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1. The Context and Objectives of Production Analysis

1.1. Introduction

Empirical analysis of technology is carried out in many contexts, for
many purposes. Each situation raises specific conditions and objectives
which must be met in the specification of an econometric production
model. This chapter surveys a variety of functional forms for production
processes, and their cost and profit duals, and discusses some of the
applications for which they are suited.

The diversity and extent of the subject of applied production theory
makes a comprehensive survey impossible. We emphasize the structure
of alternative functional forms, and the relationship between “exact”
models of technology and econometric models incorporating stochastic
specifications. However, we have not attempted to provide either a full
catalog of properties of functional forms or a general procedure for
introducing stochastic elements in production models. We focus on
several basic issues of technology - scale, separability, and substitu-
tability. We have not attempted to treat a number of other major issues,
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such as technical change and aggregation, which are equally important in
many applications.

The uses of production models can be classified in two ways. The first
is the distinction between analytic studies of the production process (for
example, a test of the constancy of returns to scale), versus estimation
to provide predictions for specific applications (for example, a prediction
of industrial demand for energy). The former alternative requires close
attention to the structure and parameterization of the production model,
while the latter is more concerned with the robustness of the model and
its extrapolative plausibility.

The second division is between macroeconomic analysis of aggre-
gative production relationships and microeconomic treatment of in-
dustry, firm, and establishment technologies. Issues of aggregation over
commodities, economic units, and technologies, and questions of proper
parameterization of distribution, technical change, and growth effects
have dominated the literature on aggregate production functions. Ques-
tions of compatibility with physical production processes and firm
behavior have been important in the analysis of microeconomic produc-
tion relations. Statistical issues in the estimation of technological rela-
tionships have concentrated on the stochastic nature of aggregate quan-
tity and price indices, as determined by their definition and measure-
ment, and on the stochastic specification of microeconomic firm
behavior.

In a survey of functional forms, it is important to keep in mind the fact
that these forms have been constructed for a variety of applications.
One cannot expect to find a single “best” parametric production
function for all purposes; to the contrary, many of these functional
forms are well-suited for specific applications but poorly-suited for use
as general purpose characterizations of technology.

1.2. Objectives of Production Analysis

Historically, emphasis has been placed on a number of different aspects
of technology, depending on the objectives of analysis. We list below
some of the major objectives of production studies which have
motivated the development of functional forms:

(1) Distribution (the income shares of factors of production): Most
attention has centered on the aggregate shares of capital and labor.
Distribution issues also arise at the microeconomic level in problems
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such as the incidence of tax and subsidy programs. Distribution
parameters are of great importance in evaluating the growth process.

(2) Scale (the existence of constant returns to scale, or the presence of
decreasing or increasing returns): Scale has aggregate implications for
long-run growth, and for the structure of industry, which is also related
to the question of the logical consistency of the neoclassical assumption
of profit maximization. Microeconomic issues which focus on the supply
and financing of public services often center on the technological ques-
tion of the existence of increasing returns to scale.

(3) Substitution (the degree of substitutability of factors of produc-
tion);: Substitutability is a critical issue in the behavior of distributive
shares when factors proportions change. It plays an important role in
determining the incidence of taxes; and also the behavior of relative
factor prices, and therefore product prices, in the process of growth.

(4) Separability (decomposition of production relationships into
nested or additive components): Separability is an extremely important
structural property in a production model which often permits
econometric analysis to be carried out in terms of subsets of the total set
of possible variables, in stages, or with consistent aggregates of vari-
ables. Separability is of direct economic interest, implying uniform or
invariant behavior of certain economic quantities, and allowing decen-
tralization in decision-making. It is also of critical interest in the
specification of functional forms, influencing generality and simplicity,
and becomes an important subject for empirical tests. (Because of its
pivotal role in functional form specification, separability is discussed in
detail in Section 6 of this survey.)

(5) Technical change (modification of the technological structure over
time): Of interest are disembodied technical change (innovations which
require no specific capital); technical change embodied in factors of
production (usually capital, but potentially other factors such as skilled
labor); factor-augmenting change which increases the effective quality of
inputs; augmentation of other technological characteristics such as
scale-augmenting change (increasing the scale level at which decreasing
returns set in) or substitution-augmenting change (increasing the substi-
tutability of inputs); and endogenous technical change (learning-by-
doing; innovation and induced technical change).

In addition, a number of auxiliary topics have been the subject of
econometric investigation, with attendant problems of functional
specification.

1. Technological flexibility (the robustness of the technology in adapt-
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ing to changing environments): Of interest is the degree to which
flexibility is incorporated in the adopted technology, and its tradeoff
against static efficiency.

2. Efficiency (operation on or inside the technology frontier): Relative
efficiency of different economic units (firms, industries, nations) is of
interest, as is the efficiency of the same unit in alternative economic
environments.

3. Homotheticity (the presence of expansion paths with scale which
are rays through the origin): Homothetic production functions will
display unchanging distributive shares with changes in scale, ceteris
paribus. In contrast, heterotheticity will yield changing factor intensities
with changes in scale.

4. Consistent aggregation (the problem of specifying technological
structures that are invariant with respect to aggregation over com-
modities or economic units): This problem is most critical in studies
which want to ensure microeconomic compatibility of aggregate analy-
sis, or want to obtain simple aggregate forecasts from microeconomic
estimates.

In surveying various forms, one should keep in mind the alternative
objectives listed above.

2. Criteria for the Design of Functional Forms

2.1. Maintained Hypotheses

In addition to the obvious criterion that a functional form should relate
to the objectives of an analysis, there are a few general principles which
should be adopted in modelling production. The first concerns the role of
maintained hypotheses.

Any study in production economics (and, for that matter, in
economietrics in general) takes place against the background of a series
of maintained hypotheses which are not themselves tested as part of the
analysis, but are assumed true. The most fundamental of these main-
tained hypotheses are basic axioms on the nature of technology (e.g.,
“the production possibility set is closed”), which are widely accepted
because they are believed to be true, or at least irrefutable with existing
data. Second come technological and behavioral assumptions which are
not widely held to be universal truths, but may be widely accepted as
plausible for the problem at hand (e.g., “convex technology™ or “cost
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minimizing behavior”). Next come assumptions made to facilitate the
analysis (e.g., “independent normal errors”, “intermediate inputs sepa-
rable from primary inputs”), which are believed to be harmless ap-
proximations to reality. Finally, there may be maintained hypotheses,
such as the assumption of a specific parametric functional form, or of
the constancy of some unobserved prices or quantities, which are
accepted only for convenience or tractability. The analyst may then
argue that his results are robust or insensitive with respect to these
hypotheses, justifying their imposition on grounds of usefulness and
lack of negative consequence rather than on grounds of plausibility.
The outcome of a specific test of hypothesis depends in general on
both the validity of the hypothesis under examination and the validity
of the maintained hypotheses. Consequently, a test performed in the
presence of an implausible maintained hypothesis may not be convinc-
ing; the result may be a consequence of the validity of the maintained
hypothesis rather than of the primary hypothesis in which one is
interested. This suggests the general principle that one should not
attempt to test a hypothesis in the presence of maintained hypotheses
that have less commonly accepted validity. For example, it would be
inappropriate to test a basic assumption such as convexity of the
technology by examining the sign of the estimated elasticity of substitu-
tion when a C.E.S. production function is imposed as a maintained
hypothesis, since a rejection is more likely to be interpreted as a failure
of the C.E.S. specification than of convexity. An implication of this
principle is the need for general, flexible functional forms, embodying
few maintained hypotheses, to be used in tests of the fundamental
hypotheses of production theory. Given the qualitative, non-parametric
nature of the fundamental axioms, this suggests further that the more
relevant tests will be non-parametric, rather than based on parametric
functional forms, even very general ones. While non-parametric ap-
proaches to the study of production relationships have received some
attention in economics [Farrell (1957), Hanoch and Rothschild (19721,
these methods have been exploited less systematically for tests of basic
hypotheses than have parametric forms [e.g. Berndt-Christensen
(1973a)]. Analyses of the latter type inevitably are subject to the criti-
cism that a rejection of a hypothesis may be a result of the parametric
specification rather than falseness of the hypothesis. This criticism must
be balanced, however, against the observation that non-parametric tests
have not yet been developed for some multivariate production hypo-

theses.
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For most analyses, the econometrician has a choice of several starting
points for the specification of functional forms. This book emphasizes
the equivalence of production. cost, and profit functions as charac-
terizations of technology under appropriate conditions (including
competitive markets). It is also possible to specify a production model
directly in terms of demand and supply functions, expressed either in
prices or quantities, or even in terms of differential or difference
equations for these demand and supply functions. Under appropriate
integrability conditions, these systems can then be solved to obtain the
implied production, cost, or profit functions. This survey will emphasize
functional forms for production, cost, and profit functions, but will not
attempt to survey specifications of technology which are formulated
directly in terms of demand and supply functions or their derivatives.

2.2. Criteria for Choosing Functional Forms

Within the framework of the maintained hypotheses imposed on a
particular problem or class of problems, a wide variety of compatible
functional forms will usually be available. We list some of the criteria
which may be used to select among them:

1. Parsimony in parameters: The functional form should contain no
more parameters than are necessary for consistency with the maintained
hypotheses. Excess parameters exacerbate problems of muiti-
collinearity, which tend to be severe in any case in many applications
due to market substitution which causes prices, and hence quantities, to
be highly correlated. Further, when the sample is small, excess
parameters mean a loss of degrees of freedom, a particular problem in
aggregate analysis.

2. Ease of interpretation: Excessively complex or parameter-rich
functional forms may contain implausible implications which are hidden
from easy detection. Further. complex transformations may make it
cumbersome to compute and assess economic effects of interest: for
example, elasticities of substitution. Thus, ceteris paribus, it is better to
choose functional forms in which the parameters have an intrinsic and
intuitive economic interpretation, and in which functional structure is
clear.

3. Computational ease: Historically, systematic multivariate empirical
analysis has been confined to linear (in parameters) statistical models for
computational reasons. While current computational technology makes
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direct estimation of non-linear forms feasible, it remains the case that
linear-in-parameters systems have a computation cost advantage, and
have. in addition. the advantage of a more fully-developed statistical
theory. The tradeoff between the computational requirements of a
functional form and the thoroughness of empirical analysis should be
weighed carefully in the choice of a model.

4. Interpolative robustness: Within the range of observed data, the
chosen functional form should be well-behaved, displaying consistency
with maintained hypotheses such as positive marginal products or con-
vexity. If these properties must be checked numerically, then the form
should admit convenient computational procedures for this purpose.

5. Extrapolative robustness: The functional form should be compati-
ble with maintained hypotheses outside the range of observed data. This
is a particularly important criterion for forecasting applications.

3. Dual Transformation, Cost, and Profit Functions - Maintained
Hypotheses on the Technology and Its Representations'

In this section, we summarize the commonly imposed maintained hypo-
theses for production, cost, and profit functions. Much of the develop-
ment of specific functional forms has concentrated on questions of
consistency with these hypotheses. More detailed discussions of the
relationships among these properties are given in Part I of this volume.

3.1. Production Possibility and Input Requirement Sets

The basic notion to be introduced is that of a technology. Let vy be
vectors of inputs and outputs, respectively. The production possibility
set Y is the set of all feasible input—output combinations, i.e.. Y = {v.y:v
can yield y}. For each y occurring in some input-output vector in Y we
can define the input requirement set V(y), containing all the input
bundles which can produce y, i.e.. V(y) = {v:(v.y) € Y}. It is convenient to
describe the maintained hypotheses on the technology in terms of the
properties of V(y).

IThis section is intended as a summary in order to make the chapter self-contained. A
more detailed description of the characteristics of the representations of technology can be
found in Chapter .1 of this volume.
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The properties of V(y) are assumed to be:

1.1 Location. V(y) is a non-empty subset of the non-negative orthant
R", denoted by £,. It is possible that some factors will not be utilized.
However, the only output that can be obtained with no inputs at all is
the zero output. It is therefore required that V(0) =}, and y >0 imply

0Z V(y).

1.2 Closure. The analysis is greatly simplified when V(y) is assumed
to be closed. That is, if a sequence of points {v"} in V(y) converges, the
limiting point also belongs to V(y). This means that V(y) contains all its -
limit points, and assures that the efficiency frontier of V(y) belongs to

V(y).

1.3 Monotonicity. If a given output can be produced by the input-mix
v it can also be produced by a larger input: if vE€ V(y) and v'=v then
v € V(y). Similarly, the inputs required to produce a given output can
certainly produce a smaller output. If y=y' then V(y) C V(y). These
conditions imply that, unless Y is bounded and the boundary belongs to
Y, there is no input-mix that can produce every y in Y.

1.4 Convexity. V(y) is convex.

3.2. Production and Distance Functions

Suppose we restrict y to a single element y. Then, using the notion of the
input requirement set, the production function for y can be defined by

f(v) = max{y:v € V(y)}.

When V(y) has properties (1.1) through (1.4), f(v) has the following
properties (Diewert (1971)):

2.1 Domain. f(v) is a real-valued function of v defined for every
vE £, and it is finite if v is finite; f(0) = 0.

2.2 Monotonicity. An increase in inputs cannot decrease production:

V=V f(v)=f(v).
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2.3  Continuity. f is continuous from above: every sequence {v'}cQ,
such that f(v")=y° y°=f(v") and v" =’ implies lim,.f(v") = y?. Of
course, this is a weaker property than continuity, which is almost
universally imposed on the production function in empirical work.

2.4 Concavity. f is quasi-concave over {1,: the set {v:if(v)= yvE Q,}
is convex for every y =0. This property insures diminishing marginal
rates of substitution.

In addition, twice differentiability of f is commonly imposed in
empirical work.

When y contains more than one element, efficient production of y can
be described in terms of the distance® function

D(y,v) = max {A >0 i— vE V(y)},

for (v,y) €Y and v strictly positive; the frontier satisfies D(y,v) = 1.
Alternatively we can define the transformation function as the maxi-
mum amount of y, which can be produced given the amounts of the

other commodities ¥ = (¥2,....¥a) and v = (vy,....a), ie.,
F@.v) = max{y;:(y.§.v) E Y}.
¥y

The transformation function is assumed to have the following properties
[Diewert (1974a)]:

71.1 Domain. F is an extended real-valued function defined and
bounded from above for every (§.v) € psp-1- Also,

F(0,0)=0.
212 Monotonicity. F is non-increasing in § and non-decreasing in v.

2.1.3 Continuity. F is continuous from above.

2.1.4 Concavity. F is a concave function.

?For a detailed description of distance functions, see Chapter I.1.
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The distance function and transformation function have a simple
relationship:

D(y,v) = max {A > 0|y, = F(3.v/A)},
and y, = F(y.,v) is the solution to the equation

D(y|,$',V) = 1-
Then, D(F(¥,v),y,v) =1 is an identity, as is y, = F(y,v/D(y,v)). Using the
properties of distance functions derived in Chapters I.1 and 1.3, the
reader can use these identities to deduce the properties of the trans-
formation function.

3.3. The Cost Function

In general, economic models involving production need, in addition to
the production function or transformation function, rules of behavior.
The selection of the optimal input mix for some yE€ Y and some set of
exogenous input prices r normally assumes cost minimizing behavior.
Cost minimization for all r € Q*, where Q% is the strictly positive orthant,
and y €Y is described by the cost function

C(y,r) = min{r-v:veE V(y)}.

If the input markets are not competitive, a cost function can still be
defined by this formula, with the prices r interpreted as shadow or

imputed prices.
If V(y) possesses Properties (1.1) through (1.4) then C(y,r) has Prop-
erties (3.1)—(3.5) listed below:

3.1 Domain. C(y,r) i5 a positive real-valued function defined for all
positive prices r and all positive producible outputs; C(0.r) = 0.

3.2 Monotonicity. C(y,r) is a non-decreasing function in output and
tends to infinity as output tends to infinity. It is also non-decreasing in

prices.

3.3 Continuity. C(y.r) is continuous from below in y and continuous
inr.

3.4 Concavity. C(y,r) is a concave function in r.
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3.5 Homogeneity. C(yr) is linear homogeneous inr.
Empirical work usually assumes in addition:

3.6 Differentiability. In most empirical applications, C(y,r) is to be

twice differentiable in r.
Under 3.6, the cost function possesses the important derivative prop-

erty

(a) %(;_ = p; (Shephard’s Lemma};

from which it follows that

_— ovi _ 9y
ar,-ar,- ar’-ari o ar’_ ar, (Symmetry).

(b)

Property (a) can be used to generate systems of factor demand
functions. Property (b) is of use in reducing the number of parameters to
be estimated, thus conserving degrees of freedom and possibly elimina-
ting multicollinearity problems.

3.4. The Profit Function

Cost minimization can be construed as the first stage of a two-stage
procedure. The second stage, given an exogenous output price vector s,
is the selection of y to maximize profit. Profit maximization for all

r€ Q*, s 0 is described by the profit function
H(s,r) = max{s-'y—rv:(v.y) EY)},

or
H(p) = max{p-x:xEY},

where x is a net output vector (>0 for outputs, and <0 for inputs) and

p = (l',S) e ﬂ;‘:h#n-
If F(§.v) possesses Properties (2.1.1) through (2.1.4) then II(p) has
Properties (4.1)—(4.5):

4.1 Domain. I(p) is a non-negative extended real-valued function
defined for all positive prices p.
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42 Monotonicity. II(p) is a non-decreasing function of output prices
and non-increasing function of input prices.

4.3 Continuity. II(p) is continuous in p.

4.4 Convexity. II(p)is a convex function in p.

4.5 Homogeneity. II(p) is linear homogeneous in p.

Again, empirical analysis normally assumes, in addition,

4.6 Differentiability. Most empirical applications assume II(p) is
twice differentiable. As was the case with the cost function, the profit
function possesses two important corresponding derivative properties
(a) — = i=1,..m+n (Hotelling’s Lemma),

2 2
o7l _ 97T , oxi_ 3x;

= Symmetry).
Gpop,  apap  op; api  oymmewy

(b)

4. A General Approach - Forms Linear-in-Parameters
4.1. Parameterization of Economic Effects

The main body of econometric and statistical technique requires models
whose form is specified up to a finite vector of unknown parameters.
This leads to the consideration of specific parametric production models
which allow identification of particular economic effects, such as dis-
tribution and scale, while imposing no more maintained hypotheses than
necessary on other aspects of technology. To a large extent we will be
concerned with flexible representations of technologies, since flexibility
is the issue which has led econometricians to seek alternatives to the
first parametric production function, the Cobb-Douglas form (see
Douglas and Cobb (1928)].

The objective of flexibility can be used to classify functional forms.
Following Hanoch (1975a), we can specify the number of parameters
required for representation of the economic effects discussed in Section
1. Consider an n input, one output production function y = f(vy,...,0.),
with partial derivatives f; = df/dv; and f; = 8°f/dvdv; Economic effects
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such as scale, distribution, and substitutability can in general be
quantified in terms of the production function and its first and second
derivatives. Consider the following classification of these effects:

Number of
distinct
Economic effect Formula effects
Output level vy = f(v) : 1
Returns to scale w = (z v,—f})/f i
i=1 :
Distributive share si = vif; / > of; n-1
j=1
Own “‘price” elasticity € = v,fi/f; n
Elasticity of o = — ful 34 205l fif) — fil £ n(n—1)
substitution Y oif: + Uyf; 2

This table contains (r + 1)}(n +2)/2 distinct economic effects. These
effects characterize the usual comparative statics properties of a
production function at a point.> These formulae can be inverted to
determine the function value and the first and second partial derivatives
at a point in terms of economic effects,

=y
fi = nysilvi,
fi= M)’S:'G.'/U%,

_ﬁj = [0’,‘,‘(5,' + Sj) + €5; + e,-s,-]uylZv,-v,-, I# ]

Hence, a necessary and sufficient condition for a functional form to
reproduce comparative statics effects at a point without imposing
restrictions across these effects is that it have (n + 1)(n + 2)/2 distinct
parameters, such as would be provided by a Taylor’s expansion to
second-order.

*Exogenous technical change could be included by adding a variable ¢ to the exogenous
variables included in f. Then, n + 2 economic effects would be added: the rate of technical
change, T = f/f. the acceleration of technical change. T = (f,/f) — (f/f)°. and the rates of
change of marginal products, m;/m; = f,/f. There would then be a total of (n+2)n + 3)/2
effects.
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The development above in terms of a production function could
equally well have been carried out in terms of a cost or profit function.
Since the latter functions have n + 1 arguments, compared to the n
arguments of the production function, they may appear to permit a
larger number of distinct effects involving first and second partial
derivatives. However, the homogeneity properties of these functions
reduce the number of independent parameters to (n+ 1)(n+2)/2, as
before. For example, consider the cost function C = C(y,r). Since C is
homogeneous of degree one in r, Euler’s Theorem implies

> rCi(yr) = C(yrx),

2 rCi(yr) =0, j=1,..n,
=

and
Zx r.C,i(y,r) = C,(y.r),

where C;=aClar, C;= 3>Clordr, C,=aCldy, and C, = 3°C/aydr.
These provide n + 2 restrictions, known as the adding-up condition, the
Cournot aggregation conditions, and the Engel aggregation condition,
respectively. The number of distinct derivative conditions is therefore
(n+2)(n+3)2—(n+2)=(n+1)(n+2)/2, as in the case of the produc-
tion function.*

4.2. Linear-in-Parameters Approximations

Most of the flexible functional forms developed in the econometric
literature can be viewed as linear-in-parameters expansions which ap-
proximate an arbitrary function. In general, such an expansion can be
written in the form

N
ffx) = f(x)= Zl a;h'(x), (1

where f* is the true function, f is the approximating functional form, the

“This argument can be applied to an r-input linear homogeneous production function to
show that it has n(n + 1)/2 distinct economic effects.
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a; are parameters, the hi are known functions, and x is a vector of
independent variables. In production applications, x may be input quan-
tities or prices, or transformations of these variables (e.g., a log trans-
formation). If N=(n+D(n+2)/2 and a determinental condition (a
non-singular Wronskian)® is satisfied at a point x*, then parameter values
a; can be found for which this expansion approximates the value of f(x)
and its first and second partial derivatives in a neighborhood of x*. We
term an expansion with this property a parsimonious flexible form.

A common method of generating parsimonious flexible forms is by use
of a Taylor’s series expansion to second-order about a point x*. In this
case, the known functions and corresponding parameters have the
values

ho(x) = lv aO = f*(X*)’
hi(x) = x;— x7, a; = fHx*), i=1l,..n,
Ri(x) = (1/2)(x; — x5)(x; — x%), a;=fyx*), Lj= 1,....n.

[For notational simplicity, the second-order terms in (1) have been
reindexed in terms of [ and j.]

A problem which arises when we consider parsimonious flexible
functional forms as approximations to true functions is the accuracy of
the approximation. If a flexible form is calibrated to provide a second-
order approximation at a point, then the approximation is of this order
only in a small neighborhood of this point. In other regions of interest,
the form may be a poor approximation to the true function, and may
even fail to satisfy basic properties of the true function such as mono-

5The Wronskian is the determinant

h°(x*) h'(x*) AN (x*)

AR (x*) dx, 3h'(x*)dx, ah™ (x*) ax,
ahO(x*) ax, ) ah™ (x*)] 8,
3Th%(x*)lax} 3 RN (x*)ax}
T (x*)] 6x,0x2 ) 32hN (x*)/ 6x,0x,
R (x) ax? . RN (x*) ax3

When this determinant is non-zero, the coefficients a4, in (1) can be chosen so that the
approximation to f has first- and second-order derivatives at x* equal to those of f at x*.
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tonicity or convexity.® Further, the qualitative implications of the cali-
brated approximation may depend on the point of approximation; this is
true, for example, of separability, which involves properties of the true
function beyond second-order (see Section 6). The economic effects of
interest in comparative statics, while unrestricted at the point of ap-
proximation, can be strongly and perhaps implausibly related at different
points in the domain of the expansion.

If a parsimonious flexible form is fitted to observations over an
extensive domain, as is normally the case in econometric production
analysis, then the fitted form will not in general be a second-order
approximation to the true function at any chosen point. As a result, the
comparative statics effects deduced from the approximation will bear a
complex and perhaps misleading relationship to the corresponding
effects for the true function. In particular, multivariate fits to the
approximate function and its derivatives may fail to satisfy restrictions
on parameters across equations, even when the true function satisfies
properties implying these restrictions. This could lead the analyst to
conclude incorrectly that the true function fails to satisfy the properties
in question. For example, tests of ‘“‘profit-maximizing behavior” based
on symmetry restrictions across equations may be rejected in the system
of fitted functions even if the property holds in the true system. Note
that this conclusion depends critically on the assumption that the
expansion is being fitted to data over a large domain; a second-order
approximation at a point will satisfy symmetry restrictions across equa-
tions when the true system does.

A simple example may help to clarify the issues raised in the preced-
ing paragraphs. Suppose a true one-input production function is y = e’,
exhibiting increasing returns at an increasing rate (for v>1), u = v, and
a positive own-price elasticity, € = v. Suppose we approximate this
production function with an expansion in logarithms, logy =
a,+ a,log v + as(log v)>. The estimated returns to scale and own-price
elasticity from the expansion are g =a,+2a3logv and é=
(2as/ @)+ fi — 1, respectively. Suppose log v is normally distributed with
mean log m and variance o°. Then, an ordinary least-squares fit of the
parameters in the expansion converges in probability to a;=

Some expansions, such as the Translog function discussed below, can never except in
trivial cases satisfy monotonicity or convexity conditions over the entire positive orthant.
Hence, it is important in using these expansions to test for the satisfaction of maintained
hypotheses in regions of interest. In Appendix A.4 of this volume, Lau provides compu-
tational methods for verifying convexity.
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me®[1—logm +ilogmyP—0%}, ar=me®*(1—logm), and as3=
(m/2)e®’”. Alternatively, a second-order approximation to the true
function at a point v = m satisfies these formulae with o> =0.) Let ¥, 4,
and € denote the economic effects measured from the fitted expansion.

Then, for example,

E_ e”2’2(1 + log —U-)/i,

I m// m
which attains a maximum of e°”? at v =m. Hence, a second-order
expansion at a point will underestimate the returns to scale effect except
at the point. A fit to data for which log v is normal with mean log m and
variance o yields an overestimate of returns to scale at the data mean.
Table 1 indicates the accuracy of the approximation to y, u, and € for
three alternative expansions. In each case, the approximation is good
(say, within 10 percent) only in a narrow range, and is particularly poor
for small v where the expansions fail to satisfy monotonicity. The effect
of fitting the expansion to log normal data with m =10, o’=1 is a

TABLE 1
Second-order fit Second-order fit Data fit when log v has
m=1 m=10 mean log m = log 10,
varo?=1

gy & & logy @ & g & é

v log v I € log y m € log ¥ 13 €
03 1.74 —068 -2036 121.38 —83.55 -88.22 172.64 -137.75 —1i42.42
04 126 021 2757 7404 -5547 -59.10 101.47 —91.46 -95.08
0.5 1.09 06l 5.13 4983 -3991 -4292 65.67 —65.81 —68.81
09 100 099 1.12 16,57 -15.64 -17.54 18.16 —25.79 —27.6%
1.0 100 1.00 1.00 . 1348 —13.03 -14.79 13.99 —21.48 -23.24
1.1 1.00 100 092 11.17 —-1098 —~12.64 10.92 —18.10 -19.76
20 097 085 064 343 -3.05 —4.37 1.53 -5.02 -6.34
3.0 09 0.7 0.53 1.74 -068 —2.65 0.11 -1.12 -3.09
40 084 0.60 0.45 1.26 0.21 2.95 0.01 0.35 3.08
50 078 0.2 0.40 1.09 Q.61 1.07 0.16 1.01 1.46
90 062 036 0.28 1.00 0.9 1.01 0.73 1.64 1.65
100 060 033 0.26 1.00 1.00 1.00 0.82 1.65 1.65
1.0 057 0.31 0.24 1.00 1.00 0.99 0.90 1.64 1.63
200 042 020 0.16 097 0.85 0.83 1.18 1.40 1.38
300 034 015 0.12 090 0.70 0.68 1.21 1.15 1.14
400 029 0.12 0.10 084 0.60 0.58 1.17 0.98 0.97
500 025 0.10 008 0.78 0.52 0.51 1.12 0.86 0.85

90.0 0: 17 0.06 0.05 062 0.36 0.35 094 0.59 0.58
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substantial overestimate of u and € in the range 3.68 = v = 27.18, which
contains 68 percent of the data. This example suggests that fitted
expansions can be relatively non-robust with respect to the point of
approximation or range of data available, and that considerable caution
should be used in utilizing the models for extrapolative prediction or the
testing of basic hypotheses on production structure.

In principle, the difficulty in obtaining accurate approximations in the
large can be overcome by introducing additional parameters. On a closed
bounded domain, the Bernstein—Weierstrauss approximation theorem
shows that a continuous function can be approximated uniformly by
polynomials.” In practice, the number of parameters required in these
theorems to guarantee a specified level of accuracy is too large for
empirical purposes. A theory of approximation in the large for produc-
tion functions which incorporates the qualitative properties of the true
functions such as monotonicity and convexity might produce tighter
bounds on the number of parameters required; however, this topic is
beyond the scope of this survey.

’Suppose the domain of interest is defined — by translation, normalization, and extension if
necessary - to be the closed bounded set 8 = {(v,,...,v,) Z0Jv, + --- + v, = 1}. Consider the
class of functions f which are uniformly Lipschitzian on § with constant M; ie.,
[f(v) = f(v)| = M}v — v|. Define a multivariate Bernstein polynomial

By(v)= 2 Fky N,k N)by(ViKy,... K, ),
(k1. kn YEK

where K is the set of integer vectors (k,,...,k,) with (k,/N,....k./N) €S, and
B (¥ikiyeorkn) = (N UGk ok AN = Kymeem k) Db = oy =m0 ¥ 077

Given € >0, if N = nM?/€*, then [f(v) — By (v)| = € uniformly on the cube. To establish this
result, define K, = {k €K||lv— k/N| = (n/4N)'?} and K, =K\K,. Then

—Buw)= — {2 by I-kINI, .
f)-Buils 3, - ()| e+ 3 M =L bk

= (n/4N)"M >, by(vik) + M(n/4N)™'? Z‘k v — /NPy (vik)
LeEK kE

= M(n/dN)" + M(n/4N)"n 3, 2= 1)

= N
n
= _")' <
_M(N =e,

where the second and third inequalities follow from properties of the multinomial dis-
tribution.
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4.3. Common Linear-in-Parameters Forms

Table 2 provides, in summary form, a list of the most commonly used
linear-in-parameters functional forms and their approximation charac-
teristics. The historic Cobb-Douglas function, while not originally pro-
posed as an approximation, can be viewed as a first-order expansion in
log v; about v; = 1. This form allows free assignment of the output level,
returns to scale, and distributive shares effects at a point of ap-
proximation, but allows no flexibility with respect to the substitution and
own-price elasticity effects. The CES function adds one substitution
parameter to the (linear homogeneous) Cobb-Douglas case. We have
included this functional form in the table, even though it is not linear-in-
parameters unless the substitution parameter p is known, because it is
the basis for several linear-in-parameter expansions.

The concept of linear-in-parameters functional forms and the property
of second-order approximation at a point are due to Diewert (1971), who
introduced the generalized linear and generalized Leontief systems. This
development was followed by the introduction of the translog functional
form by Christensen, Jorgenson, and Lau (1971). A direct generalization
of the Cobb-Douglas function, the translog form has been widely used
as a framework for analysis of structural properties of production.

All the forms in Table 2 with the exception of the Quadratic have
restrictions implying linear homogeneity, and under this restriction have
n(n + 1)/2 parameters, as required for a parsimonious flexible linear
homogeneous function. In the absence of homogeneity restrictions, the
forms having (n+ 1)(n+2)/2 parameters are Generalized Leontief,
Translog, and Quadratic. With the exception of Generalized Cobb-
Douglas and Generalized Concave forms, the functions in Table 2 can be
interpreted as Taylor’s expansions about a point. In this interpretation,
first proposed explicitly by Lau (1974), Cobb-Douglas is a first-order
expansion of log y in powers of log x;, and Translog is a second-order
expansion. CES is a first-order expansion of y° in powers of x!.
Generalized Leontief and Quadratic are second-order expansions of y in
powers of v/x; and x;, respectively.

Generally, the forms in Table 2, or analogous forms that could be
obtained using other series of functions as a basis for expansions, will
provide equally satisfactory representations of an arbitrary production
function at a point. Choice between them should be based on their
quality as approximations to the true functions over the full domain of
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interest, to the extent that this can be assessed a priori, and on the ease
with which hypotheses of interest can be stated as restrictions on
parameters.

5. Special Non-Linear Forms
5.1. Elasticities of Substitution

The flexible forms discussed in Section 4 can be viewed as extensions of
simple functional forms where the extensions are constrained to remain
linear-in-parameters. For example, Diewert’s Generalized Leontief cost
function is just such an extension of the cost function dual to a Leontief
fixed coefficient production function. The Translog extends the Cobb-
Douglas function and the Quadratic extends a linear function under the
same linear-in-parameters constraint. While linearity is retained, it is at
the cost of introducing a large number of parameters into the analysis.
The variants of simple functional forms surveyed in this section are
characterized by non-linearity in parameters. This fact makes them less
useful in general for econometric estimation than those forms surveyed
in Section 4. However, in some cases, non-linearity is compensated for
by parsimony in parameters. An example discussed in this section Is
Hanoch’s CRESH-CDE form for use in the study of factor substitution.

Most of the forms surveyed in this section were devised to generalize,
using as a few additional parameters as possible, two restrictive features
of the maintained hypotheses concerning substitution effects of the
original ACMS function. First, in the two-factor case, the elasticity of
substitution is constrained to be constant, and there is no apparent
technological justification for this restriction. Second, extension of the
CES function to more than two factors requires, with unimportant
exceptions, the imposition of the maintained hypothesis that all partial
AES are equal and constant [Uzawa (1962)]. In the multiple factor case,
it is not clear that the AES will be the desired concept of the elasticity of
substitution (ES). The attempts to apply this concept to the case of more
than two inputs have produced various definitions [McFadden (1963)].
As indicated by Mundlak (1968b), those definitions differ in two major
respects: (1) the variables which are held constant in the underlying
economic experiment and (2) the number of variables which are in-
volved in the operation. If we denote § =dIn v, and assume that all
derivatives are evaluated at an equilibrium point, we can distinguish
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between one-factor one-price ES (OOES), #,/7. (the AES is of this form),
two-factor one-price ES (TOES), (#; — #;)/7;, and two-factor two-price
ES (TTES), (3;— 0:)/(f; = #). The last is the “usual” definition of ES.
Each of these concepts can be evaluated at constant output, cost, or
marginal cost. Each of these alternatives corresponds to a different
factor demand curve, where the prices not involved in the operation are
held constant. However, it is also possible to hold constant the quan-
tities of the factors which are not involved in the operation. In one
extreme “short-run’ case we have the direct ES (DES), which is a TTES
with all factors other than those involved in the operation held constant.
In the extreme “‘long-run” case, we have the shadow ES (SES), in which
all quantities are allowed to vary. We can also have mixed situations in
which the quantities of some factors and the prices of other factors are
held constant. Detailed discussions of various definitions of the ES are
given in McFadden (1963), Hanoch (Chapter 11.3), and Lau (Chapter 1.3).
All these forms collapse to a common definition in a two-factor linear
homogeneous production function. This is due to the singularity of the
Hessian matrix, and therefore it cannot be used as an indication that any
of the above expressions is a generalization of the two-factor measure
[Mundlak (1968b, p. 231)].

In summary, once we depart from the two-input case we confront the
following problems in attempting to develop production functions from
the point of view of the elasticity of substitution:

(a) There is no unique natural generalization of the two factor
definition of the ES. The different definitions involve different combina-
tions of the elements of the underlying Hessian matrix. It is therefore
reasonable to deal with the Hessian elements directly. The AES comes
close to this approach. Other than that, it has no particular advantage
over the others and perhaps the reference to it as an elasticity of
substitution is misleading. It is simply proportional to the cross elasticity
in the constant output factor demand function. We conclude that the
selection of a particular definition should depend on the question asked.

(b) The choice of an ES does not imply constancy of the elasticity;
this is an added hypothesis which may not hold in reality. As a result,
there is no direct relationship between the concept of the ES to be used
and the algebraic form of the production function.

Non-linear forms have been analyzed primarily in terms of the AES,
and in the pages which follow we will maintain the classification in terms
of the AES. However, we note that for the reasons above, it might also
be useful to pursue a classification similar to that in Section 4.
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5.2. Variants of the Cobb-Douglas Function

(1) Variable elasticity of substitution (VES) production function
[Revankar (1971)]. This function was devised to relax the assumption of
constant AES in the two-factor case. It takes the form

y = apvi'(v2+ v1v)%,
and has an AES = 1+ B(v,/v,) where 8 is a function of the production

function parameters. It is considered a variant of the CD form since the
AES varies around one for 87 0 and. variations in relative inputs.

(2) Constant marginal share (CMS) function [Bruno (1968)]. This
function is explicitly a generalization of the CD form. It can be ex-
pressed as

Yy = aoU'v3 =~ Yoy,

and has an AES = 1 — (ya/a2)(v4f y)-

(3) Transcendental production function [Halter, Carter, and Hocking
(1957)}. This function has the form

y = aovi “05enT,

and has an AES =(1—a + y;v))(a + y:0)/((1 — a)(a + v +a(l —a +
v1v1)?) which reduces to unity when v, =y, = 0.

5.3. Variants of the CES Function

Most of the variants of the CES function can be seen as the result of
attempting to eliminate the assumption contained in the multifactor CES
formulation, namely, equality of all partial AES [Uzawa (1962),
McFadden (1963)]. One extension which relaxes this restriction is the
nested CES function [Sato (1967), see also McFadden (Chapter IV.1)].
This form has not been used extensively in empirical work due to its
complex nature when extended to more than three factors [however, see
Mundlak and Razin (1969, 1971)]. Another avenue for CES-like exten-
sions is the class of implicitly additive forms introduced by Hanoch
(1975a). The direct form is

F(v.y) = 2 Fi(u,y)=1, @)
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where F' are functions with properties imposed to insure that the
implied explicit production function satisfies the maintained hypotheses
of Sections 3.1 and 3.2. The dual, or indirect form, is

Girle,y)=2, Gi(rle,yy=1; (4)

where G' are functions with properties imposed to insure that the
implied cost function c satisfies the maintained hypotheses of Section
3.3. This class of functions contains as special cases the direct forms
which have constant ratios of AES; such as the one derived by Mukerji
(1963) and Gorman (1965) [and used by Dhrymes and Kurz (1964)] and
the CRESH form developed by Hanoch (1971). The indirect form
contains as special cases functions which exhibit constant differences in
AES such as the CDE form of Hanoch (1971). The Mukerji form uses
the transformation Fi(v,y) = D:{(v%/y"), while the CRESH form uses the
transformation Fi(viy) = Di(v/y")%. The CDE form uses the trans-
formation G(rfc,y)= Di(y"ric)® In these transformations, D, d;, and h
are parameters. Detailed discussion of these transformations and ex-
tensions can be found in Hanoch (1975a).

Estimating equations for the indirectly additive class contain a small
number of parameters when compared with the general linear expan-
sions of Section 4. For example, consider the CRES (constant ratio
elasticity of substitution - non-homothetic) form introduced by Hanoch
(1975a),

2 Diy—eldiv,_di = . (5)
where D, d;, and ¢; are parameters. Using the first-order conditions for
profit maximization, one obtains the set of equations

log v; = A; — a; log (r/r) + h; log y + (afa\} log vy, i=1,..,n,

where
a;=1(-d), A =log (DdfDid)%,  hi = ai(ed, — ed)),

and
AES.‘,IJAESM = ai/a,-.

. 8For extensions of the indirectly additive class to the multiple output case see, Hanoch
(Chapter 11.3).
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The above set of equations is non-linear in a; and simultaneous in v
but could be estimated using non-linear simultaneous equations pro-
cedures currently available. Note that there are 3n —2 parameters to
estimate in the system of equations (5) as compared with (n + 2)(n + 1)/2
for the second order linear-in-parameters approximations. The cost (in
addition to the non-linearity) is the maintained hypothesis of implicit
separability which is reflected in the fact that only two input prices
appear as exogeneous variables in each demand equation. This is an
example of the importance of separability assumptions for functional
specification. It is to this 1ssue that we now turn.

6. Separability: Functional Implications and Tests

6.1. Basic Concepts

Separability has various implications. It allows decentralization in
decision-making or equivalently, optimization by stages. This opens up
the possibility of consistent multi-stage estimation which may be the
only feasible procedure when large numbers of inputs and outputs are
involved; specifically, when applying the relatively simple concept of a
production function to complex organizations. Historically, separability
has played an important role in the specification of functional forms.
The Cobb-Douglas and CES functions are explicitly strongly separable.
Hanoch’s (1971) CRESH-CDE class of functions is implicitly strongly
separable. Sato’s (1967) nested CES specification is strongly separable
with respect to the highest level partition and then strongly separable
within each sub-aggregate.

To define separability, we first denote the set of n inputs by N=
{1,...n}. A partition § of N is given by {N,..Ns} where N=
N, UN,---UNg, and N, NN, is empty for r# t. Separability is charac-
terized by the independence of the marginal rate of substitution between
a pair of inputs from changes in the level of another input, i.e.,

LTI

or fifu — fifu = 0. We say that f is strongly separable (SS) with respect to
the partition S if (6) holds for all iEN,, jEN,, and k&N, UN,. The
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function is weakly separable (WS) with respect to the partition S if (6)
holds for all i,j €N,, and k& N,. Note that these properties may hold at a
point or globally.

Goldman and Uzawa (1964) showed that a function f(x) is giobally SS
with respect to the partition S (S > 2) if and only if f(x)= F{Ei. fi(x"H}
where F is monotone increasing and f'(x') is some function of x". The
function is globally WS with respect to the partition S if and only if it is
of the form

fx) = G{g'x"),....g*(x*)} )

Berndt and Christensen (1973b) related separability to AES and
obtained the result that any strictly quasi-concave homothetic produc-
tion function f(v) is WS with respect to the partition S at a point if and
only if AES; = AES; at that point for all i,j EN, k& N,. Similarly, the
function is SS at a point if and only if AES; = AES; for all i€N,
i EN,, k€N, UN,. Furthermore, if n =S, then all AES;, i# k, are equal.
If this function is globally SS for any input combination then f(v)=
F(E 7., aiv?), a homothetic transformation of a CES function.

Finally, Berndt and Christensen showed that if f(v) is homothetically
separable then the dual cost function C(y.r) is weakly separable so that

C,'C,‘k e C_:C,'k =0 (8)

holds as well as (6). _

In proving these theorems Berndt and Christensen use a result obtained
by Lau (Chapter 1.3) to the effect that the cost function is WS(SS)
with respect to the partition S in input prices if and only if f(v) is
homothetically WS(SS) with respect to the partition S in input quantities.

The role of homogeneity of f in the Berndt-Christensen results is
analyzed by Russell (1975), who extends the results to the case of
non-homothetic production functions.

Separability results comparable to those obtained by Berndt and
Christensen are developed in terms of cost and profit functions by
McFadden (Chapters 1.1 and 1V.1) and Lau (Chapter 1.3).

One important application of separability is in the derivation of
value-added functions. If the gross output production function is weakly
separable in primary inputs then a net output or value-added function
can be defined and used for analysis. This issue is pursued by Bruno
(Chapter II1.1) and Denny and May (Chapter HI1.3).
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6.2. Separability in Forms Linear-in-Parameters

Since the separability constraints (6) and (8) depend on second-order
partial derivatives, functional forms linear-in-parameters must be at
least of the second-order in the variables to contain separability as
a testable implication. For example, the Cobb-Douglas function, which
is of the first-order in logarithms, maintains separability since
(82 log )/(3 log v:)(d log v;) = 0 for all i,j, thus satisfying (6). The class of
second-order approximation functions then will be the linear in
parameters class necessary in general to test separability. Separability
tests of production structures using the translog specification can be
found in Berndt and Christensen (1973a, 1974), Berndt and Wood (1975),
Denny and Fuss (1977), and Denny and May (Chapter II1.3). Similar
testing of the structure of utility functions appears in Christensen,
Jorgenson, and Lau (1975) and Jorgenson and Lau (1975a). An alter-
native approach to testing separability, in the framework of the muiti-
stage Sato function, appears in Mundlak and Razin (1971).

The above tests fall into two categories. The first category is that of
“exact” tests. These tests result from the imposition of the null hypo-
thesis of separability for all possible values of the exogenous variables.
The second category consists of ‘“‘approximate” tests, where the null
hypothesis is imposed only at a point of approximation, utilizing the
notion of the function as a second-order Taylor series expansion.
Berndt-Christensen and Berndt-Wood use the exact tests, Denny-Fuss
and Denny-May use the approximate ones, while Christensen et al., and
Jorgenson and Lau use both (under the terminology “intrinsic” and
“explicit’). Exact tests would seem to be preferable if no additional
constraints are imposed, since a single reject/non-reject decision is
globally applicable. Unfortunately, with second-order expansions this is
not the case. Blackorby et al. (1977a) and Denny-Fuss (1977) have shown
that the restriction of global weak separability implies either strong
separability within the partitioned sub-aggregates, or strong separability
between aggregates. For example, suppose G in (7) is translog. Then
either each g'(x') is Cobb-Douglas in x' or G is Cobb-Douglas in g'.
These resuilts can also be found in Jorgenson and Lau (1975) for the case
of utility functions. We are left with a tradeoff between tests which
impose extraneous restrictions and those which depend on the data point
chosen as the point of approximation. While the issue remains un-
resolved, one possible procedure is to explore higher-order expansions
[Lau (1977)], which unfortunately requires the introduction of a large



A Survey of Functional Forms 247

number of additional parameters. Another approach is to explore forms
non-linear-in-parameters, to which we now turn.

6.3. Separability in Forms Non-Linear-in-Parameters

We begin by illustrating a procedure suggested by Mundlak (1973a) for
generating non-separable functions which contain less than the (n +1)
X (n + 2)/2 independent parameters of the second-order approximations.
To sketch the approach to this problem, let

y = f(v)= (g * h)(v), 9

where f(v) is the production function, g and h are two arbitrary
functions. and # is an arbitrary operator; i.e., addition, multiplication,
exponentiation, or composition. ° It can be shown that g and h can both

be separable while f(v) itself is not separable.
To illustrate the use of this approach, let * be addition so that (9)

becomes

f(v)=g(v)+ h(v). (10)
Then to evaluate (6) we can write

fifu = fifa = (g + h)(gu + hi)— (g + h)(gix + hix)

= (hihyg — hihy) + (28 — 8i8ix)
+ (higix — higa) + (gihjx — gihiv)- (11

We now note that h and g can both be separable so that the first two
terms on the r.h.s. of (11) vanish. Furthermore, we can select one of the

functions to be linear. For instance, let g;# 0 for at least one i and g, =0
for all i and r. Thus, if g is linear and h is separable we get

fifu — fifi = gihix - gk (12)

For f to be non-separable with respect to i and j it is sufficient that
(12) differs from zero. For instance, we can assume h to be a CD with a;
being the output elasticity with respect to the jth factor, so that h; =
a;a;(hivv). Then (7) becomes

gy — g,hik=—h(g.—1—g, ) (13)

By composition g* h, we shall mean that h becomes an argument of g:ie..(g*xh)v)=
glv.h(v)).
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(13) is equal to 0 for all i and j if and only if

& _ 5’.‘_’_1" (14)
U U;

which is impossible except at a point.

Note that (14) could be used as an approximate test of separability at a
point. In contrast to the translog function, the maintained hypotheses
involve only 2n parameters.

We can further illustrate the above procedure by using it to generate
a second-order approximation form which can be used to test separabil-
ity among outputs within the class of exact tests.

Let C(y,r) be a cost function dual to the distance function f(y,v) =0
where y, v, r are output, input, and input price vectors, respectively.
Suppose

C(y.xr) = (g * h)(y.r)= g(y,h(r)), (15)

where * is a “‘composite function’ operator and k(r) is a vector consis-
ting of elements h;(r), i,j = 1,...,n. Let

hi) =3 Y agu(nr)'™ and  g(y,.h) =2, 2 hi(yiy)'™"™. (16)
r 5 f ]
The resultant function is

Cyn=22 ;Z aiju(yiyinr)'”?, (17)

which was analyzed by Hall (1973) and implemented empirically by
Burgess (1976). Separability of the form f'(y) = f3(v) can be tested by
imposing the restrictions a;u = a;ay [Hall (1973)] which results in an
exact test. We arrived at the above form by combining two generalized
Leontief specifications. Of course (17) still contains a large number of
parameters, limiting its usefulness empirically. Nevertheless, this
method of combining functions may prove useful for achieving a par-
ticular property with an efficient use of parameters.'

“The two-stage nested functional form developed in Fuss (1970) [see also Fuss (1977b)
and Fuss and McFadden (Chapter I1.4)] combines two generalized Leontief cost functions
using a composite function rule much like that employed by Hall. This construction
provides exact tests (in the sense used in the text) of the flexibility of the underlying

technology.
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7. Econometric Estimation of Production Parameters

The functional forms set out in Sections 4 and 5 characterize systematic
relationships between economic variables, but take no account of the
random effects which enter the determination of measurement of these
variables. In application the stochastic specification is an intrinsic part of
the specification of the production model. It should be emphasized that a
specification of the model should be guided by the visualization of the
true process and this is determined by nature and not by the
econometrician. Hence the object is not to choose a specification that
justifies a particular statistical procedure but on the contrary, to provide
a general framework which allows for discrimination between various
alternatives, as well as to examine the “robustness” of procedures
dictated by the various alternatives.

Relations between measured production variables will in general
contain stochastic components introduced at four levels: (1) the tech-
nology of the production unit, (2) the environment of each firm, partic-
ularly the market environment, (3) the behavior of the production unit,
and (4) the process of observation, which often involves aggregation
over commodities, production units, and time; direct errors in
measurement; and incomplete observation. We discuss in turn each
source of error.

Variations in technology from one production unit to the next may
arise from specific or unit effects known to the production unit but not
to the econometrician; such as management efficiency, availability and
quatity of specific factor inputs, and the presence of non-market inputs.
They may also arise from effects which are unknown to the production
unit at the time decisions are made. Examples are effects due to
breakdown, weather, random variations in factor efficiency, and varia-
tions in quality control. The importance of the distinction between these
two sources of variation [Mundlak and Hoch (1965)] is that effects
known to the production unit enter the process of optimization and will
be transmitted to the chosen input levels, whereas these chosen levels
cannot depend on the realized values of random effects which are
unknown at the time input decisions are made.'" The statistical im-
plications of this distinction are that observed factor inputs will be

I'This is to some extent an oversimplification, because if production is performed by
stages the error of one stage becomes a known error of higher stages [Mundlak (1963)].
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endogenous if random effects are known to the production unit, and
potentially exogenous if they are not.

The environment of a production unit includes a description of the
markets in which input purchases and output sales must be made; the
information available to the production unit at the time it makes
decisions on market conditions; levels of non-market inputs; and the
degree of organizational pressure or slack; as well as more general
information on societal pressures on production unit decisions. For
example, firms may face competitive input markets, and may purchase
inputs of unknown quality in these markets at known prices, with the
result that prices per efficiency unit of input are uncertain. Alternately,
firms may find it necessary to contract for purchases or sales in some
markets before other markets open, making relative prices uncertain.
For instance, the purchase of durable inputs precedes the knowledge of
all future prices of outputs and related inputs. If some markets are
non-competitive, then stochastic components in demand or supply for
non-competitive commodities will influence firm decisions and the
resulting prevailing prices and quantities. In some cases it may be
important to distinguish between stochastic effects on market equili-
brium which are known to the firm, and thus part of its decision
function, and those which are unknown to the firm. The knowledge need
not be perfect for the argument to hold. The former will make observed
prices endogenous; the latter makes them potentially exogenous.

Production unit behavior introduces stochastic components via devia-
tions from idealized behavior patterns, as for example, failure in profit
maximization to achieve exactly the desired marginal products of inputs.
Such errors may arise from the finite computational ability of firms,
from explicit calculations of computation costs versus expected gains,
from satisficing behavior, or from firm objective functions which differ
from those postulated in a maintained hypothesis by the econometrician.
We note that some of these effects may introduce systematic biases into
behavioral responses, and into the resuiting observation. For example,
Mundlak and Vulcani (1973) consider firm utility maximization,-with
utility depending not only on profit, but also on other variables like
uncertainty and the leisure component in a production plan. It then
follows that classical first-order conditions for profit maximization mis-
specify the true behavioral conditions, and therefore going from direct
estimation of the production function to estimation of a system contain-
ing erroneous first-order conditions can be expected to worsen the
quality of estimates [Mundlak (1973b)]. This caveat applies quite



A Survey of Functional Forms 251

generally to the use of indirect forms or behavioral equations in estima-
ting technological parameters; these forms require maintained hypo-
theses, such as profit maximization, in addition to those required by the
basic specification of the technology. If these hypotheses prove to be
false, then inferences on technology conditional on such hypotheses will
be negated unless the estimation procedures can be shown to be robust.
One such robust procedure, a direct estimation of the production
function with prices serving as instrumental variables, is examined
below. The robustness follows from the fact that even under a broader
formulation, profit is considered to be an important argument in the
utility function of the firm, and, ceteris paribus, prices have the same
effect on quantities as in the neoclassical theory.

Broadening the framework of the analysis by allowing the utility
function to include other variables in addition to profit leads to a duality
relationship between technology and what may be referred to as a
profit-like function-that is, a function which behaves like a profit
function but whose arguments are some combination of actual prices
and “prices” of the other variables that enter into the utility function.
We can refer to the outcome of such combinations as pseudo prices. The
profit-like function is the dual of the true production function. The use
of profit rather than a profit-like function in empirical analysis can be
considered as an approximation, the quality of which is to a large extent
an empirical question. If however, it turns out that in a particular
situation the approximation cannot be justified, the question is what
information can be derived by working under the assumption that the
system behaves as if the first-order conditions for profit maximization
were met. Basically, this is a question of tracing the consequences of
specification error in some equations on the model as a whole. If the
technology is more stable than behavior, it may still be identified through
the use of the first-order conditions for profit maximization. If on the
other hand behavior is more stable, we derive behavioral equations
which behave like reduced-form equations of a structure that is not fully
identified.

In addition to stochastic components introduced in the technology and
behavior of the production unit, there are observation errors introduced
in the process of measurement of variables by the econometrician. First,
classical measurement errors may occur in the process of soliciting,
recording, and processing data. Second, a variety of sources of error,
which can be lumped under the term aggregation errors, occur because
of an inexact or ambiguous correspondence between ideal and practical
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definitions of variables. Further, ‘“‘ideal” aggregation is determined by
the true functional form, which is itself to be determined in the analysis.
Thus, any given practical procedure of aggregation may lead to different
kinds of aggregation error for alternative “‘true” production functions.
Consequently, other things being equal, the aggregation error may
influence the selection of a functional form in favor of the form for
which the error is minimal. The aggregation problem occurs in various
phases of the analysis. Aggregation over detailed commodity
classifications (e.g., labor services distinguished by individual) to
relatively homogeneous categories (e.g., labor services of stenogra-
phers) introduces errors. In the case of broad commodity classes,
such as “capital” and ‘“labor”, these errors may be sufficiently
major to influence the interpretation of the “technology’”. Aggregation
over production units or through time may be dictated by the feasibility
of data collection, or in the case of macroeconomic relationships, may
be an objective of the analysis. Third, errors may arise because
variables which are difficult or impossible to measure exactly are
replaced by proxies, as for example the use of an average mortgage
interest rate for a firm as a proxy for the actual interest rates on
mortgages on specific structures.

In view of the complexity of the stochastic structure of production
systems it should be clear that there is no simple universal estimation
procedure. There are several alternatives whose merits depend on the
relative strength of the various error components. In order to charac-
terize these alternatives we note that the production function and the set
of equations describing the first-order conditions for profit maximization
constitute a complete system. The reduced-form of the system gives the
product supply and factor demand equations. The profit function is an
identity in the reduced-form equations.”

The main approaches to estimation are:

(1) direct estimation of the production function,
(2) estimation of the first-order equations,

(3) estimation of the reduced-form equations,
(4) estimation of the dual functions.

The selection of a particular approach depends not only on the
stochastic specification but also on the functional form. However, in

In this general discussion, we assume that all the variables are determined without any
constraint on the maximization. Thus, the reduced form equations are long-run behavioral
equations. If some variables are fixed, the reduced-form equations will include such
constraints and thus result in short-run equations [Mundlak (1963)].
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order to review the main points which have appeared in the literature
dealing with the stochastic part of the model, we follow an example
which assumes a very simple functional form -a Cobb-Douglas with one
input only. We carefully specify and allow for the main sources of
variations that have been discussed above and trace their effects on the
various estimators considered. The discussion is oriented toward a
cross-section analysis of firms. Some comments are also made on the
possibilities which exist when there are repeated observations on firms.
The specifications are listed as maintained hypotheses, and are not
necessarily intended to represent an order of plausibility.

Example. An econometrician observes data on labor input (L), out-
put (Y), and wage rate measured in output units (w) for a cross-section
of firms, indexed i=1,....T. He wishes to estimate the elasticity of
output with respect to labor input. The following maintained hypotheses

are imposed.

7.1. Technology
7.1.1. Variables

Maintained Hypothesis 1. The technological possibilities of each firm are
completely defined by two variables, the single variable input labor and a
single output. There are no other variables such as capital, raw materi-
als, knowledge, secondary outputs, etc., which vary systematically
across the sample and enter the determination of technological possi-

bilities.
7.1.2. Functional Form

Maintained Hypothesis 2. Each firm has the same technological possi-
bilities, except for random effects due to (1) specific environment,
management efficiency, and local labor quality, which will be referred to
as the firm effect, and (2) breakdowns, weather, random variations in
worker efficiency, which will be referred to as the non-systematic error.
The technological possibilities have the Cobb-Douglas functional form

Y,=ALfe™, (18)

where A and B are parameters, Y, and L, are the “true” values of
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output and labor input, € is the firm effect and A is the non-systematic
error. These errors are normalized so that Fe = EA = 0.

[Note: Alternative specifications might be: (1) a production function
other than Cobb-Douglas, or (2) firm-to-firm variation in parameters,
such as B, or a more general variation in production possibilities across

firms.]

7.2. Environment
7.2.1. Market Structure

Maintained Hypothesis 3. The firm faces competitive input and output
markets. The relative price in these markets varies across firms, and is
non-stochastic and fixed in repeated samples.

{Note: An alternative specification might be a non-competitive input
or output market with relative prices endogenous and depending on firm
behavior.]

7.2.2. Information Available to the Firm

Maintained Hypothesis 4. At the time the firm must choose its labor
input, it knows the true production function, except for the non-sys-
tematic error A about which the firm forms expectations. The firm
measures its ‘“‘true’” input and output levels without error. In particular,
the firm has no ambiguity about the “‘quality” of input or output. The
firm measures the relative price of labor in terms of output with a
random error, w = w e, where w, is the ““true” real wage, £ is the error,
and w is the relative price of labor seen by the firm. The source of the
random error £ may be uncertainty about price at the time the relative
price is measured; e.g., the firm may measure the money wage without
error and forecast the output price with error, so that the ratio of the
money wage to the output price, or real wage, is measured with error. As
a first approximation it is convenient to assume that E(£) =0. In the
present context this is a very restrictive assumption for it indicates that
the log forecast price is on the average equal to the log true price.
Therefore, eventually we shall trace the consequences of the elimination
of this assumption.

[Note: Alternative and supplementary specifications might be: (1) that
the firm is uncertain about its true production function, (2) that the firm
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makes errors in measuring the amount of “true” labor in the labor
quantity it observes because of an unknown “quality” factor, or (3) that
the firm exhibits some systematic bias in measuring the relative price of
labor.]

7.3. Firm Behavior
7.3.1. Market Posture of the Firm

Maintained Hypothesis 5. The firm attempts to maximize competitive
profit, given the information available to it and the point expectation
that A =0, by a choice of the labor input. The quantity sold and actual
profit are determined by the actual value of A.

Analysis: With the point expectation A =0, the firm ‘‘sees” the

production function

Y, = Ae‘L%, (19)
and relative input price w. It then “sees” the profit (measured in output
units)

m = Ae‘LE — wL,. (20)
The firm chooses L, to maximize (20), setting the marginal product of
labor equal to the real wage that it “sees’”,

Y /3L, = BAe'LE ' =w. (21)

Errors in optimization can be subsumed in the random error £ in
forecasting the real wage. In this case, ¢£ may be subject to a firm effect,
but this in turn makes the assumption of E(£¢) =0 even more restrictive.
As indicated, we return to this question later. From (21),

L, = (W/BAe’) A, (22)
Y* — Aee-}-/\Lg = (Aee)”(l-B)BB/(I_B)W—H(l_ﬁ)CA, (23)

where L, is the “true” input, Y, is the “true” output. The firm’s
“expected” output is given by (23) with A =0. The profit which the firm
would receive from the “‘true” input-output combination if w were the
“true’ relative price is

IT=Y,— wL,={Ae(BIw)F}"""H(e* - B). (24)



256 Melvyn Fuss, Daniel McFadden, Yair Mundlak

“Expected” profit for the firm is given by (24) with A = 0. Finally, the
profit the firm actually receives from the ‘‘true” input—output combina-

tion with the true relative price w, = we™* is
H* = Y* -w,L,= {Aez(ﬂ/w)ﬂ}ll(l-ﬂ)(e'\ - Be—f)- (25)

As a consequence of the forementioned hypotheses, true input, output,
and profit satisfy (22), (23), and (25).

[Note: Alternative specifications of firm behavior are: (1) non-
competitive behavior rules (even in the face of competitive markets), (2)
objectives other than profit maximization (e.g., sales maximization,
managerial tastes), (3) alternative models of expectation formation,
particularly where the firm has some prior beliefs on the likelihood of
various A and £ and (4) treatment of risk aversion and a ‘‘utility”
function of profits.]

7.4. Observed Data
7.4.1. Relation of Observed and *‘True’ Series

Maintained Hypothesis 6. The econometrician observes the “true’ rela-
tive wage, labor input, and output with error (but without systematic
bias); specifically w = w,e”, Y = Y, e", and L = L,e”, where w, Y, and L
are the observed quantities and 7, B, » are random measurement errors
with E(t)= E(n) = E(v)=0.

7.4.2. Relation Between Observations

Maintained Hypothesis 7. Errors are statistically independent in
different firms.

[Note: an alternative specification might be: (1) that € follows some
geographical pattern and therefore is not distributed independently over
firms, (2) that the non-systematic error A is correlated between firms, or
(3) that the error in forecasting output price ¢ is correlated between
firms because of common output demand fluctuations.]

‘Maintained Hypothesis 8. Errors are homoscedastic; 1.e., €A,£,7,v have

variances which do not vary across firms.
It will be necessary to make several further technical specifications in
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order to reach conclusions on the properties of estimators. These will be

introduced as they are needed.
Taking equations (19), (22), (23), (25), plus the definitions w = wef™",
Y = Y,e" and L = L,e", we can summarize the relations holding among

the observed variables,

Y = ALPe<* 7, (26)
L.= (Wef”’f—tlBA)—ll(l—B)ev, (27)
Y = (Aei)”(l—B)(wef—f)—B’(l_B)eA+ﬂBﬂ(l—ﬁ), (28)
I=Y-wL= (Aee)II(l—B)(wef—'r/B)-B«‘(l—B){e:Hn — Bev-—&?}_ (29)
Taking logs, (26)-(29) become
u
y=a+ﬁl+{e+,\+n—ﬁv}=a+Bl+u,, 3o
U,
5L e+r—¢& 1 _s_ 1
= 1_Bw+{ =B +v} é 1_3w+u2, (31)
Us
Uy
LB ctA+n—By__B T _BU+AT
7=0 1“3‘”{ g (-B12 (1—6)36}
=9—*1'§'Ew+ll4, (33)

where y =log Y, =logL, w =logIl, w =log w, a = log A, 8 =(1/(1-8))
log (BA), y=(1/(1—B))log A+ (B/(1—BNlog B, and §=1vy+ log (1-B),
and where we have approximated the non-linear error in (33) by a
Taylor’s expansion,

Atmy v—§+T
log [ B} = T (0 — B+ B Br)

2 1 3
- _33)212__.(31( -+BI)33)16_+ O A8,

The system of equations then contains the production function (30)
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and the first-order conditions (31). Since we deal with one input only
equation (31) is also a reduced-form equation and as such it is referred
to as the labor demand equation. The second reduced-form equation
(32), is the supply function. Equation (33) is an approximation of the
profit function.

The direct estimation of the production elasticities from the first-order
conditions, termed by Klein (1953) the factor share estimate, is derived
from the following relation:

Us

wL _

- wrl—y=logB+(r—E£+v—A—mn) (34)

log

The first-order conditions are widely used in estimating the parameters
of more complex production functions. In this case the right-hand side of

TABLE 3
Error structure
. No. Name Expression € A+7) v (t—§)
(30) Production y=a+Bl+u 1 1 -B 0
(31)  First-order or labor [=6—cw+ 1, c 0 1 c

demand
(32)  Supply y=v-cBw+u; ¢
{33) Profit'-approximation T=0~cBw+tuy c
(34) Factor share ot+l—-y=logB+us 0 -1 i
(35) First-order transformed = (1/c)(& 1)+ us 1

where

c=1(1-8)

€ = firm effect in the production function

A = non-systematic error in the production function
7 = measurement error of output

v = measurement error of input

T = measurement error of real wages

£ = forecasting error of real wages

Since A and n have the same coefficients in the various equations, the two are combined
‘here; T and — £ are similarly combined. The question of identifying these components is of
no major concern to us and will therefore be disregarded.

*Add c;r?+ c;7° to error term - see discussion above for details.
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the equation consists of either quantities or prices. It is therefore of interest
to compare these two alternatives in the present simple formulation. Sucha
comparison is also useful when wage is measured with an error. If such an

error is more serious than the error of measuring inputs, then it may be
desirable to estimate 8 not from (31), but rather from

Ug

©=(-B)—(—B)l+{e+r—£+(1— B} (35)

We refer to this as the transformed or inverted first-order condition.

In what follows it might be convenient te refer to the summary
table, Table 3. The panel on the right-hand side titled “‘Error structure”
should be read as follows: u; = e + (A + 1) — Br +0(r — £),2nd similarly for

the other terms.
In order to evaluate the estimators we have to further specify the

moments of the random errors. It is reasonable to assume that most of
the error components are independent. The analysis begins by allowing
for some non-zero covariances, as described in:

Maintained Hypothesis 9. Let (e.A,n,%,7.§) = (), then
E()=0

V(=0 ga O 0 O [
ol 0 0o O 0

o2 0 0 O

ol o, 0

ol 0

o

For some parts of the analysis it is also required that the first five
moments of (+) exist.

Finally it is assumed that 0 < plim(w — &)* < .

The problems involved in estimation are related to the fact that the
right-hand-side variables in (30)—(32) are stochastic and correlated with
residuals, implying that estimates obtained by least squares (LS) will be
inconsistent. We look at this more closely, and ask under what stochas-
tic structures each estimate will be consistent. Define the sample mo-

ment about means

Syt "'—';1;2] (yi— L= 1),
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with corresponding notation for other moments. Table 4 presents the
various estimators to be considered and their errors.

Melvyn Fuss, Daniel McFadden, Yair Mundlak

TABLE 4
Alternative estimators of B.
Estimator Source Error: by, — B
=5 ; Su
by = PF direct-by LS
Su Su
- — 2
by = Seet Sie RF-ILS from labor demand B S
Siw Sow — (] - ﬂ)sw2
— - 2
by, = s—s‘“ﬂs-—' RF - ILS from product supply S—(—l(—l%‘f—
o T Swe wa - wl
b, = —Sau Dual - ILS from approximated —(1-B) 5.4
B e ™ Sow profit function Suw — (1= B)Sus
bu=exp(@+1—7) - Factor share exp(is)
bis= —E“%s" FOC - w as “dependent variable™ fﬁ’
H U
b = S PF direct - w as instrumental (1= B)S.:
%7 Sw variable - (1= B)Su2 = Suww

LS = Least Squares
ILS = Indirect LS

PF = Production Function

RF = Reduced Form

FOC = First-Order Condition

S.; = cov{wiu;)

¥ = sample arithmetic average of y, and similarly for other variables

Under Hypothesis 9, the probability limits of the errors of the various

estimators are

plim(bs— B) =

plim(b;; — B) =

phm(b;; - ﬁ) =
plim(bs/B) = 1,

2
——--——;2(IB E73+~—-~——BZ(I+B)E1-“+---)/0§,,

- B) 6(1 - B)°
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plim(by— B) = Z—294 95, o 4 (1- B)o?,

1-B
plim(bs— B) = (1 — B)Bo.. .

Using these expressions we can now review the reiative merits of the
various estimators.

(1) Direct estimation of the production function by LS: by is a consis-
tent estimator if the labor input is measured without error (c>=0) and
there are no firm effects (o2 =0). The specific or firm effect was first
introduced in the classical paper by Marschak and Andrews (1944). As
we have seen, this effect is taken into account in maximization, and
conseguently the input cannot be considered as exogeneous. Solutions
to this problem in the framework of direct estimation of the PF were
discussed by Hoch (1958, 1962), Mundlak (1961, 1963), and Mundlak and
Hoch (1965). In essence, there are two basic solutions. These can be
stated in a more general form that will also apply to a mulitiple-input
technology: (i) Impose enough restrictions on the covariances of the
various error terms so as to identify the production elasticities. The
resultant estimate can be considered as an instrumental variable estima-
tor where y—! is the instrument; y —! varies with @ and the errors
which appear in line (34) of Table 3. That is, y—! is obtained as a
difference of the reduced-form equations, (31) minus (32). However, if A,
v, and n are present, then the estimate obtained with y—! as an
instrumental variable will not be consistent. In the terminology of
Mundlak and Hoch (1965), this estimator overcomes the transmitted
error (€) but it is susceptible to the non-transmitted errors (A, 7, and v in
our case). At this point, we digress briefly to the case of more than one
input, and consider a suggestion made by Cavallo (1976). For each of the
inputs there will be a first-order equation of the form of (31).
Consequently, a difference between two inputs provides an instrumental
variable whose systematic part consists of the price difference of the
two variables and whose error part consists of the difference in
measurement and forecasting errors of the two inputs, a term which
does not appear in the error of the production function. Thus, the
performance of such instrumental variables is independent of the rela-
tive strength of the transmitted versus non-transmitted errors. If there
are k inputs, there are k — 1 such instrumental variables and there will be
a need for one more such variable. It should be noted that if there are
serious errors in the measurement of inputs, such instrumental variables
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will not yield a consistent estimator. (ii) The foregoing discussion is
pertinent primarily to a strictly cross-section analysis. When repeated
observations in time are available for each firm, covariance analysis can
be applied to eliminate the firm effect, so that for the within firm
variations, o2=0. Such an estimator is susceptible only to error in
measurement of the input. Further, if the measurement error is also
subject to a firm effect, then covariance analysis will solve this problem
as well.

(2) Reduced-form estimates: The reduced-form estimates, b3, and by,
require some wage rate variations among firms. Such estimates are
consistent if the wage rates are measured without error. If this condition
is not met, the degree of inconsistency depends on B and on the ratio
oilal.

(3) Profit function: Since this equation approXimates an identity in the
reduced-form equations, the estimator, by;, requires similar but some-
what weaker conditions for consistency than the reduced form estima-
tors, namely that moments of third- and higher-orders be zero.

(4) Direct estimation of the production function with wages as in-
strumental variables: Under the present assumptions this estimator is
consistent, provided measurement errors in wages and inputs are in-
dependent.

(5) Factor share: by, provides a consistent estimator of B, and if the
errors are log normally distributed, it is possible also to adjust the
estimator so as to obtain a minimum variance unbiased estimate [Bradu
and Mundlak (1970)].

(6) First-order conditions with price as a dependent variable: The
consistency of this estimator requires that the input be measured
without error, o2 =0, that there are no firm effects in the production
function (o2=0) and no error in optimization and price forecasting
(% =0). These are strong assumptions indeed.

" Under the assumption of profit maximization the factor share estima-
tor seems to be the simplest and easiest to compute and at the same time
its consistency depends on fewer assumptions than some of the aiter-
native estimators. This result is a direct consequence of the simplifying
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assumptions that the error components us have zero expectations. At the
purely technical level, the importance of this assumption stems from the
fact that there is no other coefficient beside B to absorb deviations from
such an assumption.

In the discussion of the specification of the model we have cast doubt
on the general validity of the assumption E(£)=0. Indeed, the early
studies of Cobb and Douglas were largely motivated by the desire to test
the hypothesis that factors are paid according to their marginal produc-
tivity. It is therefore inadequate to impose such a hypothesis as a
constraint as is done in the factor share estimator [Mundlak (1963)]. This
point holds equally well for more complex functional forms, the
coefficients of which are estimated from the first-order conditions.

The relaxation of the assumption E(£)=0 also has an effect on the
reduced-form estimators. In evaluating the probability limit of these
estimators there will be another term, plim(Z w*&/n), and this term need
not vanish even if the two components o* and ¢ are independent. The
only estimators that are not affected by this term are the direct estimates
of the production function as discussed under (1) above or by using
prices as instrumental variables.

We can now summarize the discussion by listing the consequences of
the various error components on the alternative estimators:

(1) Firm effect in the production function (e) results in inconsistency
of the direct LS fit of the production function and of the transformed
first-order condition estimator, bss.

(2) Non-systematic error in the production function (A) does not lead
to inconsistency.

(3) Measurement €ITOTS, as is weli-known, lead to inconsistency only if
they occur in the independent variables of the regression. Measurement
errors of the real wage, o2# 0, lead to inconsistency of the reduced-
form estimates, b3, b3, and possibly bs. If this error is serious, it can be
avoided by estimating the transformed first-order condition, bss. The
latter is sensitive to measurement error in input, o2 #0, as is also the
case with direct LS fit of the production function.

(4) Non-systematic errors of optimization effect only the transformed
first-order condition equation.

(5) Systematic errors of optimization, which also include errors in
wage forecasting, result in inconsistency of the reduced-form equations
as well as the factor share estimate.

The estimator which seems to be most robust with respect to avoiding
bias due to the various stochastic components is the direct estimate of
the production function with real wages as an instrumental variable.
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Consider now the case where there is variation in ! and o, so all the
estimators by, to by are defined. Suppose labor inputs and wages are
measured without error (o2 = o2 = 0). Which of the estimators is ‘“best”?
A partial answer for large samples can be obtained by comparing
asymptotic variances. A tiresome computation for the case of normally

distributed errors yields

plim n(bs — plim by)’ = (1 — BY{ol+ 0 + 0% + 20602/ (dl + o
+ 0'% - 20’;{)2}4' (1 - 3)2{(0'§ - 20’5{
+ oo+ o)+ (Boi—60l0s + 00k
+ Za'if}l(az, + o+ a‘ﬁ - 20’,5)2, (37)
plim n(by; — B)* = (1 - B){oi+ 03— 2040,
plim n(by— B)* = (1 - B){o’+ B’o’— 2o
+(1-B)Y(oi +a)}ol,
plim n(bs;;— B) = (1 — B){o’+ o+ o+ 20} 0%,
plim n(by,— B)* = Boi+ o5 + o3},
plim n(bss— plim b35)’ = (2 + o} — 20002+ 2(0l +
of—20)}(1~ BYor,
(1= BY(o?+ ol +20,) +38(1 - Bloy + 4802
ol+oi+oi-20, .

plim n(byx— B)’ =

When o? =0, so that by is consistent, (37) reduces to
plim n(by— B) = (1 - B)oi + a))l(oi+ o}).

In this case, the relative efficiency of the estimators depends on relative
variances. For example, if optimization errors (a) are large, then b;, and
by, are undesirable and b3 will tend to be most efficient. If o is low,
then b;, will tend to be most efficient and b5, will be more efficient than
bs;. When o2 is low relative to o, by will be most efficient. For 8 near
one, the estimators bj, to bs; will be relatively efficient, while B near
zero will make bs, most efficient. When o? is large, by, will tend to be
most efficient. All these conclusions, it should be noted, are shown only
for large samples. While it is dangerous to over-generalize from spe-
cialized small-sample results, there seems to be a tendency for direct
ordinary least-squares estimators such as bz to be the best estimators in
small samples more often than one would guess from the extrapolation
of asymptotic results; i.e., direct LS estimators seem to be somewhat
more robust than their competitors in small samples. The exact small
sample distributions of the estimators b3 to b3; can be derived for the
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example above, and are found to have tails that behave like Cauchy
distributions. Consequently, the mean and variance of bs; to b3 are not
defined in finite samples, and the probability of estimates of B which are
far from the true value are rather large. Thus, the estimators in this
example tend to confirm the generalization regarding the relative small
sample robustness of direct ordinary least-squares estimators.

Before concluding the discussion it should be pointed out that we
have made repeated reference to the instrumental variable estimator.
Such an estimator overcomes difficulties caused by measurement errors
and lack of independence between the explanatory variables and the
error terms. In general there are several difficulties with the use of this
method of which the user should be aware. First, instrumental variable
estimates are not as efficient (have larger variance) as the direct LS
estimator. This problem can be reduced by a proper selection of in-
strumental variables, which leads us to the second problem —that of
finding such variables. Instrumental variables should be uncorrelated
with the error terms in the equation and at the same time be correlated
with the explanatory variables. The larger is the latter correlation
(properly defined when there are more than one variable) — the smaller is
the variance of the estimator. Third, in small samples, instrumental
variables estimators usually have distributions with “fat” tails, tending
to produce extreme values. Thus, one may buy consistency at the cost
of a less accurate estimator in a small sample.

In the foregoing discussion we considered the use of the real wage as
an instrumental variable. This generalizes to the use of real factor prices
in the case of more than one input and the use of product price ratios in
the case of a multiproduct production function. We have also mentioned
the use of some linear combinations of the quantities as instrumental
variables which can eliminate some of the errors. All these are variables
which come from the model. It is also possible to use variables which
come from outside the model [Berndt and Christensen (1973a)}.

We have discussed in the context of the example above the difficulties
encountered when there is insufficient variation in the independent
variables in a direct or indirect estimation of production parameters. In
the case of multiple inputs, this problem reappears as that of multi-
collinearity, or high correlation among the independent variables so that
there is insufficient cross-variation to allocate with precision the contri-
bution of separate variables to the determination of the dependent
variable. This problem is particularly acute for time series analysis, and
in functional forms where the independent variables appear as “substi-
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tutes”. Considerable success in dealing with multicollinearity has been
achieved in production applications by considering the production
function as part of a complete economic model. In the example above,
one may view (30)-(33) as equations in a simultaneous system. When
non-redundant sets of equations are estimated jointly, they can provide
more efficient estimates than any one equation considered above. The
effectiveness of the analysis of complete systems to reduce multi-
collinearity and increase precision is most evident in estimation of
general linear-in-parameters forms such as the Diewert or translog
systems [e.g., Burgess (1975) and Woodland (1975)].

We can summarize our conclusions including the inferences that can
be drawn from the example. The relative desirability of estimation of the
production function, its dual profit or cost function, factor demand or
supply equations, or their inverse first-order conditions, depends pri-
marily on the stochastic structure of the data. In the general case, these
equations together constitute a simultaneous system, and the most
efficient estimators are obtained by estimation of the complete system.
When the source of stochastic errors is confined to technological effects
not observed by production units, then direct estimation of the produc-
tion function is a good procedure, although multicollinearity will be a
problem for many data sets. In principle, estimation of factor demand
equations in which the independent variables are prices is a good
procedure, being consistent in the presence of stochastic components
which make direct estimation of the production function inconsistent.

However, if muiticollinearity constitutes a problem in the direct
estimation, it is likely to remain so in the estimation of the factor
demand equations. This problem is overcome in part by estimation of
the first-order conditions, which under the separability conditions
frequently imposed in empirical analysis have fewer variables than the
demand functions. The use of the first-order equations represents, like
the direct estimation of the production function, a limited information
approach which does not use all the constraints of the system.

It should be noted that several caveats apply in the use of dual profit
or cost functions and their derivative demand and supply functions, as
well as first-order conditions. First, the construction of these functions
require maintained hypotheses on market environment and behavior
which may not be necessary for direct estimation of the production
function. Failure of one of these maintained hypotheses may result in a
model which does not have the postulated structural relationship to the
underlying technological parameters. For example, if markets are not



A Survey of Functional Forms 267

competitive, or if firms fail to maximize profits, non-technological
factors are introduced into the “as if” technology reconstructed under a
competitive profit maximization assumption. Second, there may be
insufficient variation in factor prices to allow accurate estimation of
production parameters. Mundlak (1968a) has noted that variation in
production quantities in many data sets is much greater than variation in
prices. This is presumably due to random effects on technology, en-
vironment, or firm behavior. In some cases, this may mean that more
accurate estimates can be obtained by direct estimation, even in the
likelihood of an introduction of bias. On the other hand, McFadden
(Chapter IV.1) has found in a data set on establishments substantial price
variation at the plant level in inputs which have “national’ markets, due
to transportation costs, timing of purchase, volume of contracts, and
local conditions. This suggests that indirect methods may be quite
satisfactory when accurate establishment price data are available, but
may perform poorly when more general market price indices are used.
Third, in the analysis of firms facing non-competitive markets, or of
industry or macroeconomic production aggregates, prices are not exo-
genous. Valid estimation requires information of the remainder of the
system, with simultaneous estimation; or the use of instrumental vari-
ables methods. As noted in the example, the small sample advantages of
ordinary least-squares regression estimates over instrumental methods
may suggest use of instrumental estimators only for large data sets.

8. Overview of Empirical Analysis

The empirical literature which utilizes Cobb-Douglas and CES produc-
tion functions has been surveyed by Walters (1963), Nerlove (1967), and
Bridge (1971). The outstanding example of the use of the Cobb-Douglas
cost function is Nerlove’s (1963) study of electricity supply. The Cobb-
Douglas profit function has been used by Lau and Y otopoulos (1971) to
analyze efficiency in Indian agriculture. An example of the use of a CES
cost function can be found in Chapter 1V.1 of this volume by McFad-
den. Recent estimates of Cobb-Douglas and CES production functions
can be found in Griliches and Ringstad (1971).

In the past several years most of the empirical literature has been
‘devoted to attempts to implement the flexible functional forms discussed
in Section 4. Generalized Leontief cost functions have been estimated
for Sweden by Parks (1971), for Canada by Woodland (1975), and for
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Norway by Frenger in Chapter V.2 of this volume. Fuss, Chapter IV 4,
estimated a two-stage nested variant of this function for the U.S.
steam-electric generation industry. Translog production functions have
been applied to U.S. manufacturing by Berndt and Christensen (1973a,
1974) and to aggregate U.S. activity by Christensen, Jorgenson, and Lau
(1973) and Burgess (1975). Examples of the estimation of translog cost
functions are papers by Burgess (1975), Denny and Pinto (Chapter V.1),
Berndt and Wood (1975), and Fuss (1977a). Translog profit functions
have been utilized by Christensen, Jorgenson, and Lau (1973), and
Hudson and Jorgenson (1974). Finally, the quadratic profit function is
the functional form used in Cowing’s study of the regulatory constraint,
Chapter IV.5 of this volume.

9. Conclusion

This chapter has stressed the importance of economic and statistical
criteria for the choice of functional forms in the estimation of produc-
tion relationships. We have pointed out that linear-in-parameters forms
provide a flexible, general purpose approach to functional specification,
and that the linear-in-parameters approach can be utilized to tailor
functional forms to specific applications. However, we have also
emphasized the use of non-linear functional forms in applications where
economy and ease of interpretation of parameters is important, as in
studies of elasticities of substitution. The critical role of separability as
an economic assumption, and as a tool in the construction of functional
forms, has been stressed. Finally, we have used a simple example to
illustrate the implications of alternative sources of stochastic error for
the choice of functional form and estimation method.

We emphasize in conclusion that the primary interest in specific
functional forms lies in their empirical application, and that the choice of
a functional form should be based on an integrated consideration of the
economic problem and likely stochastic structure of the observed data.



