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TESTING AND IMPOSING MONOTICITY, CONVEXITY AND
QUASI-CONVEXITY CONSTRAINTS

LAWRENCE J. LAU*
Stanford University

1. Introduction
1.1. Statement of the Problem

In many areas of economic analysis, functions are frequently assumed
to be monotonic, convex or quasi-convex.' Production, profit, and utility
functions are obvious examples. The natural questions that arise are
first, whether one can test the hypotheses of monotonicity, convexity, or
quasi-convexity of these functions statistically; and second, whether one

*The author wishes to thank T. Amemiva, E.R. Bernd:, W.E. Diewert, A.S.
Goldberger, Z. Griliches, G. Hanoch, J.A. Hausman, D.W. Jorgenson, D.L. McFadden,
F.C. Nold, 1. Olkin, and W.H. Yang for helpful discussions. This research was supported
in part by the National Science Foundation, through Grant GS-40104 at the Institute of
Mathematical Studies in the Social Sciences, Stanford University and the John Simon
Guggenheim Memorial Foundation. It was essentially completed during the author’s tenure
as a Visiting Scholar in the Department of Economics, Massachusetts Institute of Tech-
nology, 1973-74. He retains sole responsibility for any remaining errors. An earlier version
of this paper was presented at the North American Winter Meeting of the Econometric
Society, New York, December 1973, and issued as Technical Report no. 123,
“Econometrics of monotonicity, convexity and quasi-convexity”, Institute of Mathemati-
cal Studies in the Social Sciences, Stanford University, 1974.

'Since the negative of a convex function is concave, and the negative of a quasi-convex
function is quasi-concave, all the statements made about convexity and quasi-convexity
apply to concavity and quasi-concavity as well. Concavity and quasi-concavity will not be
separately considered.
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can estimate these functions subject to monotonicity, convexity or
quasi-convexity constraints.

In the past, empirical estimation of the parameters of these functions
have been limited to those of rather simple algebraic form for which the
constraints of monotonicity, convexity or quasi-convexity are either
automatically or readily satisfied or can be easily imposed. For example,
the linear function is always convex (and concave); the Cobb-Douglas
production function estimated by the factor shares method is always

monotonic and concave;? and, more generally, estimated Cobb-Douglas
production functions are automatically quasi-concave if they satisfy the
monotonicity conditions. Thus there has not been any pressing need for
the development of techniques to test or impose the hypotheses of
monotonicity, convexity or quasi-convexity.

However, two recent developments in empirical economic analysis
have made it necessary to confront the dual problems of hypothesis
testing and constrained estimation. First, partly because of advances in
computational technology, partly because of substantial improvements
in the quality and quantity of economic data, and partly because of a
general dissatisfaction with the restrictive implications of the simple
functional forms, there is a proliferation of new algebraic forms in
empirical work in recent years. We shall name only a few which are
capable of providing a second-order numerical approximation to an
arbitrary function.® There is the “Transcendental Logarithmic
Function™, proposed by Christensen, Jorgenson, and Lau (1971, 1973,
1975),

In Fx)=ap+a'Inx+;InxBinx,
where Inx=[lnx;Inx,---Inx,]; the generalized version of the
“Generalized Linear Function™ proposed by Diewert (1971),

F(x)= ao+ a'x'?+3x""Bx'?,
where x'2 = [x}*x}?---x}*"; and the “Quadratic Function™,

F(x) = ap+ a'x + :x'Bx,

where x = [x,x5* X, ]'.*
These functions may be employed as production, profit (and normal-

¥The factor shares method was first proposed by Klein (1953).

3For a definition of a second-order numerical approximation, see Lau (1974).

“It is a remarkable fact that Heady and Dition (1961) have proposed a two-factor version
of the transcendental logarithmic function (p. 205), the generalized linear function (pp.
91-92 and p. 206) and the quadratic function (pp. 88-91 and p. 205); and made empirical
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ized profit), or utility functions. For an arbitrary set of parameters, these
functions do not necessarily satisfy monotonicity, convexity or quasi-
convexity conditions, either locally or globally. Hence there is a need to
test or maintain these hypotheses.

Second, the increasing use of duality principles which rely heavily on
convexity assumptions in empirical applications makes it mandatory that
the estimated dual functions be monotonic, convex or quasi-convex.’
While one may be willing to entertain the possibility that the production
function may not be convex, the normalized profit function is always
convex if the output and input markets are competitive under the
assumption of profit maximization.® Thus a non-convex normalized
profit function is inconsistent with profit maximization - the basic
behavioral postulate of the theory of production. Likewise an indirect
utility function is always quasi-convex by virtue of its being 2 maximum
subject to a linear constraint. Thus, a non-quasi-convex indirect utility
function is inconsistent with utility maximization - the basic behavioral
postutate of the theory of consumer demand. Moreover, if the estimated
normalized profit function is non-convex, or the indirect utility function
is non-quasi-convex, the own and cross-price supply and demand elasti-
cities will not have the theoretically expected signs and magnitudes.
Thus one should at least test the hypotheses of monotonicity, convexity,
or quasi-convexity; and if one does not reject these hypotheses, impose
the corresponding constraints on the estimators so as to obtain
economically meaningful estimates in practical applications.

1.2. Historical Review

There are two principal approaches to the testing of monotonicity,
convexity and quasi-convexity - the parametric approach and the non-

parametric approach.
There is little previous work in the parametric approach. Judge and

application with the latter two functions. For other scholars who have independently
proposed the transcendental logarithmic functions, see the references listed in Christensen,
Jorgenson and Lau (1973). Lau (1974) appears to be the first to propose the quadratic

function as a normalized profit function.
SFor an excellent survey of applications of duality theory, see Diewert (1974a); see also

the comments by Lau (1974). Jorgenson and Lau (1974a, 1974b) give an exhaustive
treatment of the role of convexity in production theory.

*McFadden (1966) appears to be the first person to emphasize this point. The concept of
a normalized profit function is introduced by Lau (1969¢). See also Jorgenson and Lau
(1974a, 1974b).
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Takayama (1966) analyze the question of inequality constraints in
regression analysis and propose an estimator based on the solution of a
constrained quadratic programming problem. Liew (1976) gives
another algorithm for the computation of inequality constrained least-
squares estimators.

Hudson (1969) proposes a method for fitting a polynomial in x such
that it is convex in a closed interval. However, the computations are not
fully worked out for all cases; the function to be estimated is restricted
to be defined on a subset of R; and there is no distribution theory for the
estimators.

In a previous version of this paper, a method for testing and maintaining
the hypothesis of convexity of an estimated function based on the
eigenvalue decomposition was proposed. The method based on the
eigenvalue decomposition, however, does not reduce to an unconstrained
minimization problem because the requirement of orthonormality of the
eigenvectors makes necessary the construction of a set of orthonormal
vectors and hence a great deal of computation, although it involves no
conceptual difficulties. The present method based on the Cholesky
factorization requires much less computation.

The previous work in the non-parametric approach is somewhat more
numerous. Hildreth (1954) is the pioneer of this approach: assuming no
algebraic functional form, he proposes to estimate the values of a
function F(x) at given values of x such that F(x) is concave. This
approach is extended by Dent (1973), who proposes to approximate F(x)
by polygonal segmentation.

Hanoch and Rothschild (1972) provide algorithms for testing mono-
tonicity and quasi-convexity without assuming a specific algebraic form
of the function. Afriat (1967, 1968, 1972) and Diewert (1974d) give
alternative methods for estimating non-parametric functions which
satisfy the assumptions of monotonicity, convexity, and homogeneity.

1.3. Proposed Solution

The basic technique consists of a transformation of parameters con-
strained to be non-negative into the squares of arbitrary real parameters
and may be referred to as the “method of squaring™. This technique
appears to have been introduced by Valentine (1937), in connection with
the solution of problems of calculus of variations subject to inequality
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constraints.” Thus, if a parameter B is required to be non-negative, it can
be transformed into the parameter B*?, and the estimation problem
becomes that of choosing a B* such that an appropriate sum of squares
of residuals is minimized.

Further variations of this theme are p0551ble For example, one can
substitute for any positive parameter B by e ", any parameter lving
between zero and one by the substitution B = 1(1+sin B*),® or alter-

natively by
B=1/(1+e¥)?

By transformations similar to these one can suitably restrict a parameter
to be within any prescribed interval. The advantage of this trans-
formation is that it reduces the likelihood maximization problem to an
unconstrained nonlinear least-squares problem.

The method of squaring thus provides a straightforward solution to
the problem of monotonicity or for that matter any inequality constraint.
The solution to the problem of convexity and quasi-convexity makes use
of the properties of the Hessian matrices of convex and quasi-convex
functions. A twice differentiable real-valued function is convex on an
open convex set if and only if the Hessian is positive semidefinite
everywhere on the open convex set. A twice differentiable real-valued
function is quasi-convex if and only if the Hessian is positive
semidefinite on any set of vectors y such that VF(x)-y = 0, where VF(x)
is the non-zero gradient of F(x). The task of this paper is to transform
these conditions on the parameters into simple non-negativity conditions
by a suitable reparametrization. The basis of the reparametrization is the
Cholesky factorization of real symmetric matrices. Through this
factorization, the determinantal conditions of positive semidefiniteness
are transformed into non-negativity constraints. Once more, the method
of squaring may be employed to convert the likelihood maximization
problem into an unconstrained nonlinear least-squares problem.

Our method has been employed by Jorgenson and Lau (forthcoming)
in the analysis of production and by Barten and Geyskens (1975) in the
analysis of consumer demand. Jorgenson and Lau (1975b) have
developed an alternative procedure for testing and imposing quasi-

’See Valentine (1937, pP- 407-409).

®Gince the sine function is periodic, sin B* = sin(B* + 2nw), where n is an integer. Thus
any B*+ 2nm, n being an arbitrary integer, results in the same B.

SAlternatively, one may use the transformation B = sin’ B*. The possibilities are limit-

less.
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convexity constraints and extended it for testing monotonicity of cor-
respondences not necessarily derivable from a single function.

2. Hessian Matrices of Convex and Quasi-Convex Functions

2.1. Introduction

In this section we discuss the properties of the Hessian matrices of
twice differentiable real-valued convex and quasi-convex functions. We
show that these Hessian matrices may indeed be represented by positive
semidefinite matrices, which as we shall show in Section 3 have con-
venient factorization properties which facilitate the solution of the
problems of testing and constrained estimation under the hypothesis of

convexity or quasi-convexity.

In Section 2.2, the Hessian matrix of a convex function is charac-
terized, and in Section 2.3, the Hessian matrix of a quasi-convex
function is characterized. In Section 2.4, we examine the Hessian
matrices of approximating functions under the hypotheses of convexity

and quasi-convexity.

2.2. The Hessian of a Convex Function

Theorem 2.1. A twice differentiable real-valued function defined
on an open convex set C is convex if and only if the Hessian matrix
is positive semidefinite everywhere on C.

This theorem is well known. A proof may be found in Rockafellar
(1970)."°

2.3. The Hessian of a Quasi-convex Function

Definition. A real-valued function F(x) defined on a convex set C
is quasi-convex if

F(Ax;+ (1 — A)xy) = max(F(x),F(x2), 0=A=1,

for all x,, x; in C.

%See Rockafellar (1970, p. 27).
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We specialize our attention to consider only the class of twice differen-
tiable functions with everywhere non-zero first partial derivatives.

Theorem 2.2. A twice differentiable real-valued function F(x)
defined on an open convex set C with everywhere non-zero first
partial derivatives is quasi-convex if and only if for all x in C,
yH(x)y 20 whenever VF(x)y=0, where H(x) and VF(x) are
respectively the Hessian matrix and the gradient of the function
F(x).

A version of this theorem is proved by Katzner (1970)." We omit the
proof. Diewert (1973b) has derived a similar theorem under the weaker
condition that not all of the components of VF(x) are zero.

Theorem 2.3. A necessary and sufficient condition that x'Ax=0
whenever a’x = 0 is that x’(A + Aaa’)x = 0 for all x for all sufficiently
large positive scalar constants A.

Proof: Necessity is proved by contradiction. Suppose the theorem is
false, then there exists x such that

x'(A + Aaa')x <0,

for all sufficiently large positive scalar constant A. If a’x # 0, this implies
that x'Ax is not only negative but unbounded, which is not possible.
Thus, a'x = 0. However, this implies x’Ax <0, a contradiction.

Sufficiency follows in a straightforward manner. If x'(A+ Aaa’)x=0
for all x for some positive scalar constant A, then x’Ax+ Ax'aa’x=0
for all x. In particular, this holds whenever a’x = 0, in which case

x'Ax+ Ax'aa’x = xX’'Ax = 0. Q.E.D.

The basic result here is due to Finsler (1936-37). Bellman (1970) gives
another proof of Finsler's Theorem.'? The proof here is somewhat
different from Bellman’s and is modified to apply to the case of positive
semidefiniteness of a constrained quadratic form. For the present ap-
plication A and a may be identified with the Hessian and gradient of

F(x), respectively.

"Gee Katzner (1970, pp. 210-211).
12Gee Bellman (1970, pp. 76-81).
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Theorem 2.4. A necessary condition for a twice differentiable
real-valued function F(x) defined on an open convex set C to be
quasi-convex is that all the ordered principal minors of the bordered
Hessian matrix be non-positive for all x in C.

This theorem is due to Arrow and Enthoven (1961).” We omit the proof.

We now show that indeed if A+ Aaa’ is positive semidefinite for
sufficiently large positive A, then all the ordered principal minors of the
matrix

[ ]
a AJ
which has the interpretation of a bordered Hessian in the present
application, are non-positive. Positive semidefiniteness of A+ Aaa’ im-

plies that all the principal mmors of A + Aaa’ are non-negative. Consider
the following matrix identity:"

1 a']
;! ] 0l ;] 0 00 ]
Aa Al I Aa a+Aaa']
O -l
Taking determinants of both sides, we obtain,
0 a
—_ = — + = ,
1A[+ A Ia 2| =—1]a+raa|=0
or
0 a
_|Al+ A A| 0.

Now this inequality must hold for all sufficiently large positive A (in fact
it can be easnly shown that if A + Aaa’ is positive semidefinite for some
positive A, then it is positive semidefinite for all A > A). Thus, one must

have

0 a

=
a A"O'

3gee Arrow and Enthoven (1961, pp. 797-799).
“This construction follows Bellman (1970, pp. 78-80).
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The same proof applies to any principal submatrix of

0 a']

[a Al
We note that if the domain of F(x) is restricted to the positive orthant
then negativity of all the ordered principal minors of the bordered
Hessian matrix except the first one everywhere is sufficient for quasi-
convexity.”

Thus we conclude that a necessary and sufficient condition for a twice

differentiable real-valued function with everywhere non-zero first partial
derivatives to be quasi-convex is that the matrix

H(x)+ AVF(x)VF(x')

be positive semidefinite for all x for all sufficiently large positive scalar
constant A.

For the purposes of testing the hypothesis of quasi-convexity, the
following theorem is more useful:

Theorem 2.5. A necessary and sufficient condition that there exists
a vector a such that X Ax = 0 whenever a’x = 0 is that the number of
non-negative eigenvalues of A, an n X n real symmetric matrix,
must be greater than or equal to (n — 1).

Proof: Necessity. Suppose A has two negative eigenvalues. Let v, and
v, be the unit eigenvectors corresponding to these two negative eigen-
values. Consider any a: if either a’'v, or a'v;=0, then let x=v, or
v; and XAx=vViAv;=p;<0; so assume a'v;Xaf=0, a'v;=a%=0.
Let x=a%v,—atv,, then a'x=a%a¥—ata’=0. But x'Ax=
aiviAv,a% + atviAvoat — adviav,at = pra¥ + p,at’ < 0(viv,=0).  Thus
the number of non-negative eigenvalues of A must be greater than or
equal to (n —1).

Sufficiency. If the number of non-negative eigenvalues of A is (n — 1),
and suppose v, is the eigenvector corresponding to the one remaining
negative eigenvalue, let a =v,. Then whenever a’x =vix =0, x is a linear
combination of the remaining (n— 1) eigenvectors with non-negative
eigenvalues. Thus x'Ax=0. Q.E.D.

55ee Arrow and Enthoven (1961, pp. 797-799).
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The practical implication of this theorem for the quasi-convexity
problem is that the Hessian of a twice differentiable quasi-convex
function, H(x), must have greater than or equal to (n — 1) non-negative
eigenvalues (or alternatively at most one negative eigenvalue) every-
where on the interior of its effective domain. In other words, in order
that one can find a VF(x) such that yH(x)y = 0 whenever VF(x)y =0, it
is necessary and sufficient that H(x) has at least (n — 1) non-negative
eigenvalues.

2.4. Hessian Matrices of Functions Approximating Convex and
Quasi-Convex Functions

In general, economic theory itself does not provide sufficient restrictions
on the functional relationships used in economic analysis so that these
relationships may be represented by a single parametric class of al-
gebraic functions.' The restrictions derived from economic theory are
almost always of a more general type — monotonicity, convexity, quasi-
convexity, homogeneity, etc., which may be satisfied by many different
parametric classes of algebraic functions.

However, in applied econometrics, it is frequently necessary to esti-
mate a function, for example, a production function, parametrically and
a particular parametric form of an algebraic function must be specified.
Such a functional form, inasmuch as it is not directly derivable from
economic theory, should be looked upon as an approximation to the
unknown underlying true function. Thus, the “‘translog”, the generalized
linear, and the quadratic functions may all be considered as alternative
second-order numerical approximations to the same unknown, underly-
ing true function.

The distinction between the approximating functions and the underly-
ing true function is not so important, were it not for the fact that not all
of the properties of the underlying true function will be inherited by the
approximating function.”” In general, even if the underlying true function
is convex globally, the approximating function, while providing a good
approximation, may not be globally convex or even locally convex itself.

However, if we restrict our attention to those second-order ap-
proximating functions which agree with the first and second derivatives

“By contrast, consider the inverse-square law of electric potential, or Boltzman’s

equation in statistical mechanics.
"See the discussion in Lau (1975).
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at the point of approximation, then all approximating functions to
underlying monotonic, convex, or quasi-convex functions will exhibit
behavior similar to the function they are approximating at the point of
approximation. In particular, the approximating function to a monotonic
function will have all of its partial derivatives of one sign at the point of
approximation. The approximating function to a convex function will
have its Hessian matrix positive semidefinite at the point of ap-
proximation. The approximating function to a quasi-convex function will
have a Hessian matrix that is positive semidefinite with respect to all
vectors orthogonal to its gradient at the point of approximation.

It should be noted that convexity of the approximating function at the
point of approximation does not in general guarantee that the ap-
proximating function itself will be globally convex. It also does not
guarantee global convexity of the underlying true function that is being
approximated. However, non-convexity of the approximating function at
the point of approximation necessarily implies non-convexity of the
underlying true function. Hence from the point of view of statistical
inference, one may use local convexity of the approximating function as
a basis for a test."

Thus these local conditions are necessary conditions in the sense that
if the underlying true function were to be monotonic, convex and
quasi-convex, the approximating function must exhibit corresponding
properties at the point of approximation. They are therefore ideally
suited for hypothesis testing.

On the other hand, these properties at the point of approximation are
all that one can expect to hold for an arbitrary approximating function if
one wants to impose the constraints implied by these hypotheses, rather

than to test them statistically.
As has been pointed out elsewhere, one has the choice of imposing

these hypotheses either globally or locally on the approximating
functions.'”” Convexity at the point of approximation, of course, does not
in general guarantee that the approximating function itself will be
globally convex with the exception of special cases such as ap-
proximation by a quadratic function. For many families of approximat-
ing functions such as the generalized linear function, it is possible to find
restrictions on the parameters such that a member of the family is
globally convex on its effective domain. However, these restrictions will

'*One should bear in mind here that under classical procedures for statistical inference,
one can attach a confidence level to rejections, but not to ‘‘acceptances’.
*Lau (1974).
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usually turn out to be more stringent than those implied by local
convexity at the point of approximation. Moreover, not all families of
approximating functions can be made globally convex without severely
restricting the parameters. The transcendental logarithmic function, for
example, can be made globally convex (for all x) only under rather
restrictive assumptions such as a unitary elasticity of substitution be-
tween all pairs of commodities. It can be shown, however, that a
sufficient condition for convexity on the set {x[x = e}, where e = [ee---¢],

is
;=0 and B;=0 Vi and j*

Unfortunately similar conditions do not obtain when the effective
domain properly contains x = [1], a vector of units, in which case one
has to be content with local convexity. It can also be shown that a
necessary and sufficient condition for a generalized version of the
generalized linear function to be globally convex on its effective domain
(the non-negative orthant of R"), is @;=0 and B; =0, i#j, Vi and i2
Finally, it can be shown that for the quadratic function a necessary and
sufficient condition for global convexity (that is, convexity on all of R")
is that B is positive semidefinite.

Thus, the problem of testing the hypotheses of monotonicity, con-
vexity and quasi-convexity becomes that of testing non-negativity and
positive semidefiniteness constraints; and the problem of constrained
estimation becomes that of imposition of non-negativity and positive
semidefiniteness restrictions. Non-negativity constraints suffice for
global convexity of the generalized linear function. However, convexity
of the quadratic function, the transcendental logarithmic function, and
the generalized linear function (at x=([1]), requires positive
semidefiniteness constraints.

2Qufficiency follows from consideration of the convexity conditions of functions such as
B;In x; Inx; and the fact that a non-negative linear combination of convex functions is
convex and that an increasing convex function of a convex function is convex.

2gufficiency is trivial and follows from the following facts: (i} —yl2y}? i j, is a convex
function: (ii) 2 non-negative linear combination of convex function is convex; and finally
(iii} the sum of a convex function and a linear function is convex.

Necessity follows from consideration of the diagonal elements of the Hessian matrix.

which are

Fi=—y?"(a+3 Biyl?). Vi
=

In order for F; =0 for all y in the non-negative orthant of R", it is necessary that a; =0
and B; =0, i# ], Vi,j. Since these conditions are also sufficient for global convexity, they
are therefore both necessary and sufficient.
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3. The Cholesky Factorizability of Semidefinite and Indefinite Matrices

3.1. Introduction

In the preceding section we have seen that the hypothesis of convexity
implies that the Hessian matrix of the approximating function is positive
semidefinite at the point of approximation. Similarly, the hypothesis of
quasi-convexity implies that the matrix (H+ A VFVF') where H and VF
are respectively the Hessian matrix and gradient of the approximating
function is positive semidefinite for a sufficiently large A at the point of
approximation. Thus, the problem of testing convexity and quasi-con-
vexity of the underlying true functions becomes that of testing whether
a given real symmetric matrix is positive semidefinite.

One solution which naturally suggests itself is based on the eigenvalue
decomposition of real symmetric matrices.” It is well known that any
real symmetric matrix B can be written as

B =PAP,

where A is a diagonal matrix whose elements are the eigenvalues of the
matrix B and PP’ = 1. Moreover, B is positive semidefinite if and only if
A; =0, Vi. Thus, in principle, given an estimator of B and its variance-
covariance matrix, one can compute an estimator of A and the variance-
covariance matrix of A, which may then be used to test the hypothesis
that A; =0, Vi. However, since A is in general a rather complicated
function of B, such computation is likely to be laborious. Further, if the
estimate of A turns out not to be non-negative, and constrained estima-
tion is necessary, that is, one needs to impose the constraint that Az =0,
Vi, the computational problem for the eigenvalue decomposition
becomes quite complex because in the estimation of B =PAp/, it is
necessary to impose not only the constraint that A; =0, Vi, but also the
orthonormality constraint of PP’ = 1. For n > 2 the computational burden
becomes quite formidable.

For the practical reason, we introduce a different factorization of the
matrix B-the Cholesky factorization —which avoids some of these
difficulties.? It will be shown that every positive semidefinite matrix has

2This method was proposed in the cited earlier version of this paper and independently by
Salvas-Bronsard et al. (1973).

Bafter this paper was substantially completed, Arthur Goldberger brought to my
attention an article by Wiley, Schmidt and Bramble (1973} which also makes use of the
Cholesky factorization in connection with imposing positive definiteness constraints.
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a Cholesky factorization with non-negative Cholesky values.” Thus, the
Hessian matrices of twice differentiable convex and quasi-convex
functions may be characterized in terms of their Cholesky factoriza-

tions.
Although not all real symmetric matrices have Cholesky factoriza-

tions, it will be shown that the set of real symmetric matrices of order n
which do not have Cholesky factorizations has measure zero in the set
of real symmetric matrices of order n.

3.2. Cholesky Factorization

Definition. A square matrix A is a unit lower triangular matrix if

A,',' = 1, Vl,
A; =0, j>i, Vij.

A unit lower triangular matrix will be denoted L.

Definition. A square matrix A is a unit upper triangular matrix if
Aii = 11 Vi,
A,'j = 0, ] < i, Vl,f
A unit upper triangular matrix will be denoted by R. The transpose of a
unit lower triangular matrix is of course a unit upper triangular matrix,

and vice versa.

Definition. A real symmetric square matrix A is said to have a
Cholesky factorization if there exists a unit lower triangular matrix
L and a diagonal matrix D such that

A=LDL’',
where L' denotes the transpose of L. The matrix A is also said to be
Cholesky factorizable.
Definition. A square matrix A is an upper triangular matrix if

A; =0, j<i, Vij.

%The concept of Cholesky factorization is due to Cholesky. It is discussed in House-
holder (1964, pp. 10-17) and Wilkinson (1965, pp. 229-230).
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An upper triangular matrix will be denoted U. We note that the
product DL’ is an upper triangular matrix. Thus, for any matrix A
which has a Cholesky factorization, one may write equivalently

A=LU.

Lemma 3.1. The inverse of a unit lower triangular matrix is a unit
lower triangular matrix.

Proof: The proof is by induction on the order of the matrix. The
lemma is obviously true for n = 1. Assume that it is true for n — 1, we
shall prove that it is true for n. An nth order unit lower triangular matrix
may be written as

L., 0

where L,_, is a unit lower triangular matrix of order n — 1. The inverse
may be directly computed as

[ LY 0]
0
L—l'—_.- :
0
—yy —1
B lLﬂ—l 1—‘

since L,_, is of order n —1, L;., is unit lower triangular by hypothesis.
Hence L;' is also unit lower triangular and the lemma is

proved. Q.E.D.

We shall now show how a Cholesky factorization may be accom-
plished by way of an example. Let

11
A“[l I]’

LU [in 1][0 Uz:]

_ [Un Ui ]
LUy LyUp+ Unt

and
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By equating the matrices element by element, we have

Un=1,
U]2= 17
LyUn=1,

and
LyUp+Un=1,

which gives

Un=1,

Up=1,

Ly=1,
and

Up=0
Thus

=[5 =l o
Now

U=DL,

D=UL"",

- [l 1][1 - 1]
0 0JLo i
- [1 O]
0 0J
Thus, the Cholesky factorization is given by

[ =02 ollo 1)

Lawrence J. Lau

In actual fact, it is never necessary to calculate the inverse of L
explicitly. Since D is diagonal, one can obtain the elements of D from the

equations
Ui=DyL;, Vi

or
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D; = U,
stnce
L,‘,‘ = 1, Vi.

Notice that in the example, the matrix A is singular. Hence non-
singularity of a matrix is not a necessary condition for the possibility of
Cholesky factorization. It is not true, however, that all real symmetric
matrices have Cholesky factorizations. For example, let

1o 1

then the equations for the elements of L and U become

Un=0,
Up=1,
LyUy=1,
LyUp+Ux=1.

But the equations U; =0 and LU, =1 are inconsistent with each
other. Hence there do not exist matrices L and U such that A = LU and
therefore the matrix A does not have a Cholesky factorization. Notice
also that A is non-singular. Hence non-singularity is not a sufficient
condition for the possibility of Cholesky factorization. Finally, we note
that by a simultaneous permutation of rows and cotumns,

A*=[1 l]= [1 O][l 0][1 1]

1 0 1 1jlo -1jlo 1r

A becomes Cholesky factorizable. But this is not true of all real
symmetric matrices either, as demonstrated by the example

0 1
a=[i o}
1 0
which is non-singular but not Cholesky factorizable, even with simul-
taneous permutations of rows and columns. We shall show, however,
that every positive semidefinite symmetric matrix has a Cholesky

factorization in Section 3.3 and characterize all Cholesky factorizable
real symmetric matrices in Section 3.4.
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3.3. Representation Theorem for Positive Semidefinite Matrices

First we define positive definiteness and prove a couple of useful
lemmas:

Definition. A real symmetric matrix A is positive definite if x'Ax >
0 for all x # 0; it is positive semidefinite if x’Ax = 0 for all x.

An equivalent definition of positive semidefiniteness is the following:

Definition. A real symmetric matrix A is positive semidefinite if
and only if all the principal minors of A of all orders are non-
negative.”

Lemma 3.2. If a diagonal element of a positive semidefinite matrix
A is zero, the corresponding row and column must be identically

ZEro.

Proof: Without loss of generality, we may take the matrix to be

_fO A{]
A B [Al An ’
where
A AnAx- A
A=l A |, A,=| AnAyn--As,
Aln AZnABn"'Ann

Positive semidefiniteness of A implies that for all x,x’Ax= 0. Let

<=1}

where x; < 0. Then
' — ’ 0 Ai xl]
XAx = ["'A‘][A, A,,] [A,
= A'lA,,Al + 2X|AGA].

“Note that non-negativity of the ordered principal minors alone is not sufficient
(although positivity is). For example, consider the matrix

ol Y
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If AjA, >0, then by choosing x, sufficiently large in magnitude, x'Ax will
become negative. Thus in order for A to be positive semidefinite, one
must have AJA, =0 which implies that A,=0. Q.E.D.

All A;
A, A,
A, # 0 then A, — AT/A A} is also positive semidefinite.

Lemma 3.3. If a matrix [ ] is positive semidefinite, and

Proof: [':” :'} positive semidefinite implies that
1 n
[ Au A;][Xl]>
[xu'i][AI A, llx =0, Vx.x

Thus, x;A ;X + XA X, + xAjx + X'A,x = 0,Vx;x. One may choose
x1= — AllAIX.

The inequality becomes
ATXAAX—XAATAX— XA ATAIX+XAXZO,

or
x'(A, — ATTAADXx = 0.

Since this holds for all x, the matrix

(A, — AT7'AA]) is positive semidefinite. Q.E.D.

A corollary of this lemma is that if A is positive definite, then
A, — A7'A A} is also positive definite.
Now we can prove the following representation theorem:

Theorem 3.1. Every positive semidefinite matrix A has a Cholesky
factorization.

Proof: The proof is by induction on the order of the matrix. Clearly
for n =1,

A=[An], Anz0,
one can choose

L=[1], D=[A4l
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Now suppose that the theorem is true for positive semidefinite matrices
or order less than or equal to (n — 1), we shall prove that it is true for
positive semidefinite matrices of order n.

Let
s=[aal
Since A is positive semidefinite, A;; = 0. If A}, =0, then by Lemma 3.2,
0 0--0
A= O A,
0

A, is a positive semidefinite matrix of order (n —1) and hence has a
Cholesky factorization. One may therefore choose

1 0 0--071[0 0071 0 0---0]
0 0
A=l0 : 0 i
: L. [0 D, : L.
K Jlo L0 |

where A,=L,D,L. is the Cholesky factorization of A, If A, >0,
consider the following matrix identity:

(A, 0 00 |[1 Anaj]
[A“ Ai]_[l 0 o---o]g g
{1 ,
A A LAnA i A~ ATTA A I

which may be directly verified by computation. Now A, —AjAAlis a
positive semidefinite matrix of order (n — 1), by Lemma 3.3. Thus it has
a Cholesky factorization,

A.— AT'AIA} = LIDILY.

Therefore A has a Cholesky factorization given by
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_[An Ai]
A -Al Arr
CA, 0 0-0[1 ARAL]
- 0 0
1 0 0-0
= AolA L ]0 0 . Q.ED.
L {31142 n : D,,i: L,:,
_0 ——0 —J

The proof given here follows essentially the argument given by
Householder (1964).° Note that this theorem also implies that all nega-
tive semidefinite matrices have Cholesky factorizations.

The elements of the diagonal matrix D, that is, the Dy’s will be
referred to as Cholesky values. The following theorem establishes the
properties of the Cholesky values of positive definite and semidefinite
matrices.

Theorem 3.2. A real symmetric matrix A is positive definite
(semidefinite) if and only if its Cholesky values are positive (non-
negative).
Proof: A positive definite matrix A can be written as LDL'. Thus
xAx=xLDL'x>0, Vx, x#0.
Writing y = L'x, we have
xAx=yDy= 2 D.-.-y? >0, Vy, y#0
Thus all D, > 0.Vi. Conversely, if D; >0, ViyDy>0, Vyy # 0.Buyy=0
implies x=L""'y = 0. Thus
xAx=yDy>0, Vx; x#O0.

A similar proof goes through for a positive semidefinite matrix A.
Q.E.D.

It is useful to give a determinantal interpretation to the Cholesky
values. Consider the following partitioned matrix identity:

Az[A” Al2]=[Ln 0 ][Dn 0 ][Lh Li]]
Ay An Ln L»ilo D110 Lyl

%See Householder (1964, pp. 12-13).
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where L, and Ly, are unit lower triangular matrices, and Dy, and D, are
diagonal matrices. By direct computation

[An Alz]_:[LnDnLh LDy L3 ]
Ay Axn LDy Ly, LyDyLs + LpDpLli |

First, since the determinants of unit lower triangular matrices are
identically one, we have

IAI - 0 DZZl - H Du-

The determinant of A is thus the product of all of its Cholesky values.
Second, take any principal minor of A, say |Ayf,

|Anl = ILn”Dn”Lill =Dyl = 1-[ D,
where the product is taken over the Cholesky values corresponding to

the A, block. Thus, we have the following system of determinantal
equalities:

!At|l=Dn,
Ay Ap
= Dy Dy,
An An nDxn
|An A A
An An Axn|=D\DxnDs;,
Az An Agp
Ay Ap-An

A An-Ajy | = DyDpDsy Dy

Aln AZn”‘Ann
This interpretation is valid, however, if and only if a Cholesky
factorization of the matrix A exists.

Theorem 3.3. If A is positive definite, then the Cholesky
factorization is unique.

Proof: The proof is by direct computation. Suppose A=
LDL’' = L*D*L*', and A is positive definite. This implies that D; >0 and
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D*>0, Vi, by Theorem 3.2. By equating LDL’ and L*D*L*’ element by
element, it can be shown that indeed L = L* and D=D*. Q.E.D.

Uniqueness is also discussed by Householder (1964) in terms of
determinantal conditions.”

Theorem 3.4. If a real symmetric matrix A has a Cholesky
factorization, then the number of positive, negative, and zero
Cholesky values is the same as the number of positive, negative,
and zero eigenvalues.

This theorem follows from Sylvester’s Law of Inertia, a proof of
which may be found in Gantmacher (1959), which implies conservation
of the signature of a real symmetric matrix. From this theorem we can
also deduce immediately that if A is positive definite, all the Cholesky
values are positive; if A is positive semidefinite, all the Cholesky values
are nonnegative.

We conclude that every positive semidefinite matrix A has a Cholesky
factorization LDL’ with all the elements of D non-negative. Thus, to
check whether a real symmetric matrix is positive semidefinite, one
needs only check its Cholesky values. And to impose the condition that
a real symmetric matrix is positive semidefinite, one needs only con-
strain the Cholesky values to be non-negative.

3.4. Representation Theorem for Arbitrary Real Symmetric Matrices

We have shown that all semidefinite matrices are Cholesky factorizable
in the previous subsection. However, semidefiniteness is by no means
necessary for Cholesky factorizability as the last example in subsection

3.2 illustrates.
Let

a=[i o

The Cholesky factorization of A is

[ 3 o 1

7'Gee Householder (1964, pp. 10-12).
%gee Gantmacher (1959, pp. 296-298).



432 Lawrence J. Lau

Since the Cholesky values are 1 and —1, A is an indefinite matrix. It is
also clear that non-singularity of A is neither necessary (because of
semidefinite matrices) nor sufficient - because of example

0 1
a=[i 1)
for Cholesky factorizability. The purpose of this subsection is to
characterize the set of all real symmetric matrices which are Cholesky
factorizable and to show that the set of all real symmetric matrices
which are not Cholesky factorizable is a subset of measure zero in the

set of all real symmetric matrices.
We first prove two simple but useful lemmas:

Lemma 3.4. A real symmetric matrix A with A;; =0 is Cholesky
factorizable only if the first row and first column are identically

zero.
Proof: Let

_[0 Ai] _ )

A= [A| A, = LDL'".

The first row of LDL’ may be directly computed as
Dy=A,=0,
LDy, = Ay,
LoDy = A,

Since D" = 0, A],‘ = 0, i=2--n Q.E.D.

Lemma 3.5. A real symmetric Cholesky factorizable square matrix
is non-singular if and only if all the Cholesky values are non-zero.

Proof: Referring back to the determinantal interpretation of Cholesky
values in Section 3.3, if one or more of the Cholesky values is zero, then
the determinant of the matrix is zero, and therefore the matrix is
singular. If the matrix is non-singular, then its determinant is non-zero
and none of the Cholesky values can be zero. Q.E.D.

Our first theorem characterizes all real symmetric matrices which are
Cholesky factorizable.
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Theorem 3.5. Let a real symmetric matrix A be partitioned con-
formably as

= AI Ain]
A [Aln An ’

where A, and A, are both real symmetric square matrices. In
addition, suppose that A, is Cholesky factorizable and non-singular.
Then A is Cholesky factorizable if and only if A, — A ATA s
Cholesky factorizable.

Proof: If A were Cholesky factorizable then there exist L, Ly, Ly, Dy,
D, such that

A FaEN i R e
Ly L.jt0 D0 L3 A, A, T

which implies

But

LD\Li =A,,
LD\L; = Aln,
Ly DiL;; + LoDoLs = A,

A, is non-singular, then by Lemma 3.5, D! exists. Therefore,

Ly= DT]LI—lA'm and L;DLy = AlnAl_lA’ln- Hence A,-— AlnAl_lA’!n =
L.D,L5 and is Cholesky factorizable.
Conversely, consider the matrix identity

[Al A;n]z[ ) | 0][A| 0 ][I AT'A',,,]
Aln An A],,Al-| I 0 An - AlnAI—lA’ln 0 I ’

which may be verified by direct multiplication. If

and

A= L.D.Li,

A, — AL AT'AY, = LD,L5,

then the matrix identity becomes

[ o][L1 o][D, 0][L; 0][1 A;'A'.,.]
A AT IJlo L.jlo D.JLo L:JIO I

=[ L, o][n. 0][L; AI'A’M]
ALATY LJlo D.llLo | A

which implies that A is Cholesky factorizable. Q.E.D.
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Corollary 5.1. Let the real symmetric matrix be

_ AI A’ln]
A - [Aln An !
where A, is a scalar, then A, is Cholesky factorizable and non-
singular implies that A is Cholesky factorizable.

Proof: A,—A,,A7'A,, is a scalar matrix which is always Cholesky
factorizable. Q.E.D.

This corollary implies that any 2X2 real symmetric matrix A is
Cholesky factorizable if A, 1s different from zero.

This theorem provides a constructive way of verifying whether a
given real symmetric matrix A is Cholesky factorizable. If A,, =0, we
know that the first row and column must be identically zero for
Cholesky factorizability. Then A is Cholesky factorizable if and only if
A,, the submatrix of A with the first row and first column deleted is
Cholesky factorizable. If A, # 0, then A is Cholesky factorizable if and
only if A, — A,,A7'A}, is Cholesky factorizable. One can continue in this
way until some A*— A% A¥ 'A¥ becomes a scalar matrix or is shown to
be not Cholesky factorizable.

Of special interest, of course, is the case in which the 1,1-th element
of A, — A;,A7'A}, is zero. In that case, by Lemma 3.4, the first row and the
first column of A, — A,A7'A}, is identically zero. To be more specific let us
write:

FAII Alz"‘Alm

A= Ap Axn-Ay, N

| Alm A2m“'Amm_j

Al.m+1 Al.m+2"'Aln

[ . . .

Aln - H H H L}
Amm+ Am.m+2' “Apn

Am+l.m+1 Am+l.m+2"'Am+l.n
A, = : : : s
Am+l.n Am+2.n '"Ann

then the first row and column of A,—A,,AT'A}, being zero implies
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p—

Am+l.m+l Al.m+|
Am+| m+2 A,
. - . -1 2.m+1
: - AlnAl H
Am+l.n Am‘m+l

which in turn implies that

— — pa— o
Am+|.m+2 Ai.m+l
Am+!.m+2 Ai.m+2

m
=2a| i
i=1

L Am+1.n . _Ai.n -

that is. the first column of A, can be expressed as a linear combination
of the columns of A,,.

Next. we give a set of sufficient conditions for Cholesky factorizabil-
ity which do not depend on semidefiniteness.

Theorem 3.6. If the ordered principal submatrices of all orders up
to n —1 of a real symmetric matrix A of order n are non-singular,
then A is Cholesky factorizable.

Proof: The proof is by induction on the order of the matrix. Forn =1,
the theorem is trivially true. For n =2, if A, #0, A is Cholesky
factorizable by Corollary 5.1. Now suppose the theorem is true for
(n — 1), consider an nth order real symmetric matrix, partitioned into

— Al A'ln]

A [Aln Ann ’
where A, is (n — 1) x (n — 1) and all the ordered principal submatrices of
A are non-singular. Since all the ordered principal submatrices of A, are
non-singular, A, is Cholesky factorizable by hypothesis. But A, is also

non-singular, because it is a principal submatrix of A. Then by Theorem
3.5, A is Cholesky factorizable. Q.E.D.

Finally, we want to show that although not all real symmetric matrices
are Cholesky factorizable, those which are not constitute a subset of
measure zero in the set of all real symmetric matrices.

Let A, be the set of all real symmetric matrices of order n. Let AY be
the subset of all such matrices which are singular. Let A% be the subset
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of all such matrices which are non-singular. Then, by definition

aslar=4, aflar=¢.

Lemma 3.6. The set of singular matrices A) in A, is of measure
Zero.

Proof: Consider each element A of A, as an element in R™**"? For
each {ApA s - *An}in R™D271 the set of Ay’s such that
AxnrAgy 0 Ay, ApAn
Al = Ayl An--As, [+ | A An Ay | =0

AZn"'Arm Aln Azn "'Arm

is a set of measure zero. Hence by Fubini’'s theorem, the measure of the
set of A’s for which |A| =0 is of measure zero. Q.E.D.

Lemma 3.7. The set of matrices A%, in A, for which the kth order
principal submatrix, that is, [A;;i,j = 1,....,k;k < n}, is singular is of
measure zero.

Proof: Again consider each element A of A, as an element in R+

For each {A;; A3 A} in R™*Y27! the set of A}, is such that

Axn-Ax 0 Apn Ap A
Anil = An[An-—Ax |+ A An Ay | =0

A A An Ax o A

is a set of measure zero. Hence by Fubini’s theorem, the set of A’s for
which |A,.] =0 is of measure zero. Q.E.D.

Lemma 3.8. The set of matrices A¥, for which the naturally
ordered sequence of principal submatrices are all non-singular is of
measure one in A,.

Proof: Any element of A¥, cannot be contained in A%, for any k,
otherwise at least one of the principal submatrices will be singular.
Hence it must be contained in A, — U, A%,;. But any element of A, —
U, A%, must have its naturally ordered principal submatrices all non-
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singular, and is hence contained in AZ,. Thus,

Arn = An— LkJ Adks
and
A% [L‘_‘J A?:.k] = ¢.
Therefore,
patn = wan - w (U A%).
but the measure of a finite union of sets of measure zero is zero. Thus

pAr)=1  QED.

Theorem 3.7. The set of real symmetric matrices of order n which
are not Cholesky factorizable is of measure zero within the set of all
real symmetric matrices of order n.

Proof:® The set of real symmetric matrices which are Cholesky
factorizable contains the set of real symmetric matrices with all ordered
principal submatrices which are non-singular, by Theorem 3.6. But the
latter set has measure one by Lemma 3.8. Hence the set of Cholesky
factorizable real symmetric matrices Is of measure one, and its
complement, the set of matrices which are not Cholesky factorizable, is

of measure zero. Q.E.D.

4. Estimation

4.1. Introduction

The proposed method of estimation is maximum likelihood, which is
known to have certain optimal properties. For the sake of expositional
convenience, we shall focus our attention on the following model:*

Yl = a0+ a’Zl + %Z,!BZ! + € t = 15""T7

®The proof of this theorem is due to Daniel McFadden.

®n most models of producer or consumer behavior, there will be more than one
equation as well as parametric restrictions across equations. We abstract from these
complications so as to keep the exposition simple.
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where Z,; = g(X;) with g(-) a known algebraic function of a single
variable, X, is a vector of independent variables, and € is distributed as
N(0,01), B is a real symmetric matrix and our objective is to test the
hypotheses that the gradient is non-negative and/or the Hessian matrix is
positive semidefinite and to find an estimator of @« and B that are
consistent with a non-negative gradient and/or a positive semidefinite
Hessian matrix at the point of approximation.

Since the Hessian matrix of any convex function has a Cholesky
factorization, it is possible to transform the elements of the Hessian
matrix in terms of the elements of its Cholesky factorization L and D.
Then a test of the€onvexity hypothesis consists of a simultaneous test
that all the D;’s of the Cholesky factorization are non-negative. If
constrained estimates are needed, they can be obtained by setting each
D; equal to the square of a new parameter, say, D"

In terms of the parameters of the quadratic function, this implies

B BBy,
BIZ BZZ.“BZn
Bln BZn"'Bun
Dl] LZIDII '"LnlDll

=| LuDn  L3iDu+ Do Ly LamDn+ La2Dy
LuDy LyLn,Dy+ LpaDyn-LiyDy + LDy + -+ + Dy,

We note that this condition is global, as the Hessian matrix is constant
for the quadratic function, and is consistent with local convexity of the
unknown, underlying true function of which the quadratic function is an

approximation.
In terms of the parameters of the transcendental logarithmic function

at x = [1], a vector of units, this implies

By+afa;—1) Bp+aa; By, + ajay
B12+ a,an B22+ az(ag— 1) "'Bz,, + asa, =LDL'.
Bln + aya, BZn + aqa, "'Bnn + an(an - 1)

Satisfaction of this equality with D; =0, Vi, does not imply global
convexity of the transcendental logarithmic function, but is consistent
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with convexity in a neighborhood of x = [1], and with local convexity of
the unknown, underlying true function of which the transcendental

logarithmic function is an approximation.
And in terms of the parameters of the generalized linear function at

x = [1], a vector of units, this implies

——(a,+§:lB;,-) BIZ B|3"‘ Bln
i#
Ili By, - (az +2, BZi) Ba, =LDL'.
j®2
Bln BZn —(a"+2 Bﬂf)
L i®n i

Again this does not imply global convexity. Estimation of the original,
untransformed model will be referred to as ‘‘Problem 0. For the
purposes of hypotheses testing and constrained estimation, two ad-
ditional, separate estimation problems may be distinguished. For the
quadratic function, these are®

Problem 1:
Y, =ay+a'Z,+3ZLDL'Z, +¢, t=1..T.
In this case we seek parameters a;’s, L;'s (j<i) and Dj;’s, without
constraints.
Problem 2:
Y, = aot a*’Z, +3ZLD*L'Z,+€, t=1,.,T
In the second case we seek parameters a;’s, Ly’s (j<i) and D}’s,
where
*2
a; =a
and
*2 .
Di =Dy Vi
Again the problem is unconstrained. But the resultant estimates of a;

a}nd D; from Problem 2 will be non-negative, hence & =0, Vi, and
B = LDL' = LD*'L’ will be positive semidefinite. Under our specification,

3Similar problems 1 and 2 may be set up for the “translog™ and generalized linear
functions. One should note that it is the Hessian matrix, which may be different from the
matrix of second order coefficients, which should be set equal to LDL'.
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the likelihood maximization problem is equivalent to an unconstrained
nonlinear least-squares problem.

Here, the computational advantage of the Cholesky factorization over
the eigenvalue decomposition is most easily seen. If the Cholesky
factorization B =LDL’ is used, then the number of independent un-
known parameters of B, n(n + 1)/2, is precisely equal to the number of
independent unknown parameters of L and D, n(n—-D/2+n=
n(n + 1)/2. Hence no additional constraints are required. On the other
hand, if the eigenvalue decomposition B = PAP’ is used, the number of
unknown parameters of P and A are (n*+ n). The parameters of P are
subject to additional orthonormality restrictions such that PP =1. One
can either solve out for the parameters of P in terms of a minimal set of
independent parameters or alternatively impose PP=1 as n(n+1)/2
additional side conditions. In any event, substantial computations are
involved. All these are avoided by using the Cholesky factorization.

The basic model for quasiconvexity is again

Y. =ao+a'Z, +5ZBZ +¢e, t=1..T,
where € is N(0,¢I) and VF = 0, (H + AVFVF’) positive semidefinite for
all sufficiently large positive scalar constant A. In terms of the
parameters of the quadratic function, at x = [0], the vector of zeroes,
H(x)+ AVF(x)VF(x)
Bn +A.Cl% B|2 +/\a.a2 B.,,+Aa|a,.
_ B]z + Aa[az BZ2+ Aa% BZn + AaZan

B, + Aaja, B + Aaqa, B, + /\anzi

In terms of the parameters of the transcendental logarithmic function, at
= [1], a vector of units,

H(x)+ AVF(x)VF(x)

By —a +Aai B+ Aajay Bt Aaa,
=] Bz + Amya; By — a+ Aad By, + Aaza,

Bln+Aalan Bz,,+/\a2a,, "'Bnn_an+/\ai

Here we have made use of the fact that a monotonic transformation (in
this case In) of a quasi-convex function is quasi-convex.
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Besides the Problem ' referred to earlier, three additional separate
estimation problems are distinguished for the quadratic function:*

Probilem 1"
Yt=ay+ a'Z, + Z(LDL' — aa’}Z, + ¢, t=1,..T.

In this case, we seek parameters a;'s, L;’s (j<i) and D;’s, without
constraints.

Problem 2':
Y, = ao+ a'Z, + Z{LDL' — Aaa)Z, + €, t=1,.T,

where A is the largest positive scalar constant that the computer can
recognize. In the second case we seek parameter a;’s, L;’s (j <i) and
D;’s, again without constraints.

Probiem 3':
Y, = ag+ «*¥Z, + Z(LD¥L' — A*’aa')Z, + €, t=1,.,T,

where a:"z = a; and D,’-',-‘ZE D;, Vi. We seek parameters a¥’s L;'s (j <),
D>s and A*. Again the problem is unconstrained. But the resultant
estimates of a;, D;, and A will be non-negative. Hence &; Z0, and
(B + &a') is positive semidefinite for a non-negative A. Under our
specification the likelihood maximization problem is again equivalent to
an unconstrained noniinear least-squares problem.

4.2. The Method of Maximum Likelihood

The method of maximum likelihood is well known.” In order to contain
a paper that is already too long, maximum likelihood equations will not
be reproduced here. We do want to point out several possible ap-
proaches. First, if x is entirely exogenous and there is only one stochas-
tic equation in the system, the nonlinear least-squares estimate is
efficient for both Problems 1 and 2. Second, the estimator obtained by
stopping after the first iteration of the Newton~Raphson process cor-
responds to the linearized maximum likelihood estimator proposed by
Rothenberg and Leenders (1964), which is also an efficient estimator,

32 Again, similar problems may be set up for other functional forms.
¥See, for instance, Kendall and Stuart (1967, Vol. 2, pp. 35-74).
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provided that the initial estimator is consistent. Since consistent estima-
tors are easy to obtain — for example, they can be obtained in this case
from the unconstrained ordinary least-squares estimator of @ and B —of
Problem 0 - computationally the linearized maximum likelihood estima-
tor is quite attractive. Third, in the case that there are other equations in
the system, x being still entirely exogenous, full information maximum
likelihood will vield an efficient estimator. The full information maxi-
mum likelihood procedure is equivalent to an iterative nonlinear weigh-
ted least-squares procedure. As before, ordinary least-squares applied to
Problem 0 will provide a set of consistent estimates which may be used
to initialize the Newton-Raphson process, yielding the linearized
maximum likelihood estimator, which is known to be efficient, after the
first iteration. Finally, in the case that some or all of x is endogenous,
one can either do the full maximum likelihood calculation for the
system, or alternatively, one can first apply Amemiya’s (1974) procedure
to obtain a set of consistent estimates, and then using these as initial
estimators, compute the linearized full information maximum likehhood
estimator. The latter estimator has the same asymptotic distribution
properties as full information maximum likelihood estimator but is much
easier to compute since convergence is no longer required.

On a more practical level the following observations may be relevant.
First, it can be verified by direct inspection that the maximum likelihood
estimator of B obtained from substitution of an estimator of LDL' is
independent of the ordering of the variables. For example: B, =0
implies L, =0 and hence B,;=0; but likewise By =0 implies L; =0
and hence B,>= 0. On the other hand L, = 0 implies Bj; =0 but has no
effect on B,, or By. Thus the ordering of x imposes no special restric-
tions on the form that B can assume other than that it is Cholesky
factorizable. Second, it is not in general possible to test or impose the
hypothesis of strict convexity of F(x) or positive definiteness of the
Hessian, say B. The difficulty lies in that the maximum likelihood
problem in which D; >0, Vi, has only a least upper bound, which
necessarily cannot be attained. In actual implementation, however, if
one is interested in imposing strict convexity, one may set D; = D’,-',f2+ E,
where & is the smallest possible positive number that a given computer
can recognize. Third, it is clear that if the Hessian of a twice differenti-
able function is positive definite at some x, by continuity it will be
positive semidefinite in an open neighborhood of x. Thus, one can
expand the region on which the Hessian is positive semidefinite, and
possibly to include all of the data points, by the choice of a sufficiently
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large €* Finally, a special word should be said with regard to estimation
subject to quasi-convexity constraints. Recall that quasi-convexity im-

plies that
H(x) + AVF(x) VF(x)’

is positive semidefinite. For Problem 1’, it is evident that A can be set
equal to one without loss of generality. However, if one or more of the
constraints turns out to be violated, that is, the estimated D; <0 for at
least one i, then one should set A = A* as is done in Problem 3’ and
estimate A* as an additional parameter.”

4.3. Efficiency and Asymptotic Distribution Theory

First, it is well known that under mild regularity conditions the maxi-
mum likelihood estimators are asymptotically efficient with the asymp-
totic variance-covariance matrix given by —E(8*In L/aP]y" where In L
is the logarithm of the likelihood function. This matrix may be consis-
tently estimated by —[8%In L/3P], where I* is the maximum likelthood
estimator of 1. For our problem, the regularity conditions are satisfied.
Thus for both Problem 1 and Problem 2, the estimated asymptotic
variance—covariance matrix may be directly computed.

However, it can be shown that, asymptotically, the estimated vari-
ance—covariance matrices of Problem 1 and Problem 2 converge to the
same matrix, — E({3%In L/a1?])"". This is because, as Rothenberg (1966)
has shown, the use of inequality constraints in maximum likelihood
estimation does not increase the efficiency of the estimators.” Thus, for

#Thus in cases involving functions such as the transcendental logarithmic production
function. which can only be made locally convex at some specific x = xo, one can use this
technique to enlarge the region of convexity. This idea is due to Mr. Yoichi Okita.
However, there does not seem to be any optimality properties associated with this
procedure. This basis of the procedure is related to the fact that given any real symmetric
matrix B and positive scalar A, B+ AI can be made positive definite for a sufficiently large
A.

3The reason A*? should be re-introduced at this point is to offset partially the loss of
estimable parameters as a result of a binding positive semidefiniteness constraint. If A* s
not re-introduced, one will have, in effect, constrained B itself to be positive semidefinite. -
It is possible that 3% In L/ 3P, where | now includes A* may become singular, in which case
a generalized inverse should be used. See Section 4.4 below, especially Lemma 4.1.

%as noted below, @°In L/dF may become singular if the positive semidefiniteness
constraint becomes binding. In that case the variance—covariance matrix of the estimable
parameters consists of appropriate parts of the generalized inverse of 8 In L/3I%.

¥See Rothenberg (1966, pp. 51-55).
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the purposes of obtaining efficient estimators, monotonicity and con-
vexity constraints may be ignored; and any consistent estimator of
—[8%In L{a1)™" will do for the asymptotic variance-covariance matrix.

This is not to say that the monotonicity, convexity or quasi-convexity
constraints are worthless. In most econometric applications, we require
that the results are reasonable, that is, consistent with economic theory.
Very often, the only way to ensure reasonableness is through the
imposition of these constraints. Moreover, it is possible that the con-
strained estimators do better in finite samples. And a different criterion
of optimality of the estimator, such as minimum expected mean squared
error, may favor the constrained estimators over the unconstrained

ones.

4.4. Computational Notes

Under our transformations the maximum likelihood problem becomes
that of finding an unconstrained maximum for a nonlinear programming
problem - in fact, a quadric programming problem. It is also equivalent
to a nonlinear least-squares problem.

Eisenpress and Greenstadt (1966) and Eisenpress (1968) provide a
maximum likelihood program that will accommodate both nonlinearities
in variables and in parameters. Basically, a Marquardt-Levenberg al-
gorithm is used, with the Newton-Raphson algorithm available as a
special case. The latter is of particular interest because the first iteration
of the Newton-Raphson algorithm produces the linearized maximum
likelihood estimator proposed by Rothenberg and Leenders (1964).

Many other methods for unconstrained maximization are available. In
general, however, a second derivative method should be used because
the asymptotic variance-covariance matrix must be estimated by the
negative of the Hessian matrix of the natural logarithm of the likelihood
function at the point of convergence. Murray (1972) provides a compre-
hensive survey of alternative unconstrained maximization methods.*®

A special feature of the positive semidefiniteness constraints as in-
dicated by the following lemma imposes additional requirements on the
algorithm:

%8Gee Murray (1972, especially Chs. 3 and 4).
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Lemma 4.1. The matrix product LDL’ where L is unit lower
triangular and D is diagonal is independent of the ith column of L if

D; is zero.

Prooff: The proof is by direct computation.

1 0 Dy 0 1 Ly Ly Ly
Ly 1 0 Dy 1 Ly Lp
LDL' = L3| L32 0 0
: D,, 1
_Lnl Ln2 1
-Dn =0 1 Ly L.y L
— LuDy D2 =0 1 Ly, L.
LyD,, LyuDsn Dyu--0 0
L LnlDll Ln2D22 "'Dml i
D, L21Dn L31Dn “'Lnan
LyD, LiDu+ Dy LyLy D+ LnDyn LyLaDy+ LixD2
LanDn LZILnIDH+ L,2D2 L£|D||+Li2D22+ o+ Dipa

It is evident that if D; =0, the values of Lj, Vj, do not matter at all,
because all the L; entries are multiplied by D;. Q.E.D.

Lemma 4.1 implies that if one knows D; =0, one can, without loss,
replace the ith column of L by zeroes everywhere off the diagonal. By
definition, L; = 1.

What this means is that if one of the positive semidefiniteness con-
straints turns out to be binding, the matrix [#2In L/aF] will always
become singular. Hence the usual Newton-Raphson iterative method or
any one of the second-derivative modified Newton methods fails. There
are various ways to remedy this situation. The most elegant method is to
continue the Newton-Raphson process using a generalized inverse of
[8%In L/3P] until the process converges.” Conditions for convergence
of the Newton-Raphson process using a generalized inverse are given
by Ben-Israel (1966).

¥For discussion of generalized inverses, see Rao and Mitra (1971). Rao and Mitra also
propose the use of the generalized inverse when the information matrix becomes singular

(pp. 201-203).
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5. Testing of Hypotheses
5.1. Introduction

The basic statistical problem in testing the hypotheses of monotonicity,
and/or convexity can be reduced to the following: the null hypothesis to
be considered is of the type

Ho:a = 0,
and the alternative hypothesis is
H, . a%0,

that is, at least one a; <0. If a is one-dimensional, the usual one-tailed
t-test will work. However, the usual likelihood ratio test procedure
based on asymptotic distribution theory breaks down because under the
null hypothesis there is no reduction in the dimensionality of the space
of possible parameters of the likelihood function. An alternative test
procedure is needed. We shall examine three alternatives: Bonferroni
t-statistics: distribution of extreme values; and finally a test procedure
based on the likelihood ratio. The Bonferroni ¢-statistics is recom-
mended because of its easy computability and the ready availability of
tables.

To test these hypotheses, one needs to use the estimates from Prob-
lem 1, that is, the unconstrained estimates. An alternative approach is
possible: let B be a maximum likelihood estimate of B of the original
untransformed model, that is, Problem 0. For convenience we shall
stack the parameters of B into one vector, of dimension n(n + 1)/2,

B= [B11Bi2'**B1nBnBys - B,
similarly,
1=[D,;Ly L3~ LoDyl Dy, Y.

Defining the matrix

[ 3B 3Ba, 9Bw ]

al, al, al

B 9By B
i@.: alz 612 312 ,
al

B 62 B

_aln‘ a[n‘ aln‘ -
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that is, the Jacobian of the transformation from g8 into I, we have, at the
point of maximum likelihood:

[ar - 5

Thus an estimator of v(i), which is given by

ln LT\
'E([ T ]) ’

the variance-covariance matrix of i, may be computed given a know-
ledge of

[82 In L]

apop’ I

One can then extract from V(i) those components which correspond to
the D;’s and use them as a basis for statistical inference. The disad-
vantage of this approach, however, is that there may be cases in which
one may not be able to obtain D;’s from B, that is, B may not be
Cholesky factorizable. In that case, one will have to fall back on the
solution given by Problem 1. ; '

The testing of the hypotheses of monotonicity and quasiconvexity is
slightly more complicated. The difficulty lies in the fact that it is
sometimes not possible to reject conclusively that there may exist a
sufficiently large positive scalar constant A such that (B+ Aaa’) is
positive semidefinite. The null hypothesis to be considered is: 3A,A >0,
such that corresponding to that A,

; = 0, D,',' = 0, Vl.

Obviously, for each A, one can carry out a test of this type; however,
each rejection is not conclusive, because there always remains the
possibility (only a possibility) that for some larger A, the hypotheses may
not be rejected.

“gGince not all real symmetric matrices are Cholesky factorizable, a legitimate question
at this point is whether the power of our test of positive semidefiniteness of B is reduced
by restricting our consideration to the class of real symmetric marrices that are Cholesky
factorizable. The answer is no if the distribution function of the errors in the equation is
continuous and smooth everywhere, as in the case of the normal distribution since the set
of real symmetric matrices which are not Cholesky factorizable is of measure zero.
Heuristically. the situation is comparable to that of maximizing a likelihood function with
respect to a single parameter a and subject to the restriction that a# 0. The resultant
distribution of & is essentially the same as that of an estimator derived without the
restriction a # 0. Constrained estimation, on the other hand, requires no such justification
since all positive semidefinite real symmetric matrices are Cholesky factorizable.
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Our proposed solution is to decompose the test procedure into two
stages. First, we make use of Theorem 2.5 and Theorem 3.4 which
together imply that a necessary and sufficient condition that there exists
a vector a such that XAx=0 whenever a’x =0 is that the number of
non-negative Cholesky values of A, an n X n Cholesky factorizable real
symmetric matrix, must be greater than or equal to (n — 1). Thus, if the
Hessian matrix is Cholesky factorizable, this implies that there are at
least (n — 1) non-negative Cholesky values (or alternatively at most one
negative Cholesky value) everywhere. This provides a basis for testing
the hypothesis of quasi-convexity at the point of approximation.
However, because one has no knowledge a priori which one of the n
Cholesky values will turn out to be negative, if any, this theorem does
not lead to a corresponding procedure for constrained estimation. We
therefore test the hypothesis that B has at least (n —1) non-negative
Cholesky values simultaneously with the hypothesis that a; = 0,Vi. Thus

Hola,' = 0, Vl,
D; =0, Vi, except possibly one.

There are three possible outcomes with respect to the Dj’s. First, we do
not reject that D; = 0,Vi. This implies that not only can we not reject the
hypothesis of quasi-convexity, but also that of convexity as well.
Second, we do not reject the hypothesis that D; =0 for only (n—2) i’s.
This implies that the function cannot possibly be quasi-convex at the
point of approximation, by virtue of Theorem 2.5. Third, we do not
reject the hypothesis that D; =0 for only (n—1) i’s. This leaves open
the possibility that one may find a A and D such that LDL = (B+ Aaa’)
with D; = 0,Vi, that is, the function may still be quasi-convex.

Since the computer can only handle finite arithmetic, it is not possible
to check through all possible A’s. The next best alternative is therefore
to set A = A, where A is the largest positive scalar constant that the
computer can recognize, and to test the hypothesis that the resultant
D,’s are all non-negative. This constitutes the second stage of the test

procedure.”!

4 After this paper was essentially completed, Jorgenson and Lau (1975b) have proposed a
procedure, also based on the Cholesky factorization, that avoids this inconclusiveness.
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5.2. Bonferroni t-Statistics

Suppose that one is interested in testing the null hypothesis
Hola,' = 0, i= l,...,n (n# 1),

against the alternative hypothesis that at least one a; <0, a natural way
to proceed is to use n one-tailed t-statistics. However in order to control
for the overall level of significance, the level of significance of each
one-tailed test must be scaled down accordingly. If the desired overall
level of significance is set at a, then the individual levels of significance
o' must satisfy the following Bonferroni inequality

l—a=zl-a'—a?= " —a"¥®

In the case that the a;’s are distributed independently of each other, we
actually have

(d-a)y=[[-a’).
Let V(&) be the estimated asymptotlc variance—covariance matrix of
the estimator of a, so that

A

T = r——(-—j)'m, i=1,...n,

is distributed asymptotically as Student’s ¢ with infinite degrees of
freedom. Let t2'" be the upper a/n percentile points of the t-distribution
with infinite degrees of freedom. Then with probability greater than or
equal to (1 — a), simultaneously,

0= g+ tZ"(Vi(an'’, i=1,..,n

We note that the distribution of Student’s ¢t with infinite degrees of
freedom is precisely the uninormal distribution. Thus one can
equivalently define the intervals above in terms of a uninormal dis-
tribution. For each component interval above, the level of significance is
set at a/n. Equal significance levels can be abandoned, and unequal
allocation substituted. Any combination of significance levels summing
to a will produce the same bound a for the probability error rate. The
reader is referred to Miller (1966) for further details.

Thus, one can apply the Bonferroni ¢ statistics to construct simul-

“8uperscripts are used to distinguish the levels of significance from the parameters.
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taneous rejection regions for the monotonicity hypothesis, which for
both the quadratic function (at x = [0]) and the transcendental logarith-
mic function (at x = {1]) amounts to a; = 0,Vi; and for the convexity and
quasi-convexity hypotheses which for both the quadratic and transcen-
dental logarithmic function amount to respectively D; =0,Vi, and D; =
0.Vi, except possibly one, for the Cholesky factorization of appropriate
matrices. For the generalized linear function, one can test for global

monotonicity and convexity simultaneously,
a; =0, B; =0, i#j, Vij.

Finally, it should be noted that in the case of interval constraints, such
as & Z a; = @ ,,¥i, a similar Bonferroni ¢ statistics procedure resulting in
simultaneous intervals of the type

a + 1V @)z é z a; - tP(Vi(@)', Vi,

will apply.

5.3. Distribution of Extremes

A second alternative, which is the original proposal made by Lau (1974),
makes use of the theory of ordered statistics. Again consider the null
hypothesis

Ho:a,' =0, i= 1,...,n.

This null hypothesis may be transformed to the following one:
Ho:m_in{a,,az,...,a,,} =0.

Now given a known -joint distribution of a, one can presumably derive
the distribution of the minimum element of a, making use of the
techniques of the theory of ordered statistics.* Knowing the distribution
of min{e;}, one can then immediately construct a rejection region for
the hypothesis that min,{a;} Z 0 for any given level of significance. The
advantage of this test procedure is that it is exact, unlike the Bonferroni
t-statistics procedure, which only gives a bound on the overall level of
significance and it is in principle quite feasible. The disadvantage of this

SFor an excellent introductory exposition to the theory of ordered statistics, see Kendall
and Stuart (1969, Vol. 1, Ch. 14, pp. 325-346).
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procedure, is, of course, that elaborate computations are required, even
in the case that V(&) is diagonal.* In general, a multivariate normal
integral must be evaluated by numerical methods as appropriate tables
do not vet exist for n = 3. To make matters worse, V(a) is in general
unknown and only an estimate is available. Thus in computing the
distribution of min;{d@} one will have to integrate over the distribution of
V(&) as well. This all seems to be an extremely high price to pay just for
obtaining an exact level of significance. However, this may be the only
possible procedure if the Bonferroni t-statistics procedure does not give
clearcut results; for example, if zero is on the boundary of the rejection
region.
For the null hypothesis

Hy.a; =0, Vi, except possibly one.

The appropriate transformation is the following:
Hy:second §mallest {a:,az,...,a,} Z 0.

Again, this problem may in principle be solved by making use of the
theory of ordered statistics. Actual computation is of course a different
matter.

5.4. Likelihood Ratio Tests

It is well known that a null hypothesis of the type a; = 0,i = 1,...,n, may
be tested by the likelihood ratio procedure. Essentially, —21In A, where A
is the ratio of the maximized likelihood function under the null hypo-
thesis to the unconstrained maximized likelthood function, is asymp-
totically distributed as a x° variable with n degrees of freedom.
However, the same is not true when the null hypothesis consists of
inequalities rather than equality constraints. Here there is no reduction
in the dimensionality of the feasible parameter space under the null
hypothesis. Asymptotically, the value of the inequality constrained
maximized likelihood function will converge to the value of the un-
constrained maximum likelihood function and —2 In A is identically zero.

Despite this shortcoming, the use of the likelihood ratio procedure in

4Note that if V(@) is indeed diagonal, it implies that the components of a are
distributed independently of one another, and the Bonferroni !-statistics procedure is

exact.
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this context does have a certain amount of intuitive appeal. If the
unconstrained estimates satisfy the constraints, the likelihood ratio will
be identically one. Otherwise, it will be less than one. A rejection region
may be constructed on the basis of A. Consider for the sake of simplicity
a one-dimensional example. We want to test the hypothesis of @ Z 0. Let
G be the unconstrained estimator of a. The likelihood ratio is identically
one if & = 0. The likelihood ratio is given by

_L(a=0) "
/\———-—L(&) X a <0,

which will be less than one and decreases monotonically as @ decreases.
(Of course, in practice, we use the one-tailed z-test for this case.)

However, in order to make use of the likelihood ratio in this manner it
is necessary to compute either its exact distribution or at least a finite
sample approximation to the exact distribution. Unfortunately, the finite
sample distribution will most likely depend on the values of both the
dependent and independent variables, and will have to be computed on a
case by case basis. Further research on the finite sample distribution
theory of inequality-constrained estimators is needed before the likeli-
hood ratio procedure can be fruitfully employed.

6. Conclusion

In this paper we have outlined an implementable procedure for testing
the hypotheses of monotonicity, convexity and quasi-convexity of
estimated functions, and to obtain parametric estimates of functions
under the constraints of these hypotheses. Since these hypotheses are of
fundamental importance in economic analysis, it is essential to test their
validity under as unrestrictive a maintained hypothesis as possible.
Functions which provide second-order numerical approximation to arbi-
trary functions are therefore well suited for this purpose. The availabil-
ity of a simple procedure for constrained estimation to ensure mono-
tonicity, convexity, or quasi-convexity also enhances immensely the
usefulness of the new functional forms in practical economic ap-
plications. The proposed procedure may be applied to any functional
form with the second-order numerical approximation property, including
the class of general linear profit functions introduced by McFadden
(Chapter 11.2) and others yet to be invented.
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The procedures considered here may be easily extended to solve other
types of problems: linear inequality constraints, interval constraints,
estimation of variance-covariance matrices (which must be positive
semidefinite) and transition probability matrices (which must be non-
negative and have column sums equal to ones), and estimation of saddle
functions (convex-concave or concave-convex functions).



