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FLEXIBILITY VERSUS EFFICIENCY IN EX ANTE PLANT DESIGN
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1. Introduction

Operating flexibility is an important attribute of fixed plant and equip-
ment utilized in a production process, and a factor in the economics of
capital-equipment design. The cost of adding flexibility is usually a loss
in economic efficiency relative to a “best practice” design for a specific
static operating environment. Consequently, the flexibility—efficiency
margin is an intrinsic part of the economic calculus of the firm, and a
factor to be weighed in econometric analysis of a firm’s technological
possibilities and behavior. In this paper we develop a model of the firm
that incorporates in the plant-design decision a recognition of the possi-
bilities for a tradeoff between flexibility and efficiency. We also provide
an algorithm for generating econometric net supply systems within
which this phenomenon can be studied empirically.

The following examples illustrate the role of the flexibility—efficiency
decision in production processes, and indicate possible applications of
the model developed in this paper.

Example 1. Electric utilities are required to meet a system demand that
varies over time in a known cycle, and they do so by constructing a mix

*We are indebted to Kenneth Arrow, Peter Diamond, Erwin Diewert, Terence Gorman,
and Zvi Griliches for useful comments, but absolve them of responsibility for errors. This
chapter was written when the first author was an Assistant Professor at Harvard Uni-
versity; and the second a visiting scholar at M.L.T. It first appeared as Harvard Institute of
Economics Research Discussion Paper no. 190 (1971).
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of base-load and peak-load generating units. Base-load units have higher
capital cost, but lower operating cost, and represent the lower cost
technology for providing continuous output. The optimal mix of
generating units balances the economic efficiency of supplying the
average demand against the flexibility of response to demand variation.

Example 2. In areas where variation in oil, gas, and coal prices causes
the least-cost fuel type to vary over time, electric utilities often install
boilers in thermal power plants which can be converted to use any of
these fuels. These boilers increase capital and maintenance costs and
thus result in inefficient production if only one type of fuel is used
throughout the lifetime of the plant.

Example 3. In the construction of commercial and industrial buildings,
heating and electrical systems are often installed with conversion fea-
tures to facilitate future expansion or remodeling. The increase in initial
cost is justified by uncertainty about eventual use of the structure.

Example 4. Most manufacturing and distribution processes require
inventories of various goods due to uncertainties in demand. Firms
increase flexibility in meeting demand variations by increasing in-
ventories. However, the increase in inventory carrying cost lowers the
economic efficiency of meeting average demand. Similarly, choice of a
flexible design as a response to demand uncertainty can be seen in the
number of product lines (models, brands) carried in retail stores and the
number of commodities produced by multiple-output manufacturers.

Example 5. In multiple-stage production processes, the early stages
may be designed so that their output can be tailored to alternative
specifications in the latter stages. For example, an automobile chassis is
designed so that it can be used in several model types - station wagons,
sedans, etc. Consequently, it may not be the least-cost chassis for a
single model type - say, station wagons. Flexibility in the production of
model types is achieved at the expense of a loss of efficiency in the
production of a single model type. Agriculture provides several other
examples of this phenomenon: corn may be planted in a pattern that
provides maximum yield when chopped for silage; in a second pattern
that provides maximum grain yield; or in a third flexible pattern so that it
can be either chopped or grown to maturity, depending on the corn price
at harvest, with some sacrifice in yield. A similar effect occurs in the
selection of breeds of pigs and chickens.
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2. Historical Background

Economic theory has traditionally recognized that in the ex ante design
of a plant, a firm can be expected to weight static efficiency versus
dynamic flexibility, the latter being emphasized when the plant is expec-
ted to face a variable or uncertain environment. The following classic
geometric argument was given by Stigler (1939). Remarkably, this
argument has not been quantified and adapted to empirical analysis in
the general case.

Consider the textbook ex ante—ex post cost curves illustrated in
Figure 1(a). The firm can choose ex ante a plant design yielding one of
the ex post average cost curves EPAC), EPAC,, etc. The curve EAAC
is the ex ante envelope of such ex post curves, and each design 1is
efficient (i.e., tangent to the ex ante envelope) at a single output. The
curves EPMC,, EPMC,, etc. are ex post marginal cost curves, and
EAMC is the marginal curve for the ex ante envelope. At an output
price p = 4, anticipated with certainty by the firm, the design EPAC, will
be chosen. Figures 1(b) and I(c) illustrate the same behavior in terms of
total cost and profit. Turn now to the case in which variation in output

Qutput Price
22r EPMC,. £PMC, EPAC, EPAC,
20 3
18-

o

H |
i)
H |
1
|
o]
H
|4?|
|
Ha
A |
-E|
HA !
FO |
1

B
e \

) 1
o] l 2 3 4
Cutput

FIGURE 1(a)




Melvyn Fuss and Daniel McFadden

314

Cost
e EPTC,§ £PTC,
44 EATC =2Y2 '
o EPTC, = |+Y4 5= "
T EPTCp=2+4Y* Y
sl EPTCyk= k+Y¥k, k>0 H H
L H !
H )
- 5‘ '
281 H 'l
e 5:' ’
24— H [ J
H "
20 :5 Y ;
L § s
16 & ,'
12 f
§
8f S 2
L ",e
s
.
o- I 1 I | L J
Q I 2 3 q
Qutput

FIGURE 1(b)

price is anticipated, either because of uncertainty or because of inter-
temporal demand variation for the services of a durable plant. As illus-
trated in Figure 2(a), there may be a flexible plant design with ex post
average cost curve EPAC; which is not efficient at any single output, but
which may be a least-cost design given output price variability. For
example, if output prices p =0 and p =8 are each anticipated with
probability one-half, then this design can be seen in Figure 2(c) to yield
higher expected profit than either of the statically efficient designs
EPAC, or EPAC;,; i.e., the expected profit 3.0 from the third ex post
technology, given by the abscissa of chord 3 at the expected price p =4
exceeds the expected profit 2.77 from ex post technology one or 2.8
from ex post technology two (given by the mid-points of chords 1 and 2,
respectively). It follows from the general property of convexity of profit
as a function of output price that the expected profit from each of these
technologies exceeds the corresponding profit associated with the

expected output price.
One extreme case of the ex ante—ex post production structure ilius-
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trated in Figures 1 and 2 is the “putty—putty” model in which the
envelope curve EAAC is itself a possible ex post design. Clearly,
in this case EAAC will be the optimal design, achieving both
maximum efficiency and flexibility. A second extreme case, illustrated in
Figure 3, is the strict “putty—clay” model in which an ex ante design that
achieves static efficiency at some output fixes the quantities of both
capital and variable inputs in the ex post technology, and the only source
of flexibility is free disposal of output. A less rigid “putty-clay” model
in which variable inputs are required ex post in fixed proportion to
capital services, but free disposal of capital services is possible, is
illustrated in Figure 4. The class of intermediate cases between the
“putty—putty’ and “putty—clay” models, as illustrated in Figure 1, will
be called “‘putty-semiputty” models. Note that the possibility of substi-
tuting flexibility for efficiency in the “‘putty-semiputty” model may be
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present (Figure 2) or absent (Figure 1). Finally, note that the designs
available to the firm may offer alternative types of flexibility as well as a
simple flexibility—efficiency tradeoff. Figure 5 illustrates a case in which
the ex ante options are an ex post technology that is flexible “upward”
(output > 1) and one that is flexible “downward” (output < 1.!

The possibility of this flexibility—efficiency tradeoff in plant design has
been largely ignored in econometric estimation of production functions,

'One footnote on the geometry of ex ante—ex post cost curves is in order. We first
remind the reader of the geometric property established in the famous Wong-Viner
footnote: The mutual tangency of an ex ante envelope and ex post average cost curve
occurs at the output at which the ex ante and ex post marginal cost curves intersect (for
example, unit output in Figure 1), and identifies the ex ante optimal ex post technology for
the production of this static output. However, this output will not coincide with minimum
ex post average cost unless the mutual tangency is horizontal. Next, note that when free
disposal of output is possible, the total cost curve is monotone non-decreasing, implying
that the elasticity of ex post average cost with respect to output is at least minus one; i.e.,
the negatively sloped leg of an average cost curve cannot rise more rapidly than a
rectangular hyperbola. Thus, Figure 3 illustrates the most extreme possible case, and a
diagram such as Figure 6 is impossible unless disposal of output is costly and ex post
marginal cost is negative. This minor point is missed in many textbooks.
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due to the difficulty of quantifying the effect. In the “putty-
een made by Attiveh (1967) to obtain

probably
clay” model, an attempt has b
estimates when ex post factor price ratios may deviate from the factor
price ratio for which the ex post design is efficient. However, all studies
that have come to our attention assume that except for random errors,
observed operating points lie on a locus of efficient production plans —an
ex ante frontier for a cross-section study, or a particular ex post frontier
for a time-series study. These frontiers are sometimes linked by an
implicit “putty-putty” assumption, particularly in combined cross-
section time-series studies. On the other hand, it should be clear that if
the flexibility—efficiency tradeoff in plant design is present, the meaning
of econometric production functions is altered substantially. This point
can be developed most easily using Figure 7, which illustrates a family
of ex post unit isoquants Iy, I, etc. and an envelope of efficient points E,
conventionally interpreted as the ex ante unit isoquant. If firms anti-
cipate variations in relative input prices, they may choose an ex post
technology like I3 or I,. Observed operating points —say, vi, Uz,... —will
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lie on these curves. Suppose an econometric production function is fitted
to these points. First, note that the unit isoquant of this function will
typically underestimate substantially the efficiency of the *“‘best practice”
ex ante envelope E. This will be the case even if the estimated isoquant
is taken to be the southwest boundary of the convex hull of the points
vy, Ua,... In order to reduce “optimization errors of the firm”. Second,
note that the points v,, v,,... may show considerable dispersion about the
estimated isoquant, suggesting large measurement and optimization er-
rors that are not in fact present. Third, note that the curvature of the
estimated isoquant will bear no simple relation to the curvature of the
envelope E. For example, in Figure 7 the utilization of data points like
v, U2, U3, Us Will produce an estimated isoquant with substantial curva-
ture, whereas the envelope E has zero curvature.

The conclusion we draw from these observations is that, in the
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presence of a significant flexibility—efficiency tradeoff, conventional
econometric production functions provide very little information on the
structure of the ex ante ‘‘best practice’” envelope E, and may indeed
provide misinformation. More fundamentally, we conclude that the
concept of a static “best practice” envelope E characterizing the ex ante
technology is inadequate, and in environments where firms face
considerable uncertainty and intertemporal variation, irrelevant. It is in
this case impossible to define meaningful isoquants, either theoretically
or empirically, in a static picture of “one-period” production possibilities
in which the fiexibility—efficiency tradeoff has no explicit representation.
The most satisfactory procedure would seem to be to abandon the
elusive concept of the static ex ante isoquant and seek a quantification
of ex ante design possibilities in which the total ex post operation of the
plant is considered in the flexibility—efficiency decision.

Reliance on the concept of a static isoquant can also give rise to
misleading conclusions in analyzing applied problems. For example, in
the field of public utility regulation, consider the controversial Averch—
Johnson (1962) thesis that a firm under a lax regulatory constraint may
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overcapitalize and therefore operate inefficiently. Their analysis is based
on the static isoquant. This isoquant is irrelevant for the majority of
regulated industries, whose factors of production include a large
percentage of durable capital with a long lifetime. Faced with inter-
temporal variation and uncertainty, cost-minimizing firms of this type
will trade static efficiency for flexibility and, misleadingly, may appear
inefficient under the Averch-Johnson analysis. The effect of regulatory
constraint on investment and similar problems should be analyzed within
the more general model presented in this paper when data are drawn
from samples characterized by substantial shifts from ‘“normal’” values.
An obvious example is post-1973 energy data.

3. A Model of the Firm with an Ex Ante—Ex Post Technology

We now present a model of the firm in which an ex ante deciston is
made on plant design, based on expectations about the environment to
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be faced ex post; and then the resuiting ex post technology is operated,
taking into account the environment which actually prevails. We assume
initially a simple choice structure in which a single ex ante design
decision is made, followed by ex post operating decisions that are
conditional on the design chosen. This structure will be appropriate for
the case of a firm considering the construction of a durable plant that
faces intertemporal variability, but no uncertainty. Alternately, it will be
appropriate for the formally equivalent case of a firm that faces an ex
ante design decision under uncertainty, and an ex post operating
decision with no intertemporal variation.” It is possible to show that

This formal equivalence is analogous to the equivalence that exists in consumer theory
between the state preference analysis and the intertemporal allocation under certainty
analysis when commodities in either different states of nature or different time periods are

considered to be distinct.



322 Melvyn Fuss and Daniel McFadden

Qutput Price

22
20 “ i
- ] : 1
I | EPAC, :EPAC2
LA H EAMC
i \ : i &
R A i i EPMC3
H ) H |
158 \ : |
i ! !
12ik \\ :
B vV 1
1OHE vV 1
Bk \ i I
8 —\". \‘E 1 o
oLt . I EAAC
. : I
i i_.
4
2
| )
C:’O [ 2 3 4

Qutput

FIGURE 4(a)

more complex multiple-level choice structures (for example, involving
construction decisions over time under uncertainty) can be formulated
as dynamic programming probiems in which the state equation cor-
responds to the two-stage choice structure described here.

We consider a firm that faces a set S of states of the future. A state s
in S will have one of the following interpretations:

(a) The firm faces an intertemporal future without uncertainty, with
s € S denoting a chronological time and S denoting the set of times in
which the plant under consideration might operate. § may be a set of
discrete times or a continuum and may extend over a finite life-time or
the entire future.

(b) The firm faces a one-period future with uncertainty, with s € S
denoting a state of nature, observed with the ex ante design decision but
before the ex post operating decision. The set S of possible states of
nature may be finite or infinite.

(c) When both intertemporal varnation and uncertainty are present,
s € S may index both chronological time and state of nature. This case is
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formally equivalent to the previous ones, provided the assumption can
be made that the firm receives no information in the course of operation
that would induce a third-stage choice (and hence make necessary ex
ante consideration of the strategic possibilities in this reconsideration).

The appropriateness of these three descriptions of the set of future
states depends on the way producers form expectations. If a producer
has a myopic time horizon but is uncertain about which state of nature
will occur in the next period, description (b) is appropriate. If a producer
has a planning horizon extending over several time periods but expects
that one time sequence of states will occur with probability one and all
others with probability zero, description (a) is appropriate. Description
(c) applies when a producer forms expectations over a multiple-period
time horizon and is uncertain about which state of nature will occur in
each future time period, provided that the technological possibilities in
each time period are independent of operating decisions in prior time
periods (given the ex ante design) and that the producer does not revise
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his expectations in light of operating experience as time goes on. (This
case is discussed in further detail in Section 6.)

Ex ante, the firm has available a set B of possible plant designs, with
b = (a,K) €B specifying an abstract vector a that describes plant layout,
management organization, and exogenous variables influencing ex post
operation, and a vector K = (K,....,K;) of inputs of structures and fixed
capital equipment.

Ex post, the firm faces competitive markets for N commodities,
indexed n = 1,...,N, in each future state s, and the plant under consi-
deration will supply a net output (netput) vector x; = (X5...,Xns) to these
markets. A component x,, is positive (negative) if commodity n is an
output (input). The vector x = (x;:s € S) is termed an ex post production
plan. We emphasize that the commodities in the ex post production plan
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are those for which competitive spot markets exist, and hence are
identified as ‘““variable” netputs in the usual terminology.’

Choice of a plant design b = (a,K) € B determines an ex post variable
technology V(b), the set of ex post production plans that are possible for
a plant with design b. Define a corresponding ex post total technology
T(a,K) = {(a,K.x)]x € V(a K)} for (a,K)EB. The set of all designs and ex
post production plans available defines an ex ante envelope technology
T* = {(a,K,x)|(a.K) EB, xE V(a,K)}.

For the classical case of a firm that faces a non-varying future with
certainty so that flexibility is not a factor, the relation of the ex ante
envelope technology and ex post total technology is analogous to that of
the ex ante and ex post total cost curves of Figure 1{b): The optimal
design will choose an ex post technology that will be operated at a point
of “mutual tangency” of this technology and the ex ante envelope
technology. We show below that this geometric property continues to
hold in the general case where the firm’s environment induces it to trade
flexibitity for efficiency. Note that the ex ante envelope technology
contains explicit information about the tradeoff between flexibility and
efficiency. We conclude that this technology is the appropriate general-
ization of the production structure underlying the classical ex ante total
cost curves of Figures 1 and 2.

The competitive spot market prices faced by the firm in a state s are
denoted by an N-vector ps = (Pis----Pns)- Then, 7, = ps*Xs = DN s Xns

3A commodity which is to be delivered in some future date (or state) s may be traded in
a futures market and/or in a spot market. Trade in a futures market occurs at the present
time, when éx ante decisions are being made. Trade in a spot market occurs at the date at
which the commodity is to be delivered. The price of a commodity in a futures market may
be expressed in present currency units (the forward price), with trade interpreted as an
exchange of present currency units for a contract to deliver the commodity at date s. It
may also be expressed in currency units at date s (the future price), with trade interpreted
as an exchange of contracts to deliver the commodity in state s and to deliver currency in
state s. The commodity price in the spot market (the spot price) is denominated in units of
currency at date s. In the presence of a full set of futures markets for the ‘“‘variable”
commodities, spot markets will be redundant as long as no agent gains “new’’ information
in the interval between the openings of the future and spot markets. Then, spot prices will
equal future prices, and will be related to forward prices by a discount factor determined
in a competitive bond market. In the absence of formal future markets other than the bond
market, this formulation can be assumed to continue to hold provided firms are hypo-
thesized to have point expectations of spot prices, or to be risk neutral so that spot prices
have the interpretation of certainty equivalents. However, a preferable model formulation
in this case is to introduce firm expectations explicitly in the description of future states S,
as in the case (c) above. To avoid ambiguities in interpretation, we assume hereafter that
formal futures markets do exist for variable commodities, and that spot prices equal future

prices.
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is the variable profit in state s associated with the netput vector x,. We
shall assume that the firm weighs (discounts) variable profit in state s by
a factor 8,, and has the objective for a given ex post variable technology
V(b) of maximization of the “discounted sum” of variable profits over ex
post production plans in V(b). For the model with intertemporal
production and no uncertainty, §; is the discount rate from time s to
reference time 0 established in a competitive bond market, p, is a vector
of spot prices, and the ex post objective of the firm is maximization of
present value of variable profit. In the model with uncertainty and no
intertemporal variation, §; is the probability that state s will occur, and
the ex post objective of the firm is maximization of expected value of
variable profit.*

The “‘discounted sum”, or present value, of variable profit for an ex
post production plan x can be written as the sum = =2 s 8,p X, =

“In the model] of intertemporal production &,-5i; is a forward price and the forward
prices are the variables with respect to which the firm maximizes present value. In the
single-period uncertainty model, §,-5;; is a certainty-equivalent price and the existence of
competitive contingency bond markets implies that the firm will maximize expected value
of profit, using certainty—equivalent prices as the exogenous variables.
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Y ,cs 8,7, when S is a finite set, and as an integral = = fs 8, ps-x, du(s) in
the general case of a measure space (S,%,u) of future states. Define an
N-vector p, = &;p, of forward prices for state s and a forward price
vector p=(ps:s €8).° The present value of variable profit, hereafter
termed intertemporal variable profit, can then be written in the case of
finite S as the inner product of the vectors p and x, 7 = p-x= 2 ses Ps ' Xs
We shall carry over this inner product notation to the general case
™= P"‘Efsps'xs du(s).

We emphasize that the intertemporal variable profit # = p-x of an ex
post production plan includes the present value of the quasi-rents
accruing to the fixed inputs of structure and equipment. We can define
the fixed cost of the firm by assuming that the capital inputs K=
(K,....,K;) can be purchased in competitive markets at prices given by a

5In the following sections we shall use the language of intertemporai model since it is the
most familiar one. From the preceding footnote it should be clear that only a slight change
of language is required to render the analysis applicable to the other cases described in the

paper.
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vector r = (r,...,r;). We employ the convention that the signs of quan-
tities and prices of these durable inputs are defined so that K; =0 and
r; =20 for each j, and r'K is fixed cost with a negative sign. Then, the
intertemporal total profit associated with a plant design (a,K) and ex post
production plan x is p-x+r-K.

The optimizing behavior of the competitive firm can now be sum-
marized. Given an ex post variable technology V(b) with b€ B, maxi-
mization of intertemporal variable profit for a forward price vector p
yields an intertemporal variable profit function,

II(b,p) = sup{p-x|x € V(b)}. (1)

The function IT is finite on a convex cone of prices for each design b,
and is a convex, conical (i.e., positively linear homogeneous), closed
function of p on this cone (see Chapter 11.2). Analogousiy, one may
define an ex post intertemporal total profit function,



Flexibility versus Efficiency in Plant Design 329

Input 2

L

ex post /

unit isoquants

S, N
~ <__J’es_f/mafed y
~ .isoquant

S

—

FIGURE 7

é(aK,rp) =IM@aK,p +rk. 2)

Ex ante maximization of total profit over possible ex ante designs for
a forward price vector p and durables price vector r yields an ex ante

envelope profit function,

&(r,p) = sup{r-K + p-x{(a,K,x) € T*}
= sup{r-K + IT(a,K,p)|(a,K) € B}
= sup{¢(a,K,r,p){(a,K) € B}. (3)

In summary, for each possible ex post total technology and set of
competitive markets, one can (normally) find an optimal ex post produc-
tion plan and associated level of intertemporal total profit. The firm
chooses ex ante a design that maximizes this profit, and then chooses ex
post the actual optimal production plan given the ex ante design and the
information available at the time the ex post decision is made.
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4. Functional Forms for the Ex Ante—Ex Post Production Structure

The preceding section describes the two-stage (or two-level) decision
procedure that is contained in our model of ex ante—ex post tech-
nological structures. In this section we will provide an intuitive and
non-rigorous introduction to our procedure for generating quantitative ex
ante—ex post technologies, and will illustrate (with the aid of examples)
the use of this algorithm in the formation of econometric models. The
mathematical justification of the procedure is contained in Section 5.

4.1. The Algorithm

The algorithm is an extension to the ex ante-ex post analysis of a result
that is called “the derivative property of the restricted profit function” in
Chapter IL1.2. This result states that the vector of partial derivatives of
this function with respect to commodity prices, when it exists, equals a
unique profit-maximizing netput bundle. That is,

m(q:a) = Y, gi-flg;a@),’ 4)
and
dm(qia) _ . .
aq‘_ - xl(q’a)-} (5)

where m(q;«) is a restricted profit function, q={q;} is a vector of
commodity prices, X = {£;} is the profit-maximizing netput bundle, and «
is the vector of production parameters.

[Comparing (5) and the derivative of (4) with respect to gi, one obtains
the condition 2, g;-3%,(q;a)/dq, = 0.] The duality theorem for restricted
profit functions (see McFadden’s Chapter 1.1) implies the existence of a
unique technology X (a) satisfying X (a) = {x|q-x = 7(q,a) for all q} and
m(q,a) = sup{q-x|x € X(a)}. Then, X(q.«) € X(a) and 7{q,a) = q-X(q',@),
with equality if q=q'. Using property (5), it is possible to generate
single-level netput supply systems for econometric estimation of the
underlying production parameters, starting from choice of an ap-
propriate functional form for the restricted profit function (see, for
example, Chapter I1.2). The value of this approach is that it can provide
closed functional forms for the netput supply system. The associated
technology need not be described by a closed functional form. We
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emphasize that the algorithm does not provide a constructive process
for obtaining profit functions from functional forms for the technology;
it is, in fact, most useful in complex settings where it is impossible to
obtain closed functional forms simultaneously for the profit function and
the technology.

A similar algorithm holds for the two-stage, ex ante—ex post produc-
tion structure. Suppose the ex ante envelope profit function can be
written in the form

L I
&(rp;a) = Z] Qi(p)di(r.p;a) + El riKi(r,p;a), (6)
= j=

where p is the vector of forward prices, the & and If,— are the
parameters, variable ex ante and fixed ex post, which specify the optimal
ex post technology (or, equivalently, the optimal ex ante design), and a
is a vector of underlying ex ante parameters. The Qi(p) are functions of
the vector of forward prices and play a role analogous to the prices g; in
the single-level formulation. The parameters of the optimal ex post
technology satisfy

a®[30; = di(r.psa),  aDlor; = Ki(r,p;a), (7)

and the intertemporal profit-maximizing variable netputs satisfy
L

a¢lapls = ;I (a¢Ian)(anl apis)
L
= k}::, di(e.p;a)(3Qu 3pis) = Xis(T,p30). (8)

(These relationships will be derived more rigorously in Section 5.)
Writing ¢ as a “nested” function @(r,p;a) = (Qi(p),.-..QL(P) 1o T 30X),
and choosing appropriate convex conical closed functional forms for ¢
and the Q, one can use equations (7) and (8) to generate estimable
netput systems for the ex ante—ex post production model.

We will now proceed, by means of a series of examples, to show that
a number of interesting cases can be analyzed using the above format.

Example 1: Cobb-Douglas Production with Durable Capital

Consider the classical model of a firm that has an ex post production
function in each state s and produces a single output Y, from a single
variable input L, and a single input K|, fixed ex post. Then, the choiceof K is
the single ex ante design decision.
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Assume the technology to be “‘separable across states” in the sense
that the production possibilities in any state s are independent of
operating decisions made for the remaining states. Let ¥, = f(K,Lg;s) be
a functional form defining this technology. A corresponding profit
function, ., = II.(K,pyspLs), will specify optimal operation of the plant
ex post, given forward prices py;, pr; for the variable commodities in this
state. One method of obtaining IT, is to choose a functional form for the
production function f and solve the ex post optimization problem
explicitly. This procedure is satisfactory for some common production
functions (e.g., Cobb—Douglas), but for others such as the C.E.S., an ex-
plicit closed-form solution for the ex post profit function is, in general,
impossible. An alternative procedure is to specify a profit function
directly, using duality theory to ensure that it is the solution to the
optimization problem for some implicitly defined technology.® We illus-
trate this procedure for the Cobb-Douglas case:

The profit function

Ts = Hs (K’stapLs) = AOsKap IY‘:BPEE (9)
is dual to the Cobb-Douglas production function
Y,=(1+ B)B—8/(l+B)A[l)!S(HB)KaI(H"ﬁ)L?/(HB), (10)

where Aq is an efficiency index for state s that incorporates all depre-

ciation effects.
The ex ante design problem of the firm is to choose K to maximize

_ [s .(K,pys,pis)du(s)— r-K, (11)

where r is the purchase price of capital. Now 7 can be written

»=K" [ Aosp VPP dun(s) - r-K
S
= a;Qi(p) + r-(—K),

where (a,,—K) are the ex post (fixed) parameters contained in the set
B ={(a;,—K)|a,= K*,K =0}, and

(12)

“The conditions on II, for this construction are that it be a convex, positively linear
homogeneous closed function of (pys,pLs)- The specification that Y is an output and L is an
iniput requires that II; be increasing in py; and decreasing in pi,. The specification that K is
an input (with a positive marginal product) requires that II; be increasing in K. The
specification that the implicitly defined technology be convex (i.e., display generalized
diminishing returns) requires that II; be concave in K.
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p=(pypr) for py={py:sES} p.={psE S},
Qip) = L Ao VD78 du(s).

Defining
#(Qy,r) = sup{Qa, + r(—~K)|(a;,~ K) EB}, (13)
for Q; >0, r >0, and solving the maximization problem we have
$(Qy,r) = a1 — a)r:"'“'“)Q}'“_"’ (14)
= d,Qi(p)+ r(—K), (15)
where d,, K are the optimal ex post parameters. Then,
%= &l = aal(l—a)QelxI(lna)r—af(l—a)
alll—a)
= a0 [ [ Anptpiz )] (16)
S
% = —R = — g -0 Qlti=a),~101-2)
1(1-a)
— _all(l-a) I AOsP E;;Bpif d“(s)] r—ll(l—a)‘ (17)
S

Equations (16) and (17) specify the optimal ex post parameter vector
b= (&1,—1{' ) in terms of the price vector p and the underlying ex ante
parameters a, B, and Ags,s €S. This system of equations is nonlinear in
the underlying parameters and difficult to implement empirically.
However, it illustrates the relationship between ¢ and the ex post
parameters that will be used in a later example to obtain a more tractable
system.

Example 2: Activity Analysis with Capacity Constraints

Suppose a firm has available ex ante a finite set T® of possible activities
(K'xi), j=1,..J, with K’ specifying the capital input per unity of
capacity required by activity j, with a negative sign, and x’ specifying the
ex post production plan (per-unit capacity) for activity j. Let a=
(ay,...,a;) be a design vector specifying the capacities in an ex post
technology; i.e., activity j can be operated ex post at any intensity level
up to a;. A set B of possible vectors a= (ay,...,ay) specifies the designs
that are available ex ante. In the “putty—putty” case, positive capacity
can be provided ex post for all activities (i.e., B is a rectangle). In the
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“putty-clay” case, the activities are mutually exclusive ex post, and, at
most, one capacity can be positive (i.e., B is the set of vertices of a
simplex). The ex post technology is

] .
V(a) = {21 (axi:s €SS a = a,-},

where g; is the chosen capacity of activity j, fixed ex post and aj; is an ex
post intensity of operation. One can also write

J
Via) = aV/, (18)
i=1

where Vi ={x|x = yi-x[,0= ) = 1}, implying a; = yia. The intertem-
poral variable profit function is then

J
7(a,p) = 21 aim'(p), (19)
where

'(p) = L max(p,-x4,0)du(s)
= sup{p-x|x € V'}. (20)

The intertemporal total profit function then equals 2L al#'(p)y+r-K'l,
and the ex ante envelope profit function satisfies

J
@(rp)=sup 3, alw'(p)+ r-K']. 1)
a€B j=1
We can define a profit function for the design set B,
J
$(Q1,---,Q) = sup E: a;-Q;, (22)
a2 ]=

where Q, = wi(p)+ r-K'.
Then, the ex ante envelope profit function has the form

J
@= Ip(le"'?Q]):jZl 01"Qf7 (23)

where 6, satisfies the maximization problem. For example, in a putty—
clay case, where the maximum designed capacity of any activity is unity,

@ = ¢(Qy,.-.,Qy) = D, 8;Q; = max Q; = max(s'(p) + r-K’). (24)
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Example 3: Base Load Versus Peaking Capacity in an Electricity
Generating System

An electric utility is required to meet an output demand that has a
known expected daily cycle (normalized in this example so that anti-
cipated peak demand is equal to one), and some random variation. Let ¢
denote time of day, scaled so that 0=t=1, and [(t) denote instan-
taneous output demand as a fraction of capacity (termed the system load
factor) at time . Figure 8 illustrates a typical expected load curve. The
total daily output of the system, expressed as a fraction of maximum
daily output, or average load factor, equals f 4 1(t)dt, the area under the
load curve in Figure 8.

For any load factor I, define f(I) to be the fraction of the day for
which the system load factor I(t) is at least /, as illustrated in Figure 8.
Clearly, f is a non-increasing function of I, with f(0) =1 and f(1)=0.
Further, the average load factor of the system equals f o f(Ddl. A typical
“time-at-load” function f is illustrated in Figure %(a).

The utility can provide capacity by constructing base-load or peaking
plants or by contracting to purchase power from an electricity grid. The

Systern Load Factor (2)

l.OF

05

0 1 1 1
e} 25 .80 75 |
12p Som 12n € pm 12p

Time of Day (t)

FIGURE 8
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following notation is employed for the costs of these production modes:

Base-load Peaking Grid
plant plant purchase
Initial capital cost per
unit of capacity ($/kw} ks k, 0
Present value of operating
cost ($/kw) Cp Cp Ce

The ex ante parameters of the supply process are subsumed in the unit
costs, for differences in these costs reflect basic underlying differences
in the possible methods of “‘producing” electricity.

For simplicity, we assume that these costs are constant, independent
of plant scale and of the load curve. We also assume that the utility has
no discretionary control over sales to the electricity grid.

Of the three production modes, base-load plant has the highest capital
cost and the lowest total cost of providing continuous capacity output,
while grid purchase is the most expensive mode for providing continu-
ous output: k, >k, and k; + ¢, < k, + ¢, < ¢, Suppose that ex post, the
utility has a proportion a of its system capacity in base-load plant and a
proportion B in combined base-load and peaking plant. In optimal opera-
tion, demand will be met first by base-load plant, second by peaking
plant (for load factors above a), and last by purchased power (for load
factors above B). Present value of total cost per unit of system capacity

then equals’

a 8 1
C = ak, + (B — a)k, + ¢, J; f(hdl + ¢, f FfdI + ¢, f F(DdL
a 8
(25)

"More realistic assumptions on unit costs would be that there are some increasing
returns to plant scale, particularly in small spatially concentrated utilities, and that
marginal future operating costs for base-load and peaking plants depend on plant load
factors. (There are generally decreasing marginal costs with load in a given unit, but
increasing marginal costs in the system as successively less efficient units are operated at
capacity.) The construction of the formula (25) is illustrated by derivation of the variable
cost of base-load plant operation. Let ¢,(A) equal the marginal cost of operating a unit
capacity base-load plant at load factor A. Then, y(A) =[5 ¢,{(A")d\A" is the total variable cost
of operating this plant at load factor A. Suppose the utility has a system load curve I(t), a
proportion a of base-load capacity, and the policy of operating base-load capacity first.
(Provided the marginal cost of peaking-plant operation exceeds that of base-load plant
operation at any respective plant-load factors, this policy is always optimal.) Then the
base-load plant is operated with load curve A(t) = min((I(t)/a), 1). Retaining the assump-



Flexibility versus Efficiency in Plant Design 337

Time at Load

]
£(L£)
Ve
i 4
/s
Ve
7/
fememm—— o —= = - -7
e | /:
/1 \
/7 0\
rd t
L - :
/ yo
s vy
Ve ' )
1
7 Vo
s b
7 | (. )
V4 v ! . ]
OO i 1 N § L
a
a) E ) B
1
Production Costs | . Co
| i grid
! I purchase,
' ex post cost for
static load factor 5/
given optimal design / kp +Cp
| -
: ! kp+Cp
| b 1 / //
1 base .
: loaoiy o - //
| o -~
- ~E
ke _— _-"8énvelope cost
- -~ for static load
-
factor
~7 \peakin
i 7
kp //
i 1 J.
o} ‘ 1
b) Load Factor (1)
FIGURE 9

tion that marginal cost is independent of plant scale, the total variable cost of operating the
base-load plant at load factor A(t), divided by system capacity, equals ay(A(t)). Hence, the
variable cost of base-load plant operation is

| 1 min((i{t)e) 1} 1 thad)
I ay(A(t))dt =« J’ I cs(A)dA dt = & j f dt ¢, (A)dA
[\] t=0JA=0 A=0Jt

=f1(aA)
i

=a flar)cp(A)dA =I f(hey(fle)dl,
A=0 0

where the second equality is obtained by interchanging the order of integration (see

Figure 8), and the third equality follows from the definition of f(). When cy(lla) is

constant, the corresponding term in (25) is obtained.
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Define p = (ky — k,)/(c, — ¢») and o = k,/(c; — ¢,). Note from Figure
9(b) that p is the load factor at which unit capacity base-load and
peaking plants would yield the same total cost. Similarly, o is the load
factor at which purchased power and a unit capacity peaking plant yield
the same total cost. Consider, now, the ex ante minimization of C in the
design parameters a and B. Note that 4C/da = (¢, — cp)(p — f(a)) and
dC/aB = (¢, — ¢,)(o — f(B)). We confine our attention to the case o =p
illustrated in Figure 9(b) in which there is a range of load factors for
which a unit capacity peaking plant will yield lower total cost than either
a unit capacity base-load plant or purchased power. Then the ex ante
minimum occurs for a and B satisfying f(a)=p, f(B) = o. The deter-
mination of these quantities is illustrated in Figure 9(a).t

The total cost function (25) is nonlinear in the design parameters a, B.
However, we can reparameterize ex ante design possibilities to make
total cost linear in design parameters. Define B to be the set of vectors
a=(a,...as) = (a0, — o, J& F(OAL fE f(DAL f} f(DAD) for 0=a=B=1,
and define ¥(Q.....,Qs) = min{Z; Qiaija€B}. Then, C =aik,+
a>k, + ascp + asc, + asc,, and the ex ante envelope cost function
equals (kp.kpCh.CpoC,). Further, ¢ has the property that its derivative
with respect to Q;, evaluated at (k,k,,C5,Cp,Ce), €quals the optimal value
of The corresponding design parameter 4.

It is of interest to compare the cost curves generated by this concrete
model with the classic curves in Figures 1 and 2. A system with unit
capacity, all base-load, has the total cost curve k, + ¢;l in Figure 9(b). A
least-cost unit capacity system to produce an output 8 uniform in time
has base-load capacity 6, zero peaking capacity, and purchased power
capacity 1— 6. The line E is the envelope of such least-cost unit capacity
systems for various 8. The curve F in this figure is the total cost curve
for the optimal system with the “time-at-load” curve illustrated in Figure
9(a). Note that there is no single output uniform in time for which this
system remains optimal. Note, further, that a shift in the load curve that
increases variability while keeping total output constant will generally
decrease the proportion of optimal base-load capacity and increase the
proportion of peaking capacity.

The reader may find it useful to verify these conclusions for an
example. Suppose the utility has the system ‘“time-at-load” function
illustrated in Figure 10(b), which yields an average load # and a variance

*In the case o >p, no peaking capacity will be constructed (a =pB), and optimal «
satisfies f(a) = kp/(cz — Cb)-



Flexibility versus Efficiency in Plant Design 339

System Load Factor

U+v

O | 1 1 1
a O 1

Time at Load Time of Doy

1 N L L
o u-v u u+v
b) Load Factor

FIGURE 10

in load v2/3. Minimization of 2 Qa; over a € B yields

¥(Qy,er, Q) = (Q1 + QU — Q3(Qs— Q4
+ 0[Qi— (Qi— QP (Qs— Q3) (26)

in the case (Qi— Q)/(Qs— Q3)> Q:/(Qs— Qq), and an optimal ex ante
design é=u+v—2v(ks—k (¢, — c,) and B = u+ v~ 2vk,/(c; — Cp).
Note that an increase in the variance of the load with average load fixed
will always increase peaking capacity. Under normal conditions, unit
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costs satisfy o < p < 1/2, implying that base load capacity will increase
and grid purchases will decrease as load variance rises.

Example 4: A Nested Ex Ante-Ex Post Functional Form for
the Two-Level Technology

The model presented below was developed by the authors as an ex-
tension of Diewert’s generalized Leontief cost function. It has been
analyzed extensively in Fuss (1970, 1977b), and its parameters estimated
by Fuss in Chapter IV .4, using electricity generation data, for the case of
intertemporal variation with no uncertainty. We summarize the model’s
basic characteristics. The reader is referred to the cited works for a
more detailed description.

For this example the “a,b” notation is reversed from that in the rest
of the paper in order to retain consistency with the cited literature. Thus,
for this example only, b refers to a vector of ex post fixed design
variables (rather than a), and a refers to a vector of characteristics of the
underlying technology.

Suppose a producer expects to use n variable factors to produce one
unit of output in each future time period ¢ and state of nature u, in
period t, where factor prices vary with u, in each period and the «, in
different periods are statistically independent. A future state is then a
vector s = (t,u,:t = 1,2,...). Suppose the ex post variable cost function in
state s is Diewert’s second-order approximation to an arbitrary unit cost
function,

n n

1/2
C, (plp) =3 b, (ﬁ.-m,ﬁ,-.u,) , 27)

i=1j=1

where b; is an ex post parameter and p,, is a future price. The present
value of expected cost is

C=3 8'E,(C)=2 3 biQy (28)
t i i
where
12 12
Qij' = Z alEu, (ﬁilu,ﬁjtu,) = Z Eu, (pitu,pjru,) »

and p;, is a forward price. Note that C is linear in the ex post
parameters since Qj; is a function of prices alone and is analogous to the
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terms Q; appearing in the previous examples. It has been shown in Fuss
(1977b) that if we specify as a functional form for the ex post

parameters

1
b; = (_d) > (dudp)aiju, 29)
i/ kl=1...nr

where dj, dy are arbitrary non-negative “design” variables and a;y are
fixed ex ante parameters, then C is minimized when

by = 32 2 (QuQy) " ag. (30)
4 !
Note that the optimal ex post parameters are linear in the ex ante
parameters.

We can now describe this structure in the format developed in the
previous examples. The ex ante envelope cost function is

QM = 1m) = min{ S, @by . 31
L)
where the design parameters are contained in the set
1
B= [{bij = d—u % (dudi;')maijkl}

The solution to this minimization problem is

d,'f,du = 0] .

C ({Qii}) = lz] Qij'l;ii
= 2 % (QsQu)aj, (32)

where b,J is given by (30). Note that C is linear in the ex ante parameters
and is therefore amenable to estimation using standard regression tech-

niques.

Using the theory outlined at the beginning of this section, we could
have begun with the ex ante envelope cost function C=
¥kt (QiQu)?a e and derived the optimal ex post parameters and
netput bundles. That is,

~ _dC _
b; =
! aQ!J' Qi}

; (QuQi)'"* aius
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[p.m,]
If the p, are assumed known with certainty, then

=3 b, (;'-) " (33)

20 (Ba) "
api Dit

Then, using (30),

o3[ ) en

which is the expression for the ex post optimal inputs found in Fuss
(1977b).

The structure above does not identify explicitly inputs of capital
equipment whose levels are set ex ante. With some added notation, this
can be done as follows: Suppose, of the n ‘“‘variable” factors above, the
first J are identified as inputs of capital equipment. Define the set of
indices N ={(i,j)li=j=J or J<ij=n}. Define Q;=r, the price of
capital good j, for j = 1,...,J, and define Q; as above for i,j>J. Define the
ex ante envelope cost function

C=> 2 (QiQu) " aju.

ijeN KIEN

since

Then, the optimal ex post parameters satisfy aC/3Q; = I{',- for j=1,.,J;
dClaQ; = b; for i,j > J; and 3C/dPiu, = Xins, for i > J.

We shall now illustrate that this functional form can be used to
specify the fiexibility—efficiency tradeoff by considering a simplified
two-factor example with one operating period.

Suppose the forward prices pi., R satlsfy Epi®»=u, Qun=
E (pup2)?=p? and Qi = E,(pi) = p*+ o= u’B% Then, the two price
series are uncorrelated, and each has a variance o’ = u*(8>—1). (Thus,
B =1 is an increasing index of price variability.) For further simplicity,
assume the underlying ex ante parameters a;u take the values in the
following table:
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Index ij
11 12 21 22

1 0 12 12 A
2 12 A A 12
Index i 21 1/2 A A 1/2

22 A 112 112 0

343

wherg A is‘ a non-negative scalar. From equation (30), bu=bn=A+ g™
and by, = b;; = A+ B. For a given vector of forward prices (p,,,p2.), the

input demands are

xAIu = Ell + 512(p2ulp]u)l/2>
%24 = bn+ ba(prlp2)".

Evaluated at the “mean’ price vector (Pis,Pas) = (Mpt),
J?,u = qu = 2A + ﬁ_1+ B.

Xis

unit isoquants //P Is = P2s= pe

FIGURE 11

(35)

(36)
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The ex post elasticity of factor substitution between inputs 1 and 2 is
given by

ES = (P11, + P2uX2u)(0%1/ 0D 2 ) X 10K 20 37N
Evaluated at (p1,p2) = (Eup1wEuP2) = (0?B%,u*BY), this elasticity is
ES = (A + B)I(2A + B+ B). (38)

As B =1 is increased (price variability rises), ES increases (flexibility
rises) and £,, evaluated at the price vector (E.pi.,E.p2.) also increases
(static efficiency falls). Figure 11 illustrates unit isoquants of the ex post
technology for levels of B in the case A =0.

Define as an index of static efficiency the ratio e of the input level (36)
at B =1 to this input level at the value of 8 corresponding to a given
level of price variability. Figure 12 illustrates the tradeoff between ex
post flexibility measured by the elasticity of substitution and this index
of static efficiency. Note that as A increases, the possibility of substitut-

ing flexibility for efficiency falls.

Static Efficiency e
1.Or—

o} 1 i 1 } L | i ] I | ] J
2 4 & 8 1.O L2

£x post Elosticity of Substitution o (flexibility)

FIGURE 12
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5. Derivation of the Two-Level Structure of Technology

In this section we use the model of an ex ante—ex post technology
described in Section 3 and develop analytically the algorithm for
generating econometric netput supply systems illustrated in Section 4.
These examples have the common feature that ex ante design possi-
bilities can be parameterized so that the ex post intertemporal total profit
function is linear in the ex ante design variables {ex post parameters). It
is this property and the duality of technologies and profit functions that
we exploit to develop the desired algorithm. We define, on one hand, a
family of ex ante—ex post technologies with the linear structure above
and, on the other hand, a family of “nested” profit functions. The
operations of profit maximization and of construction of the set of
production plans consistent with profit maximization are shown to define
one-to-one mutually inverse mappings between these families. Then,
each “nested” profit function characterizes some ex ante—ex post tech-
nology. The algorithm is then to choose an appropriate functional form
for a nested-profit function and use the derivative property to obtain
expressions for the optimal ex ante design and optimal ex post netput
supply vector. Properties of the associated technology are obtained
implicitly from the profit function, using the duality mappings. We
consider, first, the case in which the set of future states and the vector
of ex ante design variables are finite.

S.1. The Finite Case

Suppose there are a finite number of future states, indexed s = 1,...,S.
Suppose that an ex ante plant design b= (a,K) is composed of finite
vectors a = (ay,...,a;) and K =(K,,....,K;). A technological structure is
defined by an ex ante envelope technology T, a non-empty subset of
EL+N'S and the following associated sets: the set of ex ante designs
B ={(a,K)EE'*/[3x3(a,K x) ET*}, the ex post variable technology
V(a,K) = {x € EV)(a,K x) € T*} defined for (a,K) EB, an ex ante netput
possibility set W= {(K,x) €E"*V5Fa>(a,K,x)ET*}, and the normal
cone of W, the set FC E’*"'S of normals to hyperplanes whose lower
half-spaces contain W; ie., F is the set of (r,p)EE’™"® such that
r-K + p-x is bounded above for (K.,x) EW.

We term a technological structure regular if the following conditions
hold: (1) the sets B, W, and V(a,K) for (a,K)EB are closed, (2) capital
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inputs are non-positive and exhibit free disposal; i.e., K=0 for all
(a,K.x) € T® and (a,K,x)€T® K =K implies (a,K'.x) € T, and (3) the
normal cone F has a non-empty interior (denoted by F,). Note that F is
the set of prices that yield finite maximum profits in the ex ante envelope
technology. Condition (2), above, states our accounting convention for
capital inputs. The free disposal assumption implies that r is non-
negative for (r,p) € F, with r,K; =0 for all (a,K) € B. The condition that
F, be non-empty holds if and only if the set W is semibounded (see
Chapter 1.1). A sufficient condition for F, non-empty is that there be
some commodities that are essential inputs to production and cannot
themselves be produced in the technology. It is not necessary for W to
be convex in order to have F; non-empty; however, W cannot exhibit
indefinitely increasing returns to the extent that ‘““average products™ are
unbounded with unbounded scale. When T* is convex, then W, B, and
V(a,K) are convex and we say the technological structure is convex.

Suppose the technological structure is such that the ex post variable
technology is linear in the parameter vector a and not explicitly depen-
dent on K. (An implicit dependence on K results from the relation of a
and K in the set B.) Then we can write

L L
VaK)=2 aV'= {2 ax'|x' € v'}, (39)
=1 =1

where the V' are non-empty subsets of E¥®*. We term the technological
structure design linear if it satisfies equation (39) and if for each
1=1,....L, V' is a closed set and either q, is non-negative for all (a, K)E€B
or V' is a singleton.

A regular profit structure is defined by: (1) a convex cone F of price
vectors (r,p) €EE’*V'S such that its interior F, is non-empty and r; is
non-negative for all (r,p) €F, j=1....,J; (2) 2 non-empty closed set B of
ex ante design variables (a,K) € E“*' such that K=0 for (a K)EB; (3) a
convex conical closed function of p, IT(a,K,p), defined for (a,K) € B and
p in the set F* = {p € EV'S|3r 3(r,p) € F}; and (4) a convex conical closed
function @(r,p) = sup{Il(a,K,p)+r-K|(a,K) € B} defined for (r,p)EF.
The function IT is interpreted as an intertemporal variable profit
function, while @ is interpreted as an ex ante envelope profit function.
We term a regular profit structure convex if the set B is convex.

A regular profit structure is termed design linear if the intertemporal
variable profit function can be written

L

I@K,p) =2 aQ'(p), (40)

I=1
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where for each I =1,....L, Q' is a convex [resp., linear] conical closed
function of p when g, is non-negative [resp., bivalent] for all (a,K) EB.
Define a nested profit form by (1) a convex cone F of wvectors
(r,p) EE’*Y'S with a non-empty interior and with r, non-negative for
(r,p) EF, j=1,.,J; (2) a convex cone H of vectors (r.g) €E’*%; (3) a
convex conical closed function ¥(r,q) on H which is non-increasing in r;
for all (r,q) € H and which 1s non-decreasing [resp., non-monotone] in ¢
for [ in a set of indices L. [resp., Lo); and (4) a vector of functions
Q(p) = (Q'(P),-...Q%(p)) on F* such that (r,q) EH if and only if there
exists p € F* with q = Q(p) and (r,p) € F, and such that Q'(p) is a convex
[resp., linear] conical closed function for ! €EL. [resp., Lo]. The follow-
ing result links design linear profit structures and nested profit forms.

Lemma 1. Consider a regular, design linear profit structure satisfy-
ing (40), and define

H = {(r,q) € E’**|q= Q(p) for some p € F* with (r,p) EF}, 41

¥(r,q) = sup{r-K + q-al(a,K) € B} for (r,q) €H. (42)
Then, F, H, ¢, Q define a nested profit form, and for (r,p) € F,

@ (r,p) = ¥ (r,Q(p))- (43)
Conversely, given a nested profit form F, H, ¢, Q, define

B ={(a,K) EE'"|q-a+r-K= ¢(r,q) for all (r,q) EH}, (44)

N@aK,p)= i aQ'(p) for (a,K)EB, (45)

=1

and & satisfying (43). Then, B, II, ¢, F define a regular, convex,
design linear profit structure satisfying (41) and (42).

Proof: F non-empty implies H non-empty. From the definition of H,
the right-hand side of (42) is bounded above by &(r,p) for some p with
q=Q(p). Hence, ¢ exists on H, and is convex conical closed by
McFadden, Appendix A.3, Lemma 12.3. If (r,p) EF, then (r@€ H
for q=Q(p), and &(r,p)=sup{r-K+ II(a,K,p)l(a,K) € B} = sup{r-K+
a-Q(p){(a,K) EB} = Y(r,Q(p)). The function rK+a-Q(p) is convex
conical closed for each (a,k) € B. The supremum of an arbitrary family
of convex conical closed functions on F is again a convex conical closed
function.
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Next, suppose a nested profit form F, H, ¢, Q is given. The
fundamental duality theorem for restricted profit functions (Chapter 1.1,
Lemma i1, Lemma 23, Theorem 24) establishes that the set B given by
(44) is non-empty, closed, and convex and satisfies (42). The function IT
defined by (45) is a sum of convex conical closed functions a,Q'(p),
and hence also has these properties. By (42), ¢(r.Q(p))=
sup{r-K + a-Q(p)|(a,K) € B} = sup{r-K + I (a,K,p)|{(a,K) € B}. Hence, by
the same argument as in the previous paragraph, ¢(r,Q(p)) is convex
conical closed, and ¢ defined by (43), II, F, B define a reguiar convex
design linear profit structure. Q.E.D.

The next result links profit structures and technological structures.

Lemma 2. Consider a regular (convex) technological structure and

define
II(a,K,p) = sup{p-x|xE V(a,K)} for peF’, (a,K)EB, (N -
& (r,p) = sup{r-K+p-x/(a,Kx) ET* for (rp) EF. | 3)

Then, F, B, IT, @ define a regular (convex) profit structure. Con-
versely, given a regular (convex) profit structure, define

V@K ={x€E " |px=HI(aK,p) forall pEF}

for (a,K)EB, (46)
T ={@Kx)EE"""5xe€ V(@aK), (aK)EB} (47)
W = {(K,x) EE’*N5|3a3 (a,K x) € T} (483)

= {(Kx) EE"*VS|r- K+ p'x = ®(r,p) for all (r,p) EF}.
(48b)

Then, the sets V(a,K) and W are convex, and T*, B, V(a, K), W, F
define a regular (convex) technological structure such that (1) and
(3) hold.

Proof: The fundamental duality theorem for restricted profit func-
tions (Chapter I.1, Lemma 11, Lemma 23, Theorem 24) establishes the dual
properties of (1) and (46), or the dual properties of @(r.p)=
sup{r-K + p-x|(K,x) € W}, equivalent to (3) and (48). The properties of T*
defined by (47) follow from this equivalence. Q.E.D.
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The next result relates design linear technological and profit struc-
tures:

Lemma 3. Suppose a regular (convex) design linear technological
structure satisfies (39). Then the regular (convex) profit structure
given by (1) and (3) is design linear, satisfying (40) with

Q'(p) = sup{p-xjx E V'}, (49)

forpeF,i=1,..L. Conversely, suppose a regular (convex) design
linear profit structure satisfies (40). Then, the regular (convex)
technological structure given by (46)—(48) is design linear, satisfying
(39) with

vi={x€EYSpx= Q'(p) for pEF’}, (50)
for I = 1,...,L. The V' are convex, and satisfy (1), (3), (39), and (49).

Proof: Let L, (resp., Ly) denote the set of indices [ = 1,...,L, such that
a, is non-negative (resp., bivalent) for all (a,K) € B.
For a design linear technological structure,

I@K.p)= sup{p-ﬁ ax'|x € V'}

I=1

= > a supipx'ix € v}

€L,

+ 2 alpx|V =3 = 3 wQ'o.

I=1

and (49) holds. The fundamental duality theorem applied to each v! and

Q' pair and Lemma 2 establish the first conclusion.
For a design linear profit structure, the fundamental duality theorem

applied to each Q' and V' pair establishes (49), V! convex, and

L 3
2 aQ'(p)= sup{i apx|x € V'} = sup{p-x|x e a;V'}.
i=1

=1 =1

The duality theorem applied to this function then establishes

L
VaK) =2 aV. QE.D.
=1

Using the three lemmas above, we can now give the basic result which
establishes that starting from the choice of any nested profit form, one
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can derive a netput supply system that is associated with an underlying
ex ante—ex post technology:

Theorem 4. Consider any nested profit form F, H, ¢, Q. Then:

()

(iD)

(11i)

(iv)

v)

There eXxists a regular convex desngn linear technological struc-
ture F, B, T®, W, V(a,K) = S, 4V, where B satisfies (44), the
V! satisfy (50), T* satisfies (47), and W satisfies (48a).

The technological structure in (i) yields an intertemporal vari-
able profit function IT satisfying (40), (45), (1), and (46), and an
ex ante envelope profit function & satisfying (43), (3), and
(48b). The technological structure in (i) is the only regular
conveXx design linear technological structure satisfying all these
conditions.

Recall that F ={p€E™|rpEF}, define F(p)=
{r EE’|(r,p) EF}, and let F§ and Fi(p) denote the reSpectlve
interiors of these sets. The partial profit functions Q' are
differentiable almost everywhere in F§. Hence, II(a,K,p)=
2 a/Q'(p) is differentiable almost everywhere in F§. When
allfop = II(a,K,p) = p a,Qi,(p) exists, it equals the (unique)
optimal ex post netput supply vector %(a,p) =3, ai(p) for
this ex ante design and forward price vector. More generally,
the subdifferential of IT with respect to p (see Chapter I.1) exists
for all peF§ and (a,K) €EB, and each extreme vector in this
subdifferential is an optimal netput supply vector in any regular
design linear technological structure (not necessarily convex)
satisfying (1), (3), (41), (42), (43) for this nested profit form.
For each pEF’, ®@(r,p)= ¢ (r,Q(p)) is differentiable in r for
almost all rEFip), and P(r,p) = ¢.(r,Q(p)) = f((r,p), where
ﬁ(r,p) is the (unique) optimal capital equipment netput vector at
(r,p). [A generalization analogous to that in (iii) holds for the
subdifferential of & with respect to r.]

For almost all (r,p) €EF,y, ¢ and the Q', [ = 1,...,L, are differen-
tiable in p, and X(r,p) = ®,(r,p) = a(r,p)-Q,(p) for any a(r,p) in
the subgradient of ¢ with respect to q evaluated at (r,Q(p)),
where x(r,p) is the (unique) optimal netput supply vector for the
forward price vector p and an optimal ex ante design for (r,p).
Each extreme vector a(r,p) in the subgradient of ¢ with respect
to q is an optimal design in any regular design linear tech-
nological structure (not necessarily convex) satisfying (1), (3),
(41), (42), (43) for this nested profit form. If ¢ is differentiable
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with respect to q [and this is true for almost all (r.@) in the
interior of H] at (r,Q(p)), then &(r,q) = ¢q(r,Q(p)) is the (unique)
optimal design.

Proof: Conclusions (i) and (1i) follow from Lemmas 1-3. The deriva-
tive properties (iii}—(v) are corollaries of Chapter 1.1, Lemmas 17-

19. Q.E.D.

It is convenient to summarize the formulae implied by Theorem 4 in
the case that all the derivatives taken exist:

Q'(p)=p-% (p), (51)
H@kKp)= :21 aQ'(p) = p-k(a,p) = ;: ap-X(p), (52)
%us(a,p) = II,, (3, K,p) = :21 aQy,.(p): (53)
®(r,p) = ¥(r,Q(p)) = r-K(r,p) + p-X(r,p)

= r-K(r,p) +2 & (r,p)p-% (p), (54)
di(r,p) = U, (r,Q(p)), (55)
Ens(r;p) = Dy, (r,p) = ﬁ; a (r,p)Q5,,(P)- (56)

In econometric applications, choice of a convenient nested profit form
provides a basis for empirical analysis, with formulae (51)-(56) yielding
the netput supply equations (as functions of observed prices and under-
lying production parameters) and Theorem 4 ensuring consistency with
some regular convex design linear technological structure.

5.2. The General Case

The results stated above for the finite case continue to hold more
generally when the number of future states is infinite (as in a continuous
time intertemporal model or an uncertainty model with a continuum of
states of nature) or when the vector describing an ex ante design is
infinite (as in the activity analysis model of Example 2 with an infinite
set of activities). For simplicity, we confine our attention to the general-
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ization in which the number of future states may be infinite, retaining the
earlier assumption that an ex ante design can be described by a finite
vector. This case is of some practical importance in the generation of
functional forms for econometric purposes, as it allows use of the
methods of calculus and differential equations.

Consider a measure space (S,%,u) of future states, where S is the set
of states, & is a o-field of subsets of S, and u is a measure (a
non-negative countably additive set function) defined on &. (In ap-
plications, § might be an interval in the real line or a rectangle in
finite-dimensional space with Lebesque measure, or a set of integers
with counting measure. In the uncertainty model, . may be the firm’s
subjective probability of occurrence of states of nature.)

An ex post production plan x or forward price vector p is a function
from S into EV, hereafter assumed to be p-measurable, i.e., {s € S|x, €
R} € & for each Borel set RC EY. Consider a pair (X,P) of linear spaces
of p-measurable functions from § into EY such that the bilinear
functional p-x= Jsps-xs du (s) is defined for pEPxEX. Assume the
pair (X,P) is separated; i.e., p-x =0 for all p € P implies x=0 and px=0
for all x€X implies p=0. We identify X as the space of ex post
production plans, P as the space of forward price vectors. In ap-
plications, P is usually taken to be a topological space and X to be its
adjoint. Examples of particular interest are (1) the finite case with
X =P=E"%; (2) a case often used in problems involving uncertainty
with X =P = L(S,%,u,EY), the Hilbert space of functions from § into
EY: and (3) a case occurring in intertemporal economics with the Banach
spaces P = Li(S,%,u,EY ) and X = L(S,%,1,EY). We can assume, without
seriously restricting potential applications, that P is a normed linear
space and X is the Banach space of continuous linear functionals on X.
We shall use the weak* topology (P-topology) on X, denoted by w(X,P),
which is the weakest topology on X in which every functional in P is
continuous. A generalized sequence x°.d €D, converges to x in the
weak* topology of X if and only if p-x’ converges to p:x for each pEP.
We shall use a mathematical result [Kelley and Namioka (1963, 18.6)]
stating that T C X weak* closed and bounded in norm (i.e., if [[p| is the
norm on P, then supyy-1 sup:er p-x < +x) implies T weak* compact.

Recall that an ex ante plant design is described by a vector b = (a,K),
where a€E" is an abstract design vector and KEE’ is a capital
equipment vector with a corresponding price vector r € E’. Analogously
to the finite case, a technological structure is defined by an ex ante
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envelope technology T* which is a non-empty set of vectors (a,K,x) in
EL* x X, and the associated sets BCE"™, V@K)CX for (a,K)EB,
W CE’ x X, and the normal cone of W, defined as the convex set F of
vectors (r,p) € EY X P such that r-K + p-x is bounded above on W.

A technological structure is strongly regular if the following condi-
tions hold: (1) the set B is closed, the sets W and V(a,K) for (a,K) €EB are
weak* closed, and V(a,K) is bounded in norm; (2) capital netputs are
non-positive and exhibit free disposal; and (3) for each p€EP, there
exists 6>0 and r€E’ such that r is in the interior of F'(p') for
p’ €Pjp' — pl| = 8. Several comments on this definition are in order. The
requirement that the ex post variable technology be bounded is a new
condition not imposed in the finite case. Note that it is not consistent
with free disposal in the ex post variable technology. However, it can
normally be made to hold in applications by truncating the technology,
carrying out the analysis below, and then reintroducing the omitted
disposal activities. This condition is not essential for many of the
following results; however, it greatly simplifies the mathematical
arguments. Condition (3) is equivalent to the requirement that F have a
non-empty interior in the norm topology of E’ x P. A sufficient condition
for (3) to hold is that the “average product” of capital go to zero
when capital inputs are unbounded; ie., fimpki sup .. {Ix|l./|K| | x €
V(a,K),(a,K) € B} = 0, where [ix| is the norm of the Banach space X and
K| is the Euclidean norm on E'. .

A technological structure is convex if T* is convex. It is design linear
when the ex post variable technology has the form

I
V@K =2, aV,
I=1

where the V' are non-empty, weak* closed, and bounded in norm; and
for each | = 1,...,L, either a, is non-negative for all (a,K)EB or Viisa
singleton.

Define a strong nested profit form by (1) a convex cone F of vectors
(r,p) EE’ x P with r; non-negative for (r,p) €F,j=1,....J, and such that
for each p EP there exists 8 >0 and r € E’ such that r is in the interior
of F'(p) for p EPJp—pl=38; (2) a convex cone H of vectors rq €
E’*L: (3) a convex conical closed function ¢(r,q) on H which is non-
increasing in r; for all (r,g) € H with r; Z0 and which is non-decreasing
[resp., non-monotone] in g, for ! in a set of indices L. [resp., Lol; and (4)
a vector of functions Q(p) = (Q'(p),....Q*(p)) on P such that (r.9) €H if
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and only if there exists p € P with q = Q(p) and (r,p) €F, and such that
Q'(p) is a convex [resp., linear] conical uniformly Lipschitz function for

€L, [resp., Lol
The following result extends the conclusions of Theorem 4 to the
general case where S need not be finite:

Theorem 5. Suppose one is given a strong nested profit form F, H,
¥, Q, L;, Lo. Define

B = {(a,K) EE“*Ir-K + q-a = y(r,q) for all (r,q) EH}, 57
V' = x € X|p-x = Q'(p) for all pE P}, (58)
T = {(a,K,x) EE" x X|x ez a'V' and (a,K) € B}. (59)

Then (57)—(59) define a strongly regular convex design linear tech-
nological structure. This structure satisfies

Q'(p) = sup{p-xixE V'}, (60)
L

II(a,K,p)= Z{ aQ'(p) for pEP, 61)

Y(r.q) = sup{r-K +q-a(a, K)EB} for (rgq€H, (62)

D (r,p)= ¢ Q) for (rp€EF, (63)

and is the only strongly regular convex design linear technological
structure satisfying (60)—(63).

Proof. Except for the duality conditions (58) and (60), the statements
of this theorem follow from the arguments of Lemmas 1-3. We first
show that the V' defined by (58) are non-empty, convex, bounded in
norm, and weak* closed. We consider ! € L,; the remaining case is left
to the reader. Define epi Q' ={(p.,qQ) EPXE|g=Q'(p)} and G'=
{(x,£) EX X E|—p-x+ &g = 0 for (p,q) € epi Q'}. Since Q' is Lipschitz and
conical, epi Q' is a closed (in norm) convex cone with (0,—1) & epi Q', G'
and epi Q' are polar cones, and G' is a weak* closed convex cone. G’
contains non-zero vectors [Dunford and Schwartz (1958, V.9.8)], and
0 # (x,£) €EG' implies £>0. Then, V' = {xEeX|(x,1) EG'} satisfies (58)
and is non-empty, convex, and weak* closed. Since Q' satisfies [Q'(p)| =
m|lp|l for some m >0,x € V' satisfies |p-x| = m||p}| for all pEP, or [x]| =m.
Hence, V' is bounded in norm. Equation (60) and the uniqueness
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statement of the theorem follow from the polarity of the cones epi Q'
and G. Q.E.D.

As in the finite case, one may define the subdifferential of Q'atptobe
the set of points x € X satisfying p'"x = Q(p+p)— Q'(p) for p' €P. The
assumption that Q' is convex conical and uniformly Lipschitz implies the
subdifferential is always non-empty and equals the setof x € V' maximizing
p-x' on V. The almost everywhere differentiability of Q' in the finite
case does not carry over to the general infinite-dimensional case;
however, the following partial generalization holds. First, several
definitions: A subspace P, of P is separable if it contains a countable
dense subset. Sufficient conditions for P, to be separable are (i) that it be
the closed space spanned by a countable subset of P [Dunford and
Schwartz (1958, I1.1.5)] or (ii) that S be a compact metric space and P be
a closed space of continuous functions on S [Dunford and Schwartz
(1958, V.7.12)]. P is the direct sum of subspaces Po and P,, written
P=P,@P, if each pEP has a unique representation p=po+p;,po €
P,.p: € P,. Define X,={x € X|p-x=0 for p € P¢} and the quotient space
X/X,. A function Q:Py—>E" is differentiable at poE€ P, if there exists a
unique xb€ X/X, such that p’-xo= limeo* [Q'(po+ ) — Q' (p0))/6 for all
pPEP,I=1,.L.

Lemma 6. Suppose P=P,@P,, where P, is a closed separable
subspace of P. For each p;EP;, the convex conical uniformly
Lipschitz functions Q(po+p1)= (Q'(po+ P1)>--,Q (Po+ P1), con-
sidered as functions of p, € P, are differentiable on a dense subset
of Po.

Proof: Define q':Po,—~E by q'(po) = Q'(po+p:) for | EL, and define
q(po) = 3., q'(po). Consider the tangent functional 7' (po,p’) =
limeo(q'(po+ 6p") — q'(p0))/0,p' EP;, and note that the tangent
functional 7(po,p’) of q(po) satisfies 7(po,p’) = Ef;l 7! (po,p’). Note that q is
uniformly Lipschitz on Py, and that 7'(po,p) = —1'(po, — p). The proof of
V.9.8 in Dunford and Schwartz (1958) establishes that for po in a dense
subset P; of Po,7(po,p’) = — 7(po, —p’) for p’EPo. From the inequality
above, this implies ' (po,p) = — 1"(po,-— p) for ppEPo,p’' € Po,l = 1,...,L.
Then, 7'(po,p’) = p'-Xo, Where %, is in the subdifferential of Q'(p) at
p = po+ p1, implying x, is unique in X/X,. Q.E.D.
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6. Separable Technology Across States

The abstract model of ex ante-ex post firm behavior presented in
Sections 3 and 5 requires no specific assumptions on the structure of ex
post technologies across future states. However, each of the examples
in Section 4 is based on a technology structure that is ‘“‘separable across
states”. While we wish to avoid imposing unnecessary structure that
precludes possible applications, it is important to explore the im-
plications of this conventional structural assumption of separability
(*‘non-joint” production) across future states.” This condition reduces
substantially the ‘“dimension” of the intertemporal profit function, mak-
ing it an important property in empirical applications, where this
function must be given an explicit form.

An ex post variable technology V(b),b € B, is separable across states if
for each future state s €S8 there exists a set Vy(b) of N-vectors of
netputs x, termed the ex post s-technology, such that

V(b) = {x € X|x, € V,(b) for s € §}.

When S is finite, V(b) is just the Cartesian product of the s-technologies.
The important characteristic of this structure is that, given the ex post
technology, the set of possible netput vectors in a state s is independent
of the operating points chosen in other states. For the model with
uncertainty and one period of operation, this condition will always be
imposed (recall that decisions made before the state of nature is known
are described in b). An example illustrates application of this condition
in the model with intertemporal variation and no uncertainty. Suppose a
firm chooses ex ante an input level K of one producer durable, and in
each future period s = 1,...,L. chooses a labor input L, and output Y,
satisfying a production function Y, =(Kd,)°L{, where d; is a deprecia-
tion effect. If d, is exogenous, resulting from weathering depreciation,
then this technology is separable across states. Alternately, if d, depends
on output levels in previous periods because of wear and tear deprecia-
tion, this separable structure does not hold."

’A quick accounting of problems employing intertemporal production yields the follow-
ing list of phenomena related to intertemporal structure: disembodied technical change,
weathering depreciation of durable equipment, wear and tear depreciation of durable
equipment, learning-by-doing in the plant, endogenous construction rate and scrapping
decisions, expansion and modernization decisions. The first two phenomena are consistent
with intertemporal separability, the remainder are not.

®In a form of the separability assumptior that appears in the economic growth
literature, inputs in one period yield outputs in the following period in two-period
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For each ex post s-technology T(b) and forward price vector p=
(ps:s €8), define an s-future profit function,

Hs (b,Ps) = Sup{ps “Xs |xs €T, (b)} (64)

The future profit function is then given by the sum IT(b,p)=
S s I, (b,p;) = =,es 8,I1,(b,p;) when S is finite, and more generally by
the integral IT(b,p) = fs I, (b,ps)du(s). Conversely, additive separability
of the profit function across states implies that the ex post technology is,
in effect, separable across states; the precise implication for S finite is

convex hull (V(b)) = {x|p-x = II(b,p) for all p}
= {x|Z;es Ps X5 = Zses I (b,p;) for all p}
= X ;e {Xs|Ps X = I15(b,ps) for all p}
= X 5 convex hull (Vi(b)).

In applications, the s-technologies are frequently assumed to vary in a
simple pattern over states. A first example in the intertemporal variation
model is the “one-hoss-shay” technology, with T(b) = Ti(b) for s =
1,....L. A second example giving a uniform s-technology across states is
the single-period model in which the firm faces uncertain market prices,
but a certain technology Ti(b). The profit function then satisfies
II(b,p) = fs II,(b,p:)du(s). The following transformation of this second
example will be useful in applications: Let p. denote an N-vector of
prices and define Sp)={s€ Slp,=p}and G(p) = S 51 8; due(s). Then,
G is the distribution function of current price vectors, and II(b,p) =
SexT(b,p)dG(p,) is the expected value of current profit. Since the
profit function IIi(b,p) is convex in p., we have the implication
[enI1,(b,p )dG(p ) = I1i(b, [ev p. dG(p ), with equality holding if the p;
are proportional in all states. First, we conclude that when relative
prices are not affected by the state of nature, the ex post operation of
the plant is reduced to the problem of maximizing current profit at
expected prices. Second, that given the certain ex post technology Ti(b),
the firm cannot lose and may gain from increased uncertainty. To make

technologies. This recursive technology structure assuzmes the existence of markets for all
intermediate goods, including rental and second-hand markets for producer durables. This
structure can be included in the separable across-states assumption in our analysis by
treating each state s as made up of two subperiods, with the second subperiod of state s
coinciding chronologically with the first subperiod of the successive state. The markets for
inputs and outputs at the same chronological time are then treated as distinct markets (with

arbitrage).
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this statement more precise, we consider a comparative argument
in which commodities have a current price vector p, with distribu-
tion G(p)) in the first case and a current price vector p +p. in
the second, and p’ introduces a ‘pure spread” in the price distri-
bution; i.e., p’ has a conditional distribution H(p!lp.) with
Jevp dH(pJp)=0. Then, fev(Jev Ii(b,p, +p)dH (p/lp))dG(p) =
Jev Mib,p.+ fov p. dH (p!lp )G (p.) = [e~ ITi(b,p }AG(p.), and expected
profits from the ‘““spread” prices p_+ p! are at least as high as those from
the prices p.. An intuitive justification of this conclusion can be given
using Figure 13. Suppose an industry with identical firms faces an
uncertain demand for industry output Y, each of the curves D' and D?
occurring with probability one-half, and yielding an expected output
price p.. Supply at the expected output price will be greater than (less
than) the expected value of output in the case of a convex industry
supply in Figure 13(a) [a concave industry supply in Figure 13(b)].
However, because higher equilibrium prices always induce higher
supply, and hence higher profits, the expected value of profit will be
unambiguously higher than profit at the expected output price in either
case (a) or (b).

A structure of the s-technologies across states only slightly less
simple than the uniform examples considered above is the case
of exogenous commodity augmentation in which V(b)=
{(x1A155. ... XNANs)|(X15-...X8) € Vi(b)}, the A, being exogenous non-nega-
tive numbers. In the model with intertemporal production, the A,; may
represent the effects of weathering depreciation and disembodied tech-
nical change. In the single-period model with uncertainty, the A, reflect
the quality of commodities in various states of nature. In the concrete
example with a single durable input K and production of output Y, in
state 1 from input L, satisfying Y;=< K°L%, this structure gives a
production function Y, = K°Lf(A%,A3}}). The commodity-augmenting
structure implies that the variable profit function can be written
II(b,p) = fs I(K,pidAs,-...onsd Ans)d e (s), with p,/ A, interpreted as an
efficiency forward price.

A final comment is in order on the differentiability of II(a,K,p) in the
general case of a measure space (S,%,u) of future states when the
technology is separable across states. If each s-technology V.(a,K) is
strictly convex in EV, then II(a,K,p;) is differentiable in p, on EM.
Hence, p"i=fs(aﬂslap,)-p;du(s) for p' EP, £ =(X,:s €S), with X, the
unique optimal netput vector in V. (a,K) at price vector p,. Hence,
I(a K,p) is differentiable in p on P.
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7. A General Linear-in-Parameters Ex Ante-Ex Post Technology

The algorithm introduced in Section 5 provides a general procedure for
generating two-level technologies. Example 4 in Section 4 illustrates a
construction for the case of cost minimization that is linear in the
underlying production parameters, making it particularly convenient for
statistical analysis. We now present a generalization of this family of
nested forms to the profit-maximization case, and show that this
generalization is robust in the sense that locally it can mimic the net
supply behavior of a broad class of two-level technologies. For simpli-
city, we assume in this analysis that the set of states S is finite.
Consider a nested profit form as defined in Section 5, described by F,
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H, ¢, and Q= (Q,...,Q"). Suppose # has a linear-in-parameters form

G
vr =2 bR*(rg), (65)

where b, is non-negative and R* is non-decreasing in q for (r.q) € H.
Then, Theorem 4 holds, implying equations (51)-(56) can be used to
specify the net supply system. Rewriting (53)—(56) for the functional
form (63),

G
@(r.p) = $(r,Q(p) = 21 b R*(r,Q(p)), (66)
a(r.p) = E b.R(r,Q(p)), (67)

L

G L
tem =3 G9)QL,0) = 3, b [3 REGQEIQL®]. 69
Note that the system (66)—(68) is linear in the underlying technological

parameters b,.
Adapting the functional form of Example 4, let N, J, and S denote the

sets of indices {1,...,N}, {1,....J}, and {1,...,S}, respectively, and define

Qﬁ”(P) = “(Pistx)”z, (69)
Qi(p) = — ;s (Pispi)"?, (70)

for i,j €N and s, €S. Suppose ¢ has a linear-in-parameters form

d’ ,(I)— 2 buk![ (quqk')lﬂ!]_"z z buk[ ( Qu"k)”z]

kGJ
+ 2 b ts'js!.kluu [_ (Qijs!qldav)uzl
istel
klur€L
+2 Y bhal—(—gir) 1+ biul—(rr)", (71)
"i'EEJL kleJ

where L = {(ijst))i,j € N;s,t €S} and the underlying b parameters satisfy
the following conditions:

(1) blu symmetric under permutation of i and j, of (ij) and (kl), and of
combinations of these permutations; and non-negative unless (ij) =
(kl) for some permutation of i and j;
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(2) b}, symmetric under permutation of i and j; and non-negative;

(3) bl symmetric under permutation of i and j, of s and t, or (ijst)
and (kluv), and of combinations of these permutations; and non-
negative unless (ijst) = (kluv) for some permutation of i and j, and of
s and ¢;

(4) bj,.« symmetric under permutation of i and j, or s and ¢, of
combinations of these permutations; and non-negative;

(5) bi, symmetric under permutation of k and [, and non-negative unless

k=1

The set H is defined so that q is non-positive and ¢ is non-decreasing in
q at (r.q) € H; this implies a constraint on the range of the “diagonal” b
parameters. One may readily verify that this system meets the require-
ments of a nested profit form. Writing out the net supply system:

G;(r,p) = ‘r?-;m b hu(Q  (p) Qii(p)) - % bi(—n/QiN"™,  (72)

Gig(FP) = = D bluann Q¥ (p)/ Q¥ (p))™
kluvE€EL '
= 2 bl Q™ (p))'", (73)
Ki(rp)= -2 bi(n/n)? = 3 bl(-0Q(p)n)"
i€’ ijEN
- ,_EEL b~ Q™ (p) )", (74)
ijst
X (r,p) = - 2 3.‘;‘(P,‘JP.‘:)"2 - 2 a‘iju(Pn/Pu)”z. (75)
JEN JEN

€S
Zi(r,p) = g;ﬁ bl pid pis)(Q* (p)I Q7 (p))™
1K

+ ; bnzi.k(pj:,pis)'n(_ TJQ-EI(P))W
!
Les

+ ,2; b b atno(Pid Pis) " (QH (p) Q¥ (p))'?

tES
kluvEL

* ; b s spil Pis) (— rd Q™ (p))'~. (76)
4

teS
ked
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Given data on a cross-section of firms operated in each future state, the
system (74), (76) can be estimated by multivariate regression methods. It
is of interest to state explicitly in terms of the b parameters some of the
important hypotheses imposed on the ex ante—ex post technology:

(1) Separable across states ex post variable technology. This
hypothesis holds if and only if the ex post variable profit function is
additively separable across states, or dy, =0 for s#t. This is
equivalent to the linear hypothesis blsuwe =0 unless s =t and u = v
and b, =0 unless s = 1.

(2) Separable and uniform across states ex post variable tech-
nology. This hypothesis holds if and only if (1) above holds and
d;ss = G;u. This is equivalent to the linear hypothesis bl =0=
bisx, since the equality above holds only if d;n=0.

(3) Putty—clay hypothesis. This condition holds if and only if
a; =0 for i# j and dy, = 0 for i# j or s# ¢t. This is equivalent to the
linear hypothesis bl =0 unless i=j, k=1; bi,=0 unless i=j;
blaww=0unless i=j k=1 s=1t u=0v; and bju. =0 unless i=j,
s=1.

(4) Non-jointness of net supplies (is) and (jt) in the ex post
variable technology. If s# ¢, this hypothesis is equivalent to the
linear hypothesis b3 ., =0 for kiuv EL and biux=0 for k€J. If
s = 1, this hypothesis is equivalent to b}y = 0 for k,l €N, b}, = 0 for
k€J, bliaw =0 for kluv €L, and b, =0 for k €.

Finally, we note that the nested profit form (69)-(71) has the following
approximation property, established in Chapter II.2: Consider any
nested profit form which is twice continuously differentiable in the
neighborhood of a point and which has at this point the gross substitutes
property that the mixed second partial derivatives of ¢ and the Q™ are
non-positive. Then there exist b parameters in the form (69)-(71) such
that this form agrees with the nested profit function through second-
order partials at this point. Hence, the system (69)—(71) can mimic
locally the net supplies and elasticities of any ex ante-ex post tech-
nology vielding a nested profit form with the gross substitutes property.
The procedures of McFadden in Chapter I1.2 can be used to establish a
stronger result. Suppose II(a,K,p) and ®(r,p) are the profit functions
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associated with an arbitrary ex ante—ex post technology. Suppose they
are differentiable at a point (¥,p), yielding optimal quantities (3,K.X).
Suppose that @ and IT are differentiable at this point, and have the
following gross substitute properties:

o*Mldava; z0,  3*I3KIK; 20,
*MéadK; 20, 3*Mfapiap; =0,
*Plorar, =0, 3*dlapap; = 0,
3Pl apar; = 0.

Suppose IT is concave in a, independent of K, and define

_ L _ L _
N@K.p) =GR+ ally@Kp) + 12 3 Bnllos, @EK.p),

o= a —a, Bim = (a;— a)(an — am).

This function is then linear in the parameters a;,Bm. Define B to be the
set of parameter vectors (1,(a;), (Bm)) corresponding to (a,K) in the
domain of IT, and define ¥(qo.{q:), (qim)) to be its *“profit function”. Then
the “linearized” IT and the function ¢ define a nested profit form that
can, by the procedure outlined previously, be approximated to second
order by the system (69)-(71). Thus, the tests suggested above should be
relatively robust for deviations of the true ex ante—ex post production
structure from that implied by the linear-in-parameters form. Because
the muiltivariate model estimated in these tests utilizes much more
information on the structure of the production process than would
parallel non-parametric statistics, it should yield substantially more
powerful tests.

8. Concluding Remarks

The preceding chapters in this volume have demonstrated that the
theory of duality is a concept that is extremely useful in the estimation
of production parameters when production is specified in terms of a
single-level decision rule. In this chapter we have extended the ap-
plication of duality theory to the more complicated two-stage (ex ante-
ex post) description of technology. This extension allowed us to pursue
interesting phenomena, such as the role of uncertainty in the design
decision, which cannot be analyzed within the more limited framework.
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The main purpose of this chapter was to demonstrate a means of
generating functional forms that are capable of empirically describing
the ex ante-ex post structure. Econometricians who estimate production
functions require these functional forms in order to take into account
the dynamic efficiency of flexible techniques in a world of durable
inputs and uncertain outcomes.



