CHAPTER 4

A Theory of Population Travel Demand Behavior

4.1. Introduction

In this chapter we establish the link between the theory of individual
behavior discussed in the previous chapter and aggregate demand data
obtained from sampling an urban population. In addition to providing
a general theoretical framework for this analysis, we develop concrete
models with a sufficiently simple structure and small number of unknown
parameters to permit the application of practical statistical estimation
methods. Discussion of specific statistical procedures is given in the
following chapter. However, we note that the choice of the demand
model sets rather narrow limits on the range of feasible estimation
techniques, and that there is some trade-off between the theoretical
plausibility of the demand model and the convenience of available
estimation procedures.

We first discuss the nature of transportation behavior data and the
requirements of the transportation planner. Next, we present the general
theory of population demand, and develop a series of specific demand
models for binary and multiple alternatives. The independence and
separability properties of these models are discussed in the following
sections. Finally, several theoretical issues related to applications of
estimated aggregate demand are discussed.

4.2. Trip tables and choice probabilities

The “trip” of interest to a transportation policy analyst is in general
distinguished by mode, time of day, origin, destination, purpose, and
socioeconomic characteristics of the trip-takers. The aggregate demand
for such a trip is simply the number of journeys with these specifications

AT



48 Urban travel demand

taken by the relevant urban subpopulation over a given period of time.
The array of demands for various trips is termed a trip table.
Transportation data ordinarily consist of observations on the trips
taken by a sample of individuals, using household surveys, on-board
surveys, cordon counts, etc. Using the survey design and the demo-

graphic characteristics of the population, the aggregate trip demand of

the population can be inferred from the observed sample trip demand.

Hence both in theory and in practice, the aggregate demand for a trip is
obtained by aggregating over individual choices.

It is often convenient to express aggregate demand for a trip as a
frequency by dividing by population size. Thus one can interpret a trip
frequency as the probability that an individual drawn at random from
the population will choose to make this trip.' These choice probabilities
play a fundamental role in our analysis. If the functional dependence of
the choice probabilities on transportation policy variables is known,
then the planner can construct trip tables predicting the effect of alter-
native actions. On the other hand, observations on the travel choices of
a sample from the population can be interpreted as drawings from a
statistical distribution with these probabilitics, making possible statistical
inference on the functional dependence of the probabilities on policy
variables.

4.3. Determination of population choice probabilities

In principle, the theory of individual utility maximization provides a
complete model of individual choice. However, within the framework of
economic rationality and the postulated structure of utility maximiza-
tion, there will be unobserved characteristics, such as tastes and un-
measured attributes of alternatives, which vary over the population.
These variations may induce variations in observed choice among
individuals facing the same measured alternatives. A specification of a
distribution for the unobserved factors then generates a distribution of
choices in the population.

To clarify the conceptual issues involved in this construction, we
consider the textbook model of economic consumer behavior. The

| We assume the period of observation is sufficiently short to make the probability of
an individual making the same trip more than once negligible.
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individual has a utility function u = U(x, s, ¢), representing tastes, where
x is the vector of observed attributes of an alternative, s is a vector of
observed socioeconomic characteristics, such as sex, education, and age,
and ¢ is a vector of unobserved characteristics of alternatives and un-
observed factors, such as intelligence, experience, childhood training and
other variables determining tastes. The utility function is maximized
subject to a “budget constraint” x € B at a value x given by a system
of demand functions,?

x = h(B, s;¢€). 4.1)

The econometrician typically observes the budget constraint B,, socio-
economic characteristics s,, and chosen alternative x, for a cross-section
of consumers n = 1, ..., N. He wishes to test hypotheses about the
behavioral model (4.1), ranging from specific structural features of para-
metric demand functions to the general revealed preference hypothesis
that the observed data are generated by utility-maximizing consumers.

The unobserved vector ¢, will vary in the sample due to variation in
tastes and unmeasured attributes of alternatives, and will induce a
variation in observed demands which will be influenced by the structure
of tastes. The procedure of most empirical demand studies is to ignore
the possibility of taste variations in the sample, and make the assumption
that the cross-section of consumers has observed demands which are
distributed randomly about the exact values for some common tastes.>
In the conventional demand study, where quantities vary continuously,
it is reasonable to expect errors in measurement of the chosen alternative
to be important, and perhaps dominate the effect of taste variations.
Hence in this case, this specification is fairly realistic. On the other hand,

2 The set B may be the conventional budget hyperplane, or it may be a more general
set of available alternatives.

3 This specification will continue to hold in conventional consumer demand models
in the presence of some types of taste variation. Suppose one can postulate that consumer
tastes are identical up to a vector of parameters that appear linearly in the demand
function. (An example would be individuals with log-linear utility functions who face
conventional budget constraints, with variation in the parameters of the utility function
across individuals.) Then the demand functions can be estimated using a random coef-
ficients econometric model. What is important is that except for refinements in estimation
of the error structure, this approach will lead to the same models and estimates as are
obtained under the identical tastes postulate. This “robustness™ property of the conven-
tional demand model does not, however, carry over to the case in which the consumer
faces discrete alternatives.
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we argue below that in the alternative case of a finite set of choices this
is not a plausible model.

Under the conventional specification described above, the relation
of observed aggregated demand to individual demand is straightforward.
In a population of consumers who are homogeneous with respect to
budgets faced, aggregate demand will equal individual demand “writ
large”, and all systematic variations in aggregate demand are interpreted
as having been generated by a common variation at the intensive margin
of the identical individual demands, where each consumer is choosing
to buy more or less of a commodity. In the absence of unobserved
variations in tastes or budgets, there is no extensive margin, where
individuals are choosing to buy or not to buy, affecting aggregate
demand.

We must re-examine the conventional demand specification in the case
that the set of alternatives is finite. A utility maximum exists under
conventional conditions, and generates the demand equation (4.1). This
equation predicts a single chosen x when tastes and unobserved attrib-
utes of alternatives are assumed uniform across the population. The
conventional statistical specification above implies that all observed
variation in demand x,, over the finite set of alternatives, is the result of
errors in measurement. The argument that measurement error is suffi-
ciently serious to confound discrete alternatives is implausible on the face
of it. Further, we must question the relevance of this behavioral model
in which a substantial proportion of the observed variation in choice is
attributed to aspects of behavior described only by the ad hoc error
specification.

The effect of the discreteness of an individual’s alternatives on the
aggregate demand for a “lumpy” commodity is often negligible in a
large population, and a continuous approximation is justified. For
example, the rate at which an urban population takes a particular trip
can be treated as a continuous variable, even though the individual’s
decision to make this journey is discrete. However, systematic variations
in the aggregate demand for the lumpy commodity are all due to shifts
at the extensive margin, where individuals are switching from one alter-
native to another, and not at the intensive margin as in the divisible
commodity, identical individual case. Thus, it is falacious to apply the
latter model to obtain specifications of aggregate demand for discrete
alternatives. What is needed is a formulation of the demand model in
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which the effects of individual differences in tastes on the error structure
in eq. (4.1) are made explicit.

We next describe in more detail how the probabilities of choices are
deduced from the theory of utility maximization. Suppose an individual
has J alternative choices, indexed j = 1, 2, ..., J. In our study of travel
demand, each of these choices will represent travel along a particular
link by a particular mode at a particular time; we have compressed the
link-mode-time characterization of a “trip” into a single index j to
simplify notation. One of these alternatives will generally be the option
of not taking a trip. (It is from consideration of this option that we wiil
be able to draw conclusions on the total demand for trips. It is important
to note that estimation of the choice probability function for this option
will require data on non-trip-takers.)*

In some applications, the alternatives will always be ranked (i.e.,j = 1
will be the peak-hour transit work-trip option, j = 2 will be the peak-
hour automobile work-trip option, etc.). In others, the alternatives will
be unranked, and will not be paired in observations across individuals.
For example, the shopping destinations of one individual may have no
natural pairing with the shopping destinations of a second. Further, the
number of options available may vary from individual to individual. The
following analysis will apply in all these cases.

For the individual we are considering, each alternative j =1, ..., J
has a vector of observed attributes x/. Then the “budget constraint” B
entering (4.1) is composed of these vectors, B = {x!, x2, ..., x/}. The
observed socioeconomic characteristics of the individual are summarized
in a vector s. As mentioned earlier, we assume that this individual has
a utility function measuring the desirability of an option with a vector
of attributes x, which we have written in eq. (4.1) as u = U(x, s, ¢),
where ¢ is an unobserved vector containing all the attributes of the al-
ternatives and characteristics of the individual which we are unable to
measure. Provided our transportation survey samples randomly from
the population of individuals with common socioeconomic character-

¢ By an appropriate definition of the alternatives availabie to the individual, we can
always take his options to be mutually exclusive. For example, multiple-link trips, such
as triangular trips, can be labeled as distinct alternatives. In the following analysis, we
assume this has been done, and the individual can choose one and only one alternative.
This condition simplifies our analysis, and provides the most convenient format for
analyzing available transportation survey data.
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istics s and the same alternatives, the vector ¢ will be random, and as a
consequence the values of the utility function will be stochastic. To
simplify notation, we will suppress the random effect ¢ as an explicit
argument in the utility function, and define

u= U(x,s) 4.2)

to be a random function whose value at any argument is a random
variable depending on exactly which individual we have drawn from the
subpopulation of persons with the same observed characteristics and
alternatives.

The individual will choose option i if this is the alternative which

maximizes his utility; i.e., the individual will choose i if
U(xi,s) > U(xi,s) for j#1i,j=1.., J. (4.3)

Since these utility values are stochastic, the event that the condition 1n
eq. (4.2) holds will occur with some probability, which we can denote by

P" =H(B, S, i)
= Prob [U(x',s) > U(x,s) for j#1i,j=1, nd) (4.4)

(We assume the probability of a “tie” is zero.) Note that this is precisely
the choice probability introduced in the preceding section. With complete
generality it is always possible to write the stochastic utility function

U(x, s) in the form
U(x, s) = V(x,s) + n(x, s), (4.5)

where V is non-stochastic and reflects the “representative” tastes of the
population, while # is stochastic (with mean independent of x) and
reflects the effect of individual idiosyncrasies in tastes or unobserved
attributes for alternatives in B. Then eq. (4.3) can be written as

P; = Prob [n(x/, s) — n(x’, 5) < V(xi,5) — V(x/, )
for j#i, j=1,..,J] (4.6)

Let (t,,...,t;) denote the cumulative joint distribution function of
(n(x1,s), ..., n(x4, s)). Let y; denote the derivative of ¥ with respect to
its ith argument, and let V; = V(x/, s). Then, eq. (4.6) becomes

+cc
P, =J Wit + Vi = Vi, ...t + V= Vpde 4.7)
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Any specified joint probability distribution, such as joint normal, will
yield a family of probabilities depending on the unknown parameters
of the distribution and of the functions V.

Derivation of choice probabilities from an (intra-individual) sto-
chastic utility function was first suggested for a particular case by the
psychologist Thurstone (1927a). This model of the determination of
choice probabilities forms the theoretical basis for both classical psycho-
physical laws, such as Fechner’s law, and modern individual choice
theories, such as the axiomatic theory of Luce (1959). A second line of
development has been concerned with the effect of taste variation in a
population of consumers, and has deduced specific forms of eq. (4.7).
The studies of travel demand by Quandt (1968, 1970, 1972) provide an
excellent statement of the foundations of this approach. Our analysis
will combine these two approaches to obtain a broad class of functional
forms for the choice probabilities.

To complete our task of specifying the probability functions up to a
small number of parameters, we must specify an explicit functional form
and probability distribution for the stochastic utility function U(x, s),
and then use eq. (4.7) to obtain the desired conclusion. We shall now
consider several alternative specifications, beginning with an important
family of functional forms, which lead in the case of binary choice to
what are termed “linear”, “logit”, or “probit” probability functions.
Following this investigation of forms for choice between two alternatives,
we shall consider forms appropriate to multiple-choice settings.

4.4. Probability functions for binary choice

We consider an individual with a choice between two alternatives
(indexed j = 1, 2), with vectors of attributes x' and x?, respectively. The
choice probability for the first alternative is then given by eq. (4.7) as

P, = J.+®|[/1(t,t + V(x', s) — V(x?, s))dt, (4.8)

where ¥ is the cumulative joint distribution function of the random
components 7(x", s) and n(x?, s) of the stochastic utility function. A more
transparent form for this probability is obtained by introducing the
cumulative distribution function G of the difference of the random
components, n(x2, s) — n(x", s). Then from eq. (4.6),



54 Urban travel demand

P, = G(V(x!,s) — V(x%,9)). 4.9)

The form of the functions ¥ and G will be influenced both by the im-
plications of our theory of individual choice behavior and by the con-
straints of computational practicality.

For the purposes of this discussion (and in our empmcal analysis),
we assume that V has the general form

Vix,s) = Z'(x,s)B; + ... + ZX(x, )Py '
= Z(x, s)' B, (4.10)

where Z¥(x, s) are empirical functions with no unknown parameters,
= (Z1, ..., Z¥ is a row vector of these functions, and f = (B, ..., Bi)
is a column vector of unknown parameters. This assumption makes V
a linear function of the parameter vector B, a fact which greatly facilitates
its estimation and statistical interpretation. The variables Z', ..., Z* may
be complex transformations of the raw data (e.g., logs, reciprocals, ratios,
or empirical functions) and may incorporate interactions between $OCIO-
economic characteristics and attributes of alternatives. Further, these
variables can be defined to incorporate either generic or non-generic
attributes of alternatives. For example, if on-vehicle travel time is an
attribute of each alternative, one may introduce this variable generically
by defining Z'(x/, 5) to equal on-vehicle travel time on both alternatives
j=1,2 Then B, is a generic weight for on-vehicle travel time. Alter-
nately, one may define Z'(x/, s) to equal on-vehicle travel time if j = 1,
* and zero if j = 2, and define Z%(x, s) to equal on-vehicle travel time if
j =2, and zero if j = 1. Then B, is a non-generic weight for travel time
on the first alternative. Thus, the form in eq. (4.10) is sufficiently general
to accommodate almost any phenomenon that can be usefully examined
with available data.

The cumulative distribution function G in eq. (4.9) is an increasing
function of one variable which translates the range of V into the prob-
ability scale (a number between zero and one). The parameters of this
distribution are, in general, functions of x', x?, and s. For example,
systematic variations in tastes due to unmeasured socioeconomic
characteristics, which are themselves correlated with observed socio-
economic characteristics, may cause the mean of G to shift with s.
Similarly, if tastes in some socioeconomic subpopulations tend to be
more homogeneous than in others, this may be reflected in a dependence
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of the variance of G on s. Finally, if the underlying stochastic variables
n(x', s) and 7(x?, s) are non-independent, with a correlation depending
on the “similarity” of x! and x? in some components, then the variance
of G may depend on this similarity. At this point in the discussion we
shall assume that G is independent of x!, x?, and s. This will be the case

in particular if n(x*,s) and n(x?, s) are independent of each other and
do not depend on the values of x and s. This assumption greatly facilitates -

SR/ 2a0L MW pPARARS aa AT VALLLS S A KRS 2 111a 4aoallllil

empirical analysis, and is plausible as an initial working hypothesis.®
However, we shall see later that this assumption may have implausible
implications in some applications, particularly for multiple choice.

If the distribution function G is hnear over the range of V, then egs.
(4.9) and (4.10) yield

= (Z(x s S) - Z(xza S))’.Ba (41 1)

which is termed the linear probability function. For example, suppose P,
is the probability of choosing auto when faced with a binary choice
between auto and transit modes, and there are four variables: Z' = auto
travel time (T}) for the auto mode and zero for the transit mode; Z? =
transit travel time (7;) for the transit mode and zero for the auto mode;
Z3 = income (I) for the auto mode and zero for the transit mode; and
Z* = one for the auto mode and zero for the transit mode. Then eq.
(4.11) becomes

Py =BT, — BTy + B3l + Ba (4.12)

The B;’s measure the effect on the probability of the auto choice of a
one minute change in either auto or transit time (we expect §,, f, < 0)
or a one dollar change in income. We note that the constant term f, in
eq. (4.12) is actually the coefficient of an “auto-mode” dummy variable,
while B; is the coefficient of an interaction variable formed by the
product of income and an “auto-mode” dummy. It should be clear that
socioeconomic variables can enter eq. (4.11) only via interaction with
variables which are not constant over alternatives.

" 1t is essential for the validity of the specification (4.11) that the values

5 In the case of binary choice, it is often impossible to identify the influence of x', x2,

and s via ¥ and via G, in the sense that one can find a “standard” mode] with a more
complex V functionand a G dlstnbunon independent of these variables which yiclds the
same choice probabilities for all x', x?, and s. Then the standard model can be singled

out on grounds of convenience.
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of the function not range outside the unit interval. We shall show below
that this restriction can substantially bias the statistical estimates
obtained by applying straightforward regression methods to this model.

P

.—-—/

V= (2(x1, s) = 2(x2, s))'B

Fig. 4.1. Cumulative probability distributions giving a two-tailed ogive curve.

| 4
Normal: G(V) =®(V) = -\ﬁ e~ gy

Logistic: =
ogistic: G(V) 1o 7

1 1
Arctan: G(V) = —tan” (V) + 3
n

Instead of a linear function, the function G may be specified to be an
ogive (see fig. 4.1) which maps the real line into the zero-one interval;
any cumulative distribution function without jumps gives this basic
shape. Three commonly used ogives are the cumulative normal, logistic,
and Cauchy distributions. The normal distribution gives the probability
function ‘

P, = H(BZ(x',5) — BZ(x%3)), (4.13)
where @ is the standard cumulative normal distribution. This equation
is termed the hinary probit probability model. The Cauchy distribution
gives the probability function

P, ==+ %tan"(ﬂ’Z(xz, s) — BZ(x},s)), (4.14)

[\S A

and is known as the arctan probability model. The logistic distribution
gives the probability function
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1
P = T e[z s — FZes, 9

and is termed the binary logit probability model.

We use the logit model to continue the example of a binary mode
choice probability. Again let P, be the probability of choosing the auto
mode, and let T,, T,,, and I denote auto travel time, transit travel time,

s emarsanticrals ot tha invaras teanafAarmatiAn nf}bn ST

and income, rcapcuuv'r;ly' uaiug the inverse transiormation o1 tn€ cumu-
lative logistic distribution, the model can be written

(4.15)

P,
IOg[l—P_] =BT, — BT, + B3l + Ba. (4.16)
- 1
Here, 8, and B, measure the change in the log of the odds of choosing
Table 4.1
Argument Logit* Probit Arctan® Logit-Probit Logit-Arctan
0.0 0.5 0.5 0.5 0.0 0.0

0.2 0.5791 0.5792 0.5781 —0.0001 0.0009
04 0.6543 0.6554 0.6479 -0.0010 0.0064
0.6 0.7226 0.7257 0.7052 —0.0031 0.0173
0.8 0.7818 0.7881 0.7504 —0.0062 0.0314
1.0 0.8314 0.8413 0.7856 —0.0099 0.0457
12 0.8715 0.8849 0.8132 —0.0133 0.0583
14 0.9032 09192 0.8351 —0.0159 0.0681
1.6 0.9277 0.9451 0.8527 -0.0174 0.0750
1.8 0.9464 0.9640 0.8671 —~0.0176 0.0792
20 0.9605 09772 0.8791 —0.0167 0.0813
22 0.9709 0.9860 0.8892 -0.0151 0.0817
24 0.9787 0.9918 0.8978 —0.0130 0.0809
2.6 0.9844 0.9953 0.9052 —0.0108 0.0792
28 0.9886 0.9974 09116 —-0.0087 0.077¢
30 0.9917 0.9986 09172 —0.0069 0.0744
40 0.9983 1.0 0.9373 —-0.0016 0.0609
50 0.9996 1.0 0.9496 ~0.0003 0.0500
6.0 0.9999 1.0 0.9579 0.0 0.0420
7.0 1.0 1.0 0.9638 0.0 0.0361
8.0 1.0 1.0 0.9683 0.0 0.0316
9.0 1.0 i.0 0.9718 0.0 0.0281
10.0 1.0 1.0 0.9746 0.0 0.0253

* The logit formula (normalized to have the same slope at zero as the standard normal)

is P = 1/{1 + exp[ —2x/(2/7)]}.
® The arctan formula (normalized to have the same slope at zero as the standard normal)

is P= % + :—ttan"[x\/(u/Z)].
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auto as a result of a one-minute change in auto or transit travel time,
and f, measures the effect on the odds of a unit change in income.

The binary probit, arctan, and logit models are virtually indistinguish-
able except at arguments yielding probabilities extremely close to zero
or one, where the probit model approaches the extreme values most
rapidly and the arctan model least rapidly. Table 4.1 gives selected
values of the choice probabilities for these three ogives. (The curves are
symmetric about zero and are normalized to have the same slope at zero.)
The maximum deviation in probability between the logit and probit
curves is 0.018, with the result that these curves are virtually equivalent
for empirical purposes. The arctan curve approaches the asymptotes
considerably less rapidly than the probit and logit curves, with a maxi-
mum deviation in probability from the logit curve of 0.082. In the
following chapter we discuss the consequences for parameter estimates
of misspecifying the functional form of the ogive curve, or, for example,
calibrating the logit model using data generated by the arctan model.
Within the range of most data, the models presented above provide
essentially equivalent probability functions, and except for compu-
tational reasons, there is little to choose among them. The logit model
has computational advantages since it is a closed (explicit) functional
form with convenient curvature properties for numerical optimization.
The probit model, on the other hand, has its argument as the limit of
an integral which cannot be expressed in closed form.

There are a number of other functional forms for ogives which we
shall not use in our empirical analysis, but which could be relevant in
certain applications. Fig. 4.2 and 4.3 illustrate two ogives, based on the
negative and positive exponential distributions, which have the property
that the limiting probability on one side or the other is attained. Fig. 4.4
illustrates the ogive generated by a uniform distribution over an interval;
this might appropriately be called the truncated linear probability model
because it coincides with the specification of eq. (4.11) when the re-
striction on the range of the linear probability function to the zero-one
interval is valid. We shall returh to a discussion of these forms in the
context of statistical estimation procedures.

We turn next to the question of the relationship of the (truncated)
linear, probit, logit and arctan models to the underlying theory of a
population of utility-maximizing consumers. We shall demonstrate that
each of these concrete probability models is consistent with the general
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Fig. 42. Cumulative exponential probability distribution giving a one-tailed ogive
curve. G(V) =e o Vfor V<V, GV)y=lfor V2=V,

Vo

Fig. 4.3. Cumulative exponential probability distribution giving a one-tailed ogive
curve. G(V) =1 —e " Vofor V> ¥,; G(V) = O0for V < V,.

Vo Vi

Fig. 44. Uniform distribution giving a “truncated linear model”. G(V) = 1 for V = V;;
GV) = (V — V[V, — Vo) for Vy < V< Vy; G(V) =0for V < ¥,
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formulas, (4.8) or (4.9), for choice probabilities, provided that we assume
spemﬁcdlstnbunonsforthe stochastic components of utility, 5, = n{(x',s)
and n, = n(x2s). In particular, in the binary case we can assume that
n, is always zero and 7, has any specified cumulative distribution
function G in eq. (4.8). The cases of uniform, normal, logistic and Cauchy
distributed 7, yield, respectively, the (truncated) linear, probit, logit and
arctan models.

The assumption above treats 7, and 7, asymmetrically, making its
generalization to multiple-choice cases difficult. It is of interest to know
whether these concrete models can also be obtained under the alternative
condition that 7, and 7, are independently identically distributed.
Letting y(n) denote the cumulative distribution function of #, and #,
under this assumption, we obtain from eq. (4.8) the convolution formula

+ o
G(v) = Yo + 1)de. (4.17)
A textbook exercise in probability theory shows that the uniform distri-
bution cannot be obtained in this manner by convoluting independent,
identically distributed distributions.® The normal, logistic, and Cauchy
distributions can be obtained in this fashion, as we now show.

If n, and 7, are jointly normally distributed, then 5, — #, is normal,
and a probit model results. This is true particularly when n; and 7, are
independent with identical means and variances. However, it also holds
more generally when 7, and #, are dependent. Suppose, for example,
the covariances of 5, and 7, are determined by the “psychometric”
proximity of x, and x,, i.e., their perceived similarity along the dimen-
sions they are being perceived. Then this effect is absorbed into the
binary probit functional form. (See the argument below leading to eq.
(4.36).) As a consequence, the probit model is somewhat “robust” with
respect to changes in the structure of normally distributed stochastic
components of utility.

If , and 5, have independent Cauchy distributions, not necessarily

¢ The characteristic function of a uniform distribution on the interval [—1,1] is
(sin t)/t, which is negative at t = 37/2. If the uniformly distributed random variable could
be written as the difference n, — 5, of two identically independently distributed random
variables, each with characteristic function ¢(t), then one would have
(sin )/t = ¢(O)p(—1) = (E, cos tn)? + (E,sintn)* 2 0,
for a contradiction.
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identical, then 5, — 5, has a Cauchy distribution, and one obtains the
arctan model.

The final case we will consider leads to the logit model. This model
and the construction described in the following paragraphs will also play
a substantial role in our analysis of multiple choice. We shall see that
this model is computationally tractable and in many applications corres-
ponds to a plausible stochastic specification. It is virtually the only
multinomial choice model known to date satisfying both these criteria.
As in the constructions above, the key to our analysis is the specification
of a statistical distribution with the property that the difference of
independent random variables having this distribution is a logistically-
distributed random variable. We first introduce a distribution with this
property and discuss its characteristics.

A random variable #; has a Weibull (extreme value, Gnedenko) dis-
tribution if
Prob[n, <n]l=¢"°" """, (4.18)

where o is a parameter. The associated frequency function is v(n) =
e~*@exp[ —e~®*9]. Fig. 4.5 plots the Weibull frequency function
(with = 0) along with a normal frequency function, with unit variance
and mean 0.5. One sees that the Weibull frequency has the same general
bell shape as the normal frequency, but is skewed, with a thinner left
tail than the normal distribution and a thicker right tail. (The right tail
behaves like the tail of an exponential distribution. Thus, it is easy to
show that the Weibull distribution has all positive moments.) The
parameter « determines the mode of the Weibull distribution; hence
changing « shifts the location of the mode and mean, but not the shape
of the distribution. We shall next establish a lemma summarizing the
properties of this distribution which are important for our purposes.
The first significant property is that the Weibull distribution is stable
under maximization, in the sense that the maximum of two independent
Weibull random variables is again a Weibull random variable. Compare
this property with the property that the sum of two normal variables is
again normal, so that the normal family is stable under addition. In our
problem, where maximization of utility is the critical operation, this
stability property of the Weibull distribution makes it a natural distri-
bution with which to work, just as the normal distribution is natural for
problems involving addition of random variables. The second significant
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property of the Weibull distribution is that the difference of Weibull
distributed variables has a binary logistic distribution. One of the
authors has shown elsewhere [McFadden (1973)] that this property
characterizes the Weibull distribution in the sense that it is essentially
the only distribution with this property in the multinomial case.

Lemma. If random variables #; have independent Weibull distributions
with parameters ; for i = 1, ..., n, then:
(a) n; + v has a Weibull distribution with parameter o; — v for any

(b) ilz\?al; i has a Weibull distribution with parameter
—log Y 717"
v1 -2
() Prob[v, +n, 2 v+ 1] = T T (4.19)
(d) Prob[o, +ni Z v, +n fori=2 ..,n]= e (4.20)

—‘n
Z ev;—.‘li
i=1
Verification of this result is straightforward; we outline the steps for the
sake of completeness. To show (a), note that

Prob[n; + v < n] = Prob[n; £ n — v],

and substitute the argument n — v in the cumulative distribution func-
tion of n,. To show (b), note that

Prob[ Max n; < 5] = Prob[n, £ #]- ... Prob[n, = 7]

1.
B n
=exp| — Z e+
i=1

= exp| —e™"" }:e‘“":'. (4.21)
i=1

Setting
L
e =y e ™
i=1

establishes that the maximum value is distributed Weibull with param-
eter o.
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To establish (c), we use the convolution formula

Prob[v, + 7, Z v, + 5] = j+m¢Q(W)Wz(Ul — vy + n)dn,
T (4.22)

where y; is the cumulative distribution function of #,. In this case

Y1) = exp(—e™ "),

W (n) = e~ oexp(—e = +a)),
Then eq. (4.22) becomes

Prob [v, -t:!l = vy + 73]

— e-—(q+al)exp(_e—(rr+a|))exp(_e—(rr+vl—v2+az))dq

=J‘+we_(,’+m)exp(_e—q(e—a, +e—v1+ug—a2»d”

- 2}

e"
= [e—al + e—v;+v2—az]

-.”1 d{exp(—e (e + e™ """}

o
e'vl-al
= ev;—a; +evz—az * (4'23)

The argument for the general case (d) can be made simply by extending
the number of terms in the demonstration of condition (c). Alternately,
we can combine results (b) and (c) directly to reach the desired con-
clusion:

Prob[n, + v, 2+ v, fori=1,..,n]=

U —ay

Prob[n, + v, 2 .=1¥Iax (m; + v)] = , 4.24)

el)[ bt 71 + e-ﬂ
by (c), where

a= —log i e
i=2

is the parameter of the Weibull distributed variable Max;_, . + v}
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by condition (b). This formula simplifies directly to the formula of (d).
This completes the demonstration of the lemma.

As indicated earlier, the importance of this lemma lies in the fact,
established in condition (c), that the difference of two independent
Weibull distributed random variables has a binary logit distribution

v —a
el 1

Prob[n, —n S v, —v,] = Gv; —v) =

evl_al + e02-32
(4.25)

Hence, independent Weibull distributed stochastic components of
utility lead to the logit model. When v, = V(x', s) = Z(x', s)'$, as defined
in eq. (4.10), and the “location” parameters «; in the underlying Weibull
distributions are the same, this equation coincides with logit eq. (4.15).
(We note that in general one can absorb the parameters «; in the
definition of ¥(x/, 5), with a; interpreted as an effect specific to this alter-
native. Hence, an assumption that all «; are zero involves no loss of
generality.)

From the analysis above we conclude that in the case of binary choice,
a wide variety of functional forms for the probability function are
consistent with the underlying model of individual utility maximization,
where random elements are introduced because the tastes of specific
individuals cannot be determined completely from available data. In
particular, the linear, probit and logit probability models are consistent
with this theory. Noting that the probit and logit models are virtually
equivalent, we can choose between them on grounds of computational
convenience. The consistency of the linear probability model requires
the addition of truncation conditions to its linear form. Further com-
parisons of these models will be developed in chapter 5.

4.5. Probability functions for multiple choice

We now wish to generalize the derivations of probability functions for
binary choice situations to the multiple choice case with J alternatives.
Again let B = {x',...,x’} denote the set of available alternatives
(1, ...,J), identified by their attribute vectors x’, and let s denote the
vector of socioeconomic characteristics of the individual. From egs. (4.4)
and (4.7), the choice probabilities satisfy
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P, = H(B, s, i) = Prob [U(x',s) > U(x’, s)
forj#ij=1,..J]

+
=j Ut + Vi— Vy, ..t + Vi — V)dt, (4.26)

-

where V; = V(xJ, 5) is a non-stochastic “representative” utility, ¥ is the
joint cumulative distribution function of the stochastic components of
utility (n(x?, s), ..., n(x7, 5)), and ! is the derivative of y with respect to
its ith argument. Eq. (4.26) provides a formula that can in principal be
applied to concrete joint probability distributions to obtain specific
functional forms for the probability functions. In practice, it is extremely
difficult to specify joint distributions for which the expression in eq. (4.26)
can be evaluated without numerical multivariate integration. Of the
distributions considered for binary choice, only the Weibull distribution
yields a convenient functional form; the multiple-choice generalizations
of the probit and arctan models are computationally intractable. The
possibilities and difficulties of each of these alternatives are outlined
below. ‘

We will first consider the case in which i is multivariate normal.
We derive the formula for the probability P, ; the remaining probabilities
have analogous expressions. In this case the convolution property of the
normal distribution can be used to simplify eq. (4.26) to

Vi—Va2 Vi—Vs
P, = J J n(r;0; Q)dr, ... dr,, (4.27)

2=~ Q@ rg=—w

where n(r; 0; Q) is the multivariate normal frequency function with mean
vector 0 and covariance matrix © evaluated at argument r, and where
the elements w;; of Q satisfy

w;; = Enn; + En} — Enmny — Enmy, (4.28)

with ; = U(x,; s) — V(x;, s) and En; = 0. A further simplification of this
formula can be obtained by defining

/qu.zj == (Ozj, t, =r, (4.29)

and recursively, fori =3,...,J,
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i—1

Ay = @y — Z Aidapldip k=2,..,J, (4.30)
=) ‘

i—1

=T — zz ﬂ.ﬂrj/ﬁ.”. (4.31)
ji=

and €q. (4 27) becomes, with a transformation to the variables ¢,
-V V-V, —212
422
l3
P [ f ¢[
V22 \/133
= -2 y=—x
. A -1 ;
K-Vc—f?:'z—’:—afta vi-¥-% /.l’,j
#22 433 jm=2 A
ts
f ¢[‘T 7 |deeed
\/ 44 \/ AJJ
ty= —00 ty= —0oc (432)

where ¢ is the univariate standard normal distribution. While this
expression can be evaluated by straightforward repeated numerical
integration, the expression is too cumbersome for efficient use in iterative
statistical procedures.
It is instructive to consider how the multivariate normal model might
arise. Suppose the random utility function U(x, s) has the form
K

Ux,s) = Y aZ'x,s) + elx, s), (4.33)
k=1

where the o, are taste parameters which vary randomly in the population,
but are independent of (x, s), and &(x, s) is a random component in utility
which is a function of (x, s). The parameters o, can be interpreted as
weights associated with particular components of the attribute vector
of alternatives. Write ¢; = &x’, s), and suppose aj, ..., ax and &y, ..., &
are multivariate normal with Eq, = B, E¢; = 0, cov(ock, o) = Oforl # k,
cov(x, ;) = 0, and cov(e;, &) equal to a posmve non-increasing function
of the “distance” between x/ and x'. Then in the terminology used

previously,

K
n; = n(x’, s) = kZI (4w — B)ZHx', 5) + Ejs (4.34)
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implying En; = 0, and

K
wy = cov(n;, 1) = covie, &) + kzl var(eg)Z4x’, s)2.  (4.35)
In the special case that var(e) = 0 and cov(e; &) is a constant inde-
pendent of x/, x/, one obtains the direct multivariate generalization of
the binary nrobxt model that was discussed above. Alternately, in the
special case that var(g;) = 0, one obtains a multiplechoice generalization
of a binary choice model used by Quandt (1968, 1970, 1972) in a series
of transportation demand studies. In general, for the binary case, one
obtains an analogue of the previous probit formula of eq. (4.13) with the
argument modified by the inclusion of the covariance effects as functions

of the x’ and s; e.g.,

T BZix,s) - BZ(x%,5)
Py = (D[\/(wu + W3z — 2“’12)]. (4.36)

We next consider the case in which the stochastic components of utility
have independent Cauchy distributions. Then,

(1 1
Ylty, ..., ty) = l:[l (5 + ;tan' e, aj)), 4.37)

where the a; are positive constants, and eq. (4.26) becomes, for Py,

+o Vl - V + t
P, = —t — ] |de
! ,[—-uo a; +t? Jn l: an ( a; )]
4.38)

This probability can again be obtained by straightforward, but costly,
numerical integration.

4.6. The multinomial logit model

The case of independent Weibull distributed stochastic components of
utility provides a fortunate contrast to the mathematical complexity of
the cases above. Eq. (4.20), proved earlier in the lemma, establishes

eV.' —-a;

Pi=— (4.39)

Vi—a
Eej'i
j=1
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where a; is a parameter of the Weibull distribution and V; = V(x',s) is
the non-stochastic component of utility. Absorbing the parameter a; into
the definition of V(x', s), we can rewrite this as

eV(x'.s)

P, (4.39a)

=5
Z eV(xJ.s)
i=1

This is the formulation of multiple-choice selection probabilities which
will provide a computationally practical basis for our empirical analysis.

4.7. Independence of irrelevant alternatives and demand
for a new transportation mode

An important implication of the above result is that the odds P;/P; of
choosing alternative i over alternative j are independent of the presence
or absence of third alternatives, satisfying the equation

Log(P/P)) = V(x', s) — V(x,s). (4.40)

The conclusion stated in eq. (4.40) is consistent with the “independence
of irrelevant alternatives” axiom [Luce (1959)]. This axiom requires
that the relative odds of two options being chosen be independent of the
presence or absence of non-chosen third alternatives. The equivalence
of this axiom and the assumption that the stochastic utility function has
a Weibull distribution has been established by Marschak (1960). This
result is strengthened by Holman and Marley [in Luce and Suppes
(1965)] and McFadden (1968, 1973a).

The function "> in eq. (4.39a) is known as a “strict utility function”
in the literature of psychology [e.g., Luce and Suppes (1965)]. From this
equation we draw the conclusion that the probability of an alternative
being chosen is proportional to its strict utility, with the proportion
determined by the condition that exactly one alternative must be chosen.
This implies that the probabilities P; must sum to one over the available
alternatives.

The independence of irrelevant alternatives condition in eq. (4.40) is
both the principal strength and the principal weakness of the “strict
utility” probability model in eq. (4.39). It is a strength because this
restriction allows the introduction of new alternatives, such as new or
additional modes or new destinations, without re-estimation of the
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model, once a numerical functional form for ¥(x, s) has been estab-
lished. This is done by simply adding the new term to the denominator
of eq. (4.39) for each alternative and expanding the list of probability
functions to include the new alternative. This procedure is possible
because the addition of an alternative cannot change the relative odds
with which the previous alternatives are selected. It is a weakness
because it requires that the alternatives be perceived as completely
distinct and independent. This will be discussed at greater length
below.

We illustrate the advantages of the strict utility model by showing
how one would utilize transportation survey data on currently existing
alternatives to forecast the effects on modal choice of introducing a new
transportation mode. Suppose data are collected on individuals who
have two options, auto trip (j = 1) and bus trip (j = 2), each described
by a vector of attributes x’. Choosing a specific functional form for
V(x/, s) which depends on a small number of unknown parameters, we
apply one of the statistical procedures described in the following chapter
to obtain from these data an estimated numerical V function. Suppose
that we have specified the form of V such that it is not mode-specific
(i.e., in eq. (4.39) the parameters «; are zero, and V' contains no pure
“mode” effect, but rather evaluates a mode solely in terms of its generic
attributes).

Thus ¥ might be a function of mode attribute variables such as waiting
time, line-haul time, walking time, fares and tolls, and an index of vehicle
comfort, as well as variables describing the individual socioeconomic
characteristics of the trip-makers. ¥ would not depend on mode-specific
variables, such as a dummy variable which is one for the auto mode and
zero otherwise, a specific mode attribute such as “automobile tolls”
(a variable which records auto toll charges for this mode and is zero
otherwise), or a mode-specific individual characteristic such as a “pure
income-linked auto preference” (a variable which equals family income
for this mode and is zero otherwise). The difficulty with variables such
as these is that they confound the effects of generic attributes with effects
which are specific to the designated modes. (To the extent that there are
mode-specific effects which cannot be captured by a full description of
the generic attributes of the mode, one cannot hope to forecast the
impact of a new mode without additional empirical evidence on its
mode-specific effect.)
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Given the fitted function V(x’, s) for j = 1, 2, we have the probability
function
eV(x",s)

P = T T fori=1,2 (4.41)
These functions provide estimates of the frequencies with which the
population chooses the current modes. We can now introduce a new
mode {for example, rail rapid transit (j = 3)) for which we can estimate
a vector of gemeric attributes x* from engineering considerations.
Substituting this vector into the estimated numerical function V(x?, s)
provides a forecast of the “strict utility” attached to this new mode. The
probability functions for the individuals with this new alternative now
change from the values given by eq. (4.41) to
eV(x‘,s}

P (4.42)

i = eV(xl,s) + eV(xz,s) + evl’(x;'.s)’

for i = 1, 2, 3. This formula implies that the introduction of the new
mode will cause the probability that each old mode will be chosen to
decrease because the relative odds between the existing modes cannot

change. .
For example, we can derive a formula for the change in the probability

of choosing the first mode,

[Pcrccntage ] N P,(3 modes) — P,(2 modes)
- P,(2 ' modes)

_ eV1/(e" + €2 + ")
e + )

e + e

change in P,

=e""+e"2+ey’_1
e¥?
= evl + eVZ + ev3
= —P;, where V, = V(x',s). (4.43)

This formula demonstrates the ease with which the effect of a new
alternative can be evaluated in the “strict utility” model. However, it also
demonstrates a potential drawback in that the cross-elasticity of demand



72 Urban travel demand

for each old mode, with respect to an attribute of the new mode, is
uniform across all the old modes. This precludes the possibility of pos-
tulating a pattern of differential substitutability and complementarity
between modes within the “strict utility” framework. This drawback is
not unique to the transportation demand problem. It is shared by many
of the empirically convenient functional forms used in consumption and
production theory, e.g., Cobb—Douglas or constant elasticity of substitu-
tion (CES) functional forms. .

The independence of irrelevant alternatives property also gives a
“separability of decisions” property consistent with the assumption in
chapter 3 of the additive separability of utility used to factor the simul-
taneous travel decisions of ar individual into a series of separate choice
models. To illustrate this link, we use the example of the compound
decision of what time to take a trip and what mode to use. By the laws
of conditional probability, we can always write

Probability of Probability of choosing Probability of
choosing time ¢, - mode m, conditioned choosing time t, _ (4.44)
mode m on the event that time ¢ any mode

is chosen

But by the independence of irrelevant alternatives assumption, the condi-
tional probability above will not depend on whether or not the individual
has the option of times other than ¢, and hence

Probability of choosing Probability of choosing
mode m, conditioned = | mode m when the set of | . (4.45)
on the event that time ¢ alternatives is the set of
is chosen modes available at time ¢
Further,
Probability Sum over modes | Probability of
of choosing = m’ available at choosing available | - (4.46)
time ¢, any mode time ¢ mode m’ at time ¢

In algebraic terms, if P; in eq. (4.39) is the probability of choosing a
specific mode and time from the list j = (1, ..., J) of all possible modes
and times, and if the set of alternatives k = (1, ...,i) denotes those
corresponding to the different modes available at the specified time, then
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J
P,=¢€"Y e"
i=1

e

where V; = V(x',s) and the terms in brackets correspond to the terms
in eq. (4.44). Thus we can reconstruct the complete probability function
of simultaneous time and mode choices from estimates of probabilities
of choosing among various modes at a given time and a second set of
estimates of choice among times (ignoring mode choice within this
decision).

To show that this result is consistent with the structure of individual
utilities assumed earlier, consider the additively separable utility function
specified in eq. (3.9). With a suitable monotone transformation, this

function can be written

-

e¥s / ZJ: e"'], (4.47)

1 =1

7
U(x,s) = ; & (X 5), (4.48)

where the x;, are subvectors of x corresponding to mode choice, time
of travel, attributes of the destination, attributes of the no-trip choice,
attributes of locational choices, and attributes of all other consumer
choices, respectively. Assume that in the urban population the effect of
individual differences in tastes is to add a stochastic component #(x, s)
to this “representative” utility function, yielding

U(x,s) = '; ' (xqp 8) + n(x, 3). - (4.49)

The probability of choosing mode m, conditioned on the event that time
of travel t and other attributes of the consumer’s environment are held

fixed, 1s
P, = Prob[U(x™, s) > U(x’,s) forallj # m]
= Prob [¢'(x]), ) + n(x™, s)
> ¢ (x{1) 8) + n(x,s) forj # m], (4.50)

since xj;, = x§, for j # m. If we now assume that the n{x’, s) have in-
dependent Weibull distributions, we obtain by our earlier reasoning the
result
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e ¢I(x:1'ps) " Rt

P, = (4.51)

Y b ~ =z,
J

where the «;, are parameters of the Weibull distributions, and the modal
split choice probability is given by the multinomial logit model.

Next consider the choice of time of travel when the most desired
mode is used. It is now convenient to use a double index (j, p) for the
alternatives, where j indicates mode and p indicates time of travel. The
probability that time ¢ will be chosen by a randomly selected individual
is, analogously to eq. (3.8),

P, = Prob [Mjax U(x*?, s) > Ml_ax U(x/®,s) forp # t]
= Prob [¢%(xl;), s) + Mj_ax {P () 5) + n(x*,5)} >
@2(xFy), s) + Max {@'(x{h), 5) + n(x’?,5)} forp # t].
J (4.52)

Provided that the n(x’?, s) have independent Weibull distributions for
each index (j, p), we conclude that 5, defined by

Max ¢'(x), s) + n, = Max {¢'(x}), s) + n(x?,5)},  (4.53)
J J

is again distributed independently Weibull. Therefore, eq. (4.52) can be
written in the multinomial logit form

P, = Prob [¢3*(x{,), s) + Max ¢(xf}), s) + 1, >
J

d*(xha), 5) + Mjax &'(xff),s) +n, forp#1] (4.54)

€xp [¢2(x:z), s) + Nljax ¢1(x'(i'1), s) — a]

= Z €xp [¢2(x‘("2), S) + I\d-:iax ¢I(X{f), S) — ap]s (455)
P

where the Weibull distribution “parameters” a, satisfy (using Lemma
conclusions (a) and (b))

a, = Ivlpaqul(x{f,, s) — log Z exp[—a;, + ¢'(x{),5)]. (4.56)
: J
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Substituting this expression in eq. (4.55) then yields
€Xp [d)z(x:Z)’ S)] Z exp [_ajt + d’l(x{‘l)’ S)]
J

t T Y exp (670 9] 3 exp [~y + &' (xhiy )]

ZCXP [¢ (xm’ + ¢ (xfz)a ajz]
D Z exp L6 (T 5) + B2y S) — %3]

(4.57)

Combining egs. (4.51) and (4.57) in the formula (4.44) yields the choice
probability P,, for the simultaneous choice of mode m and time ¢,

Pml = PmltP
S 5) + SHx{2p8) = 2y
ed"(m',.S) - %y Z ¢
_ J
= Z SHUXT.S) — Z Z & (xi8, 5) + @UxDys) — 2
(4 €
i : p

e &' (X 5) + ¢ (x{2p8) = e
B z Z € (x5 + ¢ (xhy.5) — 3y (458)

But this is precisely the formula for the simultaneous choice probability
for mode m and time ¢ resulting from the assumption of independent
Weibull distributed stochastic components in eq. (4.49). We conclude
that when the strong assumptions of independent Weibull distributed
stochastic components of utility and an additively separable utility
structure are valid, the independence of irrelevant alternatives property
can be exploited to greatly simplify the magnitude and complexity of the
demand estimation task. In particular, for “marginal” choice probabil-
ities, such as P, in eq. (4.57), terms of the form ) ;exp [ —a;, + ¢'(x{f), 5)]
can be treated as a single “inclusive” index of the desirability of travel
at time p, taking into account the attributes of alternative modes at this

time. Define _
= —log ) exp [ —a;, + ¢'(x{f), 5)] (4.59)
J

to be the “inclusive cost” of traveling at time p, and suppose ¢! has the
linear-in-parameters functional form
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oY xm, 5) = Z ﬁ,‘Z"(xm, s). (4.60)

Define
K -
g; = —w, + kZ BeZX(xif), ),
=1
and

yp = y(q!, ceesy qJ) = -—logZeif
F

Let g denote the average of the g, and make a first-order Taylor’s
expansion of y(q, ..., g) about the vector of values (g, ..., q;):

MG, -..9) = —logJ —q

= Wq, - ,QJ)"'Za (g — q))
“1,---.499)
+ higher-order terms in @ - q;), (4.61)

but

dy —e*

dq, Y e

j

Comparing this formula with eq. (4.51),

dy

q; = =Py,
Hence, from eq. (4.61),

yp=ﬂql""’ql)=y(q""’q) Z . (z]._QJ)

@q1,..-.47) .

- higher»order terms
= —logJ -3+ Y Py, q Z 1o
J
— higher-order terms

= “108-]""2 p%ip — Z 3&2 |PZ (xify )

— higher-order terms in (g; — ¢).
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When the higher-order terms can be neglected, this approximation
establishes that the inclusive cost of a trip at time p by the best available
mode can be measured by weighting the variables for the alternative
modes by the corresponding modal split probabilities and summing over
these weighted variables, using the coefficients estimated from empirical
modal splits at a fixed travel time. Under the assumption that all mode-
specific effects are included among the Z* variables, we can, without loss
of generality, take the a;, above to be zero. Hence the constant term in
this expression for y can be ignored, and we can write

K J
Yp = —kZl Bk[z Py, ZM(x (Y S)]’ (4.62)
= J= 1
and
exp [4’2(":2)’ s) = y.) (4.63)

P = .
Y exp [¢%(xPa), 5) = Y]

This structure allows very substantial savings in the number of param-
eters and alternatives which must be treated in estimation of the model.
We shall assume throughout our empirical analysis that the approx-
imation above is valid, and we will use formula (4.62) to calculate
inclusive prices. Note that y, can also be interpreted as a measure of
accessibility and used as such in analyzing the impacts of transportation
improvement. The above formula can be applied to each stage of the
decision tree.

The weakness of the “strict utility” probability model is that the
independence of irrelevant alternatives property may be implausibly
strong in some applications. An example illustrates this point. Suppose
a population faces the alternatives of one auto mode and one bus mode,
and chooses the auto mode with probability . Now suppose a second
bus mode is introduced which follows a different route, but has essen-
tially the same attributes as the first bus mode. Intuitively, we believe
that individuals will still choose the auto mode with probability %, and
will choose either of the bus modes which one-half the probability § of
choosing some bus mode, or 3. However, the independence of irrelevant
alternatives condition requires that the relative odds of choosing the
auto mode over either of the bus modes be two to one, implying that
the probability of choosing the auto mode drops to 3, and the prob-
ability of choosing each bus mode is . The reason this result is counter-
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intuitive is that we expect the individual to lump the two bus modes
together rather than treating them as “independent” alternatives.

This example suggests that application of the “strict utility” model
should be limited to multiple-choice situations where the alternatives
can plausibly be assumed to be distinct and independent in the eyes of

the decision-maker. Thus care must be taken in specifying the available
alternatives and decision-making structure when using this multiple-

QalSed addd s Yo QA0 LOULICIVAIRIALE RIS SRR RS Ll Ballds 111> R11

choice model. In empirical analysis this can often be done by postulating
sequential choice structures in which the “inclusive prices” associated
with first-level choices among close substitutes reflect the fact that these
alternatives are not independent. An example illustrates how this can be
done. Suppose individuals choose between an auto mode and several
transit modes. Suppose the transit modes are perceived similarly, in the
sense that an individual drawn randomly from the population who is
positively inclined to one of the transit modes is likely to be positively
inclined to the others. The individual may then be modeled as first
choosing between transit modes under the hypothetical condition that
he chooses transit. In this comparison, a common stochastic component
in the utilities of the alternatives arising from auto versus overall transit
taste variations will tend to cancel out, and the logit model is likely to
provide a satisfactory explanation of choice among transit alternatives.
The second stage of the individual’s decision process is to choose between
auto and the “best” transit mode. The interdependence of the stochastic
components of the utilities of the transit alternatives now influences the
level of “mean” utility and the distribution of utility associated with the
“best” transit alternative. Suppose, for example, that the auto versus
overall transit component of variations in tastes, which was assumed to
cancel out in intra-transit mode choices, looms sufficiently large in auto
versus transit choices to make the effects of further variations in tastes
among transit alternatives negligible. Then, the “mean” utility of the
“best” transit alternative is almost exactly the maximum of the mean
utilities of the set of transit alternatives. A logit model of the choice
between auto and the best transit alternative valued in this manner can
then provide a satisfactory explanation of the auto—transit choice. This
example illustrates a case in which the logit framework can be adapted
to describe a tree decision structure in which the independence of
irrelevant alternatives does not hold. It should be noted, however, that
the implications drawn from the stochastic specification hold only
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approximately. It is computationally difficult to obtain bounds on the
accuracy of such an approximation, or to develop an exact model. A
further discussion of this approach and some empirical evidence on the
extent to which the independence of irrelevant alternatives assumption,
inappropriately applied, may bias results is given in McFadden (1973b).

A second empirical procedure for alleviating the difficulties raised by
the indenendence nronertv 1g to include among the attributes of alter-
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natives variables describing the range of avallable options. For example,
a multinomial logit model of mode choice between one auto alternative
and several similar bus alternatives may include as an attribute of each
bus alternative the total number of bus alternatives available. This
procedure is consistent with the underlying theory of individual utility
maximization, provided we allow the possibility that the range of
available alternatives enters as an externality in the utility function.
While this is an effective method of reintroducing patterns of differential
substitutability ruled out by the independence assumption, no argument
has been supplied to justify this model of individual behavior.

The advantages offered by the “strict utility” model in allowing sep-
aration and simplification of empirical studies of the decision process,
plus some empirical evidence from psychological studies that it provides
a satisfactory model of laboratory choice behavior [Luce (1959)] seem
to outweigh the drawbacks, provided the model is used judiciously so
that “independent” alternatives are identified. All the empirical muitiple-
choice models which appear in the literature have the “strict utility”
structure, and hence are subject to the above caveat.

Specification of explicit probability functions for the “strict utility”
specification in eq. (4.39) can be completed by specifying parametric
forms for the functions V(x,s). We shall consider several cases. First,
suppose this function is log-linear in unknown parameters; i.c.,

K
(X, s) = log[ Y BZMx, s)]. (4.64)
k=1
Suppose further that

K
0= Y BZ'x\s)=1 fori=1,...,J,
and =l
J K .
Y Y BZMx,s) =1 (4.65)

i=1 k=1
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Then the probability functions have the form
K -
P; = h(B,s,i) = Y BZNx!s). (4.66)
k=1

Note that this is just a multinomial extention of the binary linear prob-
ability model. Its linear form is appealing for empirical applications.
However, it should be noted that consistent application of the model
requires inclusion of the inequality restrictions in eq. (4.65), destroying
its simple linear structure.

The second concrete specification we consider for the V(x, s) function
directly incorporates the restrictions above, and leads to a multinomial
extension of the logit model. Suppose V has the linear-in-parameters

form
V(x',s) = Z B ZM(x', 5). (4.67)

Then, from eq. (4.39), the probability functions have the form

P, = k(B,s, i) = - ! . (4.68)

1;1 °XP kgl Bl Z¥(x',s) — ZH(x', 5)]

This model is termed the conditional, multinomial, or polychotomous
logit model. It was first developed systematically by Gurland, Lee, and
Doland (1960). A more general formulation and application to trans-
portation problems was made by McFadden (1968). Other applications
of the model have been made by Theil (1969), and an adaptation of
Theil’s model was made by Rassam, Ellis, and Bennet (1971). An extensive
survey of statistical properties of this and related models has been made
by McFadden (1973a).

Of the models for multiple choice developed above, the multinomial
logit model proves to be the most useful for the demand analysis of
available transportation survey data. This model is empirically tractable
and has a satisfactory theoretical justification in terms of the underlying
behavior of individual decision makers.

4.8. Applications of behavioral travel demand models

Once the parameters of a concrete behavioral travel demand model, such
as the one given in eq. (4.68), are calibrated, this model can be used to
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predict directly the behavior of an individual selected randomly from
the population. The conventional goodness of fit statistical tests dis-
cussed in the next chapter can be used to assess the accuracy of the
model. However, to go beyond the prediction of individual behavior to
the construction of aggregate trip tables and patronage forecasts of
interest to transportation planners, it is necessary to consider the process
of aggregation.

An urban population will consist of a large number of individuals
who differ in their socioeconomic characteristics and the set of alter-
natives they face. For the subpopulation with a common vector of
socioeconomic characteristics s* and a common set of vectors of attri-
butes {x'% ..., x’}, the calibrated behavioral model gives numerical
probabilities P that an individual drawn at random from this sub-
population will choose alternatives j = 1, ..., J. The expected distribu-
tion of the subpopulation among the alternatives is given by these
probabilities. Letting i = 1, ..., I index all the subpopulations character-
ized by socioeconomic characteristics and available alternatives, and
letting N; denote the size of subpopulation i, the expected population
demand for alternative j is

I

D; = .';1 NP (4.69)
In practice, the planner will have available to him either a homogeneous
or stratified random sample of individuals from the population, with
observations x* and s' for each sampled individual, or a list of summary
statistics defining the distribution of attributes of alternatives and socio-
economic characteristics in the population. In the former case, the
sample average probability, weighted to the dimensions of the popula-
tion, provides the best estimate of aggregate demand,

1
D;= ) P#, (4.70)
i=1
where i = 1, ..., I denotes the individuals in the sample, 6; is the re-
ciprocal of the probability that an individual would be drawn in the
sample from the “strata” containing i, and P} is the numerical probability
calculated from the observations x”* and s'. A random sample used to
calibrate the model may also be used to predict aggregate demand.
However, it should be noted that calibration is often carried out using
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non-random or special-purpose samples which are not a satisfactory
base for forecasting aggregate demand.

A second method of estimating aggregate demand is to utilize sum-
mary statistics from the population on the distribution of the x and s
vectors. With sufficient assumptions to identify the distribution from
the summary statistics, one can generate a hypothetical random sample
of individuals from the population and then proceed as in the first case
to construct the estimate of aggregate demand from the sample average.
Alternately, one can form, numerically or analytically, the expectatlon
of P; with respect to the distribution of the x and s vectors.”

To illustrate this procedure, we consider the case of a binary mode
choice between auto and transit, and assume that there is a binary probit
model of the form given in eq. (4.13) which fits the observed data. Suppose

that the vector of explanatory variables,
z = Z(x!, 5) = Z(x%,s),

has a multivariate normal distribution with a vector of means z and a
covariance matrix Q. (The values of Z and Q might be obtained, for
example, from census statistics or existing transportation surveys.) The
calibrated selection probability for alternative 1 is P, = ®(B'z). The
assumption above implies Bz is distributed normally with mean §z and
variance ' Qp. Hence, the expected demand for the first alternative in a
population of size N is

t— Bz
Dwa[m%mmk *.n)

If X, is normal with mean , and variance af for k = 1, 2, then, utilizing
the convolution property of two normal random variables,

X = p + K
Prob[X, — X, £x] = | —F5——
rob[X, — Xz 23] [wﬁ+ab]

+ ¢ — _
LI [’ + X ”‘] ¢[t ”2] dt. 4.72)
gy — g4 ]

Comparing this formula with eq. (4.71), we set o? =1, o3 = 'Qp,
x = pu, =0, and pu, = B’z to obtain

7 The implications of this approach are developed in greater detail in McFadden and
Reid (1974).
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pz
v, =N % 7| 7

Thus, this example yields a simple closed formula for aggregate demand.
Because of the similarity of the normal and logistic curves, the formula
in eq. (4.73) can be used to give good approximations to the aggregate
demand resulting from a binary logit response curve and normally
distributed explanatory variables. More generally, one can apply numeri-
cal integration to the expression for the expectation of the selection
probabilities with respect to the distribution of the explanatory variables.
The result, scaled by population size, gives the aggregate demand.
One can analyze the effects of transport policy using the aggregate
demand measure constructed by one of the methods suggested in the
preceding paragraphs. We will first consider policy changes which affect
the conditions of travel by existing modes but do not introduce new
alternatives. Examples of this kind of change are changes in transit fares,
headways, running times, auto tolls, taxes on parking or gasoline,
restrictions on parking availability, or auto driving times. To analyze
the effect of such changes, we first compute the values of x’ and s* which
would prevail after the policy change for a real or hypothetical random
sample of the population. Some policies can be analyzed by considering
a percentage change in one of the explanatory variables. For example,
we may investigate the effect of a ten percent increase in the excise tax
on parking tariffs, where we assume that this increase is completely
shifted forward to consumers. Provided that these changes are in-
cremental, the impact is summarized in the market elasticities of demand
for the alternative choices with respect to each of the affected explanatory
variables. It should be noted that these market demand elasticities are
given by a weighted average of the various elasticities of the response
curve at the values of the explanatory variables for each homogeneous
subpopulation. They may differ significantly from corresponding elastic-
ities calculated at the population mean of the explanatory variable. The
elasticity formulae derived in the following paragraph show this averag-
"ing effect for the individual elasticities.
Consider individuals of the “type” i which have characteristics s' and
" face alternatives indexed 1, ..., J; with attributes x”. Suppose the prob-
ability Pi that individuals of this type choose alternative j is given by the
multinomial logit model,
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J;

3 o

I=1

where 2/ = Z(x/i 5) is a K-vector of numerical functions of the obser-

vations and B is a commensurate vector of parameters. With N; indi-

viduals in the population of type i, the expected demand for alternative
is eroup is N.P. The change in this demand caused by a one-unit
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change in the value of component k in the vector of independent variables
for alternative j is, differentiating (4.73a),

O(N:Pj)

ozf
Similarly, the change in this demand caused by a one-unit change in
component k in the vector of independent variables for an alternative

I+#jis

P = (4.73a)

]

= B.N:P{1 — P)). (4.73b)

ANPY _
ZE

Converting these expressions to elasticity terms, we obtain first the type
i elasticity of demand for alternative j with respect to own variable zJ,

. i NP ; .
Eij, k) = N:‘P; azf;fJ = Bzl — P)). (4.73d)

—B.NPiPi, 1 #]. @.73¢)

Second, we obtain the type i elasticity of demand for alternative j with
respect to a “cross” variable zj,
zi NP}
NP 0z
We next compare these individual elasticities with the market demand

elasticities for the population. From eq. (4.69), the market demand for
alternative j is

D; =) NP} (4.73f)
J

Ei(l, k) = = — B zliPi. 4.73¢)

where the index i extends over the types in the population who have
alternatlve j available. Suppose zi denotes the initial value of a variable

Y. Then, a uniform percentage change in this variable for each type i
can be defined by writing z¥ = 1zi!, where ¢ is a scalar. The elasticity of
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market demand with respect to such a uniform percentage change is
then defined as the elasticity with respect to t, evaluated at t = 1. Using
this definition, the elasticity of market demand for alternative j, with
respect to a uniform one percent increase in own variable zf, is

. t oD; t A(N:P) 3G
E =— I = . S
-8 D; ot |-y [ZN,.P}Z,-: Gy ot |-,
A(N;P) zi
= i - . 4.7
2 30501) |1 NP, “re
= Z WIE;(]., k).,

where

!

is a weight giving the proportion of the total demand for alternative j
originating from individuals of type i. Similarly, the elasticity of market
demand for alternative j, with respect to the “cross” variable z; with
L#j,is

E(lk)= Z w.EY(L k).

The qualitative effect of “averaging” over the population is clear from
these formulae. In many applications, market demand for an alternative
will be comprised of a large group of individuals whose choice of the
alternative is clear-cut, and a much smaller group whose choice is
sensitive to small changes in the independent variable. Then, the contri-
bution of the large group to the market demand elasticity is small,
because the individual demand elasticities are small, while the contri-
bution of the smaller group is small because of their numerical size. The
result is a market demand elasticity which is typically smaller in magni-
tude than the value of the individual elasticity formula evaluated at the
population mean of the independent variable.

Many policy changes affect different segments of the population dif-
ferently, and their impact cannot be determined by simply considering
market demand elasticities. For example, a change in the structure of
transit fares or in headways on particular transit routes requires re-
calculation of the relevant components of the x/ vectors on an individual-
by-individual basis. The costs of obtaining such data can be substantial;
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nevertheless, it is clear that any demand forecasting model providing
accurate measures of the impact of particular local transport policy
changes will require detailed data of this sort.

If the impact of a policy is localized, the real or hypothetical random
sample of the population used to carry out the demand forecast should
reflect the distribution of the impact. Thus, the impact of changing
headways on a particular bus route would be assessed using a stratified
random sample taken predominantly from the population of the corridor
serviced by the bus route. It is important to emphasize that the criteria
for selection of a population sample differ according to whether the
sample is to be used for calibration of the behavioral model or for
forecasting. Furthermore, provided that the calibration process is
successful in establishing behavioral models which are valid across sub-
populations, the fitted models can be applied to the forecasting samples
without further calibration. This has two implications. First, the popu-
lation sample used for the calibration can be designed to optimize the
statistical properties of the estimates. It is desirable to retain the property
of having a (stratified) random sample of the population in order to
make inferences on the accuracy of the calibration as a representation
of population behavioral parameters. However, the simple stratification
or complete design which would be required for easy use of the sample
as a forecasting base are unnecessary. Second, the specialized sampie
used as a forecasting base need not correspond to a full household
survey. Only the values of the explanatory variables x“ and s’ are
needed, and it may be feasible to use a variety of data sources, such as
census block statistics, transport grid calculations, and general trans-
portation survey statistics, to construct x” and s for hypothetical
individuals, rather than obtaining these figures from a real sample survey.
Because of this it may be possible to provide accurate forecasts of the
impact of transportation policy without making costly and time-
consuming household surveys for each impact analysis.

The transportation planner is concerned with the impact of major
policy changes which involve the introduction of new transportation
alternatives as well as the impact of these incremental policy changes,
and the procedure outlined above can also be used to forecast the impact
of such major policy changes. Earlier in this chapter, we described the
procedure for determining the selection probabilities after the intro-
duction of a new alternative for the case in which alternatives are as-
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sessed in terms of generic attributes, and the assumptions underlying the
multinomial logit model are met. This method can be used if the model
has been calibrated for the present alternatives, and the attributes of
the new alternative for each individual in the forecasting data base are
known. Data on these attributes can be derived from the design specifi-
cations of the new transportation mode.

Forecasting the impacts of major changes in the transportation system
involves two problems which are not analyzed in this study. First, major
changes in transportation are likely to have significant impacts on
related consumer decisions, particularly automobile ownership and
residential and work locations. These decisions, in turn, may have a
significant impact on transportation demand, and a fully successful fore-
casting model must take into account the structural interrelationships
between these decisions. Second, major changes in transportation policy
can sometimes be expected to result in shifts in demand which are large
enough to affect the attributes of transport alternatives. For example,
the introduction of a major new mass transit mode will increase transit
patronage and may reduce highway congestion and travel time, while
this, in turn, may lessen the increase in transit patronage. Accurate
forecasting requires explicit consideration of the process of equilibration,
which takes place, for example, as the transit patronage and highway
congestion mentioned in the preceding example reach a balance, and
analysis of the equilibration process requires explicit models of the
relationship between transport mode service levels and attributes. For
example, we may need functions relating auto and bus travel times to
congestion levels in the system, or transit service levels to patronage
rates for transit agencies operating under budget constraints. This study
represents only the demand side of the modeling effort. Fully equilibrated
forecasts require a parallel model of the supply of transportation services.
This supply model must determine trip attributes as functions of system
loads. It is also necessary to provide methods for carrying out the

equilibration process.

4.9. Marginal and conditional trip tables

The construction of aggregate demand forecasts described in the pre-
ceding section provides the transportation planner with a method of
constructing detailed policy-sensitive trip tables. In their most detailed
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form, these tables would distinguish all the components of a “trip” rele-
vant to the planner: mode, time of day, origin, destination, purpose, and
the socioeconomic characteristics of the trip-takers. However, specific
policy questions can normally be answered by examining choices over
Just one of these dimensions; for example, aggregate modal split or the
modal split for a particular corridor and socioeconomic group. For this
analysis it is convenient to work with various reduced trip tables.
Exploiting the relationship between these tables and the selection
probabilities, we adopt the terminology of statistics and speak of
marginal and conditional trip tables. In this section, we explain the
relationship between these concepts and the trip generation, trip distri-
bution, and modal split tables familiar to transportation planners.
The components of the trip will be denoted by subscripts: m for mode,
t for time-of-day, o and d for origin and destination, p for purpose, and
s for socioeconomic characteristics of the subpopulation being con-
sidered. Let T,,,4,, denote the number of trips, with the specified char-
acteristics, made by an urban population in a given period. The array
of values of T for all possible values of the vector of subscripts defines
the basic detailed trip table. ~
We first relate this trip table to our behavioral models of individual
travel demand. Suppose, for each individual (or individual type) in the
population, we enumerate in complete detail all the possible daily travel
patterns. For example, “auto trip, residence to 4th and Main, at 8: 15a.m.,
work purpose; followed by walk trip, 4th and Main to 6th and Main,
at 12:15 p.m., shopping purpose; followed by ...” is one alternative,
while “bus trip, residence to 4th and Main, at 8:00 a.m., work purpose;
followed by bus trip, 4th and Main to 12th and Main at 12:15 p.m.,
shopping purpose; ...” is a second, and “no trips from residence all day”
is a third. These descriptions are chosen to be mutually exclusive and
exhaustive, so that the individual selects exactly one daily travel pattern.
The theory of individual choice behavior described in chapter 3 is
assumed to describe this selection process. The distribution of tastes in
the subpopulation facing the same objective environment then yields
selection probabilities for the daily travel patterns. If we let s denote
the vector of observed characteristics of the individuals in this homo-
geneous subpopulation, index daily travel patterns by jeJ, and let
x = (x/) denote the vector whose subvector x/ gives the observed
attributes of alternative j, then we can define P{x, s) to be the selection
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probability for pattern j, or the proportion of this homogeneous sub-
population choosing j. It should be emphasized that at this level of
complexity and detail, actual observation of x and calibration of a model
(such as the multinomial logit model) for P{x,s) is impractical. The
separability conditions on utility introduced in chapter 3 are utilized to
break apart the travel pattern choice into manageable components, and
the overall P(x, s) can be visualized in principle as being built up from
these components.

We let N(x, s) denote the number of individuals in the homogeneous
subpopulation described in the preceding paragraph. The size of the total

urban population is then
N=Y 3 N(xs) (4.74)

We tet n(x, s) = N(x, s)/N denote the distribution of “types” of subpop-
ulations in the urban area.

Now consider a “trip” as defined in a detailed trip table, identified by
mode m, time of day ¢, origin and destination (or link) o and d, and
purpose p. For a particular homogeneous subpopulation identified by a
set of daily travel patterns J and “environment” (x, s), a particular travel
pattern j may result in zero, one, or more than one “trip” mtodp. We
shall assume the classification of time-of-day, purpose, and destination
of trips is sufficiently fine so that we can neglect the possibility that
some daily travel patterns may result in more than one trip of a specified
type mtodp. Then, we can identify the set J,,.4, Of daily travel patterns
which result in one trip of type mtodp, with the remaining daily travel
patterns resulting in no trips of this type. Then, the detailed trip table

satisfies
Tooaps = L N(X,8) Y. Pfx, ). (4.75)

JeJmeodp

It is convenient to also distinguish the total number of trips of type
mtodp taken by each homogeneous subpopulation,

Troap%, 8) = N(x,5) Y Pfx,s), (4.76)

JjeImeodp

so that
Tmtodps = Z meodp(xa S)' (477)



90 Urban travel demand

Eq. (4.75) can be interpreted as giving an estimate of the detailed trip
table as a function of the calibrated selection probabilities. These
selection probabilities are themselves functions of estimates of the be-
havioral parameters of the model and specified values of the attributes
describing the alternatives.

As noted earlier, both policy objectives and the practicalities of data
collection and calibration require aggregation of the detailed trip table
into marginal and conditional trip tables. Aggregating over some
components of the trip description yields marginal trip tables. For
example, letting J,,,, be the set of all daily travel patterns containing a
“trip” on any mode on todp, we define

’Ir‘odp(xs S) = N(xs S) Z Pj(x3 S)

je-rtodp

= N(x,5)). > P{x,5), (4.78)

m je€Jmeodp

and
7;odps = Z Tr'odp(x9 S). (479)

This is the marginal trip table specifying the total number of trips on
all modes at time ¢ for origin—destination pair o—d, for purpose p, by
individuals with characteristics s. In a similar fashion, we can define the
marginal number of trips from origin o at time-of-day ¢ for purpose p
by group s:

Top(x.5) = N(x,5) ) Pfx,5), (4.80)

j€Jiop

7-r'ops = Z Tt'op(xa 5)- (4.81)
Suppose we include the “no-trip” option at time ¢ in our accounting by
treating it as a “trip” from the origin o to the same point o. Then the
(m, d, p) triples represent an exhaustive list of mutually exclusive options
for the individuals whose daily travel pattern places them at location o
at time ¢. Then,

To(x,s) = N(x,5) Y P{x,s) (4.82)

Jjedeo

gives the total number of individuals, equal to the total number of
potential trips, at to for the subpopulation characterized by (x, s). In the
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long run, the numbers T,, are influenced by residential and work location
decisions and by life-style decisions influencing daily travel patterns, and
can themselves be estimated from the calibration of an overall choice
model. In the short run, they are essentially fixed by the location and

demography of the sampie.
As a notational shorthand, write

thod_p = thod_p(x9 S) = Z P_j(x’ S), (483)

J€Tmeodp
with analogous definitions for other subscripts. Then

Tmtodp(xa S) = Ni (x, S)thodp(xs S)

= leodp(x, S)] . I:Qlodp(x, S)il ) [Q,,,,(x, S)] N
l: Qtod.p(xa S) Qtop X, 5) Qm( X, S) (x, S)Qm(x, s)

= letodp(xa S) ) lemp(x’ S) : Qplto(x7 S) ) T;o(x’ S): (484)

where we have defined
lemdp(xv S) = thadp(x’ s)/Qlodp(x> S), (4'85)

with analogous definitions for the remaining terms in eq. (4.84). Since
Qyoap(X, 5) is the probability that a randomly drawn member of the sub-
population facing (x, s) will make a trip by any mode on todp, and
Q aoap(, 5)is the probability of this trip on mode m, we see that Q,,,,.45(x, 5)
is the conditional modal split distribution for the trip todp and this
subpopulation. Similarly, @, is the conditional distribution of destina-
tions of trips starting at to for purpose p, and Q,,,, is the conditional
distribution of trip purposes for trips starting at to.

From eq. (4.84), we obtain the marginal trip tables for the sub-

popuiation,
Toap(X> ) = Quyeop(X, )Qpieol X, 5) Lo, 5y (4.86)
Top(X, 5) = Qppialx, $)Tio(x, ). (4.87)
Eq. (4.86) is interpreted as providing a trip generation and distribution
table for the subpopulation (by time-of-day ¢, origin o, and purpose p).

Since T,,,, corresponds to the “no-trip” option, the magnitude of
Q,10p(X, 5) determines the total number of trips generated at top, and
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Quoplx, 5) for d # o determines the distribution of these trips to alter-
native destinations.? Eq. (4.87) provides a breakdown of trips by purpose.

Aggregating the formulae (4.84), (4.86) and (4.87) over x provides the
basic trip tables of interest:

mmdps Z Qm]todp(x s letop(x S)Qplta(x S)T!'o(x S) (488)
todps Zthop(x S)Qplm(x S)Tx'o(x S) (4'89)

Tgops = Z Qplm(x’ S)T;o(xs S)- (490)

The procedure for analyzing the response of these trip tables to policy
changes is first to obtain expressions for the Q probabilities as functions
of the calibrated individual choice models, and then to calculate the
effect of the policy on the Q values for each subpopulation. Suppose we
assume the multinomial logit model developed earlier in this chapter
along with the separablllty assumptions on individual utility given m
chapter 3. Then P{x,s) is proportional to e"*9 where the “mean”

utility V is additively separable across distinct trips in the daily travel
pattern, and across characteristics of the time-of-travel, destination, etc.
within each trip. Consider the probability

thodp(xa S) = Z Pj(-xs S),

jEJm!odp

for various m, with todp fixed. Under our separability assumptions, for
each j€ Jposp V(X' 5) can be written as the sum of a term, B2y,
involving the attributes of the trip mtodp contained in the daily travel
pattern j, and a series of terms which are independent of the mode
choice m on the trip todp. Then Q,,.4,(x, s), for various m, is proportional

to exp[B1,201y%%], implying

exp[ Biuyz(i3 7]
TR (4.91)
Z exp[ Bz 7]

letodp(xa S) =

8 The imputation of “purpose” to “non-trips” is arbitrary. We shall by convention take
it to have the same distribution as the purposes of actual trips. Then @, can be inter-
preted either as the distribution of purposes for actual trips or as the dlstnbuuon of
purposes prior to the trip-no-trip decision.
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Hence, calibration of the parameter vector f,, from data on mode
choices alone allows us to obtain fitted values of Q.- Proceding in the
same way, define terms 237 and fi3)23 of V' giving, respectively,
attributes of destination d for trips from top, and attributes of trip
purpose p for trips from to. Then,

Y exp[ Bty ”? + Bzl

exp[ Bzt ? + B2 P + Biyr® ]

Oty = e “92)
%. 2 eXplPnzay T T Pz
and
>y exp[Bi1, 7% + B23’ + Pz
d ’i . (4.93)

Qplro = Z Z

The parameters f;, and f3, in these formulae can be calibrated from
data on trip—no-trip and destination choices in the first case, and on
trip purposes in the second case. Substitution of these calibrated for-
mulae for the Q probabilities into egs. (4.88)4.90), as a final step,
provides the policy-sensitive trip tables required for policy analysis.

An important characteristic of the detailed trip tables constructed from
the disaggregated behavioral model is the interdependence of the modal
split, generation, and distribution formulae. For example, a decrease in
transit time for one trip todp will, in general, affect not only modal split
on this trip, but will also affect the probabilities Quis0p of trip generation
and distribution, and the probabilities for trip purposes Q.- Thus, this
approach provides a logically consistent, behaviorally plausible basis
for a joint policy analysis of modal split, generation and distribution.

Conventional methods of constructing trip tables from aggregate data
employ a variety of assumptions on the structure and independence
properties of the Q probabilities, which in turn can be viewed as hypoth-
eses on the separability of utility, the distribution of independent vari-
ables, and homogeneity of the environments facing subpopulations. It is
possible to formulate statistical tests of these hypotheses for specified
data sets, providing information on the validity of alternative “skim tree”
methods for forming trip tables. This topic has been explored further by
Brand (1972a) and Ben-Akiva (1972). We note in conclusion, however,
that direct construction of trip tables from behavioral principles, along
the lines suggested in this section, would appear to be the most useful
direction from the standpoint of policy applications.
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4.10. Population travel demand and cost-benefit analysis

We have seen that consumer choice behavior among discrete trans-
portation alternatives can be conveniently described as the result of
individual utility maximization, with a distribution of tastes in which the
extensive margin determines the response of aggregate demand to
transportation policy. We will next examine the consistency of this model
of market demand with the measure of benefits ordinarily employed in
cost-benefit analysis.®

The consumer surplus arguments which form the foundation for con-
ventional cost-benefit analysis assume a population of identical con-
sumers {e.g., both tastes and environments are identical) with continuous
demand for the commodity whose supply is subject to public policy.
Then, all demand variation occurs at the intensive margin, and the
satisfaction of any consumer can be taken as an index of social welfare.
Consider the further assumption that the “marginal utility of the numer-
aire is constant”, i.e., that individual utility is additively separable into
the numeraire good and the group of all remaining goods. The con-
ventional analysis then concludes that the “income effect” on the
commodity in question is zero, implying that the area under the market
demand function (which coincides in this case to the Hicksian com-
pensated demand function) gives a correct measure of consumer
benefits, in the sense that this measure exceeds the cost of making the
commodity available if and only if individual satisfaction increases.
A presentation of the details of this theory is given in Diamond and
McFadden (1974).

We wish to consider the status of this conclusion when there is a
distribution of tastes in the population and the commodity demanded is
lumpy, with each consumer demanding either zero or one units. We show
that despite the major differences in the structure of demand in the
conventional and qualitative choice formulations, essentially the same
conclusion obtains. To make this statement meaningful, we first need to
define a measure of social welfare when tastes vary in the population.
We do this by assuming that individual utility is additively separable in
the numeraire commodity, and that this commodity is transferable across
individuals. If we call the numeraire “money”, then this assumption is

? We are indebted to Eytan Sheshinski for posing the question of whether the demand
models specified in this study are consistent with conventional cost-benefit calculations.
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equivalent to assuming that a given amount of money will yield the
same level of social welfare no matter how it is distributed over the
population and no matter what the prices of non-numeraire commodities
are. This is clearly an extremely strong assumption. It will hold approx-
imately, in general, if the society always maintains an optimal distribution
of income under any policy for the commodity in question, but is unlikely
to hold in the absence of optimal income distribution. We note that in
the absence of this assumption, we would confront the same problems
of the measurement of social welfare and “second best” analysis that
make conventional consumer surplus arguments insufficient.

Under the assumption on the structure of individual utility and the
definition of social welfare given in the previous paragraph, we conclude
exactly as in the conventional case of identical consumers with contin-
uous demand that the area under the market demand curve provides a
correct measure of benefits in cost-benefit analysis.

As a specific example, consider bus patronage as a function of fares.
Assuming, for the moment, that all consumers face the same fare, this
demand curve has the form illustrated in fig. 4.6. Suppose that a change
in transport policy leads to a change in fare from level p, to level p,,
resulting in a demand shift from D, to D,. Let C denote the net cost of
meeting this demand shift, including both operating and capital costs.
We express both benefits and costs in per capita terms. Thus, D is
demand per capita, or frequency of transit use, estimated by the selection
probability. Benefits are measured by the Marshallian consumer surplus
S, given by the shaded area under the demand curve in fig. 4.6. The
policy is judged desirable if S > C.

To demonstrate this result, we consider a model of individual utility
maximization among discrete transportation alternatives, where tastes
vary within the population. Assume that individual utility can be written

in the form
u(y, x,5) = y + ¢(x,5) + n(x, ), (4.94)

where y is the quantity consumed of a numeraire commodity, x is the
vector of all other attributes of the alternative, s is a vector of socio-
economic characteristics, V(y, x,s) = y + ¢(x, s) is the non-stochastic
component of utility, and 5(x, s) is the stochastic component. Suppose
each consumer has a binary choice between a non-transit alternative with
attributes x° and a transit alternative with attributes x'. Let p, denote
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the initial transit fare and y, the quantity of the numeraire commodity
consumed at this fare if the non-transit alternative is chosen.

Consider a change in transportation policy leading to a new transit
fare p, and let C(p) equal the net total cost of this policy change. The
quantity of the numeraire commodity available at price p will differ from
y; by the net per capita cost of the policy change, or

98) = y1 + (D) — piD) — Cp)
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where D(p) is market demand for transit at fare p and (pD(p) — p,D,)
equals the change in transit revenues. Then y(p) or y(p) — p of the
numeraire commodity will be consumed when the non-transit and transit
alternatives are chosen, respectively. The consumer will choose transit

at fare p if
’I(XO, S) - ”(xls S) < ¢(x1’ S) - ¢(x0: S) — D (496)

Letting G denote the cumulative distribution function of
n(x®, s) — n(x!, s), the demand for transit is

D(p) = G(¢(x", 5) — $(x°, 5) — p). (4.97)

Again consider the change in transit fare from p, to p, in fig. 4.6. The
Marshallian consumer’s surplus S, the shaded area in this figure, can be
calculated as the area to the left of the demand curve between p, and p,,
plus the area p,D,, less the area p,D,, or

S = [0 G(d(x*, 5) — $(x°,5) — p)dp + poD, — pyDy. (4.98)
The utility-maximizing consumer will have a utility level

u(p) = Max[y(p) + $(x°,s) + n(x°, s),
Y(p) 4 + ¢(xt’ S) + ’l(xl, S)]
= $(x% s) + n(x', 5) + ¥(p) .
+ Max[n, ¢(x,s) — ¢(x°,s) — p] (4.99)

for fare p, where = n(x°,s) — n(x, s).

Define social welfare to be the sum of individual utility levels, i.e., the
expectation of u(p) with respect to 7(x% s) and #n(x’, s). Since only the
last two terms in eq. (4.99) depend on p, it is sufficient to index social
welfare by the expectation of the sum of these terms, or

W = yp) + [ Max[n, $(x',5) — ¢x°,5) — p]G'(n)dn
= Yp) + AG(A) + [T nG'(m)dn, (4.100)
‘where A = ¢(x!,s) — ¢(x°:s) — p. Under the assumptions En = 0 and
{2y Gm)dn < + o,

satisfied, for example, by the logit and probit response curves, eq. (4.100)
simplifies to
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W = y(p) + 2G() + En — [~ nG'(m)dn
= y(p) + AG(A) — nG(n) |~ » + (X . G(m)dn
= yp) + (L G dn. (4.101)

Considering the change in welfare resuiting from a fare change from p,
to p,, we obtain from either eq. (4.100) or eq. (4.101) the result:

AW = yp2) — ¥py) + [ii Gin)dn, (4.102)
where
A = Plx',s) — ¢(x° ) — ps
or
AW =y, + (pD; — p1Dy) — C -y,
+ [B G(p(xt,s) — ¢(x%,s) — pddp =S — C.  (4.103)

In conventional consumer theory the assumption that utility is linear in
the numeraire commeodity provides the theoretical justification for the
measurement of benefits by consumer surplus. Under this same assump-
tion, it follows from eq. (4.103) that this cost—benefit calculation provides
a correct index of social welfare changes for the model of individual
choice among discrete alternatives. Furthermore, this conclusion can be
extended to the case of multiple markets. Hence these arguments can be
applied to the transportation demand case in which different subpop-
ulations face different fares (or differing vectors of attributes x!, x?), since
they can be treated as engaging in distinct submarkets, and the con-
sumer’s surplus can be summed over the populations.
When the condition

{20 Gimdn < +©

is met, as it is in logit analysis for example, the case of the introduction
of a new alternative can be treated in the above framework by setting
p; = + oo, making this choice unavailable in the initial case.

The cost-benefit analysis for policy changes affecting aspects of travel
other than transit price can be converted into the terms of the above
analysis by treating the expression

A= P(xt,s) — ¢(x%s) — p
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as the relative inclusive price of the non-transit trip. Any policy resulting
in a change in x! and x° can be converted into an equivalent change
in fare using this formula. When this is done, the previous calculation
of the net benefit due to this price change provides a correct index of
the corresponding welfare change.

The arguments of this section establish that when utility is linear in

a numeraire commodity, the usual calculation of net benpefits gives a

valid index of potential welfare gains when all individuals are treated
“equally”. The linearity requirement has unrealistic implications that
cast serious doubts on the validity of all cost-benefit calculations. How-
ever, it is of interest to note that all the empirical demand systems fitted
in this study satisfy the linearity assumption. Thus, to the extent that
these models are successful in depicting behavior, they provide a
consistent starting point for cost-benefit analysis.



