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ESTIMATION TECHNIQUES FOR THE ELASTICITY OF
SUBSTITUTION AND OTHER PRODUCTION PARAMETERS*

DANIEL McFADDEN

University of California, Berkeley

1. Introduction

This paper develops a general analytic framework in which present
estimators of the elasticity of capital-labor substitution and other
production parameters can be examined for specification bias.
Econometric methods are devised for testing the production model
against specific alternatives of interest. In particular, tests are developed
for the following sources of possible bias in the usual cross-section
estimates of industry production functions:

(1) non-constant returns to scale and non-homotheticity in production;

(2) inclusion of productive factors other than capital and labor,
particularly raw materials;

(3) variations in output prices faced by firms; and

(4) non-constancy of the elasticity of substitution.

An application of these techniques to the steam-electric generating
industry suggests (1) fuel inputs have a very low degree of substitu-
tability with capital and labor, making *‘third-input” effects negligible; (2)

*A number of the analytic results in this paper have been developed independently by
Ronald McKinnon, and I have benefited from discussions with him. I am indebted to A.
Belinfante for carrying out the empirical analysis. This paper was read at the meetings of
the Econometric Society, December 1964, and has been revised to incorporate more recent
references to the literature.
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the elasticity of substitution between capital and labor is constant, with
an approximate value of 0.75; and (3) production is not homothetic,
exhibiting bias toward high capital-labor ratios at high scale levels, and
also generally increasing returns to scale.

Empirical studies of the Constant Elasticity of Substitution
(C.E.S.) production function and related formulae have emphasized its
crucial role in determining the behavior of a variety of economic models.
In particular, this elasticity is central to the determination of factor
demand elasticities and the trend of relative factor shares over time.’

Although a variety of techniques have been developed for estimating
the elasticity of substitution, most empirical studies up to 1971 used a
log-linear formula introduced by ACMS,

log(VILY= A+ o logw+u, (1.1)

where value-added (V), labor quantity (L), and the real wage rate (w)
are observed variables for a firm or industry, u is an unobserved shock,
and the parameter o is (under certain assumptions) the elasticity of
substitution between capital and labor. Adaptation of this formula for
econometric study avoids the use of often unavailable data on capital
services (K) or service price (r). Alternately, when these last variables
can be observed, a second useful formula holds,

log(K/L)= B + o log(w/r)+ v, (1.2)

where v is an unobserved shock.

This paper examines the assumptions underlying the derivation of
these formulae, and the possible sources of specification error. Tests of
specification error against specific alternatives of interest are devised,
and are applied to the steam-electric generating industry.

Section 2 of this paper gives a useful reformulation of production
possibilities in terms of cost functions. The elasticity of substitution is
defined in Section 3. The assumptions underlying the usual estimation
procedures are reviewed in detail in Section 4, and a brief review is
given of evidence in the literature concerning their validity.

' Arrow—Chenery-Minhas-Solow [hereafter ACMS (1961)] in their seminal article on
C.E.S. functions list several economic issues whose resolution depends on the elasticity of
substitution. A review of the empirical literature on C.E.S. functions by Nerlove (1967)

expands this list.
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In Section 5, we develop a number of exact relations between vari-
ables which can in principle be observed. These relations are valid under
quite general conditions, and can be used as a basis for formulating
powerful econometric tests of the assumptions presented in the previous
section.

An application of the theoretical results to the steam-electric generat-
ing industry is made in Section 6. Data for this industry are given in an
appendix.

2. Cost Functions

A firm faced with a given technology will generally be able to specify the
minimum cost, at quoted competitive input prices, of producing a given
output bundle. This procedure determines a cost function of the given
output bundle and input prices. The cost function identifies all the
economically relevant characteristics of the firm’s technology, and 1s
particularly useful in the formulation of econometric models: it is a
concave function in prices, and its price derivatives, when they exist,
equal the derived damands for the respective inputs (see Chapter I.1).

Consider a set of production possibilities which yield an output (Y)
from inputs of capital services (K), labor (L), and raw materials (M ).
We term these production possibilities classical if they can be represen-
ted by a production function Y = F(K,L,M) with the following proper-
ties:

(a) increasing in inputs.

(b) strictly quasi-concave.’

(¢) continuous for all non-negative input bundles, zero when all inputs are
zero, and unbounded when all inputs are unbounded.

Given positive prices r,w,m for capital services, labor, and raw materi-
als, respectively, one can define the cost function,

C(Y,r,wm)= Il(\din{rK +wL+mM|F(K,LM)=Y}, 2.0
LM

specifying the least cost of producing the output quantity Y. With each
set of classical production possibilities Y = F(K,L,M) is associated a

*The conclusions of this section are unchanged if M represents a vector of inputs rather
than a single raw materials input. v

3Strict quasi-concavity requires that the upper contour sets of the production function be
strictly convex. (Heuristically. marginal rates of substitution are strictly decreasing.)
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cost function with the following properties:*

() C is concave, non-decreasing, positive linear homogeneous, and
continuously differentiable in positive input prices for each level of

output.

(II) C is continuous and increasing in output, is zero at zero output,
and is unbounded for unbounded output.

(III) The derivatives of C with respect to input prices equal the unique
cost minimizing demands for the respective inputs, hereafter
denoted by

aClar=C(Y,rrwom)= K(Y,r,w,m),
aClaw = C.(Y,r,w,m) = L(Y,r,w,m),
aCloam=C,(Y,r,wm)= M(Y,r,w,m).

(IV) Distinct classical production possibilities yield distinct cost
functions, and the production function can be recovered from the
cost function (for positive K,L,M) via the relation

F(K,L,M)=Max{Y|rK + wL+ mM
= C(Y,r,w,m) for all (r,w,m)> 0}. (2.2)

Further, any function C(Y,r,w,m) satisfying (I) and (I1) 1s the cost
function for a classical production possibility set defined by (2.2).

(V) The second partial derivatives of C in input prices exist almost
everywhere (and are independent of the order of differentiation)
for each level of output.

If a function C(Y,r,w,m) satisfies property (I), it will be termed a
quasi-cost function, and if it satisfies both properties (I) and (II), it will
be termed a classical cost function. Any function satisfying (I) and (II)
can be shown to also satisfy (III~(V) for the set of classical production

possibilities defined by (2.2).
In further analysis, we assume that the second derivatives of C in

input prices exist everywhere, and that marginal cost aClaY =
CY(Y,r,W,m) eXIStS.

“These properties of the cost function are demonstrated by Uzawa (1964). See also
Chapter 1.1.
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A set of classical production possibilities Y = F(K,L,M) 1s said to be
homothetic if there exists a strictly increasing transformation ¢ of the
non-negative real line onto itself such that ¢(F (K,L M) = f(K,L. M) is
positive linear homogeneous in inputs. Homothetic production possi-
bilities have marginal rates of technical substitution which depend only
on input proportions and not on the scale of production. The following
lemma, due to Uzawa (1964), establishes a separability property of the
cost functions of homothetic production possibilities.

Lemma. A set of classical production possibilities Y = F(K,L,M)
is homothetic if and only if its cost function has the separable form
C(Y,rrwm)=¢(Y)y(r,w.m).

Proof: Suppose first that production possibilities are homothetic, with
a transformation ¢ vielding ¢(F(K,L,M))= f(K,L.M) homogeneous of
degree one. Then,

C(Y,rwm)= %iﬂ{rK +wlL + mM|F(K,LM)= Y}
= %ig{rK +wL + mM|f(K,L,M) = H(Y)}

= $(Y) Min {rK'+wL'+mMIf(K.L M) =1}

=$(Y)C(l,r,w,m),

where K’ = K/¢(Y), etc. Defining y(r,w,m) = C(1,r,w,m), the separable

form is established.
Suppose next that the cost function has the separable form. From the

relation
F(K,L.M)=Max{Y|rK + wL + mM
= ¢(Y)y(r,w,m) for all (r,w,m) > 0},
we have
f(K,L,M) = ¢(F(K,L,M))
= Max{Y'|rK + wL + mM
= Y'y(r,w,m)for all (r,w,m)>0},

where Y'=¢(Y). But f(K,L,M) defined by this condition is clearly
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homogeneous of degree one, establishing that F(K,L,M) is homo-
thetic. Q.E.D.

3. The Elasticity of Substitution

The elasticity of substitution (E.S.) between two factors of production is
defined as the elasticity of the ratio of the factors with respect to the
marginal rate of technical substitution between them.’ When output Y is
given by a twice continuously differentiable production function Y =
F(K,L) of capital services and labor alone, the E.S. between these
factors is given by the formula

_ _dIn(K/L)
T dIn(rfw) |y fixed’ (3.1)

where riw = Fx(K,L)/ F.(K,L)=MRSg., is the marginal rate of tech-
nical substitution (subscripts denote partial derivatives). Written out
fully in terms of partial derivatives, (3.1) becomes

o= 1/KFy + I/LFL 3 2)
— Fxk/F & + 2Fxi/FxFL. — Fi /F1’ ’

where all derivatives are evaluated at the argument (K,L). When the
two-factor production function is linear homogeneous, (3.2) reduces to

_ Fx(K,L)F.(K,L) °
7= FKLF(KL) (3-3)

The expression (3.3) can be rewritten in the suggestive forms,

_dlog F(K/L1/a(K/L) _dlog(Y/L) (3.32)
T T 9 log FUKIL.D)/(KIL)  dlog(w®)’ --a

and

_ KFx(X,L) 1 B .
="F(K.L) dlog FuR.DjalogK - SKewn KL, (3.3b)

SHence, this elasticity is an index of the sensitivity of cost-mimmizing factor input
proportions to changes in relative factor prices. This definition is meaningful only when the
independent variables upon which the input proportions depend are carefully specified.

*For a discussion of the concept of the E.S. and derivation of the formulae (3.1)-(3.3),
see Allen {1938, pp. 340-343) and Hicks (1932).
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where w* is the real wage (measured in units of output), sk is capital’s
share of output, and e(w*,K;L) is the cross-elasticity of the real demand
price for labor with respect to the quantity of capital services (labor
quantity being held constant). Under the assumption of a constant E.S.,
(3.3a) integrates immediately to the ACMS formula (1.1). The form
(3.3b) gives a relation, first utilized by Hicks, between the E.S. and
factor demand elasticities.

The E.S. can also be defined in terms of derivatives of the cost
function. For many econometric purposes, the cost function can be
viewed as a reduced form equation, and such a formulation is more
convenient than the ones given above. For the production function
depending only on capital services and labor (but not necessarily homo-
geneous), with a total cost function ¢ = C(Y,r,w), the E.S. definition
(3.1) can be written as

7 1/rC.+1/wC, ’ '

where the notation C, = aClar, Cn. = 8°C/3raw, etc. is used for price
derivatives, and all derivatives are evaluated at the argument (Y.r,w).
For the two-factor production process, the linear homogeneity of the
cost function in prices can be exploited to simplify (3.4) to

o= CCn/C/C., (3.5)

which can be rewritten in the forms

o= 9log C{Y,riw,1)/3(riw) _ _dlog L
3 log C(Y,rlw,1)[3(riw) — dlog(c/w)|y fixed’

(3.5a)

and

s C 0 log C, _ e(K,w;Y,r)

T wC, dlogw SL (3.5b)

where ¢ is the value of total cost, s; is labor’s share of total cost, and
e(K,w:Y,r) is the cross-elasticity of the demand for capital with respect
to the price of labor (output quantity and capital price being held
constant). The form (3.5) holds without any imposition of linear homo-
geneity on the production-function.

In the case that the production process has three or more inputs, a
number of alternative definitions for the E.S. have been suggested in the
literature which differ in economic interpretation and implications. We
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shall examine three of the most common of these forms.” We consider a
classical, differentiable production function Y = F(K,L,M) and its cost
function C = C(Y,r,w,m).

The Direct Elasticity of Substitution between capital and labor is
given by the basic formula (3.1), holding fixed the quantity of the third
factor. In terms of partial derivatives, the formula for this E.S. is given
by (3.2), evaluated now at the argument (K,L,M). The direct E.S. can be
interpreted as a “short-run” elasticity in which the supply of the third
factor is fixed, and provides information on the behavior of the relative
shares of capital and labor.

The Shadow Elasticity of Substitution between capital and labor is
given by the basic formula (3.1), holding fixed average cost and the price
of the third factor.! The formula (3.4), evaluated at the argument
(Y,r,w,m), defines this elasticity in terms of partial derivatives. The
shadow E.S. can be interpreted as a “long-run’ elasticity in which the
third factor can be traded freely at a fixed price, and again provides
information on the behavior of relative shares.

The Allen-Uzawa Elasticity of Substitution between capital and labor
is given by the formula (3.5), evaluated now at the argument (Y,r,w,m),
and provides information [via equation (3.5b)] on the cross demand
elasticities for inputs. This definition does not provide direct information
on the behavior of relative shares.

4. The Specification of the ACMS Model

The formulae (1.1) and (1.2) above can be used to obtain econometric
estimates of the elasticity of substitution for a suitable specification of
the underlying model of the firm. The following list of assumptions gives
one possible specification under which such estimates are valid:

(1) Production possibilities are non-stochastic and known with

’See McFadden (1963). When only two factors are productive, all these definitions
reduce to the equivalent formulae (3.2), (3.4), and (3.5).

*When the production function is homothetic, this definition is unchanged if marginal
cost, rather than average cost, is held fixed. For heterothetic production functions, an E.S.
definition distinct from the shadow E.S. can be obtained - when capital and labor are
non-retrogressive inputs — by holding marginal cost and the price of the third factor fixed.
This definition can be made most simply in terms of the maximum profit function of the
firm.
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certainty by the firm, and can be represented by a production function
with classical properties depending only on observed variables. Varia-
tions in the technology available to the sampled firms and variations in
input quality are ruled out unless they can be observed and included in
the production function. _

(2) Input and output prices are known with certainty and treated as
parameters by the firm, which minimizes input cost and determines
output without error. All observed variables are measured without error
except inputs and total cost. The distributions of the measurement errors
are independent of the values of economic variables.

(3) The production function is linear homogeneous in the inputs,
ruling out non-constant returns and heterotheticity.

(4) Capital services and labor are the only inputs to production, with
raw material and intermediate good inputs excluded.

(5) The elasticity of substitution between capital services and labor is
constant.

(6) Output price does not vary systematically with the wage rate.

Assumptions 1-6 comprise a stronger specification than is necessary
for least-squares estimation of the E.S. from equations (1.1) or (1.2)
(e.g., under Assumption 3, it is unnecessary to make assumptions on the
statistical properties of measured output), but are a useful starting point
for an analysis of specification bias.

A number of papers have investigated the validity of these assump-
tions in industry studies. Arrow-Chenery—Minhas—Solow (1961) point
out Assumptions 1, 3, and 6 as particular sources of potential
specification error in international cross-sectional samples. They find
significant efficiency variations, casting doubt on Assumption 1, but find
Assumptions 3 and 6 to be supported in partial tests. Dhrymes (1963) has
carried out some tests on Assumption 2, concluding that deviations from
competitive cost-minimizing behavior significantly affect E.S. estimates
in some industries. Dhrymes and Kurz (1964) have tested Assumptions 3
and § for electric power data, using a modified form of the Arrow-Solow
production function. They find evidence of increasing returns to scale
and falling fuel-capital E.S. with scale. However, their results may
depend in part on their choice of capacity as a capital index.

Other studies which give some indirect evidence on the assumptions
are M. Brown and J. de Cani (1963), C. Ferguson (1963), J. Kendrick and
R. Sato (1963), M. Kurz and A. Manne (1963), R. Lucas (1963), J.
Minasian (1961), B. Minhas (1963), A. Harberger (1959), R. McKinnon
(1963a), and R. Solow (1964).
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5. Properties of the Elasticity of Substitution

Any cost function formula used to fit observed data will exhibit some
elasticity of substitution (E.S.) between capital services and labor, which
can be computed from the definitions of Section 3. Alternately, a
function specifying this E.S. can be integrated to obtain a family of cost
functions from which a fit to the observed data can be chosen. The form
of this family will depend on the assumptions imposed on the analysis.
In principle, Assumptions 1-6 may be tested by comparing the fits
achieved by different families of cost functions.

(1) We first examine the implications of the constant E.S. Assumption
5. Assumptions 3 and 4, excluding third inputs and heterotheticity, are
dropped, but Assumptions 1 and 2 are maintained. Following the nota-
tion of Section 2, we consider a production process utilizing inputs of
capital services, labor, and raw materials with the total cost function
¢ =C(Y,r,wm), where ¢ is the level of true total cost without
measurement error. Hereafter, a cost function will always be assumed
to be twice continuously differentiable in prices and to satisfy condition
(I) of Section 2.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, every
classical cost function ¢ = C(Y,r,w,m) which has a constant Allen~
Uzawa E.S. (= o) between capital services and labor must neces-
sarily have the functional form

¢ ={[rA(Y,m/r)]"° + [wB(Y,m/w)]"°}'"7 for 0=c <+,

oFl,

= [rA(Y,m/r))’[wB(Y,m/w)]'"* for o=1,
0<o<l,

= Min{[rA(Y,m/r)],[wB(Y,m/w)]} for o=+, (5.1)

where A and B are positive functions. If a function of the form (5.1)
is a classical cost function, then it has a constant Allen-Uzawa E.S.
(= o) between capital and labor.

Proof: One can easily verify by computation that (5.1) exhibits a
constant Allen~-Uzawa E.S. between capital and labor. We now demon-
strate that (5.1) is necessary in the case 1 # o< +=, Let C denote a
general cost function with the constant Allen-Uzawa E.S. o, and define
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g = C'°. Applying the E.S. definition to C, one finds that g must satisfy
g = 0. Hence, g can be written as a function independent of w plus a
function independent of r. Imposition of linear homogeneity in prices
then yields the form (5.1).

For the case o =1, the result follows from the argument above
applied to g =log C. For the case o =+, (5.1) follows by applying a
limiting argument to the first case. Q.E.D.

Corollary 1.1. Suppose the cost function has the form (5.1) with
o < +». Then the following relations hold:

log(c/L)= (1 — o) log(c/B(Y,m/w)) - log(l — B} + o log w, (5.2)
logL =ologc+(1—0o)log B(Y,m/w)+log(l—B)—oclogw, (5.3)

log(K/L)= (1-a)log[A(Y,m/r)/|B(Y,m/w)] +log(l — a)
—log(1 - B)+ o log(w/r), 5.9

where o = alog A(Y,m/r)/3 log(m/r) and B =4 logB(Y,m/w)/
3 log(m/w).

When Assumptions 3, 4, and 6 are imposed on (5.2) and (5.4), requiring
constant returns, no third factor, and an output price which does not
vary with the wage rate, formulae (5.2) and (5.4) reduce to (1.1) and (1.2),
respectively. Hence, econometric techniques based on (5.2) and (5.4) can
be used to test these assumptions.

Corollary 1.2. A classical cost function of the functional form
c = C(Y,r,w,m)= H(Y,m,G(Y,r,w)), where G(Y,r,w) is a quasi-cost
function, has a constant A.U.E.S. o, o # 1, between capital and labor
if and only if

C -_—{(mD(Y))l—U+ma‘(Y)‘O’[(rA(Y))l—a"(Y)+(wB(Y))l_Ut(Y)]}”(l_o_)’
with A, B, and D positive functions, and o*(Y) a non-negative

function satisfying o =o*(Y)<1 if o<1 and 1<o*(Y)=o if
o>1.

Proof: Computation verifies the “if”” implication. To prove the “only

if” statement, note first that ¢ = H(Y,m,v) with v = G(Y,r,w) implies
C.=H.G, C,=H,G,, and C,, = H,,GG, + H,G,,. Hence,

_CCw_HH. H _,
cC., HT "wH, 7

a
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with o* = GG./G.G.. Consider variations in r and w which keep v =
G(Y,r,w) fixed. Then, all the terms in the expression for o are fixed
except o¥, implying that ¢*(Y,r/w) can depend only on Y. Then, this
equation can be written as a partial differential equation in v,

dInH 4InH, o*
o = +—
av av v

b

which has a general solution
H(Y,m,p) = [Dy(Y,m)+ A(Y,m)p' "o V-

in the case ¢*(Y) # 1. Homogeneity implies the form
H(Y,m,p)=[D(Y)m'™" + A(Y)m= ¥V-op!-o}lii-a)

[If o*(Y) =1, homogeneity cannot be imposed; hence, this case is ruled
out.] The condition that o* be independent of r/w implies by "heorem 1
that G(Y,r,w) = [(rA, (Y ) """ + (wB(Y))!~o "=ty Then,
C(Y,r,wm)=H(Y,m,G(Y,r,w)) has the functional form claimed by the
corollary. The condition that the first derivatives of C be positive implies
(1-o*(Y)/(1-0)>0and (c*(Y)—0)/(1—o)=0. Hence, o <1 implies
c=0*(Y)<1land o >1implies I1<o*(Y)=o. Q.E.D.

The quasi-cost function v = G(Y,r,w) can be interpreted as the
“nominal value-added” by capital and labor to the production of Y
units of output. Dual to this function is a distance function

g(Y,K,L) = sup{A[rK + wL = AG(Y,r,w) for all r,w >0},

homogeneous of degree one in (K,L), with V = g(Y,K,L) interpretable
as the production of ‘“real value-added”. Similarly, the cost function
¢ = H(Y,m,v) has a dual distance function

r(Y,M,V)=sup{A|mM + vV = AH(Y,m,v) for all m,v >0},

homogeneous of degree one in (M,V), with 1 = h(Y,M,V) interpretable
as specifying the isoquant in materials and real value-added necessary to
produce Y. The composition rules for cost functions in Chapter I.1
(Table 2) imply that the cost function ¢ = H(Y,m,G(Y,r,w)) is dual to a
technology with the distance function h(Y,M,g(Y,K,L)).

Consider the classical case with G(Y,r,w) homothetic in Y (or in-
dependent of Y), so that G(Y,r,w) = ¢(Y)y(r,w). Then g(Y,K,L) has the
form g(Y,K,L)= f(K,L)/¢(Y), where V = f(K,L) is linear homogeneous
in (K,L). The technology then satisfies 1 = h(Y,M,f(K,L}/¢(Y)), implying
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the existence of a production function Y = F(M,f(K,L)). The function
V = f(K,L) is then an index of real value-added, and vy(r,w) is an index of
the price of real value-added, defined independently of output. In Corollary
1.2, this case occurs if *(Y) and A(Y)/B(Y)=a are independent of Y,

implying that
f(K,L)=[(aK)' ™" + LI-Netjetten-n,
From the cost function in Corollary 1.2,
¢ = {(mD(Y))"" + m7"¥-op -t iki=e)
we can define an A.U.E.S. between materials and real value-added,

oyv = HH,..,/H,.H,
= (e*(v) + I 4 () (2) —d'm)

(e an(z) ™)

If o <o*(Y)< 1, then this formula implies *(Y) < opy < 1. When v/m
is small, oy is close to o*(Y), and when v/m is large, omv is close to
one. In the second case, 1 < o*(Y)< o, one has 1 <oyv <o*(Y), with
oy increasing from 1 to o*(Y) as v/m increases. This result implies in
particular that non-substitutability of raw materials for capital and labor
is inconsistent with the existence of a positive constant non-unitary
A.U.E.S. between capital and labor.

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, every
classical cost function ¢ = C(Y,r,w,m) which has a constant shadaw
E.S. (= o) between capital services and labor must necessarily have
the implicitly defined functional form '

¢ ={[rA(Y,m[c)])' " + [wB(Y,m/c)]"°}/""* for O0=o< + oo,

o# 1,
= A(Y,m/c)r*w'"® for o=1,
0<B<l1,
= Min{[rA(Y,m/c)],[wB(Y,m/c)]} for o=+x, (5.5)

where A and B are pesitive functions.

Proof: If a function of the form (5.5) is a classical cost function, then
computation shows that it has a constant shadow E.S. between capital
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and labor. We now show that (5.5) is necessary in the case 1 # o <+ .

For each (Y,r,m), the classical cost function ¢ = C(Y,r,w,m) is a
strictly monotone continuously differentiable transformation from w in
[0,+x], or equivalently from w'"? in [0,+%], onto ¢ in [C(Y,r,0,m),
C(Y,r,+<,m)]. Hence, there exists a continuously differentiable inverse
transformation w'? = h(c,Y,r,m). Implicit differentiation of the identity
w'™ = h(C(Y,r,w,m),Y,r,m) vields C,=—hJh. and C, = (1 —-o)w /h..
Hence, C./C, = (w/r)’A¢(c,Y,r,m), where Ay(c,Y,r,m)=—h(c,Y,rm)r’/
(1 — o). Formula (3.4) defining the shadow E.S. can be written as

d log(C,/C.)/ar + alr = (C/C,){a log(C/C,)/dw — a/w}.

Substituting into this expression the form obtained above for C,/C,, one
obtains the condition dA./dr =0. Hence, h satisfies the partial differen-
tial equation

hr(cs Ysram) = (1 - O-)AO((", me)lra’
which has the general solution
=0 = h(c,Y,r,m) = —Aqc,Y,m)r'" + Ay(c,Y,m),

where A,(c,Y,m) is an arbitrary function. Imposition of the price

homogeneity condition then yields (5.5).
In the case o = 1, consider the identity h(c,Y,r,m) = w. The procedure

above leads to a function

w = h(c,Y,r,m)= Ac,Y,m)c'tAdermypmAdetim)
Differentiating implicitly, we obtain

C.= lle C, =AolrQ

Cn = (log r—log c) 24y 1 544] /Q,

om A, om |
and
_T _ A, 1 aA.'/
Cy= _(logr log ¢} —5 35Y A Y Q,
where
1 3A, 1+ A, 1oy 5y A0
Q—A1 et + (log ¢ logr)

Consider any solution (Y'.r,w',m’,c’) of this system, c¢'=
C(Y',r',w',m'). Then, (Y'.r,w,m',c’) with w = w'(r/r')y~ """ is also a
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solution for any r>0. Since C, is positive, Q must be positive at this
last argument for any value of r> 0. For this to be true, dAo/dc must be
zero. Applying the same argument to C,, and Cy establishes dA./dm and
3Ao/3Y both zero. Then, A, is a positive constant. Defining 6 =
Ao/(1+ Ao) and using homogeneity one obtains (5.5). The case o = +® is
again handled by applying a limiting argument to the first case. Q.E.D.

Corollary 2.1. Suppose the cost function has the form (5.5) with
o <+w, g# 1. Let V=rK + wL denote value-added. The following

relations hold:
log(VIL) = (1 — o)log(c/B(Y,m/c))+ o log w, (5.6)
log(K/L) = (1 — o) log[A(Y,m/c)/B(Y,m/c)] + o log(w/r). 5.7

The formulae (5.6) and (5.7) again reduce to (1.1) and (1.2) under
Assumptions 3, 4, and 6, so that they can provide the basis for further
econometric tests.

Corollary 2.2. A classical cost function of the functional form
¢ = C(Y.r,wm)= H(Y,m,G(Y,r,w)), where G(Y,r,w) is also a clas-
sical cost function, has a constant shadow E.S. o, o# 1, between
capital and labor if and only if

¢ = H(Y,m, [(rA(Y))"™ + (wB(Y))!"] "=,

Proof: The “only if”” conclusion can be verified by computation. The
“if” implication follows by noting in (5.7) that A(Y,m/c)/B(Y,m/c) must
be independent of m, and hence must have a common factor depending
on m/ic. Q.E.D.

The functional form in this corollary is a special case of the formula
for a non-constant E.S. given in Lemma 6. Note that this form places no
restrictions on the E.S. between materials and “‘value-added™.

Applying the arguments of Theorem 2 directly to the production
function in the case of a constant direct E.S. between capital and labor,

one obtains the following theorem:

Theorem 3. Suppose Assumptions 1 and 2 hold. Then, every twice
continuously differentiable classical production function Y =
F(K,L,M) which has a constant direct E.S. (= o) between capital
and labor must necessarily have the implicitly defined functional
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form
A(Y, M) ={[KB(Y,M))"V7 + L7V} V for 0<o=+w,
o*l,
= K°L"* for o=1,
= Min{[KB(Y,M)],L} for o=0, (5.8)

where A and B are positive functions. (The choice of L as
“numeraire’ is arbitrary.)

If equation (5.8) defines a classical, twice continuously differen-
tiable production function, then it has a constant direct E.S. be-
tween capital and labor, and the following relations hold for 0 <o <

+wo, ¥ 1,
log(VIL) = (1 - o) log[ V/IA(Y ,M)] + o log w, (5.9)
log(K/L) = (o — 1) log B(Y,M) + o log(w/r), (5.10)

where V/w = (KFx + LF,)/F; and w/r = Fi/Fx.

Again under Assumptions 3, 4, and 6, the formulae (5.9) and (5.10)
reduce to (1.1) and (1.2). The condition for the production function to
have a separable form F(K,L,M)= F'(M,F*K,L)) is, from (5.10), that
B(Y,M) be independent of M.

(2) We now consider classes of cost functions which do not have a
constant E.S. between capital and labor. Such cost functions will
generate E.S. functions o = o(Y,r,w,m) for each of the definitions in
Section 4. As a test of the constancy of the E.S., one could fit observed
data to members of an arbitrary chosen class of cost functions, and
compute the o function for the resulting best fit. This procedure was
followed by Dhrymes and Kurz (1964). An alternative approach is to
generate a class of cost functions from a suitable family of o functions.
In this way, the hypothesis of constancy can be tested against specific
alternatives of interest. We take this second approach.

We analyze initially production processes which use only the factors
of capital and labor. Let o = o(Y,r/w) denote an E.S. candidate for this
process. A preliminary question is whether this candidate could actually
be obtained from some classical production function under the definition

(3.1). The following result holds:
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Theorem 4. If o =o(Y,w/r) is an arbitrary positive continuous
function, then there exists a quasi-cost function ¢ = C(Y,r,w) for
which the E.S. given by (3.4) is defined and is equal to o(Y,w/r).
This function has the form

wir
log C(Y.1,w/r) = log A(Y)+ f [p+x(Y.p)]" dp, (.11)
1
where
log x(Y.p) = log B(Y)+ra(Y,q) dlog g, (5.12)
1

with p = wir, x = K/L = C(Y,r,w)/C.(Y,r,w), and where A and B
are positive functions. Suppose further that o(Y,w/r) is bounded
away from one as w/r—0 and w/r— +«, and that oy(Y,w/r) exists

~and is uniformly bounded in w/r for each Y. Then, for any
continuously differentiable positive function B(Y), there exists a
continuously differentiable positive function A(Y) such that (5.11)
is a classical cost function.

Proof: The differential equation determined by substituting the given
function o(Y,w/r) in the left-hand side of (3.1) has (5.12) as its first
integral. By price homogeneity of the cost function, Euler’s law implies
the condition C(Y,1,p)/C.(Y,1,p)=p +x(Y,p). The solution of this
differential equation is (5.11).

Direct computation verifies that C(Y,r,w) defined by (5.11) is concave
and increasing in prices and has an E.S. equal to o(Y,w/r). Then, C has
all the properties of a cost function, provided that Cy(Y,r,w) is positive.
We now show that the last hypothesis of the theorem is sufficient for the
satisfaction of this condition. From (5.12),

log(rK/wL) =log(x(Y,p)/p)=1log B(Y)+ Lp[a( Y.q)—1]ldlogq.

By the hypothesis that [o(Y,q)— 1] is bounded away from zero for
extreme g, the relative share x(Y,p)/p approaches zero or infinity for
extreme p at least as rapidly as p® or p~*, for some € > 0. For example, in
the case p »>» and o(Y,p)— 1 =—¢€ <0 for p=p’, one has
log(x(Y,p)/p) =log B(Y)
o
+I [o(Y,q)—1]dlogq —elogp + € logp’
1

=ao—€logp,
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where a, is a positive constant for each Y. The remaining cases follow
similarly.
From the bounds above, we obtain the inequality

[1+ x(Y.p)/p12x(Y,p)lp = Min{x(Y,p)/p.p/x(Y,p)}
< Min{aep*,aop "},

with a, a positive constant.
Differentiating (5.12) with respect to Y,

3 log(x(Y.,p)Ip)loY = BY(Y)+LPUY(Y,q) dlog q.

Since oy is bounded for each Y, we obtain an inequality
|8 log(x(Y,p)/p)/8Y| = a;+ aijlog p|,

where a; and a, are positive constants.
Differentiating (5.11) with respect to Y,

wir
CylC = AylA - f [1+ x(Y,p)p]x(Y.p)Ip)

1

X [d log(x(y,p)Ip)laY]dlogp
wir
= Ay/A~ l f aoMin(p®,p ~*)a, + a;llog p|ldlogp
1

1
> Ay/A—{lif’;“—;+9"e—“2 (1 +;)}.

Since the term in brackets is bounded, we can choose Ay/A large
enough to make Cy(Y,r,w) positive. Q.E.D.

It should be noted that the “canonical” forms (5.11) and (5.12) for a
two-factor cost function allow a convenient breakdown of returns-to-
scale into: (1) a neutral scale effect through A(Y), (2) a scale bias or
heterotheticity through B(Y), and (3) a substitutability-scale effect
through o(Y,w/r). This classification is also useful in considering tech-
nological change effects.

One form of the E.S. definition in the two-factor case, (3.5a), allows
definition of the E.S. as a function of output Y and a deflated wage rate
w/P, where P = ¢/Y is the average cost of output. This formulation has
the potential empirical advantage of avoiding explicit dependence on the
price of capital services. As in Theorem 4, we ask under what conditions
an arbitrary positive function o = o(Y,w/P) is the E.S. for some classi-
cal production function.
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Theorem 5. Suppose that a(Y) is an arbitrary positive continu-
ously differentiable function of Y >0 and o =o(Y,w/P) is an
arbitrary positive continuous function defined for Y >0and w/P =
a(Y). Then, any labor demand function of the form

wiP
log L(Y,w/P) = log[ Y&(Y)a(Y)] - ] P (Y. dlogz,  (5.13)
alyY)
where w/P = a(Y) and 6(Y) is an arbitrary continuously differenti-
able function satisfying 0 < 8(Y)< 1, has an E.S. from the formula
(3.5a) equal to a(Y,w/P). Further, there exists a quasi-cost func-
tion ¢ = C(Y,r,w) which has C.(Y.r,w)=L(Y,wY/c(Y,r,w})) for
wY/C(Y,r,w)= a(Y).

Proof: The differential equation defined by inserting o(Y,w/P) in
(3.5a) has the general solution (5.13), where the restriction 8¢Y)<1
follows from the condition that at w/P=a(Y), 1>wL/C=
a(Y)L(Y,a(Y)Y =8(Y).

Define p = w/r. If a cost function C(Y,r,w) exists yielding the labor
demand (5.13), then it must satisfy C.(Y,1,p)=L(Y,pY/C(Y1,p)).
Hence, we consider possible solutions ¢ = y(Y,p) of the differential
equation

aylop = L(Y,pY/y). (5.14)

Let a(Y) be an arbitrary positive continuously differentiable function of
Y. We first demonstrate that (5.14) has a solution for p Z a(Y) satisfying
Ypiy(Y.p)Z Ya(Y)/y(Y,a(Y)) = a(Y).

For z = a(Y), we have 0 < L(Y,z)= L(Y,a(Y)). Define the extension
L(Y,z)= L(Y,a(Y)) for z<a(Y), and consider solutions to (5.14)
through the point p = a(Y), y = Ya(Y)/a(Y). Since L is continuous and
uniformly bounded for all (p,y), the Cauchy-Peano theorem establishes
the existence of a solution ¢ = y(Y,p) with y(Y,a(Y))= Ya(Y)/a(Y).
Further, for p>a(Y), (1- (Y)Ya(Y)a(Y)+8(Y)Ypla(Y)=
Ypla(Y), and a(Y)= Yp/y(Y,P). This completes the desired demon-
stration and shows that ¥(Y,p) is defined for p = a(Y) independently of
the extension of L(Y,z) for z <a(Y). We also observe that y(Y,p) is
increasing in p >0, with y(Y,0)=[1-68(Y)] Ya(Y)/a(Y).

Now define C(Y,r,w)=ry(Y,w/r). For w= a(Y), C/(Y,rhw)=
[1-6(Y)Ya(Y)a(Y). For wza(Y)r, C.Y,r,w)=y(Y.,p)—py,(Y.p).
Since  yn(Y.p) == (Y. pY/y(Y,p)(1—p¥(Y,p)y(Y.p)l/p, we have
aC,(Y.1,p)ap = a(Y.pYIy(Y.p)C.(Y.1,p)y(Y.p). Since C(Y,La(Y))>
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0, this relation establishes that C.(Y,l,p) is increasing in p, and is
consequently positive for p > 0. Further, as a consequence of homo-
geneity, the condition C,..(Y,1,p) =0 just established also shows that C
is concave. Hence, provided Cy(Y,r,w) is positive, C,(Y,r,w) satisfies all
the properties of a classical cost function. Q.E.D.

The following corollary gives one set of restrictions on the functions
in Theorem 5 which guarantee that the resulting C(Y,r,w) is increasing
in Y:

Corollary 5.1. Suppose in the hypotheses of Theorem 5 that 8 is
independent of Y, a(Y) satisfies Ya'(Y)a(Y)<1,and o(Y,w/P) has
the form o = a(w/Pa(Y)). Then, Theorem 5 is satisfied by a classi-
cal cost function of the (homothetic) form C(Y,r,w)=
rB(wir)Y/a(Y) with Cy positive.

Proof: Under the hypotheses of the corollary, (5.13) may be written

2la(Y)

log L(Y,z) = log[Y6/a(Y)] —Il o(z)dlog z'.

Using the transformation B(Y.,p)=y(Y,p)a(Y)/Y in the equation
Y.(Y,p)=L{(Y,pY/y(Y,p)), we obtain a differential equation B8, =
6 expl— [ i o(z) d log z] which has a solution through the point p = 8 =
1 independent of Y (using the same proof as in Theorem 5). Q.E.D.

We will now explore extensions of Theorems 4 and 5 when a third
productive input M is present. The E.S. formula (3.4) on which the
construction of Theorem 4 is based continues to hold provided the
shadow E.S. definition 1s assumed, and (5.12) becomes

P
log x(Y.p,m/P) = log B(Y,m|P)+ f, o(Y,m/P,q)dlogg,  (5.12a)
where m is the price of the third input and P is the average cost of
production. One cannot obtain from (5.12a) an explicit formula like
(5.11) for the cost function, except in special cases. One useful case is
given in the following extension. This result also provides a general
condition for the separability of ‘‘value-added” and remaining inputs.
Note that if m/P is constant, then this result holds trivially by the Hicks

aggregation theorem [see Diewert (1974c¢)].
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Lemma 6. U o=o(Y,w/r) is an arbitrary positive continuous
function of output and the relative price of labor and capital, and is
independent of the deflated price m/P of a third input, then there
exists a quasi-cost function ¢ = C(Y,r,w,m) for which the shadow
E.S. between capital and labor is defined and is equal to o(Y,w/r).
This function has the composite form

C(Y,r,wm)= H(Y,mG(Y,rw)), (5.15)

where H(Y,m,v) is an arbitrary twice continuously differentiable
strictly quasi-concave quasi-cost function and G(Y,r,w) is a quasi-

cost function satisfying

log G(Y,r,w) = log[rA(Y)] + f “"Ip +x(Y,p)]" dp, (5.16)
1

with x(Y,p) given by (5.12) and A(Y),B(Y) arbitrary continuously

differentiable positive functions.

If C is a classical cost function, then it is the cost function of a
set of classical production possibilities of the implicitly defined form
F(Y,f(Y,K.L),M) = 1.

If H and G are classical cost functions (as under the last
hypothesis of Theorem 4, for examplej, then C is also a classical
cost function. Alternately, if H is a classical cost function and
a(Y,w/r) is independent of Y, then taking B to be a positive
constant yields a classical cost function C(Y,r,wm)=
H(Y,m,G(r,w)) which s the cost function of a set of classical
production possibilities of the form Y = F(M,f(K,L)), where f(K,L)
is linear homogeneous.

Proof: Direct computation verifies that C(Y,r,w,m) has a shadow
E.S. between capital and labor equal to o(Y,w/r). We next suppose that
C is a classical cost function and show that the corresponding produc-
tion possibilities have the stated forms. Define a distance function
f(Y,K,L) = Max{A|rK + wL = AG(Y,r,w) for all r,w > 0}. One may verify
that f(Y,K,L) is linear homogeneous, concave, and non-decreasing in
(K,L). Further, one has G(Y,r,w) strictly quasi-concave in (r,w) from its
definition, which can be shown to imply that f(Y,K,L) is con-
tinuously differentiable in (K,L). From the definition of f, 1=
f(Y.G (Y, r,w),G (Y,r,w)), implying 0 = f,G,, + f,G., with the derivatives
evaluated at K = G,(Y,r,w),L = G,.(Y,r,w). Since G, <0 and G,,>0
from the definition of G and Kfx + Lf; >0 by linear homogeneity, we
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have fx, f. strictly positive on the set of points

S={(Y,K,L)>0|K = AG,(Y,r,w), L=AG.(Y,r,w)
for some A,r,w > 0}.

Define the sets R={Y.K,LM)|(Y.K.L)ESM>0} and T=
{Y,X,LLM)AK>3(Y.K,L)ES and X =f(Y,K,L),M >0}. Then, X =
f(Y,K,L) defines a one-to-one transformation of R onto 7. Let K=
¢{(X,Y,L) denote the inverse transformation of X = f(Y,K,L).

The classical cost function C(Y,r,w,m) defines via (2.2) a set of
classical production possibilities Y = E(K,L,M). The functions G and H
are strictly quasi-concave in their respective price arguments, by con-
struction for G and by assumption for H. Hence, C is strictly quasi-
concave in (r,w,m), which can be shown to imply that E is continuousiy
differentiable. Define F(Y,X,L.M)= E(¢(X,Y,L),L. M)—Y on T. Then,
F(Y,f(Y.K,L),LM)= E(K,L,M)—Y on R. Differentiating with respect
to K and L, we obtain

FX(ny( Y9K7L)3L>M)fK( Y’K’L) = EK(K’LsM)s

Fx(Y f(Y,K,L),LM)f (Y,K,L) + F;(Y,f(Y,K,L),L,M)
= E, (K,L,M).

Consider any point (Y,K,L,M) in R with Y = E(K,L,M) and let (r,w)>
0 be a price vector such that the condition K/L = G,(Y,r,w)/G,.(Y,r,w)
defining the set S is satisfied. By the cost minimization conditions, there
exists a non-negative scalar x such that Ex(K,L,M)=pur and
Ei(K,L.M) = uw for the (r,w) vector above. If Fx = 0 at this point, then
w =0, implying F; = 0. If Fx >0, then since f;/fx = w/r,

wir=EJEg = filfx + Fi/Fxfx
= wir+ Fy/Fxfx

implies F; =0. Hence, F; =0 on R, and the production possibilities
satisfy F(Y,f(Y,K,L),M)=0.

Finally, we note that when o(Y,w/r) and B are independent of Y, then
by Lemma 1, f(Y,K,L)= h(K,L)/A(Y), where A~ is the inverse of
A(Y) and h is linear homogeneous. Then the equation
F(Y,h(K,L)JA(Y),M)=0 can be solved to give the formula Y =
X(M,h(K,L)). With a change of notation, this is the final formula of the
lemma. Q.E.D.
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6. An Econometric Model of the Electricity
Generation Industry

(1) To obtain some preliminary evidence on the validity of the
assumptions presented in Section 2, we have carried out a pilot study
using cross-sectional, plant-level data in the electricity generation in-
dustry for 1957-1960. This industry was chosen to take advantage of
detailed cost and physical operating data available for steam generating
‘plants, allowing us to test a wide range of hypotheses. Our efforts are
directed primarily to tests of A.3 (homogeneity, homotheticity), A.4
(constant elasticity of substitution), and A.7 (output price unrelated to
wage rate). The results of these tests should be viewed as indicative —
rather than conclusive —for this industry, and obviously have no im-
plications for time-series or international cross-sectional analysis, or
studies of other industries.

(2) Our analysis is confined to privately owned, conventionally fueled,
steam-electric generating plants. Approximately 80% of all electricity
generated in the period studied came from private utilities. Further,
approximately 9% of the electricity generated by private utilities came
from steam-electric plants. Hence, these plants represented a substantial
segment of the electricity generating industry.

Inputs

Electricity generation requires three primary inputs — fuel, capital
equipment, and labor. In a typical plant, these inputs will account for
about 50%, 45%, and 5% of total costs, respectively.

Coal, oil, and gas are the principal fuels used. Converted to B.T.U.
equivalents, they are virtually perfect substitutes in production, and will
not be distinguisked in our analysis.”> The power engineering literature
and examination of published heat rates (B.T.U.s consumed per
kilowatt-hour produced) suggest strongly that the relation between fuel
consumption and output is primarily technological: Plants of ap-

9 Although these fuels are perfect substitutes ex ante, the plant will be confined, ex post,
10 use of one of them, unless an additional capital investment is made to allow con-
vertibility. About one-third of the plants constructed in the decade 1954-1964 have
convertibility between two or more fuels.



96 Daniel McFadden

proximately equal capacity constructed in the same year have ap-
proximately equal heat rates. Further, the heat rate for new plants falls
fairly uniformly from year to year, suggesting that plant capacity
and the state of technology are the primary determinants of heat
rates.'

Capital investment in generating plants has three major components:
land, structures, and equipment (fuel-handling equipment, the boiler-
turbine-condenser-generator complex, control equipment). Of these
components, land is the least important, accounting for less then one per
cent of the total investment in most plants. The percentage of invest-
ment in structures shows relatively little variation between plants of a
given type: 20% in a typical conventional plant, 15% with outdoor
boilers, and 10% in a full outdoor plant. Further, this percentage seems
to vary little with plant capacity. The choice of plant type is generally
governed by the climate of a region, and does not normally reflect a
substitution of maintenance labor for capital.

Equipment represents the major portion of capital costs, with operat-
ing units being predominant. Engineering data indicates that choice of
operating units does not depend on explicit cost computations. Firms
generally choose the most efficient operating unit available, consistent
with the capacity restrictions on the planned plant and the willingness of
the firm to incur the increased ‘‘shake-down time’ and risk attached to
more advanced, but experimental, equipment. Plants under construction
exhibit a wide variety of fuel-handling and control equipment. The
engineering literature discusses this type of equipment primarily in terms
of its possible substitution for labor. It would appear that most of the
observed capital-labor substitution in plants involves this component of
capital.

Because of the relatively stable proportions in the observed income
shares of the major capital components, comparisons of capital invest-
ment in new plants can be made with reasonable accuracy with a single
capital index.

Production and maintenance labor is a substantially smaller

"There is some variation among contemporary plants in the degree of adaptation of
recent innovations, which might be attributed to technological substitutability between
capital and fuel. The resuilts of Dhrymes and Kurz (1964) suggest such an effect. However,
the power engineering literature suggests that the primary effect of experimental in-
novations is to increase “‘shake-down’ time and introduce some risk into the determination
of the resulting heat rate, rather than to increase direct (measured) capital costs.
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component of total cost than fuel and capital. Skilled maintenance and
operation laborers and technicians account for most of the wage bill in
electric plants."' Except for a few automated plants, the mix of workers
of various types is fairly uniform across plants, so that a single labor
input index, unadjusted for “‘quality”, can be used.

Input Prices

Electric utilities purchase fuels under long-term contracts in competition
with other users. The cost of capital services is influenced by the initial
price of a unit of physical capital, the depreciation rate, and the market
interest rate. The major components of physical capital are operating
units, for which prices are fixed nationally by the major electrical
equipment manufacturers. Variations in transportation cost for operating
units are likely to have a relatively small effect on initial capital price.
Similarly, the effects of variations in construction costs on the initial
price of structures will probably result in relatively small variations in
the initial capital price. Hence, for comparison of new, contemporary
plants, the initial “book value” of capital will be an approximate index
of physical capital.

The market for capital funds which electrical utilities face has two
important institutional features: (1) Most capital for construction is
obtained through long-term (usually 30-year) mortgages. These mort-
gages appear to trade in broad and actively competitive markets, with
only weak variations in interest rates over large regions. With the
exception of very small utilities, mortgage interest rates do not vary
systematically with firm size, indicating that utilities have relatively little
market power. (2) Rate commissions maintain rather stringent control on
proposed investments of utilities. Normally, a new investment is expec-
ted to yield the current rate of return on capital at established output
prices. The ‘“‘fair” rates of return established by rate commissions are
usually one to three per cent higher than mortgage interest rates. Hence,
the imputed, or shadow, interest rate on which investment decisions will
be based will equal approximately the (higher) “fair” rate of return
prevailing in the construction area. The imputed price of capital services

"Most administrative, accounting, and engineering expenses are incurred at the firm
level, and not imputed to individual plants.
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(measured in ‘“‘book value” interest units) will then equal the imputed
interest rate plus the actual depreciation rate."”

The wage rate for production workers appears to be relatively stable
over time for generating plants. Since utilities are small employers in
local markets for skilled laborers, and compete in broad markets for
technicians and engineers, they take wage rates as given.

Output Price and Quantity

Utilities are required to meet current electricity demand at prevailing
prices, either by production, or by purchases from other utilities. The
allocation of produced output among the utility’s plants is done on the
basis of marginal cost calculations, which are, in turn, based on histori-
cal operating experience in each plant. Further, the net amount of
purchased power, which is significant in some utilities, will be influenced
by demand and production costs over wide regions. Hence, the output of
a given plant, although determined primarily by the external demand,
will be influenced by decisions of the utility. Despite this influence, the
impact of utility decisions on the output of relatively new plants will be
small, since most variation in total production in the utility will be
absorbed by older plants operated on a standby or peak-service basis.
As a first approximation, the output of a new plant can then be taken as
an exogenous variable.

The price of delivered electricity faced by a utility is determined by a
rate commission, and is set to give a “fair” rate of return on the utility’s
capital, in light of historical data on operating costs and output. Again as
a first approximation, one can assume that the utility will treat output
price and demand as pre-determined variables in new-plant design
decisions, and will attempt to choose a cost-minimizing input combina-
tion for such plants.”

“The empirical results reported here use as a measure of capital service price the rate r,
in the data appendix. This rate is determined by dividing the “‘economic™ capital service
costs of the plant by the book value of capital in the plant. Since plants in the sample are
new. the book value of capital is a reasonable approximation to real economic capital.
Economic capital service cost is defined for the electric utility plant of the parent utiiity by
summing depreciation and amortization, net operating income (profit), and interest charges.
This cost is then allocated to electric plants in proportion to net (depreciated) book value of
plant. Several alternative capital service cost measures (r,r..r;) are defined in the Ap-
pendix. Substitution of these measures of capital cost in the regressions reported below did
not yield substantially different results; we do not report these alternative regressions.

“The claim is sometimes made that an electric utility has no incentive to minimize costs,
given the present criteria of rate commissions in which cost reductions are offset by rate
reductions. However, two effects make cost minimization rational for the utility: (1) since
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There will normally be a systematic relationship between the true unit
costs in a new plant and historically observed unit costs for the utility,
due to input prices which are stable over time and a smoothly improving
technoiogy. Hence, historical unit costs may be used as an instrumental
variable in the place of observed current unit costs.

(3) We now develop an econometric model describing utility behavior
‘in the design of new plants. On the basis of this model, we will make
inferences about the assumptions in Section 2 on production possi-
bilities. The model is designed for application to cross-section data on
new plants whose construction incorporates a uniform technology.

Variables

r,w,m  the observed prices of capital services, labor, and fuel, respec-
tively, in the first year of operation;

R the observed plant capacity in the first year of operation;

K,L.M the exact cost-minimizing inputs of capital, labor, and fuel,
respectively, for a given designed output at specified input
prices;

Y, the observed output and load factor (observed output/potential
output), respectively, in the first year of operation;

LM the observed labor and fuel inputs in the first year of operation.

Assumptions

1. The observed prices r,w,m are exogenous, and are instrumental
variables reflecting the future prices expected by the utility at the time
of the design of the plant.

2. The observed plant capacity R is, as a first approximation, pre-
determined, and is an instrumental variable reflecting the designed plant
output level. (Designed output level, in turn, is influenced primarily by
external demand, as we noted eariier.) _

3. The design possibilities available to the utility are representable by

rates for a given utility are influenced by the rates of other utilities, short-run rate
reductions are unlikely to completely offset a cost reduction, and (2) because of the lag
with which rate commissions operate, substantial short-run profits can be gained by a cost
reduction. The rate criteria do have distorting effects, making disgnised profits attractive,
as well as the carrying of quantities of excess capacity to inflate the rate base,
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an exact classical cost function C=G(R,r,wm)=rK+ wL+ mM,
where K,L,M,C correspond to exact cost minimization at the values
(R,r,w,m) of the exogenous variables. There are no variations in avail-
able technology over the period or regions sampled."

4. Actual ex ante design inputs K* L* M* are endogenous, with
non-stochastic components equal to the respective exact cost-maximiz-
ing inputs.

5. Observed output in the first year of operation (Y) is, as a first
approximation, exogenous. Observed capital input in the first year of
operation is equal to K*. Observed labor and fuel inputs in the first year
are functions of their respective actual ex ante designed inputs and the
observed load factor in the first year. As a first approximation, these
functions do not depend on other characteristics of the plant design or
the observed relative prices.

Variables

C=rK+wL+mM exact total cost;

P=ClY exact unit cost;

V=rK+wL exact value-added:”

C*=rK*+wL*+mM*; P*=C*/Y* actual ex ante designed total

' cost;

P*=C*|Y actual ex ante designed unit
cost;

V*=rK*+wlL* actual ex ante designed value-

_ added;

C =rK*+wL + mM* reported “total” cost;

Iz =(ClY _ reported “unit” cost;

V=rK*+wL value-added in first year of
operation;

P’ historical unit cost in the uttlity,

an approximate instrumental

_ _ variable for P;

L=Ax(DL*;, M=u()M* the relations between designed
and reported labor and fuel in-
puts, determined by the load
factor L.

“In a more careful study, one might wish to distinguish regions of the country on the

grounds that structure technology (conventional, outdoor boilers, etc.) varies with climate.
“Throughout, we shall define value-added at factor costs, noting that V = rK + wL =

PY - mM.
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Definitions

m. = wLIC

€ =L¥L

a=P'[P
ec=C*IC; e€,=V*V
nc=CIE(C); mv=VIE(V)

be=E(C)/C:; by=E(V)|V
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the exact cost share of labor; define
similarly g, mu as the exact cost shares
of capital and fuel;

the stochastic component of actual de-
signed labor input; define similarly ex, ey
as the stochastic components of actual
designed capital and fuel inputs;

the (non-stochastic) relation between exact
unit cost and historical unit cost;

the stochastic components of actual
designed cost;

the stochastic components of ex post repor-
ted cost;

the non-stochastic component of the rela-
tion between exact ex ante cost and
reported ex post cost.'s

To establish econometric relationships between observed variables,
we can substitute in the exact relations of Section 4 the following terms:

C = Clbcnc,
V= Vibymy,
K= K*/€x,
L=Lix(De,
M= M/F—(DGM’
P = P'[a.

We now present the hypotheses to be tested, and the results of the
tests. The sample consists of 36 steam-electric plants in the continental
United States which began operation in the period 1957-1960. The

'“Computation establishes the following relations:

€ = TTKEK + wLEL + TAMEM
When E(ex)= E(en)=1,

b(‘ =g+ A(l)ﬂ',__ + [.L(I)‘:TM,

€y = {mgeg + o€ W (awg + ).

by =mx+ AT

Ne = (mxex + A mreL + p(l)mvem)ibe, vy = (mwrex + A1) 7L )/ by.
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observed data for these plants and a discussion of their construction are
given in the appendix.

(4) Hpypothesis I —-Fuel is not substitutable for any combination of
capital and labor.

Under Assumptions A.1 and A.6 in Section 4 and the econometric
model specified above,

M = p(1)G.(R,1,wlr,m|r)em,

E: w(DGm(Rriw,1,mlw)ey
L ADG.(R w1, mlw)e’

M _ p()Gna(R1,wirmir)ey
K* G/(R,1,wirm/rieg °

Under the null hypothesis, G,, must be independent of w/r and m/r and
G. and G, must be independent of m. Under the alternative hypothesis,
G.. must be decreasing in m, 3 log(M/L)/3 log(w/m)|;..» > 0 is the shadow
E.S. between fuel and labor, and a log(M/K*)/d log(r/m)|;4.> 0 is the
shadow E.S. between fuel and capital.

A fairly stringent test of the hypothesis can be obtained starting from
first-order Taylor’s expansions of logarithms of these equations in the
variables log R, [, log r, log w, log m about their sample means, which
yield the equations

logM = ay+a,log R+ apl+ajslogr+ alogw+ aslogm+ e,
log(M/L_) = Q99+ do log R+ azzi + an log r+ axw + axs IOg m + Eé,

log(M/K*) = as+ as, log R + ayl + aplogr
+ ax log w+ asslog m + e;. 6.1)

Price homogeneity imposes the linear constraint a;;= — a;— a;4 for i =
1,2,3. Under the null hypothesis, a3 = a4 = a;s = a»s = a3s = 0, while un-
der the alternative hypothesis a;s> 0, a; <0, a;s<0. Assume as a first
approximation that the shock € is independently, identically normally
distributed over the cross-section for each i."”

"I am indebted to a referee for pointing out that this parameterization reduces the
stringency of the test of hypothesis, and that more generaliy the critical level of this test is
not independent of the true functional form of G and the choice of expansion. In principal,
a non-parametric test of association would be most satisfactory. Nevertheless, it is
reasonable to suppose on the basis of the general robustness of the normal linear model
that the parametric test is valid as a first approximation.
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Estimates based on these equations and associated tests are given in
Tables 1-3. We shall accept Hypothesis I conditionally on the basis
of the tests in Tables 1 and 2. Note however that the power of these
tests are low against the aiternative of a fuel-capital E.S. in the 0.15-0.30
range, and that the tests in Table 3 suggest the hypothesis may be
rejected in larger samples. Regression 6 can be interpreted as providing
an estimate of the fuel-labor E.S.=0.123 (standard error = 0.127); and
Regression 11 as providing an estimate of the fuel-capital E.S.=0.322

(standard error = 0.163). These estimates are in approximate agreement
with the results of Dhrymes and Kurz (1964) which use a “capacity”
index of capital stock.

The coefficient of log R in Regression 4 is an elasticity of fuel input
with respect to plant capacity, with relative prices and load factor fixed,
and the estimate 0.772 suggests substantial fuel-saving with increased
scale. The estimated coefficient 0.445 of log R in Regression 8 suggests
even larger labor-saving with increased scale, while the estimated
coefficient — 0.012 of log R in Regression 12 suggests that increased scale
results in capital-saving to about the same degree as fuel-saving. We can
anticipate from these regressions that the technology will exhibit strong-
ly increasing returns to plant capacity, biased in favor of labor-saving
so that larger plants will be more capital intensive.

The coefficients of | in Regressions 4, 8, and 12 provide an indication
of short-run returns to scale at outputs below capacity. For example,
3 log M/ log Y = a,,l.'"* At the sample mean load factor of 0.664, these
estimates yield a short-run elasticity of fuel input with respect to output
of 1.33 from Regression 4 and of 1.22 from Regression 12, and of labor
input with respect to output of 1.33—(0.566)(0.664) = 0.96 from Regres-
sion 8. This suggests approximately ‘“‘constant returns” for labor input
and substantial “decreasing returns” to fuel in the short-run. The last
result is not consistent with engineering experience, which suggests
short-run constant returns to fuel.

Hypothesis II - The elasticity of substitution between capital and labor
is constant. (We use here the shadow E.S. definition; by Corollary 1.2,
the Allen~Uzawa E.S. cannot be positive and constant when there is no

substitutability of fuel for capital or labor.)
Under Assumptions A.1 and A.6 of Section 4, the econometric model

"“The regressions in Tables 1-3 were also run with i replaced by log [. This alternative
yielded essentially the same parameter estimates, but marginally worse overall fits.
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specified above, and the tentative conclusion that fuel is not substitut-
able for capital or labor, Theorem 4 can be used to derive estimation
formulae under the hypothesis and alternatives. If one accepts the
non-substitutability of fuel, then the exact cost function can be written
C=G(R,r,w)+ mM, where M 1s a function of R alone, and V =
G(R,r,w) is value-added. Given a family of (shadow) E.S. functions
o(R,w/r) encompassing the hypothesis and alternatives of interest,
equation (5.11) allows construction of cost functions which, in principle,
couid be adapted for direct estimation. Alternatively, the price deriva-
tives of (5.11) vield the exact relation

wir

K/L = B(R) exp{j} g(R,z)dIn z}. (6.2)

From (6.2) we have the observable relation

wir

In(K*/E) = In B(R)— In A() + f o(R.z)dIn z + Inexlep).
1

We consider the following families of E.S. functions o(R,r/w), where
v,0,£,m are parameters:

o(R,rfw) =y + 8¢£(w/50r)’, (6.3)
o(R,rlw) =y + 8(w/r)/(w/r + £), (6.4)
o(R,rlw) = vy + 8(w/r}(& + wir). (6.5)

[The constant in (6.3) is introduced to scale the observations for compu-
tational purposes.] To test the dependence of the E.S. on designed
capacity R, we consider

o(R,riw) =y + nR + 8(wlrX¢ + wir). (6.6)

The family (6.3) covers a large class of E.S. functions which are
monotone in wfr, and exhibit elasticity values approaching zero or
infinity at one or both price-ratio extremes. The family (6.4) is also
monotone in w/r, but has positive finite upper and lower bounds. The
families (6.5) and (6.6) allow the E.S. value to obtain a minimum or
maximum at some intermediate w/r ratio if £ is negative. These families
would appear to cover most interesting alternatives to the constant
elasticity hypothesis. Tests based on these families should provide
reasonable robustness against any alternative of a monotone or uni-

modal elasticity.
Estimation formulae for these families are given below. The constraint
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that o(R,w/r) be non-negative is ignored in these formulae, and the
resulting estimates must be checked to verify satisfaction of this con-
straint over the range of sample. (Failure of the condition would require
a regression subject to non-linear constraints.) First-order Taylor’s
expansions of B(R) and A(!) in log R and [, respectively, are utilized in
these regressions:

log(K*/L) = ao+ a,log R + ay! + f(R,w/r) + In(ex/eL), (6.7)

where f has one of the following forms:

f(wlr) = log(wir), Family (6.3), =0
(constant E.S. case),
(6.8)
f(wir) =y In(w/r) + 8(w/50r)%, Family (6.3), 8#0,
£#0,

(6.9)

f(R,wir) =y In(w/r)+ & In(§ + w/r), Family (6.4), 6# 0,
(6.10)

F(R,wir) =y In(wlr) + (82)(¢ + wir), Family (6.5), 6§#0,
(6.11)
fiR,w/r)=(y+nR) ln(w/r)+(6/2)(§+w/r)2, Family (6.6), §#0,
n#0. (6.12)

Assume the stochastic elements ex/e; are independently, identically
distributed log-normal, with E(In(ex/€r)) = 0. The regression results and
associated tests are given in Table 4.

We conclude from the tests in Table 4 that the null hypothesis of a
constant E.S. between capital and labor is accepted at the 10 percent
significance level. Several reservations should be noted however about
this conclusion. First, while the alternatives of a monotone or unimodal
dependence on relative prices and a monotone dependence on plant
capacity should capture first-order effects, the tests have not been
performed for a comprehensive set of models. Second, the range of
relative prices in the sample is fairly small, and variations from
constancy of the E.S. may be significant only at extreme price ratios.
Third, the power of these tests is very low against alternatives of
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Eiosticity of Substitution
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FIGURE 1. Estimates of the elasticity of substitution between capital and labor as a
function of the relative price wfr.

economic interest in which the E.S. varies, say, from 0.6 to 1.1 over the
sampled price ratios."”

Figure 1 graphs the estimates of the E.S. from Regressions 13-16
against the relative price ratio. We note that the non-negativity con-
straint on the E.S. is satisfied over the sample in each case. The interval
[31,65] contains 31 of the 36 sampled values of w/r, and on this interval
all three of the models (6.3) to (6.5) vield values of the estimated E.S. in
the range [0.40,0.95]. Specifically, (6.5} gives an essentially constant E.S.

"“This point is related to the observation that a set of points on a “‘true’ isoquant can
often be fitted closely by curves of significantly different curvatures (and thus significantly
different E.S. values), and hence that a “‘second derivative” measure such as the E.S. is
difficult to estimate accurately.
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of 0.65 on this interval; (6.4) gives an elasticity which increases mono-
tonically in w/r from 0.40 to 0.85; and (6.3) gives an elasticity which
increases monotonically in w/r from 0.45 to 0.95. Models (6.4) and (6.5)
exhibit an increasing E.S. at high values of w/r, particularly for obser-
vation 6, the Eddystone plant, with w/r = 123. It is worth noting that this
is the largest plant in the sample and has an automated control system. It
may, by virtue of its innovative technology, allow a degree of substitu-
tability between capital and labor that could not be achieved by direct
extrapolation of the common technology of the remaining plants. To the
extent that this is a real phenomenon and “unconventional technologies™
can be activated in response to extreme relative prices, it is reasonable
to expect a non-constant E.S. of the form in (6.5).2

Regressions 13-17 again suggest increasing capital intensity (relative
labor-saving) with increasing plant capacity. The next hypothesis pro-
vides a formal test of this tendency.

Hypothesis III - The ex ante production function is homothetic.

The hypothesis of homotheticity requires that cost-minimizing factor
input proportions be determined by input price ratios, and be in-
dependent of scale. Since Hypotheses I and II have been accepted, the
exact relation (5.10) holds, with

I(K/L) = o In(w/r)+1In D(R),
where D is some positive function independent of m. Then,
In(K*/L) = o In(w/r) + In D(R) —In A(!) + In(ex/€L).

Taking first-order Taylor’s expansions of D(R) and A(/) in log R and [,
respectively, the results in Table 5 allow a test of the hypothesis. We
conclude that the hypothesis of homotheticity is strongly rejected. We
note further that the omission of the plant capacity variable in
Regressions 18 and 19 has little effect on the estimates of the E.S. An
auxiliary test for a unitary E.S. in Regression 20 is rejected.

In the absence of homotheticity, returns to scale cannot be defined
independently of input proportions. However, from estimates of the
elasticity of input with respect to plant capacity one can estimate an
index pu of the degree of returns to scale at a point, equal to the

2}t should be emphasized that these conclusions are based on the assumption that labor
input is homogeneous in quality over the sample. A more plausible alternative is that the
mix of technicians and supervisory personnel is higher in more automated plants, so that
the observed wage overestimates the wage per standard worker facing the firm. The result
is an upward bias in the E.S. estimate at high w/r values.
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TABLE 5
Test of homotheticity (relative capitai-fuel demand equation); dependent variable:
log(K*(L).
Independent variables Error
Mult.
Const. log R ! log (wir) Sum of corr.
Regression ao a, a; a; squares DF coeff.
18 -3.634 0.738 4.67939 34 0.296
(0.754) (0.195)
19 -3.669 0.108 0.728 4.67343 33 0.297
(0.783) (0.527) (0.204)
20 -2.817 0.459 —-1.308 0.731 1.55805 32 0.765

(0.471)  (0.057)  (0.356) (0.119)

(a) Test a, = 0, Regression 20: t = 8.00 > 1,,005(32) = 2.74.
The null hypothesis is rejected at the 1% significance level.

(b) Test a; = 1, Regression 20: t = 2.252 > t,»s5(32) = 2.04.
This hypothesis is rejected at the 5% significance level.

elasticity of capacity with respect to total cost, prices held constant. L.e.,

1 _halogC_(wL) alogL+(rK)alogK (mM)alogM

x dlogR \C/alogR \C/alogR '\ C /alogR’

where the derivatives are evaluated with Lr,w,m constant. For the
typical values wL/C = 0.05, rK/C = 0.45, mM/C =0.50, and crude esti-
mates 3 log L/d log R =0.327, 8 log K/3 log R =0.784, 3 log M/d log R =
0.772 (obtained from Regressions 8, 12, and 4, respectively) we have the
estimate p = 1.32, suggesting substantial increasing returns to scale.
Estimates of this effect could also be obtained by direct non-linear
estimation of the input demand functions.

(5) The remainder of our empirical analysis is devoted to a comparison
of capital-labor E.S. estimates from equations (1.1), (1.2) and their
generalizations under the assumptions that the E.S. is constant (Hypo-
thesis II holds), that production is heterothetic (Hypothesis III fails), and
that the substitutability of fuel for capital and labor is low, but not
necessarily zero (Hypothesis I is ambiguous). Corollary 1.2 implies that
the assumption of a constant A.U.E.S. between capital and labor is
inconsistent with zero substitutability of fuel for these factors. Hence,
we confine our attention to the shadow E.S. For this definition, the
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assumptions above imply that the exact cost function has the form
specified in Theorem 2,

¢ = {(rA(Y,mfc))"" + (wB(Y,m/c)) "}, 0<o=+w, o# 1.
(6.13)

A further restriction on this functional form from Corollary 2.2 holds if
the hypothesis that the cost function has the separable form c¢ =
H(Y,m,[(rA(Y))™° + (wB(Y))"1"""))is accepted. An implication of this
" hypothesis is that log(K/L) in (5.7) be independent of m/c, or alternately
that log(V/L) in (5.6) be independent of m.

The following regression provides a test of this hypothesis:

log(K*/L) = 2.653 +0.527 log R — 1.236! + 0.737 log(w/r)
(0.643) (0.187) (0.407) (0.122)

+0.088 log(m/c);
(0.231)

(Regression 21, error sum of squares = 1.55079, multiple correlation
coeflicient = 0.767.)

A t-test of the hypothesis that the coefficient of log(m/c) is zero is
accepted at the 10% significance level. Then the functions A(Y,m/c) and
B(Y,m/c) in (6.13) can be assumed to have the form A=
A(Y)AxY,m/c) and B = B:(Y)AxY,m/c), implying

¢ = AxY,m[c)(ALY)IN)' + (B{(Y)w)' 1"
Solving for ¢ gives a general functional form

¢ = H(Y,m,[(A(Y)r)™° + (B{(Y)w)' 1", (6.14)
Then the following cost relations hold:

log{VIL)=(1-0)log Bi(Y)+ o log w, (6.15)

log(K/L)=(1—0)log(A(Y)/B(Y))+ o log(wir). (6.16)
In terms of observable variables, (6.15) gives

log(VIL) = (1 - o) log & — (1— o) log By(R) + o log w — log A(l)
+log by — (1 — o) log bc +log nv
~(1—o)lognc —loger; (6.17)
bv and bc are defined above. Equation (6.16) leads to the functional

form (6.8) previously analyzed in Hypotheses -II and III. Defining an
average cost of output (approximately equal to output price for the
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profit-regulated utility) P = &/Y = &/IR, (6.17) can be written

log(V/PL) = (1—- o) log[R/B\(R)]) + o log(w/P)
—log[A()/I'°1+ b +e¢,

where b =loghy—(1—0o)logbc and € =logny— (1 —0c)lognc —loge;.
We now assume that b is constant and € is independently iden-
tically normally distributed over the sample. In fact, b=
logl{mk + A(D)7L)/(mrk + A1) + p(l)my)] varies from — 0.69 to — 0.37 in
our sample when the true parameters are o =0.75, logA(l)=1.04/,
log u(l) =1.54l, and the assumption of a constant b is a poor ap-
proximation. Since the variable b has a low correlation with log w, and
since the variable [ with which b is highly correlated has in turn a low
correlation with w, we expect this misspecification to bias the estimates
of A(]) in {6.18), but to have little effect on the estimate of o. It should
also be noted that the stochastic specification for € is inconsistent with
the specification in previous tests. Because output price P measured by
average cost is an endogenous variable, ordinary least squares (OLSQ)
estimates based on (6.18) will contain some bias. Therefore, we have
also fitted the equations in which this appears as a right-hand variable
using instrumental variables (INST), with firm output price (P) used as
an instrument for plant average cost (P). Table 6 gives estimates for
(6.18), and for variants which replace labor with capital or modify
right-hand side variables. The terms log(R/B(R)) and log(A(I)I'™) are
replaced by first-order Taylor’s expansions, yielding terms in log R and [
The estimates in this table of the capital-labor E.S. are in general
agreement with values obtained in earlier estimates. Regressions 22A
and 27A correspond to (6.18) for labor and capital, respectively, fitted by
the preferred instrumental variables method. They yield respective E.S.
estimates of 0.814 and 0.712, which compare with the estimate of 0.731
from Regression 20. The OLSQ versions of Regressions 22 and 27 differ
somewhat from the INST estimates, suggesting the presence of some
bias due to the endogenous variable P. Regressions 23 (23A) and 28
(28A) provide additional tests of the separability of fuel in the cost
function. In Regressions 23, 23A, and 28, the hypothesis of separability
is accepted at the 10% confidence level, whereas in Regression 28A, it is
accepted at the 5% confidence level, but not at the 10% confidence level.
Regressions 25 and 30 omit the restriction of zero degree homogeneity in
prices. An F test for price homogeneity accepts this hypothesis at the
10% level in Regression 25 (in comparison with Regression 22), and.
rejects it at the 10% level, but accepts it at the 1% level, in Regression 30
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(in comparison with Regression 27). We conclude that there is no
convincing evidence against price homogeneity. Regressions 24 and 26
correspond to forms often fitted in the literature when explicit price
information is unavailable and value-added is available in either defiated
(Regression 24) or undeflated (Regression 25) terms. The results suggest
some downward bias in the E.S. estimate (compared with Regression 22
or 22A) when value-added is deflated, but wage is not deflated; and
relatively little bias when neither wage or value-added are deflated. With
‘capital in place of labor, Regressions 29 and 31 give analogous resulits,
with deflated value-added giving a lower E.S. estimate than undeflated
value-added. In this case, the estimates from Regressions 29 and 31 both
lie above the E.S. estimate in Regression 27A.

We draw from Table 6 the overall conclusions that the use of
value-added per unit of factor input as an estimating equation for the
E.S. yields results comparable to those from the factor shares Regres-
sion 20, and that failure to carry out a consistent deflation of value-
added and input price introduces empirically significant biases in the
E.S. estimates.

This pilot study of electricity generation has yielded the summary
conclusions that as a first approximation fuel is non-substitutable for
capital and labor, that production is heterothetic, with capital intensity
increasing with plant scale, and that the capital-labor E.S. is constant,
with a value of approximately 0.75. More generally, this analysis
suggests that econometric analysis of substitutability can be carried out
under much weaker maintained hypotheses than have traditionally been

imposed.
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Amount of Fuel Qutput Unit
Type(s) of  fuel used®  price’”  price’  cost”

No Plant® fuel used" (M) (m) (P) (Po)
1 Ocotillo G 15.50 0.334 16.39 4.87
2 Norwalk Harbor C 10.28 0.339 22.36 6.17
3 E.D. Edwards C 7.96 0.231 18.22 5.97
4 Willow Glen G 8.45 0.232 14.03 4.98
5 J H. Warden C 1.69 0.329 19.81 12.57
6 Eddystone C 16.07 0.347 17.42 6.28
7 H.B. Robinson C 10.64 0.276 13.66 5.19
8 Newman G 4.64 0.306 17.58 5.77
9 Nichols G 3.70 0.181 14.85 5.63
10 Nelson Dewey C 6.17 0.278 22.29 5.66
11 Mandalay Beach G.0 28.23 0.331 17.48 4.68
12 P.L. Bartow G.0 7.83 0.326 22.88 6.48
13 Ft. Meyers O 7.77 0.353 24 80 6.17
14 Lewis & Clark LG 2.53 0.214 27.53 8.91
15 Portland C 8.43 0.342 17.89 6.92
16 Clinch River C 31.96 0.172 12.08 345
17 Dave Johnson CG 7.31 0.121°  12.36 4.24
18 Huntington Beach G.0 26.54 0.338 17.79 4.88
19 Bridgeport Harbor c.0 5.09 0.363 21.79 8.78
20 Indian River C 7.86 0.350 19.89 7.76
21 Walter F. Wyman 0] 6.73 0.353 20.91 6.81
22 Clay Boswell C 4.09 0416 19.97 7.37
23 Montrose C 11.08 0.208 22.02 4.58
24 Silas McMeekin C.G 15.43 0.300 13.93 4.66
25 Bates G 393 0.173 17.69 4.99
26 W.A. Parrish - G 22.10 0.164 12.68 3.07
27 Cameo Cc 1.40 0.229 18.12 9.17
28 Cherokee G.C 7.67 0.210 18.12 4.85
29 Dean Mitchell C.G.Ck 8.35 0.297 19.29 5.88
30 E.M. Brown C 6.11 0.233 20.77 5.12
31 Michoud G 7.42 0.122 21.08 3.41
32 Gulf Coast G 4.68 0.234 17.34 5.43
33 Cunningham G 2.54 0.192 14.79 6.56
34 E.F. Barrett C.G 10.06 0.395 26.82 6.56
35 G.G. Allen C 20.12 0.307 12.51 4.76
36 Yorktown C.Ck 12.82 0.272 19.02 4.64

'Sources for the data were: (1) Federal Power Commission, Statistics of Electric
Utilities in the United States, 1958-61. Classes A and B Privately Owned Companies
(Washington, D.C.: U.S. Government Printing Office, 1959-62), and (2) Federal Power
Commission. Steam-Electric Plant Construction Cost and Annual Production Expenses,
Annual Supplements, 1957-61 (Washington, D.C.: U.S. Government Printing Office, 1958
62). For most of the variables. the figures reported here are rounded from those actually
used in the regressions.

‘Al plants satisfying the following criteria were included in the sample: 1) Initial
operation 1957-1960. 2) No additions to plant capacity the following year. 3) Privately
owned. 4) All data required for our purposes supplied.
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3C stands for conventional, FO for full outdoor, and OB for outdoor boilers (or other
semi-outdoor types of construction).

“Net continuous plant capability when not limited by condenser water, in millions of
megawatt-hours. From (2).

SNet generation for the year in millions of megawatt-hours. From (2).

The ratio of output to capacity. Sometimes referred to as power factor or plant factor.

Average number of employees during the year. From (2).

®Net value of plant after depreciation, in millions of dollars. Depreciation was calculated
at 2.5% per annum, the standard rate for this type of equipment, from the month the
equipment went into service to the end of the year of observation. From (2).

%In thousands of dollars per year. Found by adding the plant’s operation labor, super-
vision, and engineering costs [from (2)] to imputed plant maintenance labor costs, and
dividing the sum by the labor force (L). Plant maintenance labor costs were ‘imputed by
finding the ratio of maintenance labor costs to total maintenance costs for the company as
a whole [from (1)), and then multiplying this ratio by the plant’s total maintenance costs
(from (2)]. Maintenance labor generally accounted for roughly 10% of the total wage bill.

YFound by dividing (V — wL x 107%) by K*. Includes profit, interest, and depreciation
charges at the company rate and non-labor maintenance charges at the plant rate.

"'"The alternate price of capital series were constructed as follows: r, is the company rate
on profit and interest charges {from (1)); r,=r, plus the company depreciation and
amortization rate [from (1)}; r;=r +0.025 (assumed plant depreciation rate); r;=
ry+ (ro— r2) = r; plus maintenance charges at the plant rate.

12[n millions of dollars. Found by adding the plant’s production expenses exclusive of
fuel [from (2)} to imputed plant “economic™ capital costs. “Economic™ capital service
costs are here defined as depreciation and amortization plus net operating income (profit
plus interest charges). These were found for the company’s electric utility plant as a whole
[from (1)), and imputed to the plant according to the ratio of the plant’s net value of plant
(K*) to the company’s net value of plant [from (1)]. ‘

3] isted in order of importance. C stands for coal, Ck for coke, G for gas, L for lignite,
and O for oil. From (2).

“In trillions (10'%) of B.t.u.’s From (2).

In dollars per million B.t.u.’s From (2).

%In dollars per megawatt-hour. Total revenues from sales of electricity divided by total
megawatt-hour sales for the firm. From (1). When this measure is used, output price is
assumed to be the same for each plant within a firm._ _

"In dollars per megawatt-hour. Total cost (V + mM) divided by output (Y)-P is greater
than P, because the revenue to the firm is partly used to cover tax, transmission,
distribution. administration, and other overhead expenses not allocated to the individual
generating plants. o

¥The high w and high K*/L ratio are undoubtedly due to the fact that this plant has an
automated control system.

®Unusually low because the company owns its own coal.mine.



