditional
indirect function (as opposed to the weaker property of quasi-convexity)
on the direct function.”

(3.18) Theorem. Let fbea continuous, non-decreasing, quasi-concave
direct function of (x,y) over the non-negative orthant in M+ N
space, and let g(v,y) be the ‘corresponding dual conditional
indirect function defined by equation 3.3. Then f(x.y) is concave
in (x,y) if and only if g(p/Y.,y) is concave in (Y)y) for every
p > 0. Moreover, under the above conditions, the conditional or
restricted® cost function defined by

(3.19) C(u:p.y)=min{p x:f(x,y) = u,x =0pn}

is convex in (u,y) for every p> Oy

A proof of this theorem can be found in the appendix. The same proof
with minor modifications can be used to show that under the above
conditions on f, f(x,y) is concave in x for a fixed y if and only if g(p/Y.y)
is concave in Y for every p > 0y or if and only if C(u;p,y) is convex in u
for every p > Oum.

(3.20) Theorem. Letfbea continuous, non-decreasing, quasi-concave
direct function of (x,y), and let g be the corresponding dual
conditional indirect function. Then g(v,y) is convex in normal-

®as well as being of direct interest in the production theory context where it is natural
to assume concavity of the production function, these implications play a role in the
analysis of consumer behavior under uncertainty; see Stiglitz (1969), Epstein (1973a and
1975), and Hanoch (1977).

3Gee McFadden (Chapter I.1) for a detailed analysis.
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ized prices v 0y for a fixed y =0y if and only if f(x/Zy) is a
convex function of the scalar variable Z > 0 for every x> 0,

A very simple proof of this theorem (due to L. Epstein) can be found
in Section 7. If y is taken to be the empty set, then the above two
theorems specialize to theorems about the direct and indirect production
or utility functions, which have been studied elsewhere in this volume.

We now turn our attention to the theory of production and develop an
analogue to Hicks’ Aggregation Theorem in the context of value-added
production functions.

4. Hicks’ Aggregation Theorem in the Producer Context

Denote outputs by positive and inputs by negative numbers. Let T be
the production possibilities set for a firm and let it be a non-empty
subset of (I + J)-dimensional Euclidean space. We assume that there are
I produced goods in the economy and that the firm under consideration
produces some of these goods and uses others (such as raw materials,
fuel and electricity) as intermediate inputs. We assume that there are J
non-produced or primary factors of production (such as land, different
grades of labour and capital services). We suppose that T satisfies the
following regularity conditions:

(4.1) Conditions I on the Production Possibilities Set T':

(1) T is a closed, non-empty subset of I + J dimensional space.

@) If (u;v) E T, then v =<0, (last J goods are always inputs).

(ili) T is a convex set (non-increasing marginal rates of trans-
formation).

(iv) T is a cone, ie., zET, A =0 implies Az€ T (constant
returns).

(v) HZ€T,2"<7, then "€ T (free disposal).

(vi) If (u;v)E T, then the components of mu are bounded from
above (for finite fixed inputs, the set of producible outputs is
also finite).

If v=0, is a vector of fixed inputs and p> 0; is a vector of postive
produced goods prices, we may define the producer’s variable profit 11
as

(4.2) H(p;v)=max{pTu:(u;v) € T}.
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We can extend the domain of definition of the variable profit function
IT to p=0; by continuity. Let us change the non-positive vector of
primary inputs v into a non-negative vector of primary inputs by defining
x = —v. Now for p = 0}, x = 0;, we may define the value-added function V

as
4.3) Vp:x)=IH(p;—x), p=0;, x=0,

If the production possibilities set T satisfies Conditions I, it can be
shown®! that V satisfies the following conditions:

(4.4) Conditions IT on the Value-Added Function V:

(i) V is a non-negative, real valued function defined for all
(p;x)=0p, s

(i) V is linearly homogeneous in p for fixed x, ie., if A >0,
V(Ap:x) = AV (p:x).

(iii) V is a continuous, convex function in p for fixed x.

(iv) V 1is linearly homogeneous in x for fixed p, ie., if A >0,
V(p;Ax) = AV(p;x).

(v} V is non-decreasing in x for fixed p.

(vi) V is a continuous, concave function in x for fixed p.

On the other hand, given a value-added function V satisfying Condi-
tions II above, we may obtain the production possibilities set T satisfy-
ing Conditions 1** which corresponds to V by means of the following
definition:

4.5) T ={(u;—x):p"u= V(p;x) for every p=0; and x= 0,}.

Thus the value-added function V may be used in order to describe
completely a firm’s technology, provided that the firm’s underlying
production possibilities set T satisfies the regularity-conditions given by
4.1.

Under certain circumstances, we may use the value-added function V
in order to define a real value-added function which has the usual
neoclassical production function properties. Suppose the prices of
produced goods p vary in strict proportion, i.e., p = poe where a >0; 1s a

3Gee Diewert (1973a) for a proof. Condition (i} of 4.4 is equivalent to condition (i) of 2.21
in Diewert (1973) once the domain of definition IT{p;v) is extended by continuity from
px0,top=0,

2See Diewert (1973a) for a proof under slightly different but equivalent regularity
conditions on the variable profit function.
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fixed vector of constants and p, is a scalar which may vary from period
to period. Then a real value-added function f, may be defined by

(4.6) fu(x)= V(poa;x)/po, a>0, x=0; py>0.

Note that f.(x) is an observable quantity; it is equal to (nominal)
value-added V divided by the price index p,. Note also that if V satisfies
Conditions II, then V(pee;x)/po= V(a;x), using (ii) of 4.4.

(4.7) Theorem [Khang (1971), Bruno (Chapter IIL.1)]. If the produc-
tion possibilities set T satisfies Conditions I and if V(a;x*)> 0 for
some x*=0; where a> 0; (i.e., nominal value-added is positive
for at least one vector of fixed inputs), then the real value-added
function f, defined by equation 4.6 is: (i} linear homogeneous in x,
(11) non-decreasing in x, (iii) a continuous concave function of x,
and (iv) positive if x > 0,.

Proof: Properties (i), (ii), and (iii) follow directly from properties (iv),
(v), and (vi) of the (nominal) value-added function V. Proof of (iv). Let
x> 0;. Then there exists A > 0 such that Ax = x*. Therefore 0 < f,(x*) =
V(a;x*) =< V(a;Ax) [using (v) of 4.4]=AV(a;x) [using (iv) of 4.4]=
Afo(x). Since A >0, fo(x)>0 also. Q.E.D.

Thus if prices of outputs and intermediate inputs vary in strict
proportion over time, the deflated nominal value-added function
V(poa:x)/po = fo(x) is a perfectly well behaved neoclassical production
function and the substitution of deflated value-added for real output can
be justified from the viewpoint of empirical production function studies.

If prices of outputs and intermediate inputs do not vary in strict
proportion, then the parameters of technology can still be estimated,
provided that we have information on value-added V, on produced
goods prices p and on primary inputs x—simply assume a functional
form for V(p;x) and use regression techniques in order to estimate the
parameters of the functional form.*

In the following section, we consider the problem of minimizing the
cost of producing a given amount of nominal value-added, and we
develop a duality between the value-added function V and the unit
value-added cost function. This last function may be used in order to
obtain systems of demand functions for inputs which are consistent with
cost minimization.

¥See Diewert (1973a and 1974a) for some functional forms for V (or equivalently for IT)
which are linear in the unknown parameters.
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5. The Duality between Value-Added “Production’ and Cost Functions

Throughout this section, we assume that the value-added function
V(p;x) satisfies Conditions II given by 4.4 in the previous section.

In general, value-added will not be positive for all output price vectors
p=0y; i.e., if the prices of intermediate inputs are high relative to the
prices of goods that the firm produces, then it may not pay the firm to
produce anything at all and value-added will be zero. These considerations
lead us to define the following set of prices where value-added is zero:

(5.1) P={p:V(p:1)=0;p=0,},
where 1 is a J-dimensional vector of primary inputs which has each
component equal to unity.

(5.2) Lemma. If V satisfies Conditions II, then P defined by equation
5.1 is a non-empty, closed convex cone.

Proof: Since V(p;x) is continuous and linear homogeneous in p, we
have V(0;;1)=0and thus 0; EP. Letp',p"€P andlet0=A < 1. Since V
is  non-negative, we have O0=<VQp' +({I—-A)p";)=AV(p;D+
(1-A)V(p”;1) (using the convexity of V in p)=A-0+(1-1)0=0
and thus P is a convex set. That P is a cone follows from the linear
homogeneity of V in p and the closedness of P follows from the continuity
of Vinp. Q.E.D.

We note that the set P could reduce to the single point {0,}.

Given that a firm is producing a certain amount of (nominal) value
added, it is natural to suppose that under certain circumstances the firm
will attempt to choose a combination of primary inputs which will
produce the value-added at minimum cost. Thus we define the unit
value-added cost function:

(5.3) cpw)=min{fw x: V{p;x)=1,x=0,} if p=0,pg&P,
=+ if pEP,

where w > 0; is a positive vector of given primary input prices, V is the
value-added function and P is the set of prices defined by equation 5.1.

(5.4) Lemma. The unit value-added cost function is well-defined as a
minimum, provided that p & P.
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Proof: Let p* = 0;, w* > 0; and p* € P. Then V(p*;1) > 0 and using the
linear homogeneity of V(p;x) in x, we have V(p*;A*1)=1 where A*=
V(p*;1). Thus the set {x:V(p*;x)=], x=0} is not empty and is
closed using the continuity of V(p;x) in x. We have c(p*;w*)=
minfw* x: V(p*;x) =1, x=0, w*"x<w*"A*1}, and the minimum of a
linear function over a closed, bounded non-empty set is attained.
Q.E.D.

If the prices of produced goods are such that the firm cannot produce
a positive amount of value-added (i.e., p € P), then it is natural to define
the cost of producing one unit of value-added to be plus infinity.
However, the above lemma shows that as long as p € P and w > 0, the
unit value-added cost function is well-defined as a minimum. Note that
since V(p:x) is linearly homogeneous in x, in order to find the minimum
cost of producing V units of nominal value-added, simply multiply
c(p;w) by V.

(5.5) Theorem. If the value-added function V satisfies Conditions II
given by 4.4, then the unit value-added cost function defined by
equation 5.3 satisfies the following conditions:

(5.6) Conditions III on the Unit Value-Added Cost Function ¢:

(1) c(p;w) is a positive extended real valued function defined for
p=0; w>0,, and 1s infinite for pE P where P is a closed
convex cone of prices.

(ii) c¢ is continuous from above in (p,w).

(i) c¢ is quasi-concave in (p,w).

(iv) ¢ is homogeneous of degree —1 in p for fixed w, i.e., for
p=0, w>0; and A >0, we have c(Ap;w)= A 'c(p;w).

(v) ¢ i1s homogeneous of degree 1 in w for fixed p, i.e., for p=0,,
w>0; and A >0, we have c(Ap;w) = A""c(p;w).

(vi) ¢ is non-decreasing in w for fixed p.

A proof of Theorem 5.5 is given in Section 7.

Let us relate the properties of the unit value-added cost function to
something more familiar. Let p = pya where po>0 and a=0; is such
that « & P. Then given primary input prices w > 0y, the minimum cost of
producing one unit of real value-added may be defined as c(a;w)=
min{w’x: V(poa;x) = po-1, x =0} where ¢ is the unit value-added cost
function. It can be seen that c(«;w) regarded as a function of w alone is
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a positive, homogeneous of degree one, non-decreasing, concave* and
continuous® function of w> 0y; i.e., it has the properties of a unit cost
function which is dual to a constant returns to scale production function.
[In fact, c(e;w) may be interpreted as the unit cost function which is
dual to the real value-added production function f,(x) defined by equa-
tion 4.6.]

It turns out that the unit value-added cost function ¢ may be used in
order to generate the value-added function of the technology. Let us
suppose that ¢ satisfies Conditions III. Then we may (uniquely) extend
the domain of definition of ¢ from p=0;, w>0; to (p,w)=0., by
continuity. Having done this, we may define the function V* for p =0,
and x* > 0; as follows:

(5.7) V*(p;x*)=max{A:c(p;w)A =w’ x* for every w= 0 such that
A

wix* =1}
Tk
= max{/\:)t = forevery w= 0 such that w’ x* = 1}
x c(p;w)

= min{

w

w20, wix*= 1}
c(p;w) !

= . i
~ min :wzt),wa*sl}.
- {C(p;W) g

In developing the string of equalitics in equations 5.7, we have used
the facts that ¢ is non-negative, homogeneous of degree one in w and

non-decreasing in w.

(5.8) Theorem. If c satisfies Conditions III given by 5.6, then V*(p;x)
defined by equations 5.7 satisfies Conditions II given by 4.4 over
the domain p = 0;,.x > 0;. Moreover, if ¢ was generated by means
of Definition 5.3 for some V which satisfied Conditions II, then

V¥=1V.

We note that the domain of definition of the function V* can be
(uniquely) extended to (p;x)=0;.; by continuity. A proof of Theorem
5.8 may be found in Section 7.

A function which is positive, quasi-concave and (positively) homogeneous of degree
one over a set is concave over that set. See Berge (1963, p. 208).
3 A function which is concave over an open conveXx set is continuous over that set. See

Rockafellar (1970, p. 82).
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Theorems 5.5 and 5.8 establish a duality between a value-added
function satisfying Conditions II and a unit value-added cost function
satisfying Conditions III which is similar to the Shephard (1953 and
1970) duality theorem between cost and production functions.

The usefulness of the unit value-added cost function may be found in
the following result:*

(5.9) Lemma [Shephard (1953)]. Suppose that ¢ satisfies Conditions
II1, is finite at the prices p* = 0;, w* > 0,, and is once continuously
differentiable with respect to the input prices w at w =w*. Then
the cost-minimizing amount of primary input j, x;(V;p*;w*), given
that value-added V is to be produced, is given by x;(V;p*;w*) =
V-ac(p*;w*)/aw; for j = 1,2,....J.

Thus in order to obtain a system of primary input demand functions
which is consistent with the value-added being maximized while primary
input cost is minimized, we need only assume a functional form for ¢
which is consistent with Conditions III and in addition is differentiable
with respect to primary input prices, and then apply Lemma 5.9.

Finally, we note that Theorems 5.5 and 5.8 reduce to a variant of the
Shephard Duality Theorem®” between unit cost and constant returns to
scale production functions, if we assume that only one output is
produced (so that I =1). In this case, the vector p=0; reduces to a
scalar and if we set p =1, the value added function V{1;x)=f(x)
becomes a linear homogeneous production function which satisfies the
same regularity conditions as the unit cost function c(1;w).

6. Concluding Remarks

In Section 2 above, we saw that the use of aggregate commodities in
consumer demand studies could be justified without making any restric-
tive assumptions on the functional form of the micro utility function if
the prices of the micro commodities within a group varied in strict

¥%See Diewert (1971, p. 495) for a proof (originally due to L. McKenzie) which carries
over into the present context and for a more detailed list of historical references.

’See (i) Shephard (1953) for a proof which assumed differentiability of the production
and unit cost functions, (ii) Samuelson {1953-54, p. 15) for a statement of the theorem, and
(iii) Shephard (1970) for a proof which does not assume differentiability. Duality theorems
between non-homogeneous production functions and total cost functions have been
proven by Shephard (1953 and 1970), Diewert (1971), Hanoch (Chapter 1.2), and McFadden

(Chapter 1.1).
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proportion. This condition is not without empirical relevance, since in
practice, the prices of many micro commodities do vary proportionately,
at least approximately.® Thus the work of national income accountants
would be of maximum benefit to the applied econometrician concerned
with estimating systems of consumer demand functions if micro-
economic consumer budget study data were aggregated in a manner
which conformed as closely as possible with the hypotheses of Hicks’
Aggregation Theorem.”

In Section 4 above, we saw that the replacement of real output by
deflated value-added in production function studies could be justified
without making any restrictive assumptions on the functional form of
the micro production (or transformation) function, provided that prices
of outputs and intermediate inputs varied in strict proportion. However,
it is extremely unlikely that this last condition has been satisfied in any
western industrial economy during the past twenty-five years. The
problem is with the intermediate input, energy. The price of energy has
generally been constant or growing very slowly during the pre-1973
postwar period, and thus the price of energy relative to the price of
produced goods in general has fallen._‘“’ Also the industrial consumption
of energy has risen faster than the rate of growth of output in general,”
and thus one cannot appeal to Leontief’s Aggregation Theorem (1936, p.
55) in order to justify the substitution of deflated value-added for real
£ross output.

Recall the separability approach of Corden (1969), Sims (1969) and
Arrow (1974) where the aggregate production function f(K,L,M) was
assumed to be of the form f(K,L,M)= g(h(K,L),M) where h(K,L) was
identified as real value-added, where we now regard M as a vector of
intermediate inputs including energy, K is a vector of capital service
inputs and L is a vector of labour inputs. Berndt and Christensen (1973b)
have shown that the assumption of separability leads to severe restric-
tions on partial elasticities of substitution® between pairs of inputs. If

%The prices of two micro commodities can vary in proportion over time for at least two
reasons: the goods may be close substitutes in consumption (e.g., butter and margarine) or
the goods may be close substitutes in production (e.g., cars and trucks).

®Thus if a major change in the relative prices of micro commodities within an aggregate
occurred, then the aggregate should be decomposed into at least two subaggregates. For
example, the introduction of medicare would radically change the relative prices of the
micro commodities in a household services aggregate.

“See the price data on energy, other intermediate inputs and output for U.S. manufac-
turing tabled in Berndt and Wood (1975) for the period 1950 to 1970.

4ISee Berndt and Wood (1975).

“See Allen (1938, p. 503-509) for a definition,
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the above separability assumption f(K,L,M) = g(h(K,L),M) is satisfied,
then it turns out that the elasticity of substitution between energy and
any capital or labour input must be the same number. This condition
seems highly implausible - we would expect energy and certain types of
capital services to be complements (i.e., have negative partial elasticities
of substitution), energy and certain types of maintenance workers to be
complements, while energy and unskilled labour would be expected to
be substitutes (i.e., have positive partial elasticities of substitution). Thus
the separability approach to justifying the use of ‘““real” value-added in
place of output in production function studies would also seem to be
unacceptable on a priori empirical grounds.

Our conclusion is that most postwar production function studies that
use deflated value-added as a measure of real output are probably
somewhat biased due to their inadequate treatment of energy inputs.
One is also led to wonder about how much of the ‘“‘unexplained residual”
in growth studies (sometimes called “technical progress™) is due to the
unjustified use of a real value-added framework.*

Finally, from Theorem 3.1, it can be seen that if the direct utility
function is continuous, then the conditional indirect utility function
Ua(y0,¥) is continuous with respect to the vector of price proportionality
factors, a > 0p. Similarly, from Definition 4.6, fg(x) = V(poB.x)/po, and
Condition 4.4(iii) on the nominal value-added function V, it can be seen
that the real value-added function fg(x) is continuous with respect to the
vector of price proportionality factors B > 0,.

The above continuity properties imply that approximate versions of
Hicks’ Aggregation Theorem will hold in both the consumer and
producer contexts. Thus if a group of consumer prices vary over time
approximately according to the vector of proportionality factors a, then
the consumer’s preferences can approximately be represented by the
aggregated utility function Ug(ye,y). Similarly, if a group of producer
prices vary over time approximately according to the vector of propor-
tionality factors B, then the producer’s technology can approximately be
represented by the real value-added function fu(x).* Just how much
variation in « or B we can allow before the approximation becomes poor

“Two notable studies which use a gross output formulation rather than value-added are
Parks (1971) and Berndt and Wood (1975).

“In Diewert (1974c), we show that an aggregate elasticity of substitution between an
aggregated “‘macro” good and a “‘micro” good can be written as a weighted sum of micro
elasticities of substitution under the hypotheses of Hicks’ Aggregation Theorem and we
indicate how this aggregate elasticity will change if prices do not vary proportionately.
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must remain an empirical matter. Much would depend on the variation in
prices and quantities of the goods which are not aggregated relative to
the variability in the prices of the goods within the aggregate.

7. Proofs of Theorems
Proof of Theorem 2.4

(i) The result follows directly from the Upper Semicontinuity Maximum
Theorem 1.8.

(ii) Let a®»0y, w>0n, p>0, Y=0. We have f(x*y*)=
max.,{f(X.¥):poa ' x+ W y=<Y, x=0y y=0y}=max,,,,lf(x,y):poyo
+wiy=sY, a'x=y, x204 y=0y yo=0}=max,,{Udyoy):Poyo
+wly=<Y, y=0y, yo=0}= Uyl x*y*%).

(ili-a) Let >0y, (y§y*) =0y, and let €>0. Ulydy*) =
max{f(x,y*):x = 0y, a’x < y¥} = f(x*,y*), say. For every 6 >0, we can
find (X5,¥s) = 0p.n such that f(xsys) > f(x*,y*) and (x5 — x*)"(xs — x*) +
(vs — y*) (ys — y*) < 8°. Define yo(8)=a’x;s. By the definition of U,, we
have U.(yo(8).¥s) = f(X5¥s) > f(x* y*) = Un(y¥,y*) and (yo(8)— y&)’+
(¥s — ¥ (y5 — ) = (xs — x*) e’ (x; — x*) + (ys — y*) (ys —y*) < € for &
small enough.

(iii-b) Continuity of U, follows directly from the Maximum Theorem
1.9.

(ii—¢c) Let y3=yo=0, v"=2y =20y and a>0,. Then U,(yo.¥y)=
max,{f(x,y):a’x=yj; x=Z0y}=fxy)=f(x'y") [since y=yl=
max{f(x,y"):e’x < y§; x =04} [since a’x’' =< y{] < max,{f(x,y):a’x < y{;
x = 0y [since yg= yol = Ua(y5,¥")-

(iii-d) Let y4=0, y§=0, y =0y, y' =05 and a> 0y Suppose that
Uu(yo,y) = max{f(x,y'):a"x <y} x=0y}=f(x',y)=k and Ud(ys.y")=
J(x".y")= k where k is a scalar: Let 0<A =< 1. Then U,(Ayo+ (1 —A)yq,
AY + (1= A)y") = max{f(x,Ay' + (1= A)y):a’x < Ayg+ (1~ A)ys, x 2 0} =
fAX'+ (1= A)x", Ay +(1—=-A)y") [since Aa"x'+(1—-A)a"x"=Ayi+
(1 - A)y3l = k (using the quasi-concavity of f].

(ili-e) The proof is similar to (iii-d) above, upon noting that
(yo.y) # (y3,y") implies that (x'y’) # (x".y").

Proof of Theorem 3.1

(i) The result follows directly from the Upper Semicontinuity Maximum
Theorem 1.8.
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(ii) Letyo=0, y =0y, «”" = a’'> 0y. Then Uedyo,y) = max,{f(x,y):x = 0y,
a"Tx < yo} = max,{f(x,¥):X = Oy, o' x = yo} [since o' = " and thus the set
of feasible x’s has not decreased] = Ua(y0o.¥)-

(iii) Let yo=0, y=0y, "> 0, a'>0y, 0=2 =1, and define the sets
H={xaTx=<y; x=04}, H'={xa"x=y; x=0y4} and H'=
{x:(Ae’ + (1= A)a)"x = yo; x= 0y} We first show that H* is a subset of
the union of H' and H". Suppose x* € H*, but x* € H' and x* & H". Thus
A’ +(1—-Aa) x*=<y, and x*=0y since x*€H" If x*&H,
x* & H", then since x* = 0y, we must have o'7x* > yo, " x* > yo. Thus
(Aa’ + (1 — A)e”)"x* >y, which contradicts the supposition x*€ H*
Thus H* C H' UH". Now let U.(yo,y)=max{f(x,y):xE€ H}=k, and
UAyo.y) = max{f(x,y):x€ H"}<k where k is a scalar. Then
U rsii-ner(Yory) = max,{f(x,y):x € H*} = max{f(x.y;x EH' UH " [since
H*CH UH"I=k.

(iv) Let y=0n, a>0y A>0, yo=0. Then U, {Aye,y) =
max,{f(x,y):Aa"x < Ays; x=0y}= max,{f(x,y):a’x < yo; x=0y} [since
A > 0] = Ua(yoy)-

(v) The result follows directly from the Maximum Theorem 1.9.

Proof of Theorem 3.5

Let f be positively linearly homogéneous, v 0y, y = 0y and A > 0. Then

g(A7'v,Ay) = max{f(x,Ay):A v x = 1,x = 0y}
= max{f(Az,Ay):A v Az=<1,Az= 0y}
Az
= max{Af(z,y):v z=1,z =0y}

z

= Ag(VsY)

Now let g have the stated property and let x> 0y, y = 0n, A > 0. Then
f(Ax,Ay) = min{g(v,Ay):vIAX < 1, v = Op}
= r:l_iln{g()t"z,)«y):A"zTAx =1,A7'z=0xp}

=min{Ag(z,y):z'x < 1,z =0y}

= Af(x,¥).
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Proof of Theorem 3.18

Part 1. We show that concavity of f(x,y) in x,y implies that C(u;p.y) is
convex u.y for every p>0y. Let p> 0y, Yy =0y ¥=0n 0=<A =1, and
define x', i = 1,2, by

(i) CGlpy)=min{p"x:fxy)=u',x=0,}=p"x"
Then
(i) CQu'+d—=Au*pAy' +(1-A)yd)
= min{p x:fxAy' + (1 - A)y) = Au'+(1—- A)u?}
=p (Ax'+ (1 - A)x)
=AC(u';p,y") +(1-A)C(u*p.yd),
since by concavity of f, f(Ax'+(1—-2A)X, Ay + (1A = Af Ly +
(1 - A)f(x*y) = Au' + (1 — A)u? [using (i)], and thus Ax' + (1 — A)x’ is feasi-

ble for the minimization problem (i). Throughout this proof, u'’s are
assumed to belong to the range of the direct utility function.

Part 2. We show that convexity of C(u;p.y) in wuy for every p> 0y
implies that g(p/Y,y)=max,{u:C(u;p/Y,y)=1} is concave in Y >0,
y=0n for every p>0,. Let p>0y, y' =0y y¥=0y Y'>0, Y?>0,
0=<A =<1, and define ', i = 1,2, by

(i) g/Y'y)=max{u:Cu;p/Y'y)=1}=u’

Then

(i) g/AY'+(1=A)YH, Ay +(1-1)y)
=max{u:C(u;p/AY'+(1- MY, Ay'+(1-A)yH) =1}
=max{u:C(u;pAy'+ (1 - Ay)=AY'+(1-1)Y?}

=Au'+ (-2t
=g/ Y y) +(1—Mg(p/ Yy),
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since by the convexity of C, C(wu'+(1-Mu*pAy' +(1- My =
ACu'py) + (1= NCpy)=AY'+(1—-2A)Y? [using ()], and thus
Au'+ (1—A)u? is feasible for the maximization problem (ii’).

Part 3. We show that g(p/Y,y) concave in Y >0, y=0y for every
p>0y implies that the restricted cost function C(u;p,y)=
miny{g(p/Y,y) = u, Y >0} is convex in u, y =0y for every p> Ou. Let
p> 0y, y' =0y, y* =0y, 0=<A =1, and define Y', i =1,2, by

(iii) C(u';p,y’)=min{Y :g(p/ Yy)zu'l=Y.
Then

(i) CQAu'+1—=1upAy' + (1 -1y
=min{Y:g(/Y, Ay’ + (1 — Ay = au'+ (1 - A)u?}
Y
<AY'+(1-AY?
= ACuYp.y") + (1 — M)Cu?p.y),
since by the concavity property of g g(/AY'+(1—A)Y?, Ay'+
A=) =g/ Y ,y)+(1— Aglp/Y2y) = au'+ (1 —M)u’ [using (iiD)],

and thus AY'+(1—A)Y? is feasible for the minimization problem
(ii1").

Part 4. We show that C(u;p,y) convex in u,y =0y for every p>0y
implies that the direct function f(x,y) = max,{u:C(u;p,y) =< p'x for every
p> 04} is concave in X =0y, y=0n. Let x' = 0y, X = 0p, y' = Op, ¥ = 0y,
0=<A =<1, and define u’, i = 1,2, by

(v) f(x\y")=max{u:C(u;p,y)<p’x' for every p> Oy}= u'.

Then
(iv)  fAX'+(1 =A% Ay +(1-A)y)
=max{u:Cu;p,Ay' + (1= A)y) =p " (Ax' + (1 — A)x?)
for every p> 0y}

=Au'+ (1 - A)u?
= Af(x" ¥ + (1 - DF Gy,
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since by the convexity property of C, for every p> 0y, Cau'+
(=M’ pAY +(1= MY =ACu"py)+(1-MNCu*py)sap'x' +
(1= A)p”x? [using (iv)], which means Au'+(1—A)u® is feasible for
the maximization problem (iv’), and the solution to the maximization
problem is equal to or greater than any feasible solution.

Note: If C(u:p.y) is monotonically non-decreasing and continuous
from below in u, then the set L,,(x,y)E{u:C(u;p,y)SpTx} will be closed
and bounded from above and thus the intersection L(x,y)= [} Ou
{L,(x,y)} will also be closed and bounded from above. Thus f(x,y)=
max,{u:u € L(x,y)} is well-defined as a maximum.

Proof of Theorem 3.20

Part 1. Let g(v,y) be convex in v> 0y for y =0y Using the Fenchel
closure operation [see Rockafellar (1970)], the extension of g(v,y) to
v=0, will also be convex. Let x>0y, Z'>0, 0=A =1, and define v/,
i=12, by

() f(x/Z'y)=min{g(v,y):v'x/Z' <1,v=0u}= g(viy).

Then

FIAZ'+ (1 —A)Z%y)
= min{g(v.y):v X/((AZ'+ (1= 2)Z) =< 1,v=0y}

= min{g(v,.y):v x<AZ'+ (1~ A)Z% v= 0y}

sg(Avi+ (1= )viy)

[since by (i), (Av'+ (1= AW)Tx=AZ'+(1-A)Z% and hence is feasible
for the minimization problem],

=Ag(vLy)+ (1-A)g(y)
jusing the convexity of g in v],

= A (xIZ'y) + (1= A)f (x| 22y)
fusing (1)].

Part 2. Let f(x/Zy) be a convex function of the scalar variable Z >0
for every x> 0, for some y = 0,. Using the Fenchel closure operation, f
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will have the same property for every x =0y Let v> 0y Then
gv.yy=max{f(z.y):v z=<1,2= 0y}

= max{f(x/vTx,y):X = 0p, x # Ops}

[since f is non-decreasing in its arguments, x = 0y is not a maximizer],
= max{h,,(v):x € §}
b 4

[where h,,(v)= fx/vTx,)y) is a convex function in v 0y for x,y fixed,
and § = {x:x =0y, x # Oup}l,

= a convex function of v

[since the pointwise maximum over a set of convex functions is also a
convex function — see Rockafellar (1970)].

Proof of Theorem 5.5

(1) In view of L.emmas 5.2 and 5.4, it remains to show that c(p;w) >0 if
p=0; and w> 0, If p€E P, then c(p;w)=+=>0. If pZ& P, then c(p;w)=
mingw x: V(p;x) = 1, x=0,} = w’'x*, say. Using the linear homogeneity
(and continuity) of V in x, we see that x* > 0; since V(p;0;) =0. Since
w0, w x*>0.

(ii) We wish to show that for every scalar k, the set {(p;w):c(p;w) =k,
p=0;, w> 0;} is closed in the set {(p;w):p=0;, w> 0;}. In view of the
positivity of c(p;w), we can restrict k to being non-negative. Let k=0,
p"=0, w'>0; for n=12,.., limp"=p°’=0, limw"=w’>0;, and
c(p"w")=k for each n. Suppose that c(p®,w°) =k ~ € for some €>0.
Since c(p’;w" is finite, p°& P. Thus there exists x°=0; such that
c(p®;w?) = w'Tx"= k — ¢, where V(p°,x%) = 1. In view of the continuity of
V in p, we have for every § >0, V(p";x°)=1- 8, for n large emough.
Choose 8 >0 to be such that 8 < min{l,e/2k}. Therefore, for n large
enough, 1< V({p"x/(1-8)= V(p":x°% (1 —8)), using the linear homo-
geneity of V in x. Since w" x° tends to w’"x°, for large enough n, we
have w""x° < k — /2. Thus for n large, c(p";w") = mindw" x: V(p";x) = 1,
x=0;}=w7x(1- 8)=< (k- ¢2)/(1 — 8) < k. This contradicts the hypo-
thesis c(p";w") = k, and thus our supposition must be false and therefore
we must have c(p%;w® = k.

(iii) Let p'=0, p’=0, w'>0,, w’>0,, k=0, 0=<A <1. Assume that
c(p’;w) =k and c(p’;w)) =k We wish to show that c(Ap'+ (1—A)p%;
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Aw' +(1—A)w?) = k. There are three cases to consider. Case (1); p' € P,
p>€ P. Since P is a convex set, Ap'+(1—A)p’E P, and thus c(Ap'+
(1—A)p% AW'+(1—-A)w)=+o=k Case (2 p'€P, p’EP. If Ap'+
(1—A)p*E P, then c(Ap'+(1—A)p* Aw' +(1 - A)w?) = +o =k Assume
Ap'+(1—A)p? € P. If k=0, then the desired result follows using the
positivity of c¢. Thus we assume k>0. We have c(phwh)=
mindw'Tx: V(p':x) = 1, x=0)=wTx'=k>0 and c(piw’) =
mindw? x: V(p%ix) = 1, x=0;} = w'x*= k > 0. Now if x> 0y, then there
exists A*>0 such that 0, =A*1=x. Therefore, V(p':x)= V(p';A*1)
[using 4.4(v)]= A*V(p';1) [using 4.4(iv)]> 0 since p' & P. Similarly, if
x > 0;, then V(p*;x)>0. Thus if x> 0;, then x/V(p';x)=0; and Vp'x/
V(p';x)) = 1. Using the minimum nature of w!'Tx!, we have for every
x>0, wix'=wTx/V(p'ix) or V(p';x)w'"x' =w'"x and using the con-
tinuity of V in x and the assumption that w'’x'>0 we find that
Vp'ix)=w'Tx/w'Tx' for every x=0, Similarly, V(p’x) = wTx/wTx?
for every x=0,. Let x=0; Then V(ap'+(1—-A)pix)=AV(p'ix)+(1-
A Viphx) [using 4.4(iD)] =< Aw'Tx/w'Tx' + (1 - )W x/w* X’ < Aw'Tx/k +
(1 - A)w*x/k, since w''x' = k and w*'x*= k. Thus if x=0, and V(Ap'+
(1= A)p3x) =1, then (Aw'Tx+ (1 - 2w x)/k > 1. Now c(Ap'+(1-A)p?
Aw! + (1= A)w) =mindAw' + (1 - A)w) x:V@Ap' +(1-)p*x) =1, x=
0,} = min(Aw' + (1 - )W) x:(Aw'Tx+ (1 - )W x)/k = 1, x= 0} [since
in general the set of feasible x’s in the second minimization problem is
larger] = mind(Aw' + (1 - DwW) x:(Aw' + (1 — V)W) x = k; x=0,} [since
k >0]= k. Case (3): p' € P and p’ € P. Without loss of generality, we can
take p’ belonging to the boundary of P. Using the results of case (2)
above, we need only show that as A tends to zero, c(Ap'+(1—A)p%;
Aw' + {1 — A)w?) tends to plus infinity. Let p' =0y, p* = 0;, w' > 0, w’ > 0,
and let B8 > 0 be the minimum component of the vectors w' and w’. For
0= A <1, define f(A)= V(Ap'+ (1 - A)p%1). By hypothesis, f(0) =0, but
f(A)>0 for 0<A=<1. Since by (i) and (iii) of 44, V(p:1) is a non-
negative, convex function of p, we see that f(A) is a non-decreasing,
convex function of A for 0= A =1, such that lim,.o{f(1):A > 0} = 0. Now
if 0<A=<1, we have V(ap'+(1—A)p% 1/f(A)=1. Thus if 0;=x<
1/f(A), then using (iv) and (v) of 4.4, we find Vp'+(1-Apix) <1
Therefore, for 0<A=<1, cAp'+1-2A)p% AW + (1= )W) =
min(Aw'+ (1 - MD)wHTx: V(Ap' + (1 - A)pix) = 1; x=0,}=B/f(A), and
the last term tends monotonically to plus infinity as A tends to zero.

(iv) Let p=0;, w> 0, and A > 0. Then c(Ap;w)= mingw’ x: V(Ap:x) =
1, x=0,} =mindw'x: V(p;Ax)=1, x=0;} [using (i) and 4.4(iv)] =
A7 mindw Ax: V(p:Ax) = 1, Ax=0;} = A7 c(p;w).
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(v) Let p=0;, w>0;, A>0. Then c(p;Aw)= min{Aw x: V(p;x) = 1,
x=0,} = Ac(p;w).

(vi) Let p=0, w*=w'> 0, Then c(p;w?)=minfw x:V(p;x)=1, x=
0} =wTx=wTx*+(w'—w)"x*2w!Tx® [since w’—w'=0, and x’=
0]z mindw' Tx: V(p;x) =1, x= 0} = c(p;w)).

Proof of Theorem 5.8

(i) V*(p;x)=min{l/c(p;w):w=0,, w'x=<1} for p=0, and x>0, is
well-defined as a minimum, since 1/c(p;w) is continuous from below in
w, non-negative and finite for at least one value of w and the minimum
of such a function over the closed, bounded set {w:w=0, w'x=1}
exists. (Recall Theorem 1.5.) We note that since c(p;w) is non-negative,
continuous from above, and quasi-concave for p=0, w=0; 1/c(p;w)
will be non-negative, continuous from below, and quasi-convex over the
same domain.

(i) Let p=0, x>0, and A>0. Then V*(Apix) =
min1/c(Ap;w):w=0;, w'x <1=min,{1/A"c(p;w):w=0,, w x=1} [us-
ing 5.6(iv)] = AV*(p;x).

(i) We first show V*(p;x) is quasi-convex in p for fixed x. Let
x>0;, p =0, p'=0, 0=<A=1 and k=0. Let k=V*pix)=
min,{l/c(p’;w):w=0, w'x=<1}=1/c(p’;w'), say. Therefore c(p';w')=
1/k, c(p’;w? = 1/k, and by 5.6(iii), c(Ap' + (1 — A)p?; Aw' + (1 — V)W) = 1k
also. Thus V*(Ap'+ (1 - A)p%:x) =min,{l/c(Ap'+ (1 - A)p*;w):w =0,
wix=<1}=<1/c(Ap'+ (1 — A)p%; Aw'+ (1= A)w?) [since Aw'+ (1 —A)w?=0
and (AW'+ (1 - A)wHTx = 1]= k. Finally since V*(p;x) is non-negative,
quasi-convex and (positively) homogeneous of degree one over the set
p =0 for a fixed x, it can be seen [see Berge (1963, p. 208)] that V*(p:x)
is also a convex function in p for fixed x. With respect to the continuity
of V*(p:x) in p, we note that the convexity of V*(p;x) in p will imply
that V*(p;x) is continuous from above in p=0; for fixed x [see
Rockafellar (1970, p. 84)]. Now - V*(p;x)=-—min,{l/c(p;w):w=0y,
wix=<1}=max.{-l/c(p;w)w=0, wix=1} and - V*@p;x) will be
continuous from above by the Upper Semicontinuity Maximum
Theorem 1.8 and thus V*(p;x) will be continuous from below in p for
fixed x> 0;. Thus V*(p;x) will be continuous in p.

(v) Let p=0, x>0, and A>0. Then V*¥(p:Ax) =
min{1/c(p;w):w=0;, w/Ax= 1} = min,{A/c(p;AW):AW=0, (Aw)'x=<1}
[using 5.6(v)] = min.{1/c(p;w*):w* =0, w*Tx < 1} = AV*(p;x).

(v) Let x*=x's>0;, p=0, Then V*(p;x’)=min.{l/c(p;w):w=0,,
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wTx? =< 1} = mins{1/c(p;w):w =0, wTx' = 1} [since the set of feasible w’s
has not decreased, the minimum cannot increase] = V*(p;x").

(vi) If p € P, then c(p;w) =+ for all w = 0,, and thus V*(p;x) =0 for
all x>0, and V*(p;x) is a concave function in x. Let p*=0, p*EP.
Then V*(p*;x) will be a concave function in x> 0, if we can show that
V*(p*;x) is a positive, linearly homogeneous, quasi-concave function in
x > 0;. [See Berge (1963, p. 208) or Newman (1969, p. 300).] Since p* € P,
we have c(p*;w) >0 and finite for w>0,. Thus if x>0, V*(p*:x)>0.
Linear homogeneity of V*(p*;x) in x follows from (iv) above,
and thus it remains to show that V*(p*;x) is quasi-concave in x.
Let x'>0, x*»0;, 0=A=<1, k>0, and suppose that V*(p*x')=
mind1/c(p*;w):w=0;, wx'=1}=1/c(p* w)=k and V*p*x)=
min,{1/c(p*;w):w =0y, wixi= 1} = l/c(p*;w)) = k. V*(p*;Ax' +
(1 - 2)x* = min,{1/c(p*;w):w =0y, wi(Ax'+ (1= A = 1} = l/c(p*;w*),
say. Suppose 1/c(p*;w*) < k. Then since w*T(Ax'+ (1 - 1)x) = 1, we must
have either w*Tx' < 1or w*’x> < 1 (or both). If w*"x' =< 1, then V*(p* x) =
1/c(p*;w*) < k, which contradicts V*(p*;x') = k. Similarly, if w*Tx’=<1,
then we get a contradiction to V*(p* -x?) = k. Thus our supposition
1/c(p*:w*) < k must be false, and V*(p*:Ax'+(1—A)x’) = k. We have
established that for a fixed p=0r, V*(p:x) is a concave function in x for
x> 0y, and thus V*(p;x) is also continuous in x > 0; for fixed p.

To complete the proof of Theorem 5.8, assume that a value-added
function V satisfied Conditions II given by 4.4, that ¢ was defined by
equation 5.3 and that V* was defined by equation 5.7. We wish to show
that for every p=0;, x*>0, V*(px*)= V(p:x*). If pE€ P defined by
equation 5.1, it is easy to see that V*(p;x*) = V(p;x*)= 0. Assume p ZP
Since x*>0, V(p:x*)=0v>0. Define the value-added production
possibilities set L(v;p) ={x: V(p;x) = v; x=0;}. By properties (iv) and
(vi) of 4.4, we see that x* is a boundary point of the closed convex set
L(v;p) and thus L(v;p) will have at least one supporting hyperplane
w* # 0 at the point x*; i.e., w*"x* = w*"x for every x€ L(v;p). Property
4.4(v) will imply that w* >0,. Thus w*7(x*/v) = c(p;w*) = min{w* x: V-
(p:x)=1, x=0;} and c(p;w)= wl(x*/v) for every w=0 since
V(p:x*/v)=1. Now V*(p;x*)=min.{l/c(p;w):w =0y, wix*<1}=1
Imax.{c(p;w):w = 05, wx* < 1} = v/max.{c(p;w)v:w =0, wlx* =<1 [since
v>0]=0v [since c(p;w)v <w'x* for every w=0, with equality for
w = w*] = V(p:x*) by the definition of v.

Q.E.D.



