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1. Introduction

Empirical studies of the relationships between disembodied technical
change and aggregate economic growth have frequently measured
directly the rate of technical progress. However, measurements of the
bias of technical change and the elasticity of substitution between
capital and labor have either been based on cross-section data or have
employed untested restrictions on the nature of production possibilities.
This reflects a non-identifiability of the elasticity and bias in the absence
of a priori hypotheses on the structure of technical change.! More
precisely, given the time series of all observable market phenomena for
a single economy with a classical aggregate production function, one
finds that the same time series could have been generated by an
alternative production function having an arbitrary elasticity or bias at
the observed points (except that the bias is measurable when the
capital/labor ratio is constant). Further, this conclusion is not altered by

*Research on this paper was supported in part by National Science Foundation Grant
GS-786. During part of the writing of this paper, Diamond received financial support from
the Social Science Research Council and the Guggenheim Foundation. An earlier version
was presented at the Econometric Society meetings, New York, 1965. The authors are
indebted to Dr. Perry Shapiro for helpful discussions of several points in this paper.

I0ne statement of this result is given in Sato (1970).
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the a priori information that technical change is non-retrogressive (ex-
cept that now the elasticity is measurable and the bias zero when there is
no technical progress). This result is shown in Section 5. Notation,
equations relating economic growth to the form of the production
function, and a representation of the production function in terms of the
elasticity are presented in Sections 2-4, respectively.

The identifiability of the elasticity and bias will depend on what is n
fact true about the economy and on what the economist assumes a priori
to be true (i.e., his maintained hypothesis, or model). One possible
outcome of an econometric experiment is an inconsistency of the
maintained hypothesis with the observations. Alternately, the main-
tained hypothesis may be consistent with the observations, whether itis
true or not. In the latter case, one may find that economic variables such
as the elasticity and bias are exactly identified. identified up to a range of
of indeterminacy, or not identified at all (as in the result in Section 5).
When every false maintained hypothesis is inconsistent with obser-
vations, every case of identification of the economic variables yields the
same values. Alternately, in the usual case where a range of false
hypotheses are consistent with a given set of observations, a range of
values of the economic variables can result from the various “‘condi-
tionally” identified models. Then in a broader sense it is impossible to
identify the true values among these alternatives. The remaining results
of the paper deal with identification under commonly used maintained
hypotheses.

The assumption that technical progress is factor augmenting 1s
frequently employed in empirical work. Section 6 gives mnecessary
conditions for observations to be consistent with the factor aug-
mentation hypothesis, and gives limits on the values of the elasticity and
bias required for consistency. These limits give outer bounds on the
range of indeterminacy. Sufficient conditions for the factor augmentation
hypothesis to be consistent with observations are given in Section 7.
These conditions apply whether or not the hypothesis is in fact true. In
Section 8, inner bounds on the range of indeterminacy of the elasticity
and bias are established in the case that the factor augmentation
hypothesis is true.

The last two sections of the paper explore cases where exact
identification is possible. First, if under the maintained hypothesis of
factor augmentation a single factor is in fact being augmented, then
there is identification at any effective capital/labor ratio which can be
shown to be attained more than once. Second, the elasticity and bias are
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identified if the economist makes a maintained hypothesis, which is in
fact true, that technical change is factor augmenting with augmentation
coefficients which are known up to a finite number of parameters,
provided the data show sufficient variation.’

2. Notation

It is assumed that the economy under consideration has production
possibilities which can be described by an aggregate production function
with constant returns, y = f(k,t) where y is output per worker; k, capital
per worker; and t, time. The function is defined on the region 0 = k < +cc,
0sSt=t <+,

The function f is said to be a classical production function if it
satisfies the following conditions’ (subscripts denoting partial deriva-

tions):

(i) (continuity) f(k,t) is twice continuously differentiable in k and once
continuously differentiable in ¢;

(i1) (positive marginal products) r=f,>0, w = f — kf, > 0;

(i) (diminishing marginal rate of substitution) fy, <0.

A classical production function is said to be neoclassical on domain R in

(k,t) space if, on R, it further satisfies:

(iv) (non-retrogression) f, = 0.

A classical production function is called strictly neoclassical on R if it
satisfies:

(v) (progression) f, > 0.

Denoting the ratio of the marginal product of labor to that of capital
by p(k.t) = (f — kf.)/fi, we can define the elasticity of substitution o(k,t)
and the bias of technical change D(k,t) in terms of its partial derivatives,

1_3lnp_ _—kffu (1)
o dlnk fi(f—kf)’
poz2Inp _ fhu=fd .

at fdf—kf)

This investigation was motivated by a result of Nerlove (1967).
}f is continuous for 0 S k <+w, 0= t < ¢,, while all other properties are assumed to hold

inthe region 0 < k<+», 0=t =1,
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We also employ the following notation:

T (k,t) = flf, (3)
the rate of technical progress;

the elasticity of output with respect to capital (equal to the share of
capital under competition);

s = (f — kf)lkfx = plk, (5)

the ratio of the elasticities of output with respect to labor and with
respect to capital (equal to the relative share of labor under competi-
tion);

v = ylk, (6)

the average product of capital.

The time derivative of a function x(¢) is denoted by X, and its growth
rate by X = X/x.

Technical change is said to be factor augmenting if its only impact on
the production function is to change the efficiency of inputs. Then, there
are factor augmentation coefficients A(¢) and B(¢) giving the number of
efficiency units contained in each measured unit of capital and labor,
respectively, and the production function can be written y = f(k,t)=
B(t)g(kA(t)/B(t)). Factor augmenting technical change is termed capital
improving if A >0, B =0; labor improving if A =0, B >0, and factor
improving if A >0, B>0.

Letting x = kA(¢)/B(t) denote the capital/labor ratio measured in
“efficiency” units, formulae (1) and (2) for the elasticity of substitution
and the bias of technical change become

_1_ = — Xg8xx
o gx(g - xgx)’ (13)
D= (1 — i—)(/i - B). (2a)

The elasticity of output with respect to capital becomes a function solely
of the efficiency capital/labor ratio,

m = xg(x)/g(x), (4a)
s = g(x)xg (x)— 1. (5a)
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3. Growth Equations

Differentiation of a classical production function yields expressions for
the rates of growth of output per worker, the ratio of marginal products,
and the marginal products of capital and labor in terms of the indices

defined above.*

§=T+wk and 8=T-(01-mk (7
s _1p_

p—o_k D, ®
F=T+(1—7r)D—l—;—ﬂlf=T—(l—w)ﬁ=1‘3—(1—-7r)s°, )
»&=T—nD+£-1€=T+wﬁ=§+w§. (10)

The rate of technical progress can be expressed in terms of inputs and
output [from (7)] or in terms of marginal products [from (9) and (10)],

T=$-mk=0+(01-mk
w—mp=F+(1—m)p
111'3+(1—1r)}3=m"+(1—1r)\'4’2. (11)
Progressive technical change (T > 0) implies [from (11}] the inequalities

i

1 ., _» _ 1,

—l_wu<k<wy, (12)
| PRI

1__‘rrr<p<7_‘_w, (13)

~ (- ?+-1—§)<s°<(-1—vt;+-—1—5). (14)
-7 T ™ 11—

When technical change is factor augmenting, these formulae reduce to
j=B+mt and $=A-(1-m)% (7a)
°-_-1— o— —l o_ ] - ° o lo
p——ak (1 a')(A B) A+B+o_x, (8a)
e __ °__1' . e ° _{ °__s_o
F=A a_(] m)X A+0B g (9a)
o __ 1 o =4 1 o 1 o
w=B+—mi=B+—A-—3, (10a)

o so so
T=mA+(1-mB. (11a)

“These formulae are derived in Diamond (1965).
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From (7a) we obtain the inequality

(12a)

Letting g = pA/B denote the ratio of the marginal products of labor and
capltal measured in efficiency units, (9a) and (10a) imply #+ (1 — 7)g = A

and w -~ 7§ = B, and hence

1 .
F

1—m

O

IA
3 |-

§=

These equations also imply

[y

A

e
Ww.

o
A

p=l
1—= o

1
T
Finally, (8a) implies £ = ¢4 and

s°=—(1—l)£=(1—a)4.

o

TABLE 1

Sign patterns excluded under technical progress.

Pattern

Imphed by

(D k=0and £ =0
(2) y=0and k20
(3) y=0and 5 =0
(4) F=0and p =0
(5) F=0and w =0
(6) w=0and p =0
(7) §>0,5=0,and F 20
8) §<0,8=0,and F=0
9 $§>0,y=0,and w =0
(10) §<0, y=0,and w =0
(11) w<0, r>0 and p=0
(12) ¥y <0, kz0,and 20
(13) § <0, k=0,and p =0
(14) $>0 k=0 and p =0
(15) §<0,y=0,and =0
(16) §>0,0=0,and w =0

The following two patterns are excluded when tech-
nical change is factor augmenting:

(17) 5=0and % =0
(18) $=0and =0

Equation (11)
Equation (1})
Equation (11)
Equation (11)
Equation (11)
Equation (11)
Equation (9)
Equation (9)
Equation (10)
Equation (10)
Definition of p
Definition of v
Definmtion of s
Definition of s
Equation (14)
Equation (14)

Equation (10a)
Equation (9a)

(13a)

(14a)

(15)
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One can obtain from the equations above a number of implications for
the possible patterns of signs of observed variables when technical
change is progressive. The table above indicates patterns which are
excluded (and the equation from which this implication is obtained). One
should note from this table that the marginal product of at least one
factor must always be increasing; and that the simultaneous observation
of a non-increasing marginal product for one factor and non-increas-
ing average product for the other factor contradicts the hypothesis
that technical change is factor augmenting (but not necessarily the
hypothesis that it is progressive).

4. Production Relations

From the definition of the ratio of marginal products p(k.t) = flfi — k, or
upon rearranging terms

fdf = p(kt)+ k17, (16)

we see that the relationship between p and the derivatives of f can be
reversed to yield a relationship between f and the integral of p:

k

In f(k,t) = In y*(1) +[

X [p(z,t)+ 21" dz, (17)
*(t)

where y*(t) = f(k*(t),t) and k*(t) is a selected capital/labor path. We shall
select the actually observed capital/labor ratio for k*(t) in constructing
production functions. Similarly the relationship in equation (1) between p
and o can be reversed,

k

In p(k,t) = In p*(1) +]

k.

[o(z,0)]'(dz/2), (18)
(1)

where p*(t) = p(k*(t),t).

From these relations we see that any classical production function can
be represented in the form of equations (17) and (18). Conversely, from
any positive, regular’ functions k*(t), p*(y), y*(t), o(kt) one can
construct a classical production function satisfying these two equations.®

SWe will call the functions k*, p*, y*, o regular when k*(r) and y*(¢) are twice —and
p*(t) is once — continuously differentiable and $* = p*—k* reverses sign at most a finite
number of times on 0=t=t, o(k¢t) is continuous in (kt) and 3o/dt exists and is
continuous in k. From (18), p(k,t) is then continuously differentiable.

*This representation of production functions is developed in McFadden (Chapter IV.1).
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5. A Non-Identification Theorem

With the assumption of constant returns to scale. the time series of y, k,
and p are sufficient statistics for the observable production information
on inputs, outputs, and marginal products. Thus, any two production
functions which are consistent with equations (7) and (8) at the points
given by the time series are empirically indistinguishable. From equation
(7) we see that the rate of technical progress is directly measurable.
Equation (8) shows the intermingling of the effects of the bias and the
elasticity. When technical retrogression is not excluded a priori, the
elasticity of substitution can be chosen as an arbitrary (continuously
differentiable) positive function and equation (8) then defines the bias for
a classical production function from which the observed data could be
derived. Equation (8) also shows the measurability of the bias when the
capital/labor ratio is constant.

Adding the assumption that technical change is non-retrogressive, one
can conclude that the absence of technical progress (T = 0) implies the
absence of bias (D = 0). This result is obtained by differentiating (17)
with respect to time. Noting that = = k/(k + p), we see that

k

Tdr) = T*1) + f m(z0)(1 — m(z,0)D(z.1)(d2]2), (19)

k*(1)

where T*(¢) is the rate of technical progress on the observed path. If
one had T*(t)=0 and D(k*(t),t)>0, then one would obtain T(k,?)
negative for k slightly smaller than k*(z), contradicting non-regressivity.
The argument for D <0 is similar.

One can conclude further from equation (8) that the elasticity is
known whenever the rate of technical progress is zero and k is non-zero,
and that the requirement that the elasticity be positive yields the
condition

k=0 implies D Z-p. (20)

Suppose next that observed data are derived from a neoclassical
production function, and that the measured rate of technical change in
equation (11) is positive. We shall show that this function can be
perturbed to yield a neoclassical production function, consistent with the
data, which has an arbitrary positive continuously differentiable elasti-
city at the observed points. From equation (8), we can then obtain the
corollary that the data is consistent with an arbitrary bias of the form
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D =(l/o)k — B, where o is any positive continuously differentiable
function.

Theorem 1. Given positive, regular observed y*(t), k*(t), p*(?),
0=t =t, for output per worker, capital per worker, and the ratio of
marginal products, respectively, generated by a neoclassical
production function y = f(k,t) which exhibits positive technical
progress on the observed path, and given any positive continuously
differentiable function o*(t) on 0=t = t,, there exists a neoclassical
production function f(k,t) which generates the observed series and
has an elasticity of substitution o*(#) along the path (k*(1),t).

Proof: The method of proof is to perturb the true production function
in such a way that it has an arbitrary elasticity on the observed path, but
is still consistent with the data and with the condition on non-retrogres-
sive technical change. Let y = f(k,t) denote the true production function,
a(k*(1),t) the true elasticity on the observed path, and o*(¢) the arbi-
trary elasticity which we wish to impose. Define a function 6*(t) =
[o(k*(1),t)" — o* (1)1 * ()1 — w*(1)y*(t)/k*(t)’, where @*(1) is the
observed share of capital. From equation (1), it follows that fua(k*(t),t)+
0%(2) = —m*(1)(1 — w*()y*()/o*(t)k*(t)’<0. Using the continuity
properties of the observed path, the production function and its deriva-
tives, and the condition that technical change is progressive on the
observed path, one can choose 0 <8 <1 such that k*(#)> 6, sleF()| <1,
and T(kt)>0 and fu(kt)+8%(t)<0 for |k~k*()|=8 and 0=1=1t,.
Then one can choose 0< € < 1 such that f,(k,t) > 2¢, fu(k,t) > 2¢, f(k,t)>
2¢, and fu(k,t)+e<Ofor |[k—k*(t)|=8and 0=t =t

For the scalars 8, € and a non-negative scalar 6, define a function
¢ (x,8) for x =0 illustrated in Figure 1, by

x? X
¢>(x,9)=—2—(0—§—A—) for 0= x<@0A,
= 6%A (%+%(x—BA))—3—Dé—(x—0A)3 for 6A=x
<0(A;B),
=io—f—28—2+§%(x-93)3 for ———O(A;B)éx

= 6B,
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_ QES’ [
=33 for GB§x<2,
8ES* 4 E@ 3\’ 3 5
3 "37‘5_(" 2) for F=x<7%
__QE3* 6ES 38\  4E® 38\ 58 78
Y “T("_T)+§"5“("‘T) for g=x<%-
_4E6 . 78
=35 (6 — x) for 8§x<6,
=0 for 6=1x,
where
A= edl8(1+6)(1+€+8),
B = 8/8(1+8),
C=B-A=5881+¢€+8),
D=¢€/(1+86),

E=e0’3+30+4€)24(1+ 81+ e+ 0)>.

One may verify by direct computation that ¢ (x,8) is continuous in
(x,0); do(x,8), d.(x,8), b (x,0), and ¢.0(x,8) exist and are continuous in
(x,8); and that ¢(0,8)=¢.(0,6)=0 and ¢ (0,0)=6. One may verify
further that for 0 = x = 8, the following bounds hold

—€= —66/(1 + 0) éd’xx = 0’

=€ _9
o] = 161+6°

e 6
le| = PT+8"
and
€ 6
lel=3377%
Define a perturbed production function
fik,t) = flk.t) + (sign 6%(1) -d(lk — k*(t)], |8*(0)])-
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FIGURE 1

With the bounds established above, one can verify that f(k,t) 1S neo-
classical, is consistent with the data, and has the desired elasticity o*(¢)
on the observed path. Q.E.D.

6. Necessary Conditions for Factor Augmenting Technical Change

In this section, the true production function is assumed to be strictly
neoclassical and to exhibit purely factor augmenting technical progress.
We note as a corollary to Theorem 1 that one cannot obtain a definitive
acceptance of the factor augmentation hypothesis from aggregate data:
these data could have been generated by a neoclassical production
function with an arbitrary elasticity of substitution on the observed path,
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and this elasticity could always be chosen so that the resulting produc-
tion function is not factor augmenting.” However, imposition of the
factor augmentation hypothesis implies restrictions on observations
which limit the range of non-identification of the elasticity of substitu-
tion. Moreover, these restrictions can be viewed as necessary conditions
for the consistency of observations with the factor augmentation hypo-
thesis. Hence, if this hypothesis were not true, observations on rates of
change of aggregate variables at a single point in time might be sufficient
to verify this fact® The following argument establishes this last point
and provides the admissible ranges of variables under the factor aug-
mentation hypothesis. First, equations (7a), (9a), and (10a) imply

of gA 0 A § B _ow oB
+ =— + = ==

-7 1—-= -7 1—-7w# =« = T
Then, the average and marginal products of at least one of the factors
are increasing at each point in time. Thus, the possible cases of factor
augmenting technical progress have either y >0 and w >0, or >0 and
#>0 (or both). In particular, w =0 implies >0, #>0, while 7=0
implies y >0, w > 0.

If at a point of time relative shares are unchanging, factor aug-
mentation is consistent with only two hypotheses — either an elasticity
equal to one or a constant effective capital/labor ratio [see equation
(15a)]. If, further, one of the marginal products is declining, equations
(9a) and (10a) imply that we can rule out the possibility of a constant
effective capital/labor ratio. (Since the share of a factor equals its
marginal product divided by its average product, the two products must
move together when relative shares are constant.) This conclusion, and
bounds on the elasticity of substitution implied by the other possible
configurations of rates of change of shares and marginal products, are
summarized in Table 2. The last column of this table gives a concise
derivation of each bound using the growth equations of Section 3. [Note
from (11) that at least one marginal product must be increasing under
technical progress.] From the limits on X in equation (12a) and the

o
X=-

’One may, in particular, construct a production function which has o*(t)=1 on the
observed path, so that all changes in relative shares must necessarily be the
“consequence’” of non-factor augmenting technical change.

8A necessary condition for factor augmentation is that the average and marginal
products of at least one of the factors be increasing. An example of observations generated
by 2 neoclassical production function which violate this hypothesis is f(k.t) = ¢*"'k®**0%,
defined for k=1 and 0=t =1 (the definition can be extended to 0= k =1 by a quadratic
function of k in such a way that f remains neoclassical) and k*(t) = e**, Then at t =0,
T =0.1, 6 =—0.15, and w = —0.05.
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bounds on ¢ in Table 2, bounds can be placed on the bias from (2a),

D=0—%yﬁ—m=(h4)a—ﬁ. 1)

o

7. Sufficient Conditions for Factor Augmenting Technical Change

The discussion of the last section presented limits on the values of the
elasticity of substitution which could possibly be consistent with factor
augmenting technical progress. These bounds are necessary, but are not
sufficient in the sense of indicating the range of non-identifiability, as
observations from different points of time may eliminate some of the
possibilities. The theorems in this section will present a range of non-
identification, or sufficient bounds for satisfaction of the factor aug-
mentation hypothesis, when the observations satisfy certain conditions.
This range is a minimal range of non-identification, as other values may
be consistent.

Let E(t)= A(t)/B(t) denote the ratio of factor augmentation co-
efficients. Provided the average and marginal products of one of the
factors increase throughout the period of observation, a range of non-
identification is established for E at each point of time. These ranges
may be combined in any (continuous) way to give a range of non-
identification for E, and thus by (8a) for the elasticity. The range will be
chosen to guarantee that A and B are non-negative, o is positive, and
the efficiency capital/labor ratio is monotone.

We assume the average and marginal products of labor are increasing
throughout the period of observation. Equation (1la) implies T =
7r/i+(1—1r)§ =1§+1r1§=/i—(1—1r)ﬁ, and hence

~-TI1-m)sE = Tiw (22)
An increasing effective capital/labor ratio requires
E>—k, (23)

and from equation (8a),
E>-p. (24)

Theorem 2. Given positive, regular observed series y*(¢), k*(¢),
p*(t), 0=t =1, of output per worker, capital per worker, and the
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wage-rentals ratio generated by a neoclassical production function
which exhibits technical progress on the observed path, and which
has monotonically increasing marginal and average products of
iabor on the observed path, then for any continuously differentiable
function E*(t) satisfying (22), (23), and (24) there exists a neoclas-
sical production function with factor augmenting change consistent
with the data and showing a ratio of factor augmentation
coefficients equal to E*(¢).

We note that the possible range of elasticities established by the
theorem above may lie strictly inside the necessary bounds established
in Table 2; for example, the elasticity

o=@k+E)@p+E) (25)
is constrained by Theorem 2 to the range 0 <o = y/W in the case §>0,
% >0, #>0, while the alternative interval o = 4/} in Table 2 is now
excluded. An analogue of Theorem 2 holds when the marginal and
average products of capital are increasing.

Proof: The conditions —-T*(1—-#*)= E*=T*/w* and E*>
—Min(k*,p*) are non-vacuous under the hypotheses of the theorem
since T*w*—(—k*)=¥*/w>0 and T*/mw*- (-p*)=w*m>0 by
equation (11). Further, the range of E* is non-degenerate, so that this
function is not unique.

Given a choice of a continuous function E* satisfying the conditions
above. and taken without loss of generality to satisfy E *(0) = 1, define a
function o(t) from equation (25) and define x* = E*k*. Now x*>0
implies x*(t) can be inverted on 0=t=¢ 10 obtain a continuous
function ¢ = 7(x), x*(0) = x = x*(¢,). Define a new function for x =0 by

o*(x)=a(0) for 0= x < x*(0),
=g(r(x)) for x*0)=x=x*(),
= O'(t]) fOl‘ x*(t])< X. (26)

Applying formulae (20) and (21), we can define an efficiency wage—
rentals ratio g(x) and output per efficiency worker ratio g(x):

In g(x) = In p*(0) +jx a*(z)"'(dz/z),
k*(0}

1)

X

In g(x)=In y*(0)+f

[q(z)+z] ' dz.
k()
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Finally, define B*(t) = y*(1)/g(E*(t)k*(t)). Then the function y=
B*(t)g(E*(t)k) is a classical production function by the arguments of
Section 4, and by construction is neoclassical and consistent with the

data. Q.E.D.

The proof of Theorem 2 utilizes the property that the constructed
effective capital/labor ratio is monotone, so that it is unnecessary to
reconcile elasticities at different points in time corresponding to the
same effective capitalflabor ratios. The next theorem establishes that
when data is generated by a factor augmented neoclassical production
function with both augmentation coefficients strictly monotone, a non-
degenerate range of non-identification of the elasticity continues to exist
even when it can be deduced from the data that the effective capi-
tal/labor ratio has reversed direction of change. The proof, as in
Theorem 1, involves perturbing the function known to be consistent with
the observations and showing that this perturbation is consistent with
the observations whenever the same effective capital/labor ratio reap-
pears. This conclusion is subject to two limitations: the bias of technical
change 1s identified when k£ = 0. The elasticity, which is a function solely
of the efficiency capital/labor ratio x, is identified for any x = x*(¢) value
for which there is a reversal in the trend of relative shares s*(¢). We
term x*(¢) a singular value of the true efficiency capital/labor ratio when

$*(t)=07

Theorem 3. Suppose one is given positive regular observed series
y*(t), k*(t), p*(t), 0 = t = t,, generated by a neoclassical production
function exhibiting purely factor augmenting technical progress,
y = B*(t)g(kA*(t)/B*(1)), with A*>0 and B*>0. Then for any
time ¢° such that the value x*(t% of the true efficiency capital/labor
ratio is non-singular, the elasticity is not identified [i.e., there exists
a neoclassical factor augmenting production function consistent
with the data whose elasticity at ¢° does not equal the true value
o*(x*(t9].

Proof: Let y = B*(t)g*(kE*(t)) denote the true production function,
and let x% = x*(¢°). By the hypothesis that the observed data are regular,

%We take the convention that all efficiency capital/worker ratios equal one at the start of
the sample. Then the true efficiency capital/worker ratio, which we denote by x*(t), is
uniquely determined. The meaning of identification at a singular value x§ of x*(¢) is that
any elasticity of substitution o(x) and path x(1) which are consistent with the data will
necessarily have o(x(t")) = o*(x(t)) at any time ¢’ such that x*(t") = x¥.
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there are at most a finite number of singular values of x*(¢). Then there
are a finite number of distinct times ¢ ™ <---<t®<---<t" such that
x*(t') = x%, since §* must be zero at some point in each interval (£, 1.
Equation (15a) and non-singularity imply §*(¢' ) # (0 and the true elasticity
of substitution o*(x*(t)) # 1.

Consider a closed neighborhood [x¥ — &, x3+6] of x%, §>0. For é
sufficiently small, the inverse image of this neighborhood under the
mapping x = x*(t) is a set of disjoint closed intervals N;(8)= [ti— &%
' t'+ 8", each containing one of the times t', with §*=#0, £*#0,
o*(x*(t)) # 1, and X* + §* # 0 on these intervals.

Now consider a perturbed production function g(x,0)=
g*(x)+ 0y(]x — x¥)), where ¢(x)=x*8—x)’ for 0=x=8 and ¢(x)=0
otherwise, and 6 is an arbitrary constant. Then ¢, and ¢, exist and are
continuous, with || = 8°127, |y, | = 38%/16, and || = 165°/9. Since g* is
classical, it follows that $(x,8) is classical for [0| sufficiently small.
Define the function u(x,8) = —1+ g(x,0)/xg,(x,8). Then u is continuously
differentiable in x and @, and satisfies u(x*(t),0) = s*(¢) for 0=t = ¢, and
u(x,0) = u(x,0) for x&[x§—8, x§+8] and |6| sufficiently small. It
follows from the implicit function theorem that u(x,0)= s*(t) has a
solution x = %(1,8) for 6 sufficiently small and 0=¢=1t, which is
continuously differentiable in (¢,8) and which satisfies x*(¢) = x(¢,0) for
all t and x*(¢) = £(¢,08) for t& N;(8), all i.

Define E(2,8) = (¢, 0)/k*(t) and B(.,0) = y*(£)/g(%(¢,0),6). Then the
production function y = B(t,0)8(kE(1,0),0) generates the observed data
and is classical for [6] sufficiently small. Since B(t 0)= B*(t)>0 and
E(t 0)+B(t0) A*(1)> 0, it follows that A(+,8)>0, B(¢,8)>0, 0=t =
t;, for @ sufficiently small. Hence, the perturbed production function is
neoclassical. Further,

G(1,0)" = *(t% " — 280k *t)y* (1) A * @ B*(t)r*(tYHw *(19),
implying the value o*(t°) is not identified. Q.E.D.

8. Identification for Capital Augmentation

If a production function were known a priori to be purely capital
augmenting, then by equations (92) and (11a) we see that we would have
identification of the elasticity of substitution and bias of technical
change. (This statement and the argument of this entire section holds
equally for labor augmentation.) Assuming that it is hypothesized a



142 Peter Diamond, Daniel McFadden, Miguel Rodriguez

priori only that technical progress is factor augmenting, but that the true
production function is actually purely capital augmenting, one can ask
whether this fact can be detected, allowing identification. If the hypo-
theses of Theorem 2 hold, then that result implies identification is not
possible. However, if the true effective capital/labor ratio changes
direction in a manner which violates those hypotheses, then the
argument below shows that identification becomes possible. (Thus the
assumption of strict augmentation in Theorem 3 is a necessary one for
that non-identification result.)

Theorem 4. Suppose positive regular observed series y*(t), k*(¢),
p*(t), 0=t=1t, are generated by a purely capital augmenting
production function y = g(kA*(t)), and suppose technical change is
hypothesized to be factor augmenting. Suppose there are times
0=t'<t'< t*=t, such that §*(¢) is of one sign for t € [¢',¢°) and of
the opposite sign for t € (¢°¢7], either £(t') <0 or #(t') <0 for some
' €[t',¢t%], and either w(t")<0 or $(t")<0 for some t"€ [t t7].
Then there exists a neighborhood of ¢° on which the production
function above is the only neoclassical factor augmenting function
consistent with the observations, and the elasticity is identified.

It should be noted that the hypothesis of the theorem on the true
production function is consistent with the hypotheses on data. If, for
example, g has an elasticity o(x) <1 for all x and k*(t) is decreasing in
t, with k*(t%=—-A*(t% and k*(t")> (o/(1 - m))A*(t"), then equations
(9a2), (10a), and (15a) imply A(t') <0, w(t?) <0, §*(t)>0 for t €[t',t%,
and §*(t)< 0 and t € (+°,t°].

Proof: We consider the case with s*(¢)> 0 for t € [t',t%, s*(r) <0 for
t € (%1%, and s*(t") = s*(¢?); the remaining symmetric cases are left to
the reader. Define a function h from [¢',°) into (t°,t*] by s*(t) = s*(h(1))
for t €[t",t%. By the implicit function theorem, h is a continuously
differentiable function with h(t) = §*(t)/§*(h(1)) <0, h(t)=t>, and
lim ,.oh(t) = t°

Let x* denote the true efficiency capital/labor ratio. Suppose there
exists a false neoclassical factor augmenting production function which
generates the data, and let £ denote its efficiency capital/labor ratio. By
equations (7a) and (12a), y/7 = £*= £

Equation (5a) implies the relative share s is a function solely of the
efficiency capital/labor ratio. Then, since s*(¢')# s*(¢) for ¢t €[1',1%,
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' €t unless t'= h(t), it follows that a value of %(f) [or x*(¢)]
occurring at t € [¢',t% cannot be repeated at '€ (£°,¢%] unless t' = h(¢).
But equation (14a) implies that the efficiency capital/labor ratio must
reverse direction at t°. Hence, using monotonicity, values of this ratio
occurring at t € [t',t" must be repeated at a time in (¢%t”]. This
argument establishes %(t) = £(h(1)) [or x*(t) = x*(h(1))] for re[t',t9.
Hence, x*/X satisfies

#4(t) — £(1) = [R*(h (1)) — Z(R (TR (D). (28)

But we have established that the left-hand side of (28) is non-negative,
while the right-hand side is the product of a non-negative term and a
negative term. Hence, £*(¢) = @), or E*(1) = E(1), for ¢t €[t',h(t")], and
the elasticity and bias are identified on this domain, with E*(t)=
$*(t)m — k*(t) and o(t) = $*(O/(F*(0) + w§*(1)). Q.E.D.

Note that in the proof above, the neighborhood of t° on which the
conclusion of the theorem holds is [t',¢°], where > = h(t'). This neigh-
borhood need not be ‘“small”. Analogous domains hold for the other
cases in the proof.

An implication of purely capital augmenting technical change which
provides a necessary condition for its presence is that Pt = w*(t%9 =0
at a time t° satisfying the hypotheses of Theorem 4.

9. Identification for Finite Parameter Families of Augmentation Functions

The analysis of this paper began with the assumption that technology
could be described by a neoclassical production function and that
marginal products could be observed. This was seen to be an insufficient
set of assumptions to obtain identification. We then added the hypo-
thesis of factor augmentation. While this resulted in a restriction of
possible production functions it did not, except in some cases when only
one factor was being augmented, give a unique production function
consistent with the observations. This is a familiar problem in
econometrics, and calls for further assumptions which will permit
identification. We consider now one such further assumption which
when consistent with the observations implies identification except in
unlikely singular cases. Presumably there are many other assumptions
which might be employed instead. This one does however correspond to
an assumption that has been employed in empirical work."

YEor example. see David and de Klundert (1965).
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Assume that the rates of factor augmentation are hypothesized to be
unknown linear combinations of known functions of time,"

n

=1

The set of unknown parameters {6,,...,8,} is finite and linearly related to
observations. From equation (11), the rate of technical progress satisfies

T()= 2] (m{(t)ai(t) + (1 — w(t)bi(2)). (30)

Define ¢;(t) by
¢i(t) = w(t)ai(t) + (1 — w(t)bi(1), 31
and M,'j and M,",r by

M; =fl d(t)¢;(t)dt and M =f“ $:(1)T(t)dt,
0 0
Lj=12,...,n (32)

Let M denote the n X n matrix with coefficients M;, My the column
vector of coefficients M;r, and 6 the column vector of 8. We can then
express the identification theorem as Theorem 5.

Theorem S. If y*(t), k*(t), p*(t), 0=t =t, are positive regular
observed series generated by a factor augmenting production
function whose factor augmentation coefficients satisfy (29), then a
sufficient condition for technical change to be identified is the
non-singularity of M. In this case the true values of the coefficients
satisfy * = M~'Mr.

Proof: Define the function
N n 2
h(0)=j; (T*(t)"'z ¢s(t)9;) dr.
i=1

By hypothesis this function has a minimum of zero at the true value of
the coefficient vector 8*. The first-order conditions for minimization are
Mr—M@6=0. If M is non-singular these equations have a unique
solution which is the true value 6*. Q.E.D.

""Writing these two augmentation functions in terms of the same 6; does not imply any
restriction on forms, for some of the ¢; and b; may be zero.
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As an illustration, if the factor augmentation coefficients are exponen-
tial (a,(1) =1, axt) =0, by(¢) =0, b(t) = 1), then M will be non-singular
if #(t) is not constant. .

Theorem S can be extended to systems which are non-linear in the
unknown parameters by use of the global implicit function theorem
(global univalence theorem).

'10. Extensions and Conclusions

This paper has investigated identification of the elasticity and bias from
time series data. However, factor augmenting technical change is
formally identical to the introduction of non-observed ‘‘quality adjust-
ment” coefficients for measured labor and capital in cross-section
analysis. In general, no restriction analogous to ‘“non-retrogression’’
applies in the cross-sectional case, and the elasticity and bias are clearly
non-identified. If one knows a priori, however, that the sample index t
has been taken so that one is moving uniformly from low efficiency to
high efficiency units in terms of both factors, then Theorems 2-5 have a
direct cross-section interpretation.”

Our results can also be extended along the lines of Section 9. In this
analysis, a “smoothness” condition that technical change is undeter-
mined only up to a finite number of degrees of freedom, along with a
non-singularity condition, provided identification. This result can be
extended by noting from equations (1), (2}, (17), and (18) that if any one
of the production function f(k,t), relative share s(k,t), rate of technical
change T(k,), bias D(k,t), or elasticity a(k,t) has a functional form
which is known up to a finite number of unknown parameters, then all
these functions can be specified up to a finite number of unknown
parameters. Then application of an argument to equation (8) paralieling
that of Theorem S establishes that except for singular cases, the elasti-
city and bias can be identified.

11. Appendix: Generalization to Non-Constant Returns

The identification theorems in this chapter have made essential use of
the neoclassical assumption of constant returns to scale. However, it 1s

2We are indebted to Perry Shapiro for this point.
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possible to derive growth accounting conditions without this assumption,
and to investigate in this more general context the problems of
identification. Cost and profit functions prove useful tools in this
generalization. This appendix lists the important growth accounting
conditions holding in the absence of constant returns. Let Y = F(K,L,t)
denote the production function, ¢ = C(Y,r,w,t) denote its cost function,
and (in the case of decreasing returns) « = Il(p,r,w,t) denote its profit
function, with p the price of output. Let u = (KF, + LF;)/F denote the
marginal degree of returns to scale; ax,c; the cost shares of capital and
labor; and S..Bk.B. the shares in total revenue of profit, payments to
capital, and payments to labor. Then, YC,/C = 1/n and B, =1—u, so
that with decreasing returns and profit maximization p is identified.
From the production function.

<

Y = paxK + pa L+ T,

with T the rate of technical progress. The cost function yields
o 1 v a 3 C: e S o °
é= ; Y +akr+aLw+E= ag(F+ K)+ ar(w+ L),

while the profit function yields
o o o Ht e <, 2 K o °
BT =P — Bxf— B + B, =P+ Y = Bx(F+ K) = Bu(W + L),

Combining these equations implies

C I7
T=-pz=B.7

=Y + pagf+ pa w — ué

= B.I1 + Bit + B — §

= B.IT + paxf = pay W — .
An expression relating bias of technical change and the elasticity of
substitution is derived most readily from the cost function. Recall that
the elasticity of substitution is defined by

_ _dIn(K/L) _d In(CJ/C.)| _ dIn(K/L)
d ln(r/w) Y.t const. d ln(rlw) Yt d ]n(FK/FL Y.:.
The bias of technical change is
_dIn(w/r)
b, = dt Y.K/L const.
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Then

o P l o [-]

w—r=;(lz—L)+DsY+D,.

Alternately, from K/L = CJ/C.,

s o dI(CICY) o .., dIMCIC) o 8 IN(CIC)
K-L=Z0m ¢ ™" amy Y+—0
“implying
p=-L19 lﬂ(Cr/Cw)=_l[YCn_ Ywa]
s o dlnY ol C cC. I’
D =_10_1M§L)=_1[&_2ﬂ]
! e d at o LC, C. :

We conclude from these growth equations that the rate of technical
change T and returns to scale u are identified under profit maximization.
(However note that under the hypothesis solely of cost minimization,
there is a non-identification between T and u.) The elasticity of substi-
tution &, scale bias D,, and bias in technical change D, are in general not
identified. Thus, for example, in a growing economy it may be possible
to assign an arbitrary elasticity of substitution and bias of technical
change, and “‘explain” observed series solely in terms of scale bias. Or,
in the same circumstances, it may be possible to assume homothetic
production and “‘explain™ observations solely in terms of bias of tech-
nical change. We leave for future research the task of setting out
conditions for identification or bounds on non-identification under
various true states and maintained hypotheses involving non-constant
returns.



