Chapter 1.3

APPLICATIONS OF PROFIT FUNCTIONS

LAWRENCE J. LAU*

Stanford University

1. The Profit Function — An Alternative Derivation

1.1. Introduction

In a pioneering attempt, McFadden (1966) extends the concept of cost
functions to revenue functions and profit functions and proves for the
first time the McFadden Duality Theorem —the profit function analog of
the Shephard (1953)- Uzawa (1964) Duality Theorem on cost and
production functions. The purpose of this chapter is to provide an
alternative derivation under conditions which guarantee twice differen-
tiability of both the production function and the corresponding dual
profit function, to characterize equivalent structural properties of the
production function and the profit function, and to propose a variety of
econometric applications of the profit function.

*This chapter is an extensively revised version of “Some Applications of Profit
Functions””, Memorandum 86A and 86B, Center for Research in Economic Growth,
Stanford University, November 1969. The author is indebted to Professor Daniel McFad-
den for his very penetrating comments and extremely helpful suggestions which improved
the chapter substantially. He has drawn heavily from his collaborative work with D.W.
Jorgenson and P.A. Yotopoulos. Thanks are also due to Professors L.R. Christensen,
W.E. Diewert. A.K. Dixit, W.M. Gorman, R.E. Hall, Z. Griliches, G. Hanoch, M. Nerlove
and R.W. Shephard for useful discussion at various stages of this work. Financial support
from the Labor Allocation Project of the Institute of International Studies, University of
California, Berkeley, and the National Science Foundation through research grants to the
Tnstitute for Mathematical Studies in the Social Sciences, Stanford University, is gratefully
acknowledged. Responsibility for remaining errors rests solely with the author.
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Let
Y = F(le-"va ;Zh--‘,Zn)

be the production function of a firm, where the X;’s and the Z;’s are the
variable and the fixed inputs respectively. Then short-run profit, defined
as revenue less variable costs, is given by

P =pF(X,2)- 2 qX;
i=1

-p|[Fx2)-3 4
=p(F(X,Z)-qX]
where

p = nominal (money) price of output,
q ¥ = nominal price of input i,
g: = q¥/p, normalized price of input i,

and X, Z and q are the vectors of X;’s, Z;’s and g,’s, respectively.

It is assumed that the objective of productive activity is the maxi-
mization of short-run profit and that the firm is a price-taker in the
output and variable inputs markets. Thus, the firm maximizes profit with
respect to X taking p, q* and Z as given. The profit function II is a
function of p, q* and Z which gives for each set of values p, q*, Z the
maximized value of profit

II(p.q*.Z)= p[F(X*,Z) - ¢'X*],

where the X *’s are the optimized quantities of the variable inputs.
Before proceeding further, one may observe that maximization of
profit is equivalent to the maximization of normalized profit, p*!

defined by
P*=Plp = F(X,Z) - q'X,

so that the X *’s are identical for the two problems. It is clear that the
corresponding normalized profit function is given by

n*= F(X*Z)—-qX*
= G{(q,Z).

The normalized profit function G(q,Z) is more convenient to work with

'This was referred to as the “Unit-Output-Price” or “UOQP" profit in Lau (1969c). The
terminology ‘‘normalized profit” is due to Jorgenson and Lau (1974a and 1974b).
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for the purposes at hand but the one-to-one correspondence between
M(p.q*.Z) and G(q,Z) should be obvious.

1.2. Properties of the Production Function

The production function is assumed to have certain properties. Let R:
and R™ denote the closed non-negative orthants of R" and R™, and RY
the interior of the non-negative orthant of R™. The assumptions on the
production function are as follows:

(F.1) Domain. F is a finite, nor_l*negative, real-valued function
defined on R™ x R". For each Z € R%, F(0,Z) = 0.

(F.2) Continuity. F is continuous on RT X R

(F.3) Smoothness. For each Z € R", F is continuously differen-
tiable on R”, and the Euclidean norm of the gradient of F with
respect to X is unbounded for any sequence of X in R7 converging
to a boundary point of R7T. For each X € R™, F is continuously
differentiable on R?%.

For each Z € R", the gradient of F with respect to X on RY will be
denoted VxF(X,Z).

(F.4) Monotonicity. F is non-decreasing in X and Z on R7?xR"
and strictly increasing in X and Z on RT X RZ.

(F.5) Concavity. For each ZE R}, F is concave on R™ and
locally strongly concave on RY.

Definition. A function is strongly concave on a convex set C if
there exists & > 0 such that®

F((1-0)X,+AX) = (1-AM)F X))+ AF(Xy)
+A(1-20)8X, - X)X, —Xy), 0=A=1,
vX, . X, e (.

Anexample of a strongly concave function is F(X) = — XZ. A functionis
locally strongly concave if there exists such a 8 for every proper convex
subset of C. An example of a locally strongly concave (but not strongly

2See Roberts and Varberg (1973, p. 268).
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concave) function on R. is F(X)=1-e7*.> Obviously local strong
concavity implies strict concavity.

(F.6) Twice Differentiability. ForeachZ e R7, F is twice continu-
ously differentiable on RY.

The concavity and twice differentiability assumptions together imply
that for each Z € R} the Hessian matrix of F with respect to X is
negative definite on R7.

(F.7) Boundedness. For each Z € R?,

limsz VX ER™

A =0 A

The boundedness assumption ensures that a bounded and attainable
solution exists for the normalized profit maximization problem for all
q € R7. This assumption is sufficient even if the production function is
not differentiable, that is, in the absence of (F.3) and (F.6). For the
purpose at hand, one may have adopted for (F.7) the alternative
assumption that for each Z € R", the range of VxF(X,Z) is all of R7.

An example of a function for which (F.7) fails is F(X)= X + X'2 For
this production function there does not exist a profit maximum if g = 1.
An example of a function which satisfies (F.7), but fails (F.3) is F(X) =
1-e X

Assumptions (F.1) through (F.6) are sufficient to ensure that, if a
solution X* to the normalized profit maximization problem exists for a
given q and Z, the solution will be unique and lies in RY. The additional
Assumption (F.7) is needed to ensure that such a solution exists for
arbitrary q € RT and Z € R}:. We therefore have the following two
lemmas:

Lemma I-1. Under Assumptions (F.1) through (F.6), for each
qERT,Ze€ R, if a vector X* exists such that

F(X*.Z) —; gX¥*z= F(X,2)- ; aX, VXERT,

then X* is unique and lies in RT.

3Under the additional assumption of twice differentiability, local strong concavity
implies negative definiteness of the Hessian matrix. Compare the concept of differential
strict quasi-concavity which implies that the Hessian matrix is negative semi-definite with
rank (m — 1). See Chapter [.1.
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Proof: The Kuhn-Tucker necessary condition for 2 maximum implies
that '

VxF(X*.Z) =4,

with equality in each component of VxF for which the corresponding
component of X* is positive. However, if any component of X* is zero,
by (F.3) and (F.4) VxF is unbounded and positive, thus violating the
Kuhn-Tucker condition. Hence X* must be positive and lies in RY.
Finally, by (F.5) X* must be unique. Q.E.D.

Lemma I-2. Under Assumptions (F.1) through (F.7), for each
q € RY, Z € RY, there exists a unique vector

X* = X*(q,Z) € R}
such that
F(X*Z)-qX*z F(X,Z)-¢X, VXE RT.

Further, the flmction X*(q.Z2):RT x R"—>RT is continuous on RY
for each Z € R" and continuous on R} for each q € RY. For each
Z € R™, X* is continuously differentiable on RT*

Proof: Under Assumptions (F.I) through (F.6), for each Z€ R,
normalized profit, P*=F(X,Z)—qX, is a closed, proper concave
function in X on R7T for all & R7.° For a given Z and q, a finite and
attainable maximum exists for this closed, proper, concave function if
and only if the function P* has no directions of recession in X. {See
Rockafellar (1970, Theorem 27.1, pp. 264-265; and also Theorem 13.3
and its corollaries, pp. 116-117).] The directions of recession of P* are
the vectors y # 0, y € dom P* (domain of P*), such that

lim P* (Ayaz)206
A — = U,

A -0

Thus, in order for P* to have no directions of recession one must have

i FAXZ)

A= A

qgX <0, vXedomF, X=0.

Since q € RY, dom F=R™, q'X>0. Thus, one concludes that

‘See Appendix A.3, Lemma 15.4.
5A concave extended-real-valued function is proper if it nowhere takes the value of =

and is finite for at least one value of its arguments.
sSee Rockafeliar (1970, pp. 66-67, and especially Theorem 8.5 and its corollaries).
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lim,.. F(AX,Z)/A =0 is necessary, But F(AX,Z)=0, by (F.1), thus

lim,.. F(AX,Z)/A =0 is necessary and sufficient to ensure that no direc-

tion of recession exists. Hence, with (F.7) a finite and attainable solution

exists. But this argument works for all ¢ € RY. Thus, for all g € R7, a
finite and attainable solution exists.” By Lemma I-1, the optimal solution

X* is positive and unique.

Continuity properties of X* follow from the continuity.of VxF on RY
for each Z € R" and on R’ for every X € R7.

Implicit differentiation using the implicit function theorem guarantees
the differentiability property of X*. The assumption of non-singularity of
the Jacobian matrix so crucial in the application of the implicit function
theorem is implied by the negative definiteness of the Hessian matrix of
F with respect to X. Q.E.D.

Corollary 2.1. The normalized profit function G(q,Z)=
F(X*(q,Z).Z)—q'X*(q,Z) is continuous on RT xR}, is twice
continuously differentiable on RY for each Z € R", and is continu-
ously differentiable on R} for each q € RY. Y*(q,Z) = F(X*(q.Z2),Z)
is continuous on R7” x R" and is continuously differentiable on R
for each Z € R%.

Proof: The proof follows from repeated application of the chain rule
for partial differentiation and the fact that

IF xx 7y _q =
ax(x ‘)Z) q—O Q,E.D.

1.3. Duality

The duality between production functions and normalized profit
functions has been established under rather general circumstances in
Chapter 1.1 and eisewhere.® Qur purpose here is to establish properties
of the class of normalized profit functions which correspond to the class
of production functions which satisfies our Assumptions (F.1) through
(F.7) and to demonstrate that there exists a one-to-one correspondence

"Note that this establishes the domain of G as all of RT. See Chapter 1.1.

8See also Cass (1974), Diewert (1973a and 1974a), Jorgenson and Lau (1974a and 1974b),
and Lau (1976a). Jorgenson and Lau base their duality results on the conjugacy cor-
respondence of closed, proper convex functions.
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between the members of the two classes. For every production function
which satisfies Assumptions (F.1) through (F.7) one can define a
normalized profit function G(q,Z) on RY X R}

G(q.Z) = sup {F(X.Z)—q'X}.

For each Z € R", G(q,Z) is also referred to as the conjugate of F(X,Z).
By Lemma I-2, a finite and attainable maximum always exists for

g € RY. Thus,
G(g.Z)= m;tx {F(X,Z) - ¢'X}.

It will be shown that the normalized profit function G(q,Z) correspond-
ing to a production function satisfying Assumptions (F.1) through (F.7)
possesses the following properties:

(G.1) Dclmain. G is a finite, positive, real-valued function defined
on RT X R}.

(G.2) Continuity. G is continuous on RY X R..

(G.3) Smoothness. For each Z€ R”, G is continuously differen-
tiable on R™, and the Euclidean norm of the gradient of G with
respect to q is unbounded for any sequence of q in RT converging
to a boundary point of RT. For each q€& RY, F is continuously

differentiable on R:.

(G.4) Monotonicity. G(q.Z) is non-increasing q and non-decreas-
ing in Z on RY xR} and strictly decreasing in q and strictly

increasing in Z on RT X RZ.

(G.5) Convexity. For each ZE€R", G(q,Z2) is locally strongly
convex on RT.

Definition. A function F is locally strongly convex if —F is locally
strongly concave.

(G.6) Twice Differentiability. For each ZE€RY, G(g.Z) is twice
continuously differentiable on RY.
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The convexity and twice differentiability assumptions together imply
that for each Z € R} the Hessian matrix of G with respect to q is
positive definite on RY.

(G.7) Boundedness. For each Z& R%,

Ao A

0, VgqER?.

Lemma I-3. Under Assumptions (F.1) through (F.7), the normalized
profit function satisfies Assumptions (G.1) through (G.7).

Proof:
(G.1) From Lemma I-2, G(q,Z) is a finite and real-valued function
defined on R7 x R" since a finite and attainable maximum exists. And
because for each ZE R", F(0,Z)=0, G(q,2)=0. If G(q.Z)=0 for any
g € R7, then a profit-maximizing vector X* is X*=0. However, this
contradicts Lemma I-2, which states that X* &€ RT. Thus G(q.Z) is
positive.

(G.2) Since G(q,Z) = maxx{F(X,Z)- q'X} it follows that for each q €
RT, G(q,Z) is continuous in Z on R? by (F.2). In addition, for each
ZE€R", G(q,Z) is convex on RT [proved under (G.5) below]. Thus, by a
theorem in Rockafellar (1970, Theorem 10.7, pp. 89-90), G(q,Z) is
continuous on R7 x R%.

(G.3) Smoothness in q is implied by (F.5) [see Rockafellar (1970,
Theorem 26.3, pp. 253-254)]. Differentiability in Z follows from the fact
that F(X,Z)— q'X is continuously differentiable in Z on R: and that
G(q,Z2) = maxx{F(X,Z) — q'X}.
(G.4) Let X¥ and X¥ € RY be the profit-maximizing inputs at q; and qa,
respectively. Then,

G(qi,Z) > F(X¥.,Z) - qiX¥,
Suppose q; is strictly greater than g, (in at least one component) then
F(X¥,2)-q:X¥> F(X¥,Z)— q'X{ = G(q:,Z). Hence G(qx,Z)> G(qi,2).
Monotonicity in Z follows from the fact that G(q,Z)=
maxx{F(X,Z)—q'X}.

(G.5) Local strong convexity is implied by (F.3) and (F.5).
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(G.6) Twice differentiability is implied by (F.5) and (F.6) through the
chain rule.

(G.7) Boundedness f_ollows from the fact that for each Z& R", the
domain of F(X,Z) is RT, the support function of which is given by

5*(X*|R7)=0, X*ERT,
=+4o, X*& RT.

But this is also the recession function of the conjugate of F(X,Z),
G(q,Z), with q identified with —X* [see Rockafellar (1970, Theorem 13.3,
p. 116)]. The recession function of G(q,Z) is given by

lim G(t\q,Z),

A —»0 A

qE RYT.

Thus, one has

i GRaZ)

A e l\

0, qERT. QED.

Given a normalized profit function G(q,Z) one may define its con-
jugate as

F*X.,Z)=inf{G(q,Z) + q'X}.

Under Assumptions (G.1) through (G.7), G(q,Z) is a closed proper
convex function on R7 X R}, hence its conjugate function is unique and
equal to F(X,Z) itself. [For the one-to-one correspondence between
closed proper convex functions and its conjugate, see Chapter 1.1 and
Rockafellar (1970, ch. 12).] Hence all one needs to do is to verify that
F*(X,Z) in fact satisfies Assumption (F.1) through (F.7). Thus one has:

Lemma I-4. Under Assumptions (G.1) through (G.7), the produc-
tion function satisfies Assumptions (F.1) through (F.7).

Proof: The proof parallels the proof of Lemma [-3. The only ex-
ception is that of continuity of F(X,Z) on the boundary of RT. This
follows from the fact that F(X,Z) = inf{G(q.Z) + q'X} is a closed proper
 concave function and bounded below on every bounded subset of RZ.
Hence, F(X,Z) may be uniquely extended to a continuous finite concave
function on R™. [See Rockafellar (1970, pp. 84-86) and also Lemma 12.7
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in Appendix A.3 of this volume.] It is then possible to set F(0,Z) =
0. QE.D.

We conclude this section by noting that it is possible to relax the
assumption that the domain of F(X,Z) is all of R™, or that the range of
Vi F is all of RT as is done in Chapter 1.1 and Jorgenson and Lau (1974a
and 1974b). It is also possible to relax the assumption that |VyF|
becomes unbounded as X approaches the boundary of its domain from
the interior, requiring only that the range of VxF on the domain of F has
a non-empty interior. Under these mild modifications, the properties of
continuity, differentiability, monotonicity, concavity and twice differen-
tiability still imply corresponding properties on the dual, only that the
domains of definition are now a pair of open convex sets C and C*, such
that C C int(dom F) and C* C int D where D is the range of VxF on C.

1.4. The Legendre Transformation

One way of obtaining the normalized profit function is to solve the
maximization problem first for the derived demand functions and then
substitute these back into the formula for normalized profit given by

P*=[F(X,Z)- q¢X].

The difficulty with this method is that only for relatively simple produc-
tion functions can one solve the profit-maximization problem explicitly
to obtain closed form solutions for the derived demand functions. An
alternative method for constructing the normalized profit function and
for studying the behavior of the normalized profit function (without
actually constructing it), based on the classical Legendre trans-
formation,' will be given below.

The Legendre transformation is a change of variables of a function
from point coordinates to plane coordinates. It is based partly on the
notion that a system of partial differential equations may be used to
define two or more sets of functions through transformation of vari-
ables. In the present case, it can be shown that the production function

*For further discussion of this point, see Rockafellar (1970, pp. 251-260).

A succinct exposition of the Legendre transformation may be found in Lanczos (1966,
Ch. VI). See also Courant and Hilbert (1953, Vol.Il, Ch. I, pp. 32-39). For a discussion from a
more modern point of view, see Rockafellar (1970).
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and the normalized profit function are connected by the Legendre

transformation.
Consider a given function of m variables Vi’s and n parameters p;’s,

f = (V],...,Vm ;pl"")pn),

new variable T’s may be introduced by means of the following trans-
formation:

1= i=1..m, d-1)

vy

which is called the Legendre transformation. The variables Vs are
replaced by the variables T’s. f is assumed to be locally strongly
concave in the V;’s so that the transformation is non-singular and hence
invertible. Thus equation (I-1) may be solved, expressing the V’s in
terms of the T;’s and p;’s,

Vi= hTpee0; T3P 1sesPn)s - = Losm.

A new function g may be defined as follows:
g(Tls"-mi ;plr"spn) = Zl hl(T,p)TI —.f(hI(Tap)a'-"hm(T,p);p)-

The function g is known as the Legendre’s dual transformation of the
primal function f.
Observe that _
ag L ah,‘ 4 af 3hi .
=N AT hi— ), = = 1,...,m.
aT; ,-Z:,aT,-T’ h ,Z,av,» oy L Lt

But by equation (I-1), T; = df/aV;. Thus,

o8 _
T h:(T,p)

=V, i=12....m. (1-2)

Equation (I-2) is the inverse Legendre transformation. The variables T;
are replaced by the variables Vi’s. In addition, we have

dg _ < 3k noaf oh;  f .
28 = TS LI 2L i=1,..n,
6p, ; apl ! 121 avj apl 317,

__of

again by equation (I-1).
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If we now compute the Legendre transformation of g, we have

g*( Vh---, Vm ;pl’"-’pn)= Zl Ti(vsp)' Vi - g(Tl(V,p),---,Tm(V,P);P)
:f_

The functions f and g are linked by the following set of dual relations:

F(Vi,Varot, Vip) + @(T1, Topeo, Tosp) = 2_:1 ViT,
af dg af  ag
—_ —_——= . — = ==
v T, T v ap ap 0
There is also a set of transformations relating the second derivatives
of f and the second derivatives of g. Starting from

of _

v b
one may differentiate this set of dual relations with respect to T
obtaining

B e B e e

One may also differentiate the set of dual relations with respect to p,
obtaining

[%] [angv'] - [as;fv,] =0,

s l[7vav]* [mav] ¢
L apaT JLavaV’ apav’

We note that this is also a symmetric relation because

%2 ]= [_t’__zf_]'
| dT3T’ avav'] -

In terms of our problem, the production function F(X,Z) may be
identified as f. The normalized profit function G(q,Z) may be identified

as —g. X may be identified as V. Z may be identified as p. The new
variables to be introduced - the plane coordinates — are set equal to

_oF
X’

or

T
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in accordance with the Legendre transformation. However, dF/dX = q
under the assumption of profit maximization. Thus

_9F _
T=7x"9

and q may be identified as T. The Legendre transformation may be
constructed as

¢ =3 TXAT.Z)~ FOGT L) Xn(T.2).2).
=

By recognizing that T = g, we have

g=2 aXi@Z) = F(Xi@ L) Xn(@D)L),

which is precisely equal to —G, the negative of the normalized profit
function. Moreover, from the inverse Legendre transformation

é&: a—g—=
aq dT X,
dg _ _9oF
aZ YA

Hence, one has

3G _

aq_ X,
2G _oF
Y AY A

This set of relations is sometimes referred to as Hotelling’s (1932)
Lemma and is of crucial importance in applications. We may then
summarize the Legendre transformation relationships between the
production function and the normalized restricted profit function:

Primal Dual
Function: Production Normalized
function function
F(X,2) Gq.Z)
Active variables: X q

Passive variables: Z Z
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And we get the following dual transformation relations:

(1) FXZ)-G@qZ)=qX

(2) AF/dX = q; 3Glaq= —X

(3) X= —aGlaq; q = dF3X

4) dF[8Z = 30G/3Z; dG|dZ = dF[3Z

(5) F =G -q'(8G/aq); G = F-X'(aF/8X)
(6) Z; y/

Under our assumptions on F(X,Z), a Legendre transformation always
exists. We introduce the Legendre transformation for a number of
reasons. First, its use leads to a system of partial differential equations
which may be used to either construct the normalized profit function
explicitly or to study its behavior, given the production function and the
first order necessary conditions for a maximum (and vice versa). Second,
the Legendre transformation may be used to deduce equivalent struc-
tures of the production function and the normalized profit function. If
the production function or the normalized profit function satisfies a
given partial differential equation defining a certain structural property,
then the same partial differential equation must also be satisfied by a
Legendre transformation of variables. This is because we have shown
that the production function and the normalized profit function are
Legendre transformations of each other, hence a partial differential
equation for F(X,Z) in X and Z becomes a partial differential equation
for G(q,Z) in q and Z. Thus, equivalent properties may be deduced
immediately. This technique is used extensively in Sections 2 and 3.
Third, the Legendre transformation may be useful in the solution of
certain partial differential equations which may prove intractable
otherwise. Suppose we wish to establish the class of production
functions such that, under profit maximization, X,/X> is constant. Start-
ing from the set of functions

oF aF

ox, - @ and ax, d»
Xi_ki
X5 ko

This may appear to be rather intractable. However, by using the Legen-
dre transformation, this problem becomes
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3Glaq, _ ki
3Glagq: ki

with the general solution

G(q) = glkig\ + k2q2),

which has a well-known dual

rov= (w2

Another example is furnished by the partial differential equation

_(9F oF
Xi=h (3X1, 3Xz)'

By the Legendre transformation, this equation becomes

aG

- .-aa = fl(qlqu)’

which may be integrated. This technique is used in Section S.

We emphasize, however, that the Legendre transformations are pro-
cedures for studying expressions that are known to exist; they are not
meant to be substitutes for the fundamental existence theorems for the
dual functions, which are proved in Chapter 1.1 for the general case, and
in Sections 1.2 and 1.3 for the locally strongly concave case€.

1.5. Comparative Statics

We present some comparative statics results that can be obtained
directly by making use of the properties of normalized profit functions.

1.5.1. Increase in nominal price of output
() The optimal output is given by

* — — ’a_c;_
Y*=G(q.,Z) qaq(q,z),

9Y* _ < 3G day 293G o 3'G 3q
ap T dq« dp dp dq e 1 dqaq’ dp
1 2
, 9 G’q>0,

~p *aqaq
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Ed
3qaq’
is positive definite. Thus the effect of output price on supply is positive.

() aX%_ 9 _9G(q.7)
ap  9p q;

since

which is not definite in sign.

1.5.2. Increase in nominal price of a variable input

@ av* [ m ]
JZ
3 plagX Zaq.aqk aq,(q )
_ LIS azG_ ]
- p [;::1 3qi0Gx A |-

which is again not definite in sign, but equal in magnitude but opposite in
sign to 4 X*%/ap.

(i) X% 13*°G
—_—— o — <
aq’ p 9q° 0,

since
]
aqaq’

is positive definite. Thus, the own price effect of input price on demand
is negative.

(i) aX%_ 1 3°G _aX7

aq’* p 3qidq; 3q%’

by the twice continuous differentiability of G{(q,Z). This is the well-
known symmetry condition on cross-price effects.

(iv) By collecting these comparative statics results, we may derive, in
addition, that
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o~ Y aY*
. t'= —_ . <0’
kzi c?q”,-‘ q ap p
and
moo X aY*
> g% = Py -p>0

These results summarize the basic Hicksian Laws of Production.

(v) It is important to note a relationship between the Hessian matrices
~ of the production function and the normalized profit function. By
differentiating

3F _
ax ¥

with respect to q, treating X as implicit functions of g, we have

[ ] -
dqllaxasx'| 7

but
X _ __[ 3*G ]
aq éqaq'l

3’G _ _[ 3’F ]“
3qaq’ X aX’

Also, by differentiating dF/dX = q with respect to Z, we have

B AR
dZ 1l 0XaoX' aZ3X’ ’

[ °G ]=[ a’F ][ 3*F ]“
324q' aZaX'H aXaX'| -

or

ISee Hicks (1946, App.).
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1.6. Econometric Implementation

Because of the derivative property of the normalized profit function,
sometimes known as Hotelling’s (1932) Lemma, namely,

the normalized profit function is especially useful for the purpose of
econometric specification of supply and demand functions. With the
normalized profit function, it is not necessary to actually solve a profit
maximization problem. As long as one starts out with a normalized profit
function which satisfies Assumptions (G.1) through (G.7), one is assured
that the supply and demand functions obtained through differentiation of
G are consistent with profit maximization subject to a production
function and given normalized prices. In particular, since one is free to
choose the functional form of G(q,Z), one may choose a parametric
form that is most convenient from the point of view of econometric
estimation.

There are two other points worth mentioning. First, as McFadden has
stressed, convexity of the profit function is a consequence of profit
maximization and does not depend at all on the concavity of the
production function, so long as a proper profit function exists and is
attainable for at least one set of prices. Hence, if one is willing to
maintain the assumption of profit maximization, it is not necessary to
insist that the production function is concave. Second, for the purpose
of estimating the normalized profit function parameters, one should use
all of the stochastically independent supply and demand functions for
maximum efficiency. This in general entails, because of symmetry of
cross-price effects, restrictions across equations.

Finally, one should also add at this point that for many empirical
applications in which the observed range of normalized prices is a
compact and convex set, it may not be necessary to require that the
normalized profit function should satisfy Assumptions (G.1) through
(G.7) globally, that is, for all possible prices. It is in many instances
sufficient to have the Assumptions (G.1) through (G.7) hold locally
within a compact and convex set. As long as interest is focused on this
convex set, a normalized profit function, although not globally valid,
may nevertheless provide an adequate local approximation. In parti-
cular, one can often modify such a function so that it satisfies globally
the weak regularity conditions for normalized profit functions given in
Chapter I.1.
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-

O a\q

FIGURE 1

We shall illustrate the modification technique with an example.
Suppose that the normalized profit function has the form shown in Figure
1 - sloping downward all the way. This function is decreasing and convex
in g, but it is not non-negative as a normalized profit function should be. Itis
also defined for negative prices. One may modify this function so that

IT* is not defined for ¢q <90,
II*=0 for g=g.

With this modification, the normalized profit function satisfies the usual
regularity conditions (such as, for instance, those given in Chapter 1.1).
As long as the domain of interest is contained in the open interval (0, §)
this normalized profit function will serve just as well as other normalized
profit functions which satisfy the regularity conditions globally without
modifications of the type considered here.

2. The Structure of Normalized Profit Functions

2.1. The Case of a Single Output

For purposes of applications, it is useful to know what are equivalent
properties for the production function and the corresponding normalized
profit function. To this end, we state and prove several theorems relating
equivalent structures of production functions and normalized profit
functions.

Theorem II-1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous of degree k in X if and only if the
normalixed profit function is homogeneous of degree — (k/(1—k))
in q.
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Definition. A function is homogeneous of degree k in X if

F(AX,Z)=A*F(X,Z), for VA>0, VZER:, VX€ERT.

Proof: This follows directly from the dual transformation properties.
By Euler’s Theorem for homogeneous functions,

oF
z 2 X = kF. (I1-1)
Applying the dual transformation, equation (II-1) becomes
Saii=r(c-Fa)
Therefore,
k
2 4% = ~T=n

Hence, by Euler’s Theorem, G is homogeneous of degree —k/(1— k) in
q. The converse is proved similarly. Observe that the case k = 1 violates
the local strong concavity assumption. Q.E.D.

Corollary 1.1. Under Assumptions (F.1) through (F.7), and homo-
geneity of degree k of F(X,Z) in X,

Y*=(1-k)'G,
and

_ k
=Pan°

where C* is the profit-maximizing cost of the variable inputs.
Proof: By the dual transformation

Y*=( Em: q; aq,)
k

(l—k)

=(1-k)'G

PR oG k
C*—P;q‘( 3q.) P(l )G- Q.E.D.

=G +———=
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This corollary implies that for a homogeneous production function the
profit-maximizing output 1s proportional to normalized profit. In other
words, profit-maximizing revénue is proportional to profit-maximizing
profit. Likewise profit-maximizing cost 1s also proportional to profit-
maximizing profit. These are clearly testable consequences of the

homogeneity assumption.

Corollary 1.2. Under Assumptions (F.1) through (F.7), the derived
demand functions are homogeneous of degree — 1/(1— k) in q if the
production function is homogeneous of degree k in X.

Proof: This follows directly from the fact that the demand functions
are derivatives of the normalized profit function, which is homogeneous

of degree —(k/(1— k)). Q.E.D.

The concept of homogeneity has been generalized by Shephard (1953
and 1970) to that of homotheticity. We give a definition that is closely
related but slightly different from his.

Definition. A function is homothetic in X if it can be written in the
form

F(H(X,Z).Z),

where for each Z€ R", F is a positive, finite, continuous and
strictly monotonic function of one variable H with F(0,Z)=0, and
H is a homogeneous function of degree one in X.

An important property of homothetic functions is the following:

Lemma II-1. A function with strictly non-zero first partial deriva-
tives is homothetic in X if and only if the ratio of each possible pair
of first partial derivatives with respect to X is a homogeneous
function of degree zero in X.

This lemma is proved in Lau (196%9a) and will not be repeated here.
Based on Lemma II-1, we state and prove the following theorem:

Theorem II-2. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X if and only if the normalized profit

function is homothetic in q.
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Proof: For a homothetic production function the first-order necessary
conditions for a maximum imply that

dF|9H 3H[aX: _ a;
dF|6H 8H[eX, q!

By homotheticity, the left-hand side of the equation is homogeneous of
degree zero in X. One may therefore rewrite the left-hand side as
functions only of Xi/X,. Our Assumptions (F.1) through (F.7) are
sufficient to ensure that the (X;//X,)’s may be solved uniquely as
continuously differentiable functions of (qi/q1)’s,

Xi _ 4 (qz 4 qm ) -
~ - Ji ﬂ’—a“-,—’z ’ V!,
X f qd: q q,

which by using the dual transformation yields

Vi

3Glaq ‘(qx’q|’"’q1’ )
Since the ratios of the first partial derivatives of G with respect to q are
homogeneous of degree zero in q, G is homothetic in g by Lemma II-1.
The converse is proved similarly starting from

5GIaH aH[dq; _ X,

Q.E.D.

The next theorem shows the effect of changing the scale of measure-
ment of output (or, as some authors prefer it, the level of technical

efficiency):

Theorem II-3. Let Y = F(X,Z) and IT* = G(q,Z) be a production
function satisfying Assumptions (F.1) through (F.7) and its con-
jugate normalized profit function, respectively. Then for any A >0,
if the production function is given by Y = A F(X,Z), the normalized
profit function is given by II* = AG (q/A,Z)."

Proof:
* = max{AF(X,Z) - q'X}
= A max{F(X,Z)— q'/AX}
= AG(q/A.Z). Q.E.D.

This theorem is proved in Fenchel (1953, pp. 93-94); see also Chapter L.1, Table 2,
composition ruie 1. This theorem is a special case of Theorem 28 in Chapter I.1.
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The next theorem shows the effect of a translation of the origin:

Theorem II-4. Let Y = F(X,Z) and IT* = G(q,Z) be a production
function satisfying Assumptions (F.1) through (F.7) and its con-
jugate normalized profit function, respectively. Then for any
constant Y > 0 and constant vector X > 0, if the production function is
givenby Y = Y + F(X + X,Z), the normalized profit function is given
by IT1*=Y + G(q,2)+q'X."”

Proof:
* = m)?x{? + FX+X,2)-¢X}
= ¥ + max{F (X*,2)~ q'X* - X)}
=Y +qX+ n;a}x{F(X*,Z) - q'X*}
=Y+G@gZ)+q¢X. QED.

Theorem II-5. Under Assumptions (F.1) through (F.7), let the sum
.of production elasticities be given as

S dln F
6—; alnX,-’

then

alnG= o1 dIn F
dIngq; (1-€)dInX;

Proof: By the dual transformation,

G_
—P,— = (1 é).
Strong concavity implies that € < 1. Thus,
dlnG _ q 3G
dlngi G aq,
_ aFlaX;
- (1 _e)F( Xi)v

UThis theorem is proved in Fenchei (1953, pp. 94-95).
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by the dual transformation. Thus,

dlngg, (1-e€)dlnX;

dlnG _ 1 lnF Q.ED.

Corollary 5.1. Under Assumptions (F.1) through (F.7), let the sum
of normalized profit elasticities be given as

_wdlnG
"_,Z.ralnq,-’
then
dIinF _ 1 4InG Q.ED.

alnX,-— _(1—7])6 lnq,-'
Proof: Identical to the theorem.
Corollary 5.2. Under Assumptions (F.1) through (F.7),

1elog
€ 7

Proof: By the theorem,

«dlnG_ 1 &dlnF
,anlnq,-‘ (1-—e),-zlalnx,-
(1-e)
=n.

Thus,
— €=M — 7€, T+ € = 7€

Dividing through by ne, we obtain
1 1
—+—=1. EB.D.

g 1 Q.ED
Theorem II-5 shows how estimates of production elasticities may be
derived given the estimates of the normalized profit elasticities and vice
versa.
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Theorem II-6. Under Assumptions (F.1) through (F.7), a homo-
geneous production function of degree k in X, 0<k <1, is separa-

ble with respect to a commodity-wise partition in X if and only if
the normalized profit function is also separable price-wise in q.

Proof: Homogeneity implies that F(X,Z)= H(X,Z), where H is a
homogeneous function of degree k in X. Separability implies that

3 ((BH|3X)(X,Z)\ _ .. .
% (GHOED) = Yk 12k
which in turn implies that (aH/9X;)/(dH/3X;) is a function of only Xj, X;
and Z. Homogeneity implies that this function is homogeneous of degree
zero. Thus, one has

qi _ 0H/3X;

= hr'j (Xl’*XJ’Z)

- no(Za2)

If this equation can be solved for X;/X; as a function of gi/q; and Z, then
it follows immediately by a dual transformation that (3G/dq;)/(8G/ag;) 1s
independent of g,k # i,j. But Assumptions (F.1) through (F.7) are sufficient
to guarantee that X,/X; are continuously differentiable functions of q.
Thus, the function (X;/X;) exists and we conclude that G is separable
price-wise.

The converse of this theorem may be proved in a similar manner by
observing that G is also homogeneous by Theorem II-1. This completes the

proof. Q.E.D.

Corollary 6.1. Under Assumptions (F.1) through (F.7}, a produc-
tion function homothetic in X is separable commodity-wise in X if
and only if the normalized profit function is separable price-wise

in q.

Proof: This follows directly from Theorems II-3 and 1I-6, and Lemma
II-1. Q.E.D.

We need the following lemma to prove a generalized version of
Theorem I1-6 which applied to production functions in which the inputs
may be grouped into several categories, such as capital and labor, each
of which may consist of capital and labor of many different kinds.
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Lemma II-2. A strongly separable function is homothetic if and
only if each category function (or quantity index) is homogeneous
of the same degree, or it is a function of products of homogeneous
category functions.

This lemma implies that if Y is strongly separable, that is, if
v=F(3 X' (Xitsr X))
i=1

then Y is homothetic if and only if either each X' is homogeneous of the
same degree or Y = F(II 2, X'(Xi....,Xi,Z)), where each X' is homo-
geneous (not necessarily of the same degree). This is proved in Lau
(1969a). We omit the proof.

Theorem H-7. Under Assumptions (F.1) through (F.7), a produc-
tion function is additively separable with respect to the commodity
categories if and only if the normalized profit function is additively
separable with respect to the corresponding price categories.

Proof: Additive separability implies
Y = 2 X Xityeees Xino L)
It is easy to see the maximization of
pP*= Y"g Z: q;; Xij

results in demand functions for X;’s which depend only on the normal-
ized prices of the commodities of the ith category and Z. Thus G(q.Z)
must also be additively separable in q. The converse is proved

similarly. Q.E.D.

Theorem IT-8. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous and strongly separable with respect to
the commodity categories if and only if the normalized profit
function is homogeneous and strongly separable with respect to the
corresponding price categories.

Proof: Homogeneity follows from Theorem II-1. The first-order
necessary conditions for a maximum require that
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aFaX, _8X'aX
aFIaX;, 3aX'aX;
N Xir(XiI’---inn,- L) L T
- Xi(le,---inn,-,Z)_-q_j;’ i#j Lj=1,....m,
_ X U Xl X e r Xind Xi1 o) 5= n
X1, Xl Xp2Z) e
by zero degree homogeneity. Note that there exists n;+n;—1 in-
dependent equations for each pair (ij) in the n;+n;—1 unknown
X/ X;'s and X;/X;’s. Moreover, from Lemma I-2, the optimal factor
proportions are continuously differentiable function of only g;/g;;’s and
ag;/aj’s. Hence one has

d ..
B'CE(X,‘JX”) = 0, k# L],
which implies also that

L (XX =0,  k#ij (11-2)
3G

On applying the dual transformation, equation (II-2) becomes

_a_(aG/aQIr) — k# i,.is i’jvk = lv--um’
dqi \0Gl3q;s ’ r=1,.,n, s=1l..,n t=1,.,m

Hence G is strongly separable. The converse is proved similarly.
Q.E.D.

Corollary 8.1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic and strongly separable if and only if the
normalized profit function is homothetic and strongly separable.

Proof: Homotheticity follows from Theorem II-2. Otherwise essen-
tially the same proof of the theorem suffices. Q.E.D.

Note the crucial role of the homogeneity of each category function.
Otherwise it will not be possible to express X;/X; as a function of only

{ql'tsqit }‘

Definition. A function is said to be homothetically separable if it is
weakly separable and each category function is homothetic. (Note
that the function itself need not be homothetic.)
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We now introduce Lemma II-3, which is also proved in Lau (1969a).

Lemma II-3. A homothetic and weakly separable function is
homothetically separable.

Theorem II-9. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetically separable if and only if the normal-
ized profit function is homothetically separable.

Proof: The first order necessary conditions are

axi/aXir _ Xi(la“'axin‘»/Xil,Z) _ .g_'L
aXoX; X{(l,---,XinI/Xn,z) qit

Thus by an argument similar to that in previous theorems one has

__3___ aG/aq") _ . .
EPR (aGlaq.-s =0, j#i, Vns.t

, r= 2,..-,",‘.

The converse is proved similarly. Q.E.D.

Corollary 9.1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic and weakly separable if and only if the
normalized profit function is homothetic and weakly separable.

Proof: This follows from Lemma II-3 and the Theorem 1I-9. Q.E.D.

Theorem II-10. Under Assumptions (F.1) through (F.7), a produc-
tion function and its normalized profit function are strongly sepa-
rable (but not additively separable) with respect to the commodity
categories and thé corresponding price categories respectively only
if they are homothetic.

Proof: Strong separability of both F and G implies
¥ = F (3 X X X))
=1
and

m*=G (2 Q'(@n-dinsD))
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Now

3FlaX, X U Xty s XinpZ) (11-3)
3F/3X,5 X'i(X“,...,Xjnivz)'

Applying the dual transformation to equation (II-3), we have

g _ X(~ 8Gl3qi,..., — 3G/9q i, L) (I1-4)
CIjs XJS(— aG/aql'ly'"s_ aG/aqm"Z).

Differentiating both sides of equation (II-4) by qu k+# i,j, and observing
that

°G
3Gird0qu:

= G"Q;Q1,
equation (II-4) becomes
XIS XiG'QiQk - Xi X XirG"QiQ: =0. (I1-5)
1=1 I=1

Now G" # 0, otherwise the production function is additive in the X‘'s by
Theorem II-7. which is ruled out by hypothesis. Moreover, observe that

G’Q} = — Aj.
Hence, equation (I1-5) becomes, after multiplication by G'|G"Qf,

o 0 (X, o (XD
12=! X (X's) Xi’+,§=:, 80X, (X{:) Xi=0.
By Euler’s Theorem, (X'/X}) is homogeneous of degree zero in X,

Vijrs. By Lemma 1I-1, F is homothetic, and by Theorem JI-1, G is also
homothetic. Q.E.D.

Note that by Lemma II-2 then, the X;’s are either homogeneous of the
same degree or are logarithms of homogeneous functions.

Theorem II-11. Under Assumptions (F.1) through (F.7), a produc-
tion function and its corresponding normalized profit function are
both weakly separable only if they are both homothetically sepa-
rable.

Proof: Let the production and normalized profit functions be

Y = F(XI(XIls'--lean)a---,Xm(Xm19---9anm,Z)yZ)’
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and
H* = G(Ql(q1Ir--sQIn,aZ),---,Qm(Qml,---,anm’Z)sZ)-
It is necessary to show that each X' and hence each G’ is homothetic.
The proof is strictly analogous to that of Theorem II-10. Applying the
dual transformation to the first-order necessary condition, one obtains
air _ X:(— 3G/5qis,-.., ~ 3G|3q i) (I1-6)
qis X(—3Glagu,...,— 8G/3q, L)
Differentiating both sides of equation (II-6) by g;, j# i, we have

P g 3’G PO 3°G \ _
X 121 Xﬂ( 3q,—,6,~,) X rlz:l Xﬂ( qu'laqi:) =0 (I11-7)

For a weakly separable normalized profit function
G 0i 3G _
34:0q; 19Q'9Q’

Hence, equation (II-7) becomes

Q{ = Qf'Gij'Qf-

> (xxh- XXX (2) 0 =0,

Now, Gi#0 and G;# 0, the latter because of weak (but not strong)
separability. Therefore,
o 3 (X! B
=1 0.Xa (Y's) Xa=0.
By Euler’s Theorem, (X;/X ) is homogeneous of degree zero, Vr.s. By
Lemma II-1 each X' is homothetic. By Theorem II-9, each Q' is
homothetic. Q.E.D.

These theorems are useful in specifying technologies with multiple
variable input categories. They also have application in aggregation, in
the construction of quantity and price indices and in the analysis of
organization and information structures.

It should be noted that homogeneity, separability and other similar
properties of the normalized profit function considered here may be
alternatively deduced through the cost function by utilizing the general
composition rules for cost functions in Theorem 9 in Chapter 1.1 along
with direct arguments on maximization of Y — C(Y,q,Z) where C is the
cost function. Here we have relied primarily on the Legendre trans-
formation because the proofs are more direct and immediate. Of course,
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the proofs only apply under conditions which allow the use of the
Legendre transformation, for example, under Assumptions (F.1) through
(F.7) on the production function.

2.2. Structures Involving Fixed Inputs

Thus far we have not examined structural properties which involve the
fixed inputs Z. Normalized profit functions with fixed inputs are some-
times referred to as normalized restricted profit functions [see Lau
(1976a)]. To analyze structures involving fixed inputs, we introduce the

concept of almost homogeneity.

Definition. A function F(X.Z) is almost homogeneous of degrees
k, and k, in X and Z, respectively, if

F(AXA%Z)=AF(X,Z), va>0." (11-8)

The economic interpretation of an almost homogeneous production
function is the following: if a set of inputs X is increased by the same
proportion and another set of inputs Z is increased by some power of
that proportion, then output Y will be increased by another power of
that proportion. In the special case that k; = k,=1, we have constant
returns to scale in all inputs.

It will be shown that an almost homogeneous function satisfies a

modified Euler’s Theorem.

Lemma II-4. A continuously differentiable function is almost
homogeneous of degree k; and k; if and only if
i oF - oF

2 ox; Xtk 257

Z, =k F(X,Z). 11-9)
Proof:
Necessity. If F(X,Z) is almost homogeneous it satisfies equation (II-8).
Differentiation of equation (II-8) with respect to A yields
i aF =~ dF

A 9 kL7 = k-1
Y ax Xtk 2 5z A Zi= kAN FRD).

1Qee Aczel (1966, Ch. 7) for a discussion of almost homogeneous functions. Lau (1972)
defines almost homogeneity in a slightly different manner.
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This must hold identically for all A > 0 and in particular for A = 1. Hence

oF oF
zax X + kzzaz -Z; = k,F(X,Z).

1

Sufficiency. Suppose F(X,Z) satisfies equation (II-9). We note that
6F aF 1 Z“kz

3Z; aZ‘ 2k, ’
one may therefore rewrite equation (II-9) in the form

3 S5 Xi+ 3 5o 2= kF (X.2).

Thus, by Euler’s Theorem, F must be homogeneous of degree k, in X
and Z"*2. In other words,

F(X.Z)= H(X,Z"),
where H is homogeneous of degree k;.

F(AX,A%Z) = H(AX,(A“Z)")
=HA\X,AZVk
=AMF(X,Z). Q.ED.

Theorem II-12. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous of degree k in all inputs, variable and
fixed, if and only if the normalized restricted profit function is
almost homogeneous of degrees —1/(1 — k)and —k/(1 - k)if k# 1,and
homogeneous of degree one in Z if k= 1.

Proof: By Euler’s Theorem,

2 X+2 Z; = kF.

By a dual transformation, one has

R ase 2z it (O Fats)

di I
which simplifies to
k

m 3G 1| &G, .
25" B2z %4= T-nd i k1
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or to
n G .
—Z; = if k=1.
35z
The converse is proved by retracing the steps. Q.E.D.

Note that k > 1 implies increasing returns to scale in all inputs. For the
purpose of this theorem k may be either greater than or less than one.

Corollary 12.1. Under Assumptions (F.1} through (F.7), a produc-
tion function is homogeneous of degree k in Z, k > 0, if and only if the
normalized restricted profit function is almost homogeneous of
degrees 1 and 1/k.

Proof: By Euler’s Theorem,

n9F
;-éz-z[—kF.

By a dual transformation, one has

m G 1 &G .,

Thus, G is almost homogeneous of degrees 1 and 1/k. The converse is
proved similarly. Q.E.D.

Corollary 12.2. Under Assumptions (F.1) through (F.2), and
homogeneity of degree k, k# 1 in all inputs, the derived demand
functions are almost homogeneous of degrees —1/(1—k) and
—kf(1 - k).

Proof: This follows from differentiating the next to the last equation
in the proof of the theorem. Q.E.D.

Next we wish to characterize the normalized restricted profit function
corresponding to a homothetic production function. A production
function is homothetic in X and Z if it can be written in the form

Y = F(H(X,Z)),

where F is a positive, finite, continuous and strictly monotonic function
of one variable with F(0)=0 and H is a homogeneous function of
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degree one in X and Z. Homogeneity of H implies that H(0,0)=0. If
F(-.,) is non-negative and strictly monotonically increasing on RY X R,
then one can always choose F and H such that F(-) and H(-,") are both
non-negative and strictly increasing on the non-negative real line and
R7T x R", respectively. Monotonicity of F(.,.) implies that F(-} and H(.,.)
must be monotonic in the same direction. Subject to the convention that
H(-.-) is strictly increasing on R7 X R%, Euler’s Theorem requires that
H(-.,”) be non-negative on RT x R". Thus both F(-) and H(-,-) can be
chosen to be non-negative and strictly increasing on R, and R xR",
rgspecuvely. Given F(0) = 0, this implies that F(-) will be non-negative on
R..
We introduce Lemma II-5:

Lemma II-5. Under Assumptions (F.1) through (F.7), a production
function is homothetic in X and Z if and only if

- dF 5 oF
2 ox Xi+ 257 Zi = f(FX.2),

where f is an arbitrary, finite, non-negative function of a single
variable with f(0) =0, continuous on R, and continuously differen-
tiable on R,.

A proof of a similar result is available in Lau (1969a). We omit the
proof.

Theorem II-13. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X and Z if and only if the normalized
profit function satisfies the equation

: G,
Sate 2z e e-2ats) (-10)

where f is an arbitrary, finite, non-negative function of a single
variable with f(0) =0, continuous on R. and continuousty differen-

tiable on R,.

Proof: The proof is immediate using Lemma II-5 and the dual trans-
formation
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aF _ oF _ 3G

ax. I 8z 3z
G - G

X, ===, FXZ)=G- ;= .E.D.
aq; X.Z) Z: q aq; Q

There remains the question of a nomenclature for the class of
functions defined by equation (I1I-10). We know from Theorem II-12 that
homogeneous functions are dual to almost homogeneous functions. We
shall refer to functions satisfying equation (II-10) as partially homothetic
functions.

Theorem I1-14. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetically separable in X, that is,

Y = F(H(X),Z),

where H is a homogeneous function of degree one if and only if the
normalized restricted profit function is homothetically separable,

that is,
IT* = G(H*(q),Z),

where H* is a homogeneous function of degree one.

Proof: This follows from Theorem II-2. Q.E.D.
Corollary 14.1. Under Assumptions (F.1) through (F.7), a produc-
tion function has the form

Y = F(H(X).f(2))

where H is a homogeneous function of degree one if and only if the
normalized restricted profit function has the form

IT* = G(H*(q).f(Z)),

where H* is a homogeneous function of degree one.
Proof: Obvious. Q.E.D.

Coroliary 142 Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X and Z and weakly separable in X
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and Z if and only if the normalized restricted profit function is
partially homothetic in q and Z and weakly separable in q and Z.

Proof: By Lemma II-3, homotheticity and weak separability of
F(X.,Z) in X, Z implies that

Y = F(H(X),HAZ)),
where F(H,,H;) is homothetic in H, and H, and H, and H, are
homogeneous functions of degree one. By Corollary 14.1,

I1* = G(H #(X),Hx(2)).

Partial homotheticity follows from Theorem II-13. The converse is
proved similarly. Q.E.D.

Theorem II-15. Under Assumptions (F.1) through (F.7), a produc-
tion function and its corresponding normalized restricted profit
function are both separable in X and q respectively only if either
they are homothetically separable in X and q respectively or they
are additive.

Proof: The first-order necessary conditions for maximization imply
that

IF19X; _ 3flaXi(X,,-.. Xm) _ Qi
3FIaX; oflaXi(X,....Xm) G

By a dual transformation this becomes

fit—38G/3qy,...,— 3GI3G,) _
fi(-aGlaqi,....~3Glog.)  a;

Differentiating this equation with respect to Z,, we obtain

3’G 3°G \ _
Ji Z fu (_ afhazk) —fi Z i (_ BQzBZk) =0. (-11)

Since G is separable [IT* = G(g(q).Z)],

3’G_ _ 3G ag
3q0Z, 93898Z; 3q

We know X = —3G/ag-dg/aq. Thus, equation (II-11) becomes
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fi 21: fuXi—f; 2: fiXi =0,

or f(X) is homothetic.
An exceptional case arises if Gy =0, Vk. Then

G(q.Z) = g(q) + h(Z),
and then by Theorem 11-4,
F(X.Z)=fX)+h(Z). QE.D.

Additional results on the structure of normalized restricted profit
functions can be found in Lau (1976a).

Based on these theorems, one can specify G(q,Z) depending on the
assumptions one wishes to impose on the underlying technology. As
seen in Lau (1969c), it is generally difficult to obtain closed form
solutions for the normalized profit function for even simple technologies
when some inputs are fixed. With the device of the normalized restricted
profit function, this problem of specification is circumvented. Nonethe-
less, we are assured that the resulting system of conditional supply and
demand functions may be derived from an underlying neoclassical
technology and that all the empirically relevant assumptions have been
incorporated.

3. Extensions to Multiple Outputs
3.1. Introduction

A natural extension of the concept of profit functions is to the case of
multiple outputs. This has been accomplished by McFadden (1966). Here
we shall point out certain special properties of multiple output profit
functions as well as derive several theorems on the structure of such
functions. Our results may be further extended to include technologies
in which the same commodity may be used either as a net input or a net
output, depending on the market prices. Such technologies are not
infrequently found. An example is the purchase and sale of farm-
produced fertilizers by agricultural households. Further examples are
‘those of international trade. and the purchase and sale of new and used
equipment. The advantage of this approach is that there need be no
arbitrary partition of commodities into inputs and outputs.
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The theory of the multiproduct firm has been analyzed by Mundlak
(1964). The properties of profit functions have been studied by McFad-
den (1966), Diewert (1973a) and Jorgenson and Lau (1974a and 1974b).
Christensen, Jorgenson and Lau (1971 and 1973) have aiso made an
empirical application to the U.S. economy. In addition, Hall (1973) has
approached the problem from the point of view of joint cost functions,
using a generalization of the Generalized Leontief cost function due to
Diewert (1971). The basic duality concepts which underly all these
studies may be traced back to the pioneering work of Shephard (1953).

For a multiple-output, multiple-input firm, there is no natural
numeraire commodity, such as the single output, to define the produc-
tion function representation of the technology. Following Jorgenson and
Lau (1974a and 1974b), we shall adopt the convention of choosing as our
left-hand-side variable for the production function a variable input
which is non-producible. In addition, every commodity is measured as if
it were a net output. Thus, a net output is always non-negative. A net
input is always non-positive. For the purposes of this paper we maintain
the artificial distinction between a set of commodities which are net
outputs and the set of commodities which are net inputs.” A more
general treatment should allow a commodity to be either a net output or
a net input depending on the prices and fixed factors.'

Let X,.1 be the quantity of the left-hand-side variable and non-
producible net input, Y; the quantity of the ith net output, i = 1,...,n, and
X; the quantity of the ith net input, i =1,....m. By convention then
X,=0,X;,=0,Vi, and Y; =0, Vi The production function is given by

= - Xm+1 = F(Y’X)’

the minimum value of L for given values of Y and X such that the
production plan (Y, X,— L) is feasible.

It is assumed that F(Y,X) possesses certain properties, which paraliel
similar properties of the single-output case:

(F*.1) Domain. F is a finite, non-negative, real-valued function
defined on R} X R™-F(0,0) = 0.

(F*.2) Continuity. F is continuous on R%x R™.

“This actually involves little loss in generality since the functional consequence of an
output and an input being the same ‘“‘commodity™ is that they are two products whose
prices are in fixed proportions in the market.

“See Chapter 1.1 and Jorgenson and Lau (19742 and 1974b).
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(F*.3) Smoothness. F is continuously differentiable on R} X R”,
and the Euclidean norm of the gradient of F with respect to Y and
X is unbounded for any sequence of Y, X in R X R” converging to
a boundary point of R X R™.

(F*.4) Monotonicity. F is non-decreasing on R" x R™ and strictly
increasing on R X R”.

(F*.5) Convexity. F is convex on R x R™ and locally strongly
convex on RI X R”.

(F*.6) Twice Differentiability. F is twice continuously differenti-
able on R1 X RZ.

(F*.7) Boundedness.

lim FAY.AX)_

A =D A ’

We note that one consequence of our domain assumption is that for
any given vector of net inputs X, any vector of net outputs Y may be
produced with an appropriate choice of L. In other words, any one of
the net inputs X may be indefinitely substituted by L. This is admittedly
a restrictive assumption. For example, the technology represented by

VY XER"XR"YX#0.

- [ortre]
Yi+Y: X
violates our domain assumption, for if Yi+ Y3>~-X, L is negative.'’
However, as indicated in Section 1.3, it is a relatively straightforward
matter to introduce a more restrictive domain assumption and make
corresponding changes in the assumption on G. We therefore maintain
our domain assumption as it stands for the sake of simplicity of

exposition.
The normalized profit function is given by

G(p.q) = su)?{p’Y +¢'X - F(Y.X)IY.XE€ R xR},
Y.

where p and q are respectively the normalized prices of Y and X in
terms of L. The corresponding properties of the normalized profit

""This example is due to Daniel McFadden.
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function are:

(G*.1) Domain. G is a finite, positive, real-valued function
defined on R? X RY.

(G*.2) Continuity. G is continuous on R{ x RY.

m

(G*.3) Smoothness. G is continuously differentiable on R X RY,
and the Euclidean norm of the gradient of G with respect to p and q
is unbounded for any sequence of p, q in R7 X RY converging to a
boundary point of R7 x RT.

(G*.4) Monotonicity. G(p.q) is strictly increasing in p and strictly
decreasing in q on R7 X RY.

(G*.5) Convexity. G(p.q) is locally strongly convex on R{ X RY.

(G*.6) Twice Differentiability. G(p,q) is twice continuously
differentiable on R x RT.

(G*.7) Boundedness.

im GARAQ _ gy ae R xR

A= A ?

It can be proved that Assumptions (F*.1) through (F*.7) imply
Assumptions (G*.1) through (G*.7) and vice versa. The proof closely
parallels the arguments used earlier in the single output case. We omit
the proof. Properties of profit functions under more general conditions

are derived in Chapter I.1.
As in the single output case, the Legendre transformation also holds in

this case. with the following dual relationships:

oF _ aG _
Yo P op v
aF _ 3G _
X% 3q
F+G=pY+(dX
aF aF 3G aG
= W-Y + ﬁ-x; = p'a;‘i' -a—q-



Applications of Profit Functions 173

These dual relations may also be used in the study of relationships
between classes of production functions and normalized profit functions.

3.2. Homogeneity and Separability

In the case of a multiple output and multiple input production function,
the ordinary concept of homogeneity of the production function needs
to be modified. Intuitively, we want to say that a production function is
in some sense homogeneous of degree k if, when all net inputs are scaled
by the same proportion A, A >0, all net outputs are scaled by the same

proportion A* In other words, if
L = F(Y.X),

then
AL = F(A*Y.AX),

or
F(A*Y.AX) = AF(Y X).

This corresponds precisely to the concept of almost homogeneity
introduced in Section 2.2. The production function is almost homo-
geneous of degree 1 and k."

Theorem III-1. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous of degree 1 and Kk,
k <1, in outputs, if and only if the normalized profit function is
homogeneous of degree 1/(1— k) in the normalized output prices.

Proof: By Lemma II-4 almost homogeneity implies
& oF o dF o _
k Z. 3Y Y: + 2} aX‘_-X,- = F(Y.X).
By a dual transformation, this equation becomes

& G > 9G _ _ 029G 5 9G
k;piap;+EQi6qf_ G+.2=‘18p.-p‘+2 ;s

"Nothing requires that the scale effects be uniform. One may in fact have

FAMY, A2Y5,... AMY,:AX) = AF(Y X).

This is a straightforward generalization of almost homogeneity.
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or
] ap, (1 -k)

The converse may be proved by retracing the steps. Q.E.D.

Coroilary 1.1. Under Assumptions (F*.1) through (F*.7), and al-
most homogeneity of degrees 1 and k,

* =
R*=2 G
and

k
* =
C == °

where R* is the profit-maximizing normalized revenue and C* is the
profit-maximizing normalized cost.

Proof: This follows from the last equation in the proof of the
theorem. Q.E.D.

Corollary 1.2. Under Assumptions (F*.1) through (F*.7) and al-
most homogeneity of degrees 1 and k, the derived supply functions
of the outputs are homogeneous of degree 1/(1 — k) in p.

Proof: These follow from the properties of partial derivatives of
homogeneous functions. Q.E.D.

Lemma IIT-1. Under Assumptions (G*.1) and (G*.5), the profit
function,

II(p*.q*.w) = wG(p.q),
is homogeneous of degree k in p* if and only if it 1s homogeneous of

degree (1 — k) in q* and w.

Proof: It is well-known that II(p*,q*,w) is homogeneous of degree
one in all prices. Hence

all Il
Zp, ap, Zq?‘ 6q?‘+ wa—w—H.

=1
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By hypothesis, IT is homogeneous of degree k in p*. Thus

z all d all oIl
2 pi = k=1 29 5 Y

which simplifies to

The converse is proved similarly. Q.E.D.

Corollary 1.3. Under Assumptions (F*.1) through (F*.7), the
production function is almost homogeneous of degree 1 and k if and
only if the profit function is homogeneous of degree —k/(1—k) in

the input prices.

Proof: This follows directly from the theorem and Lemma III-1.
Q.E.D. .

With multiple outputs and inputs a technology is said to be separable
in outputs and inputs if there exist functions f(-) and g(-) such that

f(Y)-gX,L)=0.

In terms of our particular representation of the production function, it is
equivalent to

L = F({(Y).X).

We shall work with separability in this form. _
A profit function, IT(p*.q*,w) is said to be separable in outputs and
inputs if it can be written in the form

I(f(p*).g(q*,w)).

Lemma HI-2. Under Assumptions (F*.1) through (F*.7), a sepa-
rable production function is almost homogeneous of degree 1 and k
if and only if it can be written in the form

L = H\(HxY).X),

where H, is a homogeneous function of degree one in H> and X and
H, is a homogeneous function of degree 1/k.
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Proof . Almost homogeneity of F(f(Y),X) implies that

mn

2 L/ Y+§_:———X F

This 1mphes that

m

F(FX) - (aF6X)(fX)- X,
af Y - i=1
7y, 1 kKQ@FaN(X)

h

i

But the left-hand side is a function of Y only. Thus one must have

n af _
; 3Y, Yi - g(f)'
By Lemma II-5. f is homothetic. Without loss of generality, one may
assume that f is homogeneous of degree 1/k. making necessary accom-

modations in F(f.X). Thus

n af
,21 aY; Y=y f )
Substituting this into the original differential equation we obtain
- oF
af f i=1 aX X F

that is, F is homogeneous in f and X. [t may be verified immediately that
H(H A Y),AX) = AH(HY),X). Q.E.D.

Lemma III-3. Under Assumptions (G*.1) through (G*.7), a profit
function is weakly separable if and only if it can be written in the

form
I = H(H(p*),H:(q*,w)),

where H, H,, H, are all homogeneous functions of degree 1.

Proof: I(f(p*),g(q*,w)) is homogeneous of degree one in p*, q*, w.
Thus

or
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T ¥ (agloqt)at + (aglaw)w)
257l = (@TITaD) '

And II(f(p*),g(q*,w)) may be chosen so that it is a homogeneous
function of degree one of two homogeneous functions of degree

one. Q.E.D.

Corollary 3.1. Under Assumptions (G*.1) through (G*.7), a profit
function is weakly separable if and only if the normalized profit
function can be written in the form

G = H(H\(p).g(q)),

where H and H, are homogeneous functions of degree one.

Proof:
G - H(Hl(p*)’H2(q*9w))
w
- p(He) LECWR)
w w
= H(H,(p),H2(q.1))
= H(H(p).g(q))-

The converse is obvious. Q.E.D.
We refer to such a normalized profit function as separable.

Corollary 3.2. Under the Assumptions (G*.1) through (G*.7), a
profit function is separable in the input prices if and only if the
normalized profit function can be written in the form

G = H(p.f(@)),

where H is a homogeneous function of degree one in p and f.
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Proof: We apply Lemma III-3, treating the price of each output as a
separate group. Q.E.D.

Separability of the profit function implies that the optimal output
proportions are independent of input prices and vice versa.

Theorem III-2. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous of degree 1 and k and
separable if and only if the normalized profit function is homo-
geneous of degree 1/(1—k) in p and separable.

Proof: Almost homogeneity is equivalent to homogeneity by Theorem
III-1. By Lemma III-2,

aLIaY; _ (GH,aY)(Y) _p;
8L[3Y; (aHY/aY)(Y) p/

where H, is homogeneous of degree 1/k. Then by the now familiar
argument, (3G/ap;)/(3G/ap;) is independent of q;, Vk.
Also by Lemma III-2, *
BL _3H: o _
GX,- - 3)(, (HZ!X) = 4g;
But H, is homogeneous of degree one which implies that aH,/3X; is
homogeneous of degree zero. Thus,

(K K)o o
ax, \VH R, qi, N

Xi/H, may be solved as functions of g alone. Hence Xi/X; or
(8G/3q:)/(8G/aq;) is independent of p. Thus, we have shown that IT* =
G(f(p).g(q)), where G is in addition homogeneous of degree 1/(1—k) in
p- By Euler’s Theorem,

G <~ of 1
Zydp=-—r-q
f B P T a—n

By the usual argument, one can choose

"ﬁ . 1
2P =i ¢
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Therefore,
dilinG =1
3dInf ’
or

InG =1inf+ h(g).
Thus, one has
G = H](p)l/(l_k)g*(q)’

and hence G is separable.
To prove the converse, note that separability of the normalized profit

function implies, by Lemma III-3, that it has the form

G = H(H{p).g(q))-
Homogeneity of G of degree 1/(1—k) inp implies that

oG ., _ 1
‘b?I‘]‘Hl —_(l—k) G.

Hence

G(p.q) = Hi(p)""“g*(@).
It then follows from homogeneity of H(p) by the usual argument that
(aF/9Y)/(3F|3Y;) is independent of X. Almost homogeneity of F follows
from homogeneity of G(p,q) in p. Q.E.D.

Corollary 2.1. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous and separable if and
only if the profit function can be written in the form

(p*,q*,w) = Hi(p*)"" "V Ha(q*,w) """

Proof: This result is obtained by straightforward substitution.
Q.E.D.

Theorem III-3. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in outputs if and
only if the normalized profit function is homothetically separable in

output prices.
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Proof: By hypothesis, L = F(H(Y),X). Thus,

8H|3Y: _ pi

oH|3Y; p;
Hence the optimal output ratios, (8G/ap;)/(dG/dp;) may be solved in
terms of (pi/p;)’s alone. Moreover, they are homogeneous of degree zero

in p. The normalized profit function is therefore homothetically sepa-
rable in output prices. The converse is similarly proved. Q.E.D.

Theorem III-4. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in inputs if and only
if the normalized profit function is separable in input prices, that is,
has the form

G= g(q)g*( g?q))-

Proof: Homothetic separability in inputs implies that
L = F(Y,X) = H(f(Y),X),

where H is homogeneous of degree one in f(Y) and X. This can be
alternatively written as’

L=f(Y)g (%—))

The first-order necessary conditions for a maximum are

Lo ()oa 0=t
aXi gl (Y) ql’ 3=y hd

Thus, one may solve X/f(Y) as unique and continuously differentiable
functions of the q alone. This implies

Xi = gHq)f(Y).
Substituting this into the production function we have
*=max{p’Y + f(Y)g(q)}
= (P )
g(q)g ( 2(@)
By Theorem II-3. The converse is proved similarly. Q.E.D.
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Theorem III-5. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in both outputs and
inputs if and only if

G(p.q) = g(q)g* (%(%))”))'

where H is 2 homogeneous function of degree one.

Proof: This theorem follows directly from the two previous
theorems. Q.E.D.

Theorem III-6. Under Assumption (F*.1) through (F*.7), a
production function and its corresponding normalized profit
function are both separable in outputs only if either they are
homothetically separable in outputs or they are additive.

Proof:
F(Y X)= F(f(Y),X),
G(p.g9) = G(g(p)q)-

The first-order necessary conditions for a maximum imply

[ YY) _ pi
fj(Yh---vYn Pj.

By a dual transformation, this becomes

fi(aG/aplv":aG/apn) — E_J
f{(8G/ap,...,8Gldp,)  p;’

Differentiating these equations with respect to g, we obtain

fi Zn] fiGu — f; g faGu = 0.

But
Gu = Gugi, Gi=Gag =Y.

Hence
fi 121 fi¥Yi—fi gl faY; =0,

which means fiff; is homogeneods of degree zero in Y. Hence f is
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homothetic in Y by Lemma II-1. It follows from Theorem II-9 that g(p)

is also homothetic.
An exceptional case arises if G, =0, Vk. Then

G(p.q) = g(p) + h*(q).
And by Theorem II-7,
F(Y.,X) = f(Y)+ h(X). Q.E.D.

Extension to the case with fixed inputs is straightforward and will not be
repeated here.

3.3. Non-Jointness in Production

The problem of non-jointness has been investigated by Samuelson (1966)
who derives necessary and sufficient conditions for a production
function to represent a non-joint technology. Hall (1973) has approached
the problem using the joint cost function. It turns out that the assump-
tion of non-jointness of the technology implies very simple restrictions
on the matrix of second partial derivatives of the normalized profit
function. We shall present these results. First of all we give a definition.

Definition. A production function L = F(Y X) is said to be non-joint
in inputs if there exist individual production functions,

Li = fi(YbX]i;XZi,---’Xmi), i= 1,-..,"..
such that

F(Y,X) = min {z f,‘(Y,',X”,Xz,',...,Xm,')Iz X},‘ = X’j, ] = 1,...,m }
i=1 i=1

A production function is said to be non-joint in outputs if there exists
individual production functions,

L = go(Y105e-> Yno)»
Xi = gl( Yliv",Ym'), l = 15---9ma

such that
F(Y,X) = min {go( YlO,--'7Yn0)IXi = g.( Ylia---QYm')’ i= 1,....m,

z Yj,' = Y,’, j‘—_ 1,...," }.
i=0
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The minimum in these two definitions ensure that all the inputs (and
outputs) are allocated amongst the individual industries so that produc-
tion is efficient, that is, the output of no one industry may be increased
without decreasing the output of another industry. (And no one input
may be decreased without increasing another input.)

The normalized profit function of a technology characterized by
non-jointness in inputs has a very simple representation: it is the sum of
the individual normalized profit functions corresponding to the in-
dividual industry production functions. This is embodied in the following
theorem:

Theorem IIT-7. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in inputs if and only if its normal-
ized profit function is additive in p, that is,

H* = Zl Gi(Pia‘])-

Proof:
Necessity.

H*

I}/\%}l(x {2 piY;+ 21 q; 2] Xi— 21 fi(Yi,Xn,---,Xmi)}
X if = = i=

i=1
i=1
n

max {piY,- +3 4% —fimx”,...,xm.-)}
[Xat] =
= G

Sufficiency. Given IT* = X", Gi(p,q), one can find for each Gi(piq) a
unique production function L; = fi(Y,Xis... Xmi). Thus, the technology is
non-joint in inputs. Q.E.D.

Corollary 7.1. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in inputs if and only if
3*G
apidp;
where G is the normalized profit function and p is the vector of
normalized output prices."”

=0, i#j, Vij,

Proof: This follows directly from the theorem. Q.E.D.

This condition is also given by Diewert (1973a).
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Note that duality of .-, Gi(pi.q) to a non-joint in inputs technology is
an immediate consequence of the convolution theorem for profit
functions in Chapter L. 1.

Corollary 7.1 provides a very useful necessary and sufficient condition
for the characterization of a “non-joint in inputs” technology. In partic-
ular, it lends itself to straightforward empirical tests. In retrospect: it
turns out that our conditions here are completely equivalent to the
conditions stated by Samuelson (1966) on the Hessian of the production
function. One needs only recall from Section 1 that the Hessian matrix
of the normalized profit function G(p.q) is the inverse of the Hessian
matrix of F(Y,X). Hence singularity conditions on the minors of the
Hessian matrix of F are equivalent to zero conditions on the elements of
the Hessian of G(p.q).

On the other hand, in the case of non-jointness in outputs, it is easy to
see that the normalized profit function is given by

IT* = Go(p) + E_:l q.G; ('g')
Theorem III-8. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in outputs if and only if 1ts normal-
ized profit function can be written in the form

IT* = Go(p) + 2 4G (%)-

Proof: Obvious. Q.E.D.

3.4. Summary

We may summarize the results of Sections 3.2 and 3.3 by way of a table
which describes the restrictions on the normalized profit functions under
alternative combinations of assumptions on the technology. The alter-
natives considered are as follows:?

(1) almost homogeneity of the production function,
(2) direct separability,

OThis table is different from that of Lau (1972) in two respects: first, the forms are
specified in terms of the normalized profit function; second, some of the errors have been
corrected and “open’ questions have been closed.



TABLE 1
Functional forms of normalized profit functions under alternative assumptions.

(h Hpa@
) sup {H,(A,p)— G(Aq)}

@)

4) }_‘, Gi(pi@
m ] . 2
®)  Gopr+ 3, aG; ( q.~)
MH+Q2 H'PG@)
(D+(3)  H*P)Gla)
(1) +(4) El piGia)
M+65)  Hi@+3 q.—H:‘(a‘i)
i=1 il
(2)+(3)  Same as (3)

@D+@ FeSac (—‘3‘—)+ G@
=

...F (q)
@+5)  GHEN+3 4G, (”—;"—’
i=t i

3) G(q)G*(

)+ H*(p)

El a.-p?] G(qQ)'"™* + G(q)

(3)+ @) [
@+ [ar+ 3, eat| HE 4+ HE)
i=1
[a

3

[8)
il ) q‘.
,. ot Zeln (H(p))] Hp)
CRIONEDY [8.‘0(17:') +2 ag¥ (%)}
i= = u

MH+@+3) H'PMGW

M+2)+(4) Same as (3) + (4)

M+ @)+ (5) Same as (3)+ (5)
()+(3)+(@  Sameas 3)+4)
(H+3)+(3 Same as (3)+(5)
@rw+er 3 api| + ES g

*This implies that the production functions for all outputs are identical up to a
multiplicative constant. Both Denny (1972) and Hall (1973} have independently
discovered this result in the context of joint cost functions.

bLikewise, this implies that all the production functions are identical up to a multi-

plicative constant.
“This implies a fixed-coefficients type technology. Note that this violates our local strong

convexity assumption. In principle,

[ao‘*’g aiq}—k] [Z »3:'1»’1“]

is a possible solution. However, this solution cannot satisfy the monotonicity and con-
vexity conditions simultaneously.
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(3) indirect separability,
(4) non-jointness in inputs,
(5) non-jointness in outputs.

F(-) and G(-) are used to denote arbitrary functions: H(-), H*(-) and
H**(-) are used to denote arbitrary homogeneous functions; and H'(-) is
used to denote arbitrary homothetic functions. A subscript denotes the
set of variables in which the function is homogeneous or homothetic. A
superscript denotes the degree of homogeneity when it is different from

one.
Many of these combinations are obvious. We shall derive three of the

relatively less obvious ones.

3.4.1. Derivation of (2)+ (4 and (2)+(5)

Direct separability implies that the normalized cost function of produc-
ing f(Y) can be written as

C* = G(f(Y).q). (IT1-1)

Non-jointness in inputs implies that the normalized cost functions can
be written as

C*= 2 fi(Yi,q). (IT1-2)

We note that C* is characterized by (8°C*)/(3Y:dY;) =0, i# j. Differen-
tiating equation (III-1), we obtain

3’C* 3G 9 | 3°G of of

aYaY,  of aYaY,  aff ay, ey, O F)
which implies
O°Glof* _ _ (’PIGYeY) . 3G,
3G/ of (3flaYDl(aflaY;y afr
or
F*f . 9°G _
3Y,'3Y,-_-0’ if —672——0.

We note that in the first case the right-hand side of the equation is
independent of q. Hence the left-hand side is independent of q. Further
we observe that the left-hand side may be written as (8/3f) In (3G/3f)
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which is a function of f alone. Thus, by successive integration we obtain
G(f,.9) = g(Hhi(q) + hxAq),

which becomes, in order to satisfy equation (I11-2),
C*= Z} g.'(Y,-)hl(q)-F ha(q).

Note that this implies that the isoquants of each industry have the same
shape although the numberings may differ.
Now the normalized profit function is given by

11 = max (35 0¥ 3 sYon@- hz(Q)}

a3

EX {p:Y:— gi( Yo hi(q)} — hi(q)

- S Di
h(q) %, max {hl(q)

= hl(q)?;:l g% (R%l—)) - hyq).”

In the second case, we also have

Y — gi( Y;)} — hy(q)

C* = g f(YDh(@)+ haq).
The condition for (2) + (5) may be derived similarly.
3.4.2. Derivation of (3)+(4) and (3)+(5)

Indirect separability implies that the normalized profit function can be
written as

IT* = H(H*p).f@) = @G (’ft(;')”)

Non-jointness in inputs implies that the normalized profit function can
be written as

H* = Z] -F.i(pisq)-

NIThis is precisely the form suggested by Professor W. M. Gorman to the author in 1970.
At that time the author was unable to establish the necessity of this form. See Lau (1972.

p. 288. fn. 20).
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We note that IT* is characterized by (3%I1*)/(3pdp;)=0. i# j. This

implies that
"R *
ﬂ’f'—H-i+G'H;7=o. G"#0,
or
G"(H*If) HXH* "
G +H"§H’}"O‘ G"#0,
and -
H¥=0, i#] G"=0.

(II1-3)

The second term of equation (II1-3) is independent of f, which implies
that the first term is independent of f. But the first term being in-
dependent of f means it is independent of H*/f, since G(-) is a function
of a single variable H*/f only. Hence the first term must be constant,

that is

Gn B
E(H*/f) = K,

k a constant. This equation may be integrated to yield,

Zk+l
G(Z)=C1m+c;». k# —1,

=C1]HZ+C‘_>, k= -1.
For k# — 1, one must have

CIH*(P)RH
k+1

be additive and homogeneous of degree k + 1 in p. This means

C1H*(p)k+l - 2 a,'pfﬂ.
i=1

For k= — 1, one must have

Ciin H*(p)+ C,

be additive and homothetic, which implies

n

Ciln H¥(p)= 2, a;In p,.

=1
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Note. however, that this is inconsistent with the monotonicity and
convexity requirements of the normalized profit function. Thus. the only
possibility is that of

I* = f(q)[ao+§n‘, a;(}%)w].

i=1

If in addition we require that IT* = 0 if p; = 0,V then

m=[3 ap’ | 1@

Alternatively, if G” =0, H} =0, which implies that the normalized profit
function must have the form

ZI a;pi
flq)

= 2_‘,' a;p; + f(q)ay.

IT* = f(q) | ap+

The condition for (3) + (5) may be derived similarly.

3.4.3. Derivation of (4) +(5)

m = Z Gi(piq) (111-4)
i=1

= Go(®) + 2, 4G (-};—) (I1-5)

1

Since p; =0 implies G; =0 in equation (I1I-4), then (82I1*)/(3q:dg;) =0
implies that each G; must have the form

giolpi) + E:' gi(pi.g;)-
=

Substituting this into equation (I1I-4) leads to

n

m =3 [gio(Pi) + q,gff(&)]
i i=1 qi
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4. Examples of Normalized Profit Functions

4.1. Introduction

In this section we present a number of examples of normalized profit
functions. In particular, we demonstrate how the theorems derived in
Sections 2 and 3 and the Legendre transformation may be used in the
construction of the normalized profit function given the production
function (and vice versa).

4.2. Cobb-Douglas Production Function

Let

y =] X7
i=1

The first-order necessary conditions for a maximum are

a¥ _ o i=le.m (Iv-1)

Xi
By Theorem (II-1), ¥ = (1 — w)'G where p = >, a;(<1) because Y is
homogeneous of degree u in X. Hence. by a dual transformation,
equation (IV-1) becomes

ai(l—u)'G _
—~ 3G/ 3q;

I
—_
;

di. i el

which may be integrated as
m L
G(q) = A* [[] a%i,
where a* = —a;(1—p)"'. i = l.....m, and A* is a constant of integration.
A* may be determined from initial conditions. For instance, at g; = 1.

i = 1.....m, equation (IV-1) implies that X; = Y. i = L....m. Substituting
this into the production function we have

Y = ri:)(?i=:fﬁ:c!?i}’“t
i=1 =1

Therefore,
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y o ('lj a‘,-"") V(1—p)

=(1-u) G
=(1—p) A%
Thus,
A*=(1-p) ﬁ af
and |

G(@={(1-n) ,lj (_q_,) —ei(1-u)"!

a;

To extend this to the case with fixed inputs, we have

y =] x# [ 2%
i=1 i=1

Then. by applying Theorem (I11-3), one has immediately,

G(q.2)= fI Z¥(1—p) ﬁ g: —a;(1-u)!
. =1 o [T 22
i=1

m g —n:t,—(l--p«.)‘l n .
=(l—p) n (_,) l"[ ZBi-w)
i=1 \Q i=1
For this latter case, the supply function is, again by Theorem (II-1).

Y(qZ)=(1-u)"'G
lr_n_[ (q. —ai(l-p)"! _n Z'a.“_ i
- i=1 ai) ;IJ]: A ’

and the derived demand functions are

G
Xi= aq;
m —a(1-p)~! n
= gj—[ (i) Z‘-S"“"“’_l] i=1.....m.
q; :1:[! a; :];Il ' ' ==

We note also that for the Cobb-Douglas production function the
expenditure on each variable Input is a constant proportion of profits.
This follows from

q,-X,- _ d InG

qii (1) -
G 3Ing ai(1—p) . i=l....m
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4.3. The C.E.S. Production Function

We have

m )
Y= [2 a,-XE’] P'

i=1

where u <1 is a scale parameter.
The necessary conditions for a maximum are

m (n—p)lp
j i=1

= }LY(F_D)’“G;X?"' = q; j= 1,....m,
which may be rewritten as

-u”“’”’[(l—u)"G]"‘”"”"“’“’a}"’”’%gj= e j=1,..,m,
1

which becomes

Ho=l(] — g )~(B-oiee=D pip—1) G = (g’-) o
p(p—1) aq; a; ’

- n
which may be integrated as®

m ai pllp—1)
“P’(P—l)(l - “)p(l-u)lp:(p—l)_G—p(l—u)l.u(p—l) = 2 ai( 1) ]

a;

i=1
Hence
G(g)= u“”‘“’_'(l - p.)[

f

m g\ P ie= e
«(2)"] -

=1 ;

By Theorem (II-1) the supply function is immediately given by*

Y=>-p)'G@

e [ & ai =1 —(e(1—p)" (o~ 1Dlp
=I_Lu( ) [2 a',(._i) ] ,

i=1 a;

and the derived demand functions by*

N A\ Alp=-D =) Wp—plp s o \ oD
Xi=p' 1[2 a; (g") ] (%) , i=1,..
1)

i=1 Q;

.

BThere is no constant of integration because by Theorem (II-1), G{(q) is homogeneous.
BEquivalent expressions have been obtained by McFadden (1966) and Nerlove (1967).
#See the discussion in Lau (1969c, pp. 30-33).
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However, if some inputs are fixed, then the normalized profit function
corresponding to a C.E.S. production function may not have a closed
form solution. It is, however, still implicitly defined.

4.4. Combination C.E.S. - Cobb-Douglas Production Function
In view of the analytic intractability of the C.E.S. production function

with fixed input levels, functions which are hybrids of the C.E.S. and the
Cobb-Douglas functions may be used. Some examples are”

m  v=1I X[2 3,-2,-]""’,

with
= - w) '1'—;'11 (%)‘“-'“'*‘l"'[g Biz?](uztl—u,)-')/p’
where
B = 2 a; <1;
@ v=[gax] [
with

N\ Alp=17 —p(=-p)p-Dip [ T (I=p)~
«“(2)"] [{12¢]
1 a; i=1

3 Y= [i aixfl]n./p.[in szfz]uzlﬂz,

i=1

Ir* = y,“’“'“)(l _ “)[

with

m A\ Pl 1) = (1=pq)(p=1ipy

IT* = p 701 - m)[z a; (%) ]
i=1 i
n (ol 1 (A —py)
«[3 szt

Alternatively, one may specify the normalized restricted profit function
directly.

“The dual functions may be derived by using either Theorem II-3 or the composition
theorems given in Chapter 1.1.
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4.5. Quadratic Production Function

Thus far we have considered only those production functions which
satisfy our assumptions globally. However, we shall now consider some
production functions (and normalized restricted profit functions) which
satisfy our assumptions only over proper convex subsets of R™ (or
R™ X R" as the case may be). First we consider the quadratic function.
Adhering now to the conventions of the multiple-output, multiple-input
case, we define

L=€!o+i a; X +%2 2 BiXX;,
ey =1 =1

where X; is a net output which may be either positive or negative. If the
matrix B =[B;] is required to be positive definite, then L is strongly
convex on R™ and in particular on any convex subset of R™. Monotoni-
city requires that

a+BX=0.

This system of linear inequalities defines the convex set of X such that L
is monotonic and convex. The constant a; may then be adjusted so that
L is non-negative on this convex set. Alternatively, one may set ao= 0
and L is then non-negative, monotonic, and strongly convex on the
convex set such that

a’X+xfx§0,

a+BX=0.

The quadratic production function has the very convenient property
of being self-dual, that is, its convex conjugate, the normalized profit
function, is also a quadratic function,

IT*= —a,+3(p—a)B”'(p— a),

where p; may be the price of a net output or net input. The domain of
IT* is given by the support function of the domain of L, defined above.

The derived supply and demand functions for all commodities other
than L are linear functions
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and
L=ay—p-—a)B(p—a)+pB '(p—a)
= ap+i(p—a)yB (p—a)+a'B'(p—a)
The quadratic function may be further generalized as follows.
Suppose that the production function is given by
L= %(X'BX)"”, 1<@< +o,

Then the normalized profit function is.given by

IT* ='31'(p'B_'p)"lz, 1< n < + o,

Again, the domain of L and its conjugate IT* need to be appropriately
restricted. If the monotonicity assumption is maintained then BX=0
defines the domain of L.

4.6. The Exponential Production Function

Let
Yy=1-¢% X=z0.
Then
*=1-gq+qlng,
X=—-Ingq.
We note that for g > 1, there is no solution X such that Xz=0.

4.7. The “Addilog” Normalized Profit Function

We next consider normalized profit functions for which an explicit dual
production function does not exist. One such example is the indirect
addilog function introduced by Houthakker (1960). The normalized profit



196 Lawrence J. Lau

function is given by

IT* = i aiq;'ﬂ.'

i=1

The derived supply and demand functions are given by
Y= agqi®+2, aifiqi®
i=1 i=1

= Z a(l1+ Bgi™,
Xi=aq;®"  i=1..m.

The restrictions for monotonicity and convexity for the singie-output
case are

a,~B,~ > 0, ﬁ; > —

4.8. Reciprocal Quadratic Normalized Profit Function

=32 2 Bl

i=1 j=1

The derived supply and demand functions have a remarkably simple
form

NI-—'

KRLR L 1 -
_EEZBEIQJIQJI7

i=1j=1
m

2;} B, i=1,..m.
It may be verified directly that if 8; =0, Vij, then IT* is non-negative,
non-increasing, and convex. Also, by Theorem II-1, the production
function must be homogeneous of degree 3.
A generalization of this normalized profit function exists with the
exponent of g; equal to —u, w>0. In this latter case, the production
function must be homogeneous of degree 2u./(1+ 2x).

4.9. Transcendental Logarithmic Normalized Production Function

For the sake of completeness, one should also mention the transcen-
dental logarithmic normalized profit function introduced by Christensen,
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Jorgenson and Lau (1971 and 1973). The normalized profit function is
given by

m

InIT* = ap+ X, a;1n qa+%22 BiIn g In g;
i=1 i=1j=1

i=1}
The demand functions are given by

m
-qﬁ)—ii = — (a,— + ,2.1 BiiIn q,»), i=1,..,m.

Note the remarkably simple estimating form. This function is not a
globally valid normalized profit function as it may become non-mono-
tonic or non-convex at some prices. However, it is possible to verify
whether the function is monotonic and convex over some convex set of
normalized prices. In addition, it has the advantage that it provides a
second order approximation to an arbitrary normalized profit function
(and hence to an arbitrary concave technology). It can also attain any
value of the elasticity of substitution between any pair of inputs.

5. Applications of the Normalized Profit Function

5.1. Elasticities of Substitution

As is well-known, many different elasticities of substitution may be
defined in the case of a technology which involves more than two
inputs,”® depending on which variables are held constant. A natural
definition, however, in the spirit of the Allen-Uzawa definition of the
elasticities of substitution for the case of three or more inputs, is the
following:

1~

which, by the dual transformation, is equivalent to

- (F -3 (aF/aX,-)X,-) -
0-. — i=l _—l.i
! XiX; |F}’

‘where F} is the j,ith cofactor of the matrix F since [G;]1=—[F;]™', and
|F| is the determinant of the Hessian matrix of F.

%Gee, for instance, McFadden (1963), Nerlove (1967) and Uzawa (1962).
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In any event, when there are more than two inputs, the elasticities of
substitution are not necessarily the most convenient measures of substi-
tutibility.” An alternative is provided by own and cross-price elasticities
of demand. In what follows, we give characterization theorems for own
and cross-price elasticities of demand by solving systems of partial
differential equations for the normalized profit function.

Theorem V-1. A production function is Cobb-Douglas if and only
if all the own and cross-price elasticities of factor demands are

constants.

Proof: Suppose

dln X,‘ _ ..
7lng, = k;, a constant, Vij.

Integrating this system of partial differential equations, we obtain
In X,‘ = 2 k,‘( In q + k('Oa i= l,...,m
{

or

which upon integration yields the Cobb-Douglas normalized profit
function. The k; constants of the different equations may be shown to be
the same by making use of the fact that
axXi _ _ 3’G _4X;
aq;  9qdq;  9qi’

The converse is obvious. Q.E.D.

I# ]

Theorem V-2. A production function is homogeneous of degree k
up to an additive constant if and only if the sum of own and
cross-price elasticities of demand is constant for any one com-

modity.

Proof: Homogeneity of the production function up to an additive
constant implies homogeneity of the normalized profit function up to an

YBesides, they are insufficient as a description of the technology. See Lau (1976b).
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additive constant by Theorems II-1 and II-4. Hence, derived demand is
also homogeneous. Hence,

m 3X; g; _

zaq,x, ,ZG,,G k, Vi

The converse is proved similarly by retracing the steps and using Euler’s
Theorem. If G; is homogeneous then G must be a homogeneous function

plus a constant. Q.E.D.

Theorem V-3. A production function is of the Leontief type, that
is, the normalized profit function has the form

Im*=g (2 aiqi)a

if and only if

4 InX; In X; i=1,...m,
aln g ax = $d@); k=1,..,m.

In other words, this means that the elasticities of each of the
demand functions with respect to the kth normalized price are

identical.
Proof: Necessity is obvious. To prove sufficiency, we first integrate

alnX,-
6lnqk

= d’k(‘l),
to obtain
In X; = f bu@d In g + PHae), Vi

where q_; is q reduced by q:.
Now

In X; —In X = ®4(q-1) — i),
and

In X, —In X; = ®i(q-) — Piq-.)-
Moreover

In X; - In X = ®iq-)) — Pila-y)-



200 Lawrence J. Lau

But the left-hand side is the same expression, aside from a sign change,
and we have seen the right-hand side being independent of g;, g; and g;.
We conclude that it must be constant. Thus, In (X/X;) = 6/6,, a constant

or |
1 0G_ 146G

Y Y ik,

0% aq; 0% da.’

with the general solution

G@Q =g (5; 9?‘61.-). Q.E.D.

Corollary 3.1. If in addition Z;_, ¢x(q) is constant, then IT* is
homogeneous up to an additive constant and G has the form
G =2 ag]* + ao

Proof: This follows from this theorem and Theorem V-2. Q.E.D.

Theorem V-4. A normalized profit function has the form

H* =g (Zl gi(qi))9
if and only if

d1In X,' _ . Lo
m— é(q), ik, i,k=1,...,m.

Proof: Repeating the argument used in the previous theorem, one has
in X;—In X; = ®Xq)— Pig-e),  Vijk LjFk
Thus, for fixed i,j, one concludes that
In X; —In X; = ¢;(g:,9;),
and for fixed !/

In X; —In X; = ¥4(g5,q),
In X; —In X; = ¢u(g;a1)-

Combining the last two equations, one has

In X; —In X = ¢u(giq1) — ¥3(45-91),
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but the right-hand side must be independent of g for all values of g; and
g;j-
Hence

én = bi(g)) — dfaq), Vil

Thus from

In Xi/ X; = &i(qi) — ¢i(q))
we obtain

3Glaq; _ &i(ai)

aGlag; &i(q)

which may be integrated as
Gaw=2(3 a@) QED.

Corollary 4.1. If in addition, 2;-; (3 In X;)/(3 In q¢) is a constant,
then IT* is homogeneous up to an additive constant, and G has the

C.E.S. form
m uip
G= [2 a,-q?] + .
=1

Proof: This follows from Theorems V-2 and V-4, and the fact that
an additive function is homogeneous if and only if it has the C.E.S.

form. Q.E.D.

With these results then, one can examine directly the own and
cross-price elasticities of demand, that is, the comparative statics, and
obtain an idea of the degree of substitution. The aforementioned results
also apply, with appropriate modification, to subsets of the tnputs.

5.2. Technical Change

Technical change may be represented by a production function

Y = F(X,1), %20.
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This gives rise to a normalized profit function

oG
* = —_—=
IT* = G(q,t), o z0.
By duality, aF/at = 3G/at at the profit maximum. Hence for given q

normalized profit increases with time.

Definition. A production function is Hicks neutral if it can be
written in the form

Y = F(f(X),t).

Definition. A production function is Harrod neutral if it can be
written in the form

Y = F(f(L.1).X),

where L is labor, the primary factor of production.

Definition. A normalized profit function is indirectly Hicks neutral
if it can be written in the form

m* = G(f(g:!)

Definition. A normalized profit function is indirectly Harrod neu-
tral if it can be written in the form

II* = G(f(w,t).q).

The practical implication of Hicksian neutrality is that the ratio of the
margina! products of any two inputs is independent of time. The prac-
tical implication of indirect Hicksian neutrality is that the ratios of the
derived demands of any two inputs is independent of time.

It should be noted that in general direct Hicksian neutrality does not
imply indirect Hicksian neutrality or vice versa. A technology is both
directly and indirectly Hicksian neutral only if either it is homothetic or
it is additive in ¢. This follows immediately from Theorem II-15. Also,
under homotheticity, direct Hicksian neutrality implies and is implied by
indirect Hicksian neutrality.
~ The practical implication of Harrod neutrality is that the ratio of the
marginal productivity of labor to the rate of technical change measured
in terms of output is independent of X. The practical implication of
indirect Harrod neutrality is that the ratio of the demand for labor to the
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rate of technical change measured in terms of normalized profit is
independent of q. In general, direct Harrod neutrality does not imply
indirect Harrod neutrality or vice versa. A production function is both
directly and indirectly Harrod neutral only under one of the two follow-
ing conditions:
(1)  f(L,t) = f(A(1)L),
or

2) Y=FX)+f(L;}).

That these conditions are sufficient is obvious. That they are neces-

sary may be shown as follows:

Let Y = F(f(L,t).X). Let II* = G(f.q) be the normalized restricted
profit function corresponding to F with F(L,t)=f. The normalized
profit function with f unrestricted is then given by

o*= Sl}p{G(ﬁQ)_ wh(f,1)},

where h(f,t) is the inverse function of f(L,t) for each given t. The
necessary condition for a maximum is

3G 7 oh = . _
a- (f’q) Waf- (fJ)—O.

f
Differentiating IT* with respect to t and w we obtain
aIT* oh  aIlI* .z
FI War Taw h(f.0).
Hence

all*|at —w dlnh

aIT*{aw at ’

i(aﬂ*/a:)= .20k of _ o

g \aIl*/aw atof aq )

Thus, either (3°In h)/(at af ) = 0 which implies that
h=h*HA*@t)=L,

and hence
f=h*"(A@)L).

Or af/aq =0, which implies, by differentiating the first-order condition
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implicitly, that
G(fq) =g(H+ Gy,

and hence
F(f(L,t),X) = F(X)+ f(L.t).

We note that the first condition (1) corresponds precisely to that of
labor-augmenting technical change. One possible specialization of the
form of technical change is factor- or output-augmentation. Under factor
and output augmenting technical change the production function may be

written as
Y = AYF(A()X1,....An(t) Xp).

Thus A(t) represents “‘output-augmenting’’ technical change and A;(#)’s
represent “factor-augmenting” technical change. If Ai(t)= A*(?), Vi, and
F is a homothetic function, one can write

Y = A@Q)F(A*(t) 'H(X,,....X.)),

which is clearly Hicksian neutral. It reduces to Harrod neutral technical
change if and only if A(t) and A;(t)’s are all constants except for the
A;(t) associated with labor, the primary factor.

With ‘“commodity-augmenting” technical change, the normalized
profit function is given by Theorem II-3 as

* = _9 _Gm__

= At)G (A,(t) A(t)""’A,,.(t)A(t))’

where G(q) is the normalized profit function corresponding to F(X).

Thus, the production function is “‘commodity-augmenting” if and only if

the normalized profit function is ‘‘commodity-augmenting”. It is also

clear that factor-augmentation has the same effect as price-diminution.
A technical change process is “factor-1 augmenting” if the production

function may be written in the form

Y = F(A/(1)X,X3,....Xm).
A given technical change process is “‘factor-1 saving” if

aX,_ 9 _9G

at a  aq
= —G“ < 0.
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Under what conditions is a technical change process simuitaneously
“factor-1 augmenting” and “factor-1 saving”? We note that under
factor-1 augmentation the normalized profit function can be written as

H* - G(CIIIAI(t),CIZ’---,Qm)-

Thus
X, _9 3G
at a  Iq
o @A 1A
G]] A$A1+Gl AlAl-

In order for this to be less than zero, we need
q:
24 G, <0,
Gll AI 1

which implies by a dual transformation that

iz;%:—-q, + X, <0,
or a derived demand elasticity of X with respect to own price of greater
than —1. Thus in general one cannot identify “factor-augmenting’’ tech-
nical change with “‘factor-saving” technical change. We note that, even
with factor augmenting technical change occurring in only one factor,
the derived demands of the other inputs may also change over time as

d _ 3 4G
) j¥ 1,
A
= Gliquia
Y _ 8 5 3G
at ot (G ;.q" aq,-)

< A
= (; Gq P)

We note further that if G, were homogeneous of degree — k (necessarily
so because G, must be negative) then 2;;1 Gq; = —kG,, or if G were
additive, supply must be increasing. In general aY/at is indeterminate in

sign.
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5.3. Relative Efficiency®

There are two dimensions to the problem of efficiency: technical
efficiency and price efficiency. A firm is technically more efficient than
another firm, if, and only if, it consistently produces a higher output
given identical inputs for both firms. A firm is price-efficient, if, and only
if, the value of the marginal product of each input is equated to its price.
Any departure from this equality implies price inefficiency. It is some-
times desirable to compare the relative degree of technical efficiency and
also the relative degree of price-inefficiency across two firms. If a firm is
price-efficient, its profit is at a maximum for a given level of technical
efficiency. Thus, a natural measure of relative price efficiency is the
relative level of actual profits. A firm is considered to be more price-
efficient, if, given the same prices of inputs and outputs and the same
degree of technical efficiency, it is more profitable than another firm.
Based on this definition, the technically more efficient firm which is also
price-efficient will always be more profitable than another firm which is
only price-efficient. It is important to note that relative technical
efficiency need not imply relative price efficiency and vice versa.

Straightforward tests of relative technical and price efficiency between
two firms (or groups of firms) may be devised on the basis of the
normalized profit function. It is clear that given comparable endow-
ments, identical technology, and normalized input prices, the actual
normalized profits of the two firms should be identical if they both have
maximized profits. To the extent that one is more price efficient, or
technically more efficient, than the other, the normalized profits will
differ even for the same normalized input prices and endowments of
fixed inputs. The actual normalized profit functions will hence be
different for the two firms.

Let us represent the situation as follows: For each firm, the marginal
conditions are given by

0AF(X,,Z)) A F(X3,Z) i
_——6X| = Kiq, X, = K, (V-1)
k, = diag[K,] = 0, k, = diag[K,} = 0,

where K; is a diagonal matrix, X, Z,, q; and k; are vectors, A; is a scalar,
and the subscript refers to the firm. If both firms are equally efficient in

%This section draws heavily on my joint work with P.A. Yotopoulos. See Lau and
Yotopoulos (1971), Yotopoulos and Lau (1973), and Yotopoulos, Lau and Lin (1976).
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optimizing with respect to all variable inputs, then k; = k,. If both firms
are equally efficient technically, then A, = A.. Equation (V-1) reduced to
the usual first-order conditions for profit maximization if and only if
k, =k, =[1], a unit vector. Otherwise, they must be interpreted as
decision rules for the individual firms. k, and k, may assume any
non-negative values, and in particular, the special values of [0] and [1}.

That the decision rules for the firm consist of equating the marginal
product to a constant times the normalized price of each input may be
rationalized as follows: (1) consistent over and under-valuation of the
opportunity costs of the resources by the firms; (2) satisficing behavior;
(3) divergence of expected and actual normalized prices; (4) divergence
of the subjective probability distribution of the normalized prices from
the objective distribution of normalized prices; (5) the elements of k;
may be interpreted as the first-order coefficients of a Taylor’s series
expansion of arbitrary decision rules of the type

dF, _
X, fi(ay),
where f;(0)=0. A wide class of decision rules may be encompassed

under (3).

Let G(q,Z) be the normalized profit function corresponding to F(X,Z).
The firms then may be regarded to behave as if they maximize normal-
ized profit subject to price vectors K.q:/A; and K>qy/A,, respectively.
Their behavior thus may be represented by the “behavioral” normalized

profit functions
Hll, = AIG(kIIqI/AIv---sklmq"t/Al;les---vzln)v

and
H? = AZG(kZIqI/A2a---skZMQm/A2;ZZI,---9Z2n)-

A test of equal relative efficiency implies a test of the hypothesis A, = A;
and k, =k,. The derived demand functions are given by

3G (Kig/AiZi)

Xﬁ - _A' akUQJ ’ 1= 1727 1= l,...,m,

and the supply functions by

3G(K:'Q/Ai;zi)]}-

Y.‘"-'Ai{G Kiq/AiZ) - 3 ki [
(Kiq ; idj ak;q;
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The actual normalized profit functions are given by

I = Yi"_zl q;'/\,ij
i=

= . 7 S — L\ aG(Kiq/Ai;Zf)] .
= A,—{G(K,q/A,,Z,)+,_=EI(l k,,)q,[ FHsd, } i=1,2.

Observe (1) 8II°/dA = 0; (2) when k; = [1], the actual and “behavioral”
normalized profit functions coincide; and (3) if and only if A, = A, and
k; = k,, the actual as well as the behavioral normalized profit functions
and supply and demand functions of the two firms coincide with each
other. This last result is the basis of the null hypothesis for no difference
in relative efficiency. When appropriate functional forms are specified
for G, the joint hypothesis that A, = A, and k, =k, may be tested by
comparing the coefficient estimates from either the actual profit function
or the supply and demand functions, or both.

An additional test becomes relevant if we reject the joint hypothesis
that (A.k;) = (A;kz). In this case an overall indication of the relative
efficiency between the two firms within a specified range of normalized
prices for variable inputs may be obtained by comparing the actual
values of the normalized profit functions within this range. If

ny = Iis,

for all normalized prices within a specified range, then clearly, the first
firm is relatively more efficient within the price range. If some know-
ledge on the probability distribution of the future prices is available, a
choice may be made as to the relative efficiency of the two firms.

One can also test the hypothesis that the fixed inputs command equal
rent on the two firms by computing the first derivatives of the actual
normalized profit functions with respect to the fixed inputs and testing
for their equality. This may have important implications on the optimal
form of organization.

Finally the above analysis can be easily extended to three or more
firms (or groups of firms). We conclude this subsection with an example.

Example

The normalized restricted profit function corresponding to a Cobb-
Douglas production function with m variable inputs and » fixed inputs
ts, from Section 4.2,
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m q —*A:'-(l—y.)"l n -
me=a-wfT (&)™ ][ 220

i=1 \O; i=1

m
,lL:Z a,—<l.
=

By direct computation, the actual normalized profit functions and the
demand functions are

H?=A§-“""’(1— =

ij

x I:JI;Il qj—a,-(l—u)“’][l-[ Zf"“—“)_l], i=12,

[LESN TR

j=t

j=1

Xif = A‘i,l'#)'l(_aj_‘)[ﬁ kaﬂj(l—#)"][f‘[‘ a}:j(l—u)"‘]
i=

kig; /L=

% [l']l: q;aj(l—#)":l[l‘l Z?j(l-u)—i], i= 1,2’ ]_= 1,...,m.
}=

j=

From these two equations, one may derive

qli‘i = al{"ku Py i = 132, j= 1"“7m'
R
i=1 kii

These actual profit share equations may be combined with the natural
logarithm of the actual normalized profit functions to obtain estimates of
A;, k; and the technological parameters.

5.4. Monopolistic Profit Functions
A monopolist faces a downward sloping demand curve. Let the inverse
demand function be given as
p = D(Y),
where
D(Y)<O0.
Then the profit maximization problem becomes
max P = D(F(X,Z))F(X,Z) - q*'X,

where g* is the vector of nominal prices of the variable inputs.
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Let S(X.Z)=D(F(X,Z))F(X,Z) be the revenue function” If it is
assumed that S(X,Z) satisfies Assumptions (F.1) through (F.7), then the
profit maximization problem is isomorphic to the normalized profit
maximization problem in Section 1. Thus, the profit function G(q*,Z), is

given by
G(g*,Z) = max{S(X,Z)— (@*'X)},
X

which satisfies Assumptions (G.1) through (G.7). Moreover, there is a
one-to-one correspondence between S(X,Z2) and G(q*,Z).

All the dual relationships which hold between F and G hold between
S and G. As before, the demand functions for the variable inputs are

given by
aG
* = T ok
X aq* (q 7Z)7
and the optimal revenue function is given by

;’; (q*.2)-
We note that G depends on nominal prices of the inputs only and hence
X* and S* depend on only the nominal prices of the inputs.

For the purpose of econometric applications, one may just as well
start with a function G(q*,Z) which satisfies Assumptions (G.1) through
(G.7) without worrying about the properties of S(X,Z) since as McFad-
den has emphasized in Chapter 1.1, one cannot in fact observe those
input vectors for which S(X,Z) fails to satisfy the Assumptions (F.1)
through (F.7).

§* = G(q*,Z)—q*

Example

Let
p=Y"S 1>e>0,

m

Y =[] X%, ia;=u<].
i=1

Then

¥Note that the revenue function as used here is different from the revenue function
R{(p,Z) which gives the maximized value of revenue for given p and Z.
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= M a;(l1—€)
S 1:['x :

The monopolistic profit function is hence

m q* —CXT“‘—]L')-I,
m=a-u9 I (%)

P a

i=1

where

a®=a;(l—é¢), i=1,..m,
*

i:: a¥=(1-¢€)p.

i=1

o

The derived demand functions are given by

« %1 1Y (4] —et(-pty!
Xi=aiq; H (;’s&) ’ i=1,..m
i

i=1

Revenue is given by

m q* —a‘,(!-y.")“
r=s=11(%)

Finally, we note that while given the profit function alone one can
construct an S(X,Z) through the conjugacy operation, one cannot iden-
tify F(X,Z) without additional information. We should also emphasize
that the assumption of concavity of S(X,Z) neither implies nor is implied
by the concavity of F(X,Z). In fact, if there is indeed a monopoly, it is

likely that F(X,Z) is non-concave in X.

5.5. Dynamic Behavior

Dynamic models have been introduced into econometric research via
two principal hypotheses — the “adaptive expectations” hypothesis and
the “lagged adjustment” hypothesis. These hypotheses can be readily
incorporated into the normalized profit function approach.

5.5.1. Adaptive Expectations Hypothesis

The firm is assumed to maximize profit for given expected normalized
prices. Then, for a given technology, there is a normalized profit
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function of expected normalized prices which are in turn functions of
current and past normalized prices. Let the price expectation formation

process be
q?(t) = w!(L)(I!(‘t)s l = 1,...,m,

where q¥%t) is the expected normalized price of the ith input, and w;(L)
the rational distributed lag operator for the ith price.*
The expected normalized profit function is then given by

II*° = G(q\,-...qm)-
Supply and demand as functions of expected normalized prices are
given by
< G
Y°=G(q%,..am) — 2, WCI?,
i=1 0q;

oG .
X'= _Ea?’ i=1,....m.
In general, both Y° and X?¥s are functions of both current and past
prices, with the time structure of the effect of different input prices
given by the coefficients of w;(L). Actual normalized profit, on the other

hand, is given by

- G
P*= Yo_zléa*q,'.

-

5.5.2. Lagged Adjustment Hypothesis

Lagged adjustment models are in general based on an adjustment
equation,
Xi = X1 = o(L)XT— X -1l (V-2)

where X* is the desired quantity in period ¢ and the subscripts i are
suppressed. Equation (V-2) may be rewritten as

(1-L)X, = o(L)X*~-w(L)LX,
(1-L+w(L)L)X, = w(L)X*,

_ w(L)
X T (1-L+ (L)L) X
= u(L)XT,

®For an exposition of rational distributed lag functions and rational distributed lag
operators, see Jorgenson (1966a).
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where

- w(L)
s =TT (DL

Let G be the normalized profit function for the technology in period ¢; then

- G
Y*= G - bl H
:§=:1 aqi @,
xt=-9  i-1.m
0qi
However, the actual supply and demand equations are given by
aG _
‘Yi— IJ'I(L) aqia l"’l’--am,

and

aG oG
Y= F (plD) S tin(L) )

Both the ““adaptive expectations” and the “‘lagged adjustment” models
represent attempts to introduce dynamic elements into a basically static
concept and are not completely satisfactory. There is, in principle, no
reason why truly dynamic “profit” functions cannot be constructed.
These will be functions which give the maximized value of the net worth
(or equivalently the present value) of the firm for specified current and
future expected prices and initial endowments.

The net worth function, or functional, may be written as

NW = G(p.,q,t),

where p and q are possibly infinite dimensional vectors. The profit in
period ¢; is given by :

H* = G(p9q,tl) - G(pvqstl' - 1)

The supply and demand functions in period ¢ may be obtained by the
usual duality relationships.

Before such a dynamic “‘profit” function can be constructed, however,
one must have a weli-developed theory of intertemporal production. The
dual to the dynamic profit function is the production function that links
output and input possibilities of all periods, with due recognition given
to the fact that future inputs cannot contribute to present output.

Given a dynamic ‘‘profit” function, the complete optimal production
and investment plan for the future may be calculated based on the
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expectations of future price movements. These dynamic profit functions
must satisfy certain structural characteristics, e.g., at each point ¢ in
time different from the point of planning, the profit function must be
expressible as a function of endowments at time ¢ and the price at time ¢
and in the future. The supply and demand functions at time ¢ will be
expressible as functions independent of the past prices. One may also
want to impose the requirement of stationarity, a concept introduced by
Koopmans et al. (1964), with regard to dynamic profit functions.

In Chapter II.4 of this volume Fuss and McFadden also analyze the
problem of intertemporal production using duality concepts.

5.6. Profit Functions and Uncertainty

Using the normalized profit function, one can obtain an immediate proof
of a well-known result that randomness in prices results in higher
expected profits if the firm is able to adjust instantaneously than if the
prices are constant and equal to their expected values.’’ Expected
normalized profits are given by

E[G(q)).

Normalized profits at expected normalized prices are given by

G(Elq])).
By Jensen’s (1906) inequality on convex functions, one obtains im-
mediately that

E[G(@)]= G(E[q)).

Note that this result holds true for fluctuations in all prices and not only
in the output prices as the problem is customarily posed.
The effect of randomness on expected output, on the other hand, is

not clear cut,

&S aG
Y=G"§1 anis

E[Y]= ElG@]- 3 E[32 4]
= G(Elq)) ‘i Elg] %g (Elq))
= Y (E[q]).

YGee, for example, Oi (1961).
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However, if it is assumed that the production function is homo-
geneous of degree k, then by Theorem II-1,

Y=(1-k7G.
Hence

E[Y]=(1-k)E[G(g]
= (1-k)"'G(Ela])
= Y(Elq))-

Expected output is also increased by randomness in both output and
input prices.

6. Summary and Conclusions

In the preceding sections, the potential usefulness of the concept of the
normalized profit function in both theoretical and empirical applications
has been demonstrated. In particular, the normalized profit function
provides a convenient and logical link, by virtue of its duality properties,
between theoretical specification of a model and empirical implemen-
tation. By deriving a system of supply and demand functions from a
normalized profit function, rather than attempting to solve the profit
maximization problem itself, one avoids the potential difficulties (some-
times impossibility) of obtaining closed form solutions. Nevertheless,
one is assured that the supply and demand functions thus derived do
correspond to those that are obtained through the maximization of
profits subject to some production function with the usual regularity
properties. Many additional factors, such as imperfection of markets and
technical change, may also be conveniently introduced in a straightfor-
ward way. Alternatively, given an arbitrary system of supply and
demand functions, one can verify their consistency with profit maxi-
mization subject to a production function constraint by checking
whether the system is integrable into a normalized profit function.

In addition, it should be emphasized that the normalized profit
function contains all the empirically relevant information. Supply and
demand functions derived from a normalized profit function satisfy all
the a priori restrictions imposed by the production function. Hence
there is no loss in generality, but a gain in elegance and analytical
convenience, if one starts out with a normalized profit function.

Finally, through the examples provided, it may be seen that a large
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number of complete systems that (1) approximate any arbitrary normal-
ized profit (and hence production) function, (2) can attain any value of
elasticity of substitution between any pairs of commodities, and (3) are
econometrically convenient to estimate — meaning in most cases linear in
parameters — are available. They offer greater flexibility than the supply
and demand systems traditionally used in the literature. This greater
flexibility may result in more realistic modeling of the economy or the
firm by making indispensable restrictive assumptions introduced for the
sake of obtaining closed form solutions.

The potentials for profit function (and revenue and cost functions) are
by no means exhausted here. Directions for future research include (1)
dynamic models, (2) incorporation of adjustment costs, (3) non-classical
technologies, (4) profit maximization under uncertainty, and (5) depar-
tures from profit-maximizing behavior.



