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Abstract

Empirical work in economics, statistics and many other disciplines often requires estimating

one or more probability density functions, such as those of earnings or a poverty index, near

or at a boundary point. Standard kernel density estimators cannot be used near boundary

points due to their boundary bias, a fact that has led researchers to restrict attention to a

region in the interior of the full support of the data or to employ other ad hoc smoothing or

truncation methods. This paper presents an intuitive and easy-to-implement nonparametric

density estimator based on local polynomial techniques, which does not require pre-binning or

any other transformation of the data while still being fully boundary adaptive and automatic.

This estimator is readily applicable to a variety of empirical contexts, including manipulation

testing, counterfactual comparisons, treatment effects heterogeneity and specification, bunching,

and auctions, just to mention a few obvious examples. We study the asymptotic properties of

the proposed density estimator and use these results to provide fully automatic point estimation,

inference and bandwidth selection methods. We apply these results to three specific empirical

settings in program evaluation: discontinuity in density testing (McCrary, 2008), counterfactual

analysis (DiNardo et al., 1996), and IV treatment effect specification and heterogeneity analysis

(Abadie, 2003; Kitagawa, 2015). We showcase our methods with two empirical applications,

and we also investigate their finite-sample performance in a Monte Carlo experiment. Our

general results also cover estimation of the distribution function and derivatives of the density

function, additional results useful in other nonparametric and semiparametric settings. Two

distinct companion Stata and R software packages are provided.
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test, counterfactual analysis, IV heterogeneity.
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1 Introduction

Flexible (nonparametric) estimation of distribution functions, densities and derivatives thereof play

an important role in empirical work in economics, statistics, and many other disciplines. Sometimes

these quantities are the main objects of interest, while in other cases they are useful ingredients

in forming other nonparametric or semiparametric inference procedures. For instance, in program

evaluation, nonparametric density estimators are commonly used for manipulation testing (Mc-

Crary, 2008), counterfactual analysis (DiNardo et al., 1996), and IV treatment effect specification

and heterogeneity analysis (Abadie, 2003; Kitagawa, 2015). Density-based presentation and testing

methods are also used in program evaluation and causal inference to describe, for example, common

support/overlap or distributional treatment effects (e.g., Imbens and Rubin, 2015, for a review and

references). Furthermore, smooth estimates of probability density functions are used in many other

literatures employing nonparametric and semiparametric methods (e.g., Ichimura and Todd, 2007).

A common problem faced by all density estimators in empirical work is the presence of boundary

evaluation points on the support of the variable of interest: Whenever the density estimate is

constructed at or near boundary points, which may or may not be known by the researcher, its

finite- and large-sample statistical properties are affected. Standard kernel density estimators are

invalid at or near boundary points, while other methods may remain valid but usually require

choosing additional tuning parameters, transforming the data, a priori knowledge of the boundary

point location, or some other boundary-related specific information or modification. Furthermore,

it is usually the case that one type of density estimator must be used for evaluation points at

or near the boundary, while a different type must be used for interior points. This has led to

a proliferation of (mostly ad hoc) density estimation methods and/or corrections to address the

ubiquitous boundary bias problem in practice. Perhaps the most common empirical approach is to

restrict the analysis to an interior subset of the support of the variable of interest, something that

at the minimum handicaps empirical work, and many times is not even feasible when the actual

goal is to learn about the density at or near the boundary.

We introduce a novel nonparametric estimator of a density function constructed using local poly-

nomial techniques (Fan and Gijbels, 1996), and then employ it to develop boundary adaptive and

automatic density estimation and inference methods in program evaluation settings. Our estimator
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is intuitive and easy to implement, does not require pre-binning of the data or a priori knowledge

of the boundary location, and enjoys all the desirable features associated with local polynomial

regression estimation. In particular, the estimator automatically adapts to the (possibly unknown)

boundaries of the support of the density without requiring specific data modification or additional

tuning parameter choices, a feature that is unavailable for most other density estimators in the

literature: see Karunamuni and Albert (2005) for a review on this topic. The most closely related

approaches currently available in the literature are the local polynomial density estimators of Cheng

et al. (1997) and Zhang and Karunamuni (1998), which require knowledge of the boundary location

and pre-binning of the data (or, more generally, pre-estimation of the density near the boundary),

and hence introduce additional tuning parameters that need to be chosen for implementation.

The heuristic idea underlying our estimator is quite simple: whereas other nonparametric density

estimators are constructed by smoothing out a “rough” histogram estimate of the data, our esti-

mator is constructed by smoothing out the empirical distribution function using local polynomial

techniques. This leads to a density estimator that is constructed using a preliminary tuning-

parameter-free and
√
n-consistent CDF estimator (where n denotes the sample size), and thus

requires only choosing the bandwidth associated with the local polynomial fit at each evaluation

point. Our general results cover estimation of the distribution function, density and derivatives

thereof, for any polynomial order at both interior and boundary points, and formally give (i)

asymptotic expansions of the leading bias and variance, (ii) asymptotic Gaussian distributional

approximation and valid statistical inference, (iii) consistent standard error estimates, and (iv)

consistent data-driven bandwidth selection based on an asymptotic mean squared error (MSE)

expansion. All these results apply to both interior and boundary points in a fully automatic and

data-driven way, without requiring a prior knowledge of the boundary location, transforming the

estimator or the data in specific ways, or employing additional tuning parameters (beyond the main

bandwidth present in any kernel-based nonparametric method).

While often overlooked by practitioners, automatic boundary adaptation in nonparametrics is of

crucial importance because “in applications design points always have a bounded support” (Fan

and Gijbels, 1996, p. 69), and in fact the boundary location is often unknown. Thus, our pro-

posed density estimator offers a practically relevant approach for empirical work concerned with

density estimation and inference. While our main results can be used in any nonparametric or
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semiparametric setting where estimators of distribution functions, densities and derivatives thereof

are required, in this paper, we employ them to develop new estimation and inference methods in

three program evaluation settings: manipulation testing, counterfactual analysis, and IV hetero-

geneity study. In each of these applications one or more density functions at or near a boundary

point need to be estimated, and therefore our methods are particularly well suited.

Our first methodological application is related to manipulation testing, a problem that has re-

cently attracted considerable attention in empirical work. Here the goal is to test for a discontinuity

in the density of a random sample of units that has been divided in two disjoint groups, according

to a hard-thresholding rule based on an observed random variable (usually called “index”, “score”

or “running variable”) and a known cutoff point. McCrary (2008) proposed this clever idea in the

context of regression discontinuity (RD) designs. The ultimate goal is to test formally whether

units are systematically sorting around the cutoff point, and thus non-randomly selecting into one

of the two groups (generally referred to as control and treatment groups). The key observation is

that, in the absence of self-selection, the density of units near the cutoff would be continuous, and

thus a statistical test can be formed to determine empirically whether there is evidence of sorting in

empirical applications. This testing idea can be used not only as a falsification test in RD designs,

but also as an empirical test for manipulation or self-selection in other impact evaluation settings.

Testing for manipulation naturally involves nonparametric density estimation at a boundary point

– the cutoff point in the support of the running variable where group (or treatment) assignment

is determined. Our density estimator is therefore particularly well-suited for constructing a new

testing procedure in this context because it offers automatic boundary-adaptive density estimation

in an intuitive and easy-to-implement way, requiring the choice of only one bandwidth. Using our

main results, we develop a new manipulation test and establish its large-sample properties: the

resulting testing procedure gives an alternative to the implementation in McCrary (2008), which

employs the density estimator of Cheng et al. (1997) and thus requires choosing additional tuning

parameters. We offer an empirical illustration of our methods employing the canonical Head Start

data (Ludwig and Miller, 2007; Cattaneo et al., 2017c).

The other methodological applications given are concerned with counterfactual densities and IV

treatment effect specification and heterogeneity, where researchers often want to estimate several

density functions of reweighted data to then compare them across different evaluation points. In
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particular, here we consider the settings of DiNardo et al. (1996), Abadie (2003), and Kitagawa

(2015), three papers where estimation of density functions naturally arise. Because our theoretical

work allows for estimated weights, we can also develop new boundary adaptive density estimators

applicable to these examples: our methods apply automatically to both interior and boundary

points and therefore provide simple and easy-to-implement density estimation and inference meth-

ods that can be used over the entire support of the data, without requiring pre-binning, truncation

or some other ad hoc transformation before the empirical analysis. To illustrate our proposed

density methods for counterfactual and IV specification and heterogeneity analysis we report an

empirical application using another canonical dataset in empirical microeconomics: the Job Train-

ing Partnership Act (JTPA) data.

All the density-based methods studied in this paper involve estimation and inference at or near

a boundary point employing our proposed density estimator, possibly after including preliminary

estimated weights, and are formally developed via the theoretical results given in the Supplemental

Appendix. In fact, because our density estimators allow for
√
n-estimated weights such as those

arising from inverse probability weighting, they can be used in many other empirically relevant

contexts under the usual unconfoundedness or selection-on-observables assumption; typical areas

of application include treatment effects, missing data, measurement error, and data combination.

We do not describe these other applications in detail for brevity, and because they are very similar

to the ones given below.

Finally, we also provide two general purpose software packages, for Stata and R, implementing the

main results discussed in the paper. Cattaneo et al. (2017a) discusses the first package (lpdensity),

which targets at generic density estimation over the support of the data, and Cattaneo et al. (2017b)

discusses the second package (rddensity), which is specifically tailored to manipulation testing. In

addition, we provide replication files of all the numerical results reported herein.

The rest of the paper is organized as follows. Section 2 introduces the density estimator, discusses

the main intuition behind its construction, and outlines its applicability to program evaluation and

related problems. Section 3 gives an overview of the main technical results developed in this

paper. Section 4 applies our main theoretical results to the specific case of nonparametric testing

of a discontinuity in a density at a point. Sections 5 and 6 develop the new density methods

for counterfactual analysis and IV treatment effect heterogeneity, respectively. Section 7 offers
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a brief account of an extensive simulation study we conducted, while Section 8 discusses several

potential extensions to our work and concludes. A long Supplemental Appendix reports more

general theoretical results encompassing those discussed herein, includes the proofs of these general

results, discusses additional methodological and technical results, and provides further simulation

evidence.

2 Boundary Adaptive Density Estimation

Suppose {(x1, w1), (x2, w2), · · · , (xn, wn)} is a random sample, where xi is a continuous random

variable with a smooth cumulative distribution function over its possibly unknown support X , and

wi is a weighting variable, possibly random and involving unknown parameters. We consider the

generic parameter

f(x) =
∂

∂x
E
[
wi1(xi ≤ x)

]
,

whose practical interpretation depends on the specific choice of wi. If wi = 1, f(·) becomes the

standard probability density function of the continuous variable of interest xi. If wi = 1(xi < x̄)

or wi = 1(xi ≥ x̄), then f(·) is used to identify the left and right limits of the density function of

xi at the cutoff point x̄ (i.e., f−(x̄) = limx↑x̄ f(x) and f+(x̄) = limx↓x̄ f(x)), respectively, which is

useful for manipulation testing (Section 4). If wi is set to be a certain ratio of propensity scores

for subpopulation membership, then f(·) becomes a counterfactual density function (Section 5).

If wi is set to be a combination of the treatment assignment and treatment status variables, then

the resulting f(·) can be used to specification testing in IV settings, or if wi is set to be a certain

ratio of propensity scores for a binary instrument, then f(·) can be used to identify distributions

of compliers in IV settings (Section 6).

Our results apply to known and unknown, as well as bounded or unbounded support X , which

is an important feature in most empirical applications employing density estimators. For example,

in the context of manipulation testing (Section 4), the random variable xi is a running variable,

score or index, and the parameter of interest is the potential discontinuity of the density function,

at an induced boundary point determined by the treatment eligibility cutoff. As another example,

in counterfactual analysis or other related program evaluation contexts (e.g., Sections 5 and 6), the

support of the data is unknown and often bounded, for example when xi represents wage, earning

5



or taxable income, in which case the boundary points are determined by the natural support (e.g.,

xi ≥ 0 if xi is wage or earning) or by a policy (e.g., the value on the support X where a tax

level/rate changes). These and other examples are discussed in upcoming sections.

We introduce a generic nonparametric estimator of f(x), which is fully automatic, boundary

adaptive for the possibly unknown support X , and allows for
√
n-consistent estimated weights wi.

Our estimator requires only one tuning parameter choice and is very easy to construct and interpret.

To describe it, first we define the plug-in weighted empirical CDF estimator

F̃ (x) =
1

n

n∑
i=1

wi1(xi ≤ x),

and then the proposed local polynomial density estimator f̂(x) is given by


α̂(x)

f̂(x)

γ̂(x)

 = arg min
α,β1,...,βp

n∑
i=1

(
F̃ (xi)− α− (xi − x)β1 − (xi − x)2β2 − · · · − (xi − x)pβp

)2
K
(xi − x

h

)
,

where K(·) denotes a kernel function, h is a positive bandwidth, and p ≥ 1. Our estimator takes the

(weighted) empirical distribution function as an starting point but, instead of trying to numerically

differentiate it, first constructs a simple and intuitive smooth local approximation to F̃ (xi) using a

polynomial expansion, and then obtains the density estimator as the slope coefficient in the local

polynomial regression. To be specific, α̂(x) is the intercept estimate, f̂(x) is the slope estimate

(associated with β1), and γ̂(x) is a vector collecting estimated higher-order coefficients in the local

polynomial approximation to F̃ (xi). Using standard least squares algebra, all these coefficients can

be given in closed form. Here we focus on the density estimator f̂(x), but in the Supplemental

Appendix we also study the properties of α̂(x) and γ̂(x), as these objects may also be useful in

some nonparametric and semiparametric applications (see Section 8 for further discussion).

The idea behind our density estimator f̂(x) is explained graphically in Figure 1, setting wi = 1

only for simplicity. In this figure we consider three distinct evaluation points on X = [−1, 1]: a is

near the lower boundary, b is an interior point, and c = 1 is the upper boundary. Recall that the
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conventional kernel density estimator,

f̂KD(x) =
1

nh

n∑
i=1

K

(
xi − x
h

)
,

is valid for interior points, but otherwise inconsistent. See, e.g., Wand and Jones (1995) for a classi-

cal reference. On the other hand, our density estimator f̂(x) is valid for all evaluation points x ∈ X

and can be used directly, without any modifications to approximate the unknown density. Figure

1 is constructed using n = 500 observations. The top panel plots one realization of the empirical

distribution function F̂ (x) in dark gray, and the local polynomial fits for the three evaluation points

x = a, b, c in red, the latter implemented with p = 2 (quadratic approximation) and bandwidth h

(different value for each evaluation point considered). The vertical light gray areas highlight the

localization region controlled by the bandwidth choice, that is, only observations falling in these

regions are used to smooth-out the empirical distribution function via local polynomial approx-

imation, depending on the evaluation point. Our proposed density estimator f̂(x) is the slope

coefficient accompanying the first-order term in the local polynomial approximation, which is de-

picted in the bottom panel of Figure 1 as the solid line in red. The bottom panel also plots three

other curves: dashed blue line corresponding to the population density function, dashed-dotted

green line corresponding to the average of our density estimate over simulations, and dashed black

line corresponding to average of the standard kernel density estimates obtained using f̂KD(x).

Figure 1 illustrates how our proposed density estimator adapts to (near) boundary points au-

tomatically, showing graphically its good performance in repeated samples. See the Supplemental

Appendix for detailed simulation experiments corroborating these findings. Evaluation point b is

an interior point and, consequently, a symmetric smoothing around that point is employed, just

like the standard estimator f̂KD(x) does. On the other hand, evaluation points a and c both exhibit

boundary bias if the standard kernel density estimator is used: point a is near the boundary and

hence employs asymmetric smoothing, while point c is at the upper boundary and hence employs

one-sided smoothing. In contrast, our proposed density estimator f̂(x) automatically adapts to

the (possibly unknown) boundary point, as the bottom panel in Figure 1 illustrates. This feature

makes f̂(x) particularly well-suited for empirical applications where there is known or unknown

finite boundaries on the support of the data, which is arguably the case in most applications (and
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is always the case in finite samples). We are aware of only one other density estimator that exhibits

automatic boundary carpentry: Cheng et al. (1997) introduced a local polynomial density estima-

tor that requires knowledge of boundary location and is constructed using a preliminary histogram

estimate, which by implication also requires several tuning parameters for implementation (i.e.,

histogram’s bins length, location and total number, in addition to a bandwidth choice for the local

polynomial fit). This estimator was popularized by McCrary (2008) in the context of RD designs;

see Section 4.

More generally, when weights are allowed for, there is another potentially interesting connection

between the estimand f(x) and estimator f̂(x) described above, and the classical kernel-weighted

averages featuring prominently in econometrics (e.g., Newey, 1994; Newey and McFadden, 1994).

Because f(x) = E[wi|xi = x]g(x), with g(x) denoting the probability density function of xi, it

follows that our proposed estimation approach gives an alternative boundary adaptive way of esti-

mating density-weighted averages nonparametrically. Our proposed approach differs from standard

kernel methods in that we first smooth out the
√
n-consistent empirical distribution function, which

does not exhibit boundary problems, and then a nonparametric approximation to the desired deriva-

tive is extracted. This approach is conceptually distinct from the methods currently available in the

literature, and it exhibits demonstrably superior properties such as automatic boundary adaptation

for estimation and inference.

In the Supplemental Appendix we investigate the large sample properties of our proposed estima-

tor f̂(x) when wi = w(zi;θ0) is replaced by ŵi = w(zi; θ̂) with θ̂ a
√
n-consistent estimator of θ0,

that is, when estimated weights are used to construct the weighted empirical distribution function

F̃ (x). This generalization is useful in counterfactual density estimation, IV treatment effects spec-

ification and heterogeneity analysis, bunching, missing data, and many other empirical problems

of interest. Our general results include bias, variance and distributional approximations, standard

error estimation, and optimal bandwidth selection and estimation, among other results. Because

all these results are technical in nature, we relegate most details to the Supplemental Appendix.

In Section 3 we include brief statements of our main results for completeness and reference. The

main take-away is as follows: under regularity conditions (Assumptions 1, 2 and 3 below), which

include mild restrictions on the possibly estimated weights wi, and if nh2 → ∞ and nh2p+1 → 0,
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then

f̂(x)− f(x)

σ̂(x)
 N (0, 1), σ̂(x) =

√
1

nh
V̂ (x), for all x ∈ X ,

where denotes convergence in distribution, and the exact formula of the variance estimator V̂ (x)

is given in Section 3. Importantly, V̂ (x) is fully automatic and very easy to implement, and remains

valid even when
√
n-consistent estimated weights are employed: We show that employing estimated

weights has no first order impact on the nonparametric estimator f̂(x), which means in practice

the weights can be treated as known for estimation, inference and bandwidth selection purposes.

Therefore, our proposed estimation and inference methods are automatic and boundary adaptive,

without requiring any specific modifications depending on the particular value x or the weighting

scheme used.

The following section presents a technical summary of the main large-sample results we obtained

for estimation and inference employing the proposed density estimator f̂(x). We then apply these

generic results to specific problems of interest in empirical work in subsequent sections, where we

also illustrate them using real data and applications. Other potential applications of our methods

are briefly mentioned in Section 8.

3 Overview of Technical Results

We summarize two main technical results on our density estimator: (i) an asymptotic distributional

approximation with precise leading bias and variance characterizations, and (ii) a consistent stan-

dard error estimator which is also data-driven and fully-automatic. Both results are fully boundary

adaptive and do not require prior knowledge of the shape of X . We leave preliminary lemmas and

detailed proofs to the Supplemental Appendix to conserve space. Properties of other estimators

obtained by our method, including a smoothed distribution function estimator and estimators of

higher order derivatives, are also available in the Supplemental Appendix.

Before stating the results, we give the regularity conditions employed.

Assumption 1 (DGP). {x1, x2, · · · , xn} is a random sample of size n, with distribution function

G that is p+ 1 times continuously differentiable for some p ≥ 1 in a neighborhood of the evaluation

point x, and the probability density function of xi, denoted by g, is positive in a neighborhood of
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Figure 1. Graphical Illustration of Density Estimator.
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the evaluation point x.

Note that G is generally different from F , except if uniform weighting wi = 1 is used. To allow

for estimated weighting schemes, we assume the weights take the form wi = w(zi;θ0), where zi are

additional variables (which can include xi), and θ0 is a finite dimensional parameter.

Assumption 2 (Estimated Weights).

(i) {z1, z2, · · · , zn} is a random sample of size n, wi = w(zi;θ0), with E[wi|xi] being p times

continuously differentiable, E[w2
i |xi] continuous, and E[w4

i ] <∞.

(ii) θ 7→ w(·;θ) is twice continuously differentiable and, for some δ > 0, E[sup|θ−θ0|≤δ |w(zi;θ)| +

|ẇ(zi;θ)|+ |ẅ(zi;θ)|] <∞, where ẇ(zi;θ) = ∂w(zi;θ)/∂θ′ and ẅi(zi;θ) = ∂2w(zi;θ)/∂θ∂θ′.

(iii)
√
n(θ̂ − θ0) admits an asymptotic linear representation.

Part (i) ensures that f(x) is well-defined and possesses certain smoothness, and finite fourth

moment of the weights is used to justify a Lindeberg Condition for asymptotic normality. Part

(ii) is used in the asymptotic variance formula. Collectively, this assumption provides regularity

conditions on the estimated weights, ensuring summability of certain quantities and asymptotic

expansions. To save notation, we set ẇi = ẇ(zi;θ0) and ẅi = ẅ(zi;θ0). Observed (possibly

random) weights are allowed as a special case where zi = wi and w(·) is the identity map.

Assumption 3 (Kernel). The kernel function K(·) is nonnegative, symmetric, and continuous on

its support [−1, 1].

This assumption is standard in nonparametric estimation, and is satisfied for common kernel

functions. We exclude kernels with unbounded support (for example the Gaussian kernel) for

simplicity, since such kernels will always hit boundaries. Our results, however, remain to hold for

common unbounded kernels with careful analysis, albeit the notation becomes more cumbersome.

Theorem 1 (Distributional Approximation). Suppose Assumption 1–3 hold with either observed

weights wi or estimated ŵi = wi(zi; θ̂). If nh2 →∞ and nh2p+1 = O(1), then

f̂(x)− f(x)− hpB(x)√
1
nhV (x)

 N (0, 1), for all x ∈ X ,
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where the asymptotic bias and variance are defined as

B(x) = e′1A(x)−1a(x), V (x) = e′1A(x)−1B(x)A(x)−1e1,

with

A(x) = g(x)

∫
h−1(X−x)

rp (u) rp (u)′K (u) du,

a(x) = g(x)
F (p+1)(x)

(p+ 1)!

∫
h−1(X−x)

up+1rp (u)K (u) du,

B(x) = g(x)2H(1)(x)

∫∫
h−1(X−x)

min{u, v}rp (u) rp (v)′K(u)K(v)dudv,

rp(u) = (1, u, u2, · · · , up)′ being the p-th order polynomial expansion, e1 = (0, 1, 0, · · · , 0)′ the

second unit vector, and H(x) = E[w2
i 1(xi ≤ x)].

We make two remarks here. First the integration region reflects the effect of boundaries. Recall

that the kernel function is compactly supported, and if x is an interior point, we have, in large sam-

ples, h−1(X −x) ⊃ [−1, 1], so that the kernel function is not truncated and the local approximation

is symmetric around x. On the other hand, for x near or at boundaries, h−1(X − x) 6⊃ [−1, 1], and

the local approximation is asymmetric or even one-sided.

Second, both the unweighted distribution G and the weighted distribution F feature in the

matrices defined above. The unweighted density of xi shows up reflecting the “design” of the local

regression, since weighting is only conducted in F̃ . The weighted distribution feature as part of

the smoothing bias. Interestingly, the unweighted distribution does not feature in the asymptotic

distribution (bias or variance), since it is canceled in A(x)−1a(x) and A(x)−1B(x)A(x)−1: This is

desirable as our proposed estimator is design adaptive.

Next we show how standard error can be constructed. The one we propose is an appealing

companion to our main estimator and is highly relevant for empirical applications, since it does not

require knowledge of relative positioning of the evaluation point to boundaries of X (if any). For

notational simplicity, we normalize the observations as x̌i = h−1(xi − x), and define

Â(x) =
1

nh

n∑
i=1

rp (x̌i) rp (x̌i)
′K (x̌i)
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B̂(x) =
1

n3h3

n∑
i,j,k=1

rp (x̌j) rp (x̌k)
′K (x̌j)K (x̌k) ŵ

2
i

(
1[xi ≤ xj ]− F̃ (xj)

)(
1[xi ≤ xk]− F̃ (xk)

)
,

and

V̂ (x) = e′1Â(x)−1B̂(x)Â(x)−1e1.

Then we have the following:

Theorem 2 (Variance Estimation). If the conditions in Theorem 1 hold, then V̂ (x)→P V (x) for

all x ∈ X .

Finally, using the result above and under regularity conditions, it follows that the pointwise

(approximate) MSE-optimal bandwidth choice for our proposed density estimator is

hMSE(x) =

(
V (x)

2pB(x)2

)1/(1+2p)

n−1/(1+2p).

The Supplemental Appendix offers details on this choice, presents analogous integrated version, and

discusses other related results such as valid implementation and consistent bandwidth estimation.

Furthermore, in the Supplemental Appendix we present analogous results to those above for the

smooth CDF α̂(x) and derivatives estimators γ̂(x), and also present uniform asymptotic results,

among other technical developments omitted here to conserve space. Stata and R general purpose

software implementing all these results is discussed in Cattaneo et al. (2017a).

4 Application: Manipulation Testing

One of the main features of the density estimator introduced in this paper is that it automatically

reduces boundary bias, while at the same time avoiding the need for choosing additional tuning

and smoothing parameters necessarily present in other related procedures (e.g., bins structure in

pre-binning estimators or distance to the boundary in boundary-corrected estimators). In other

words, this intuitive estimator automatically generates a boundary-corrected kernel density estima-

tor requiring the choice of only one tuning parameter: the main bandwidth h. As a first empirical

application of our proposed density estimator exploiting these features, we consider density dis-

continuity testing at a cutoff point inducing a change in treatment status, a form of manipulation
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testing originally introduced by McCrary (2008) in the context of RD designs. See also Frandsen

(2017) for a complementary manipulation test with discrete running variable in RD designs.

Testing for manipulation is quite useful when units are assigned to two (or more) distinct groups

using a hard-thresholding rule, as it provides an intuitive and simple method to check empirically

whether units are able to alter (i.e., manipulate) their assignment. Manipulation tests are used in

empirical work both as falsification tests of RD designs and as empirical tests with substantive im-

plications. The implementations available in the literature require choosing multiple tuning param-

eters (McCrary, 2008) or employ empirical likelihood methods together with boundary-corrected

kernels (Otsu et al., 2014). The method we introduced in this section, on the other hand, requires

choosing only one tuning parameter, avoids pre-binning the data, and permits the use of simple

well-known weighting schemes (i.e., kernel functions), and thus it removes the need of choosing

the length and positions of bins, or employing complicated boundary kernels directly. For exam-

ple, regular kernels such as the uniform or triangular kernel can be used for implementation. In

addition, our method is quite intuitive and easy to implement, while being fully data-driven and

principled, as bandwidth selection methods are also formally developed and implemented.

To describe the manipulation testing setup, suppose units are assigned to one group (“control”)

if xi < x̄ and to another group (“treatment”) if xi ≥ x̄. For example, in the application discussed

below we employ the Head Start data from Ludwig and Miller (2007), where xi is a poverty index

at the county level, x̄ = 59.1984 is a fixed cutoff determining eligibility to the program (see panel

(a) in Figure 2 below). The goal is to test formally whether the density f(x) is continuous at x̄,

using the two subsamples {xi : xi < x̄} and {xi : xi ≥ x̄}. Formally, the null and alternative

hypotheses are:

H0 : lim
x↑x̄

f(x) = lim
x↓x̄

f(x) vs H1 : lim
x↑x̄

f(x) 6= lim
x↓x̄

f(x).

This hypothesis testing problem, of course, induces a nonparametric boundary point problem at

x = x̄ because two distinct densities need to be estimated, one from the left and the other from

the right. This problem renders standard kernel density estimator inapplicable, but our proposed

density estimator f̂(x) is readily applicable in this context because it is boundary adaptive and

fully automatic. Furthermore, our estimator can be used to plot the density near the cutoff in an
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automatic way; see panel (b) of Figure 2 below for an example using the Head Start data.

To be more precise, first define F̃−(x) and F̃+(x) to be the weighted empirical distribution

functions constructed using w−i = 1(xi < x̄) and w+
i = 1(xi ≥ x̄), respectively. Then, our

proposed density estimator can be applied twice, to the data below and above the cutoff, to obtain

two estimators of the density at the boundary point x̄, which we denote by f̂−(x) and f̂+(x),

respectively. Thus, our new manipulation test statistic takes the form:

T (h) =
f̂+(x̄)− f̂−(x̄)√
σ̂2

+(x̄) + σ̂2
−(x̄)

,

where σ̂−(x) and σ̂+(x) denote the standard error estimators mentioned previously but now com-

puted with the weighting choice w−i = 1(xi < x̄) and w+
i = 1(xi ≥ x̄), respectively. The exact

formula is given in Section 3, and all other technical details are discuss in the Supplemental Ap-

pendix.

Therefore, employing our main theoretical results, we obtain conditions so that the finite sample

distribution of T (h) can be approximated by the standard normal distribution, which leads to the

following result: under assumptions specified in Section 3, and the vanishing bandwidth sequence

satisfies nh2 →∞ and nh1+2p → 0, then

(1) Under H0, limn→∞ P[|T (h)| ≥ Φ1−α/2] = α,

(2) Under H1, limn→∞ P[|T (h)| ≥ Φ1−α/2] = 1,

where Φα denotes the α-quantile of the standard Gaussian distribution. This result establishes

asymptotic validity of the α-level testing procedure that rejects H0 iff |T (h)| ≥ Φ1−α/2, α ∈ (0, 1),

and also shows its consistency. The result follows immediately from our generic asymptotic approx-

imations for f̂(x) after using w−i = 1(xi < x̄) and w+
i = 1(xi ≥ x̄), and evaluating at x = x̄; see

the Supplemental Appendix for detailed proofs and related technical and implementation issues.

A key implementation issue of our manipulation test is the choice of bandwidth h, a problem

common to all nonparametric manipulation tests available in the literature. On the other hand,

an important feature of our method is that this bandwidth h is the only tuning parameter needed

for implementation, unlike other manipulation tests available in the literature. To select h in an

automatic and data-driven way, we obtain in the Supplemental Appendix a mean squared error

optimal (MSE-optimal) bandwidth choice for the point estimator f̂+(x̄)− f̂−(x̄) and we proposed
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a consistent implementation thereof, which is denoted by ĥp. We also present other alternatives

such MSE-optimal bandwidth selectors for each-side density estimator separately.

Given the data-driven bandwidth choice ĥp, we propose a simple robust bias-corrected test statis-

tic implementation, employing ideas in Calonico et al. (2014) and Calonico et al. (2017); see the

later reference for theoretical results on higher-order refinements and the important role of pre-

asymptotic variance estimation. Specifically, our proposed data-driven robust bias-corrected test

statistic is Tp+1(ĥp), which rejects H0 iff |Tp+1(ĥp)| ≥ Φ1−α/2 for a nominal α-level test. This

approach corresponds to a special case of manual bias-correction together with the corresponding

adjustment of Studentization. In practice, most common choices are p = 2. Companion general

purpose software in Stata and R is presented in Cattaneo et al. (2017b) for discontinuity in density

test.

4.1 Empirical Illustration

We apply our proposed manipulation test to the data of Ludwig and Miller (2007) on the original

Head Start implementation in the U.S. In this empirical application, the data captures a discon-

tinuity on access to program funds at the county level, which occurred in 1965 when the program

was first implemented: to ensure that applications from the poorest communities would be repre-

sented in a nationwide grant competition for the program’s funds, the federal government provided

assistance to the 300 poorest counties in the U.S. to write and submit applications for Head Start

funding. This led to increased Head Start participation and funding rates in these counties, creat-

ing a discontinuity in program participation at the 300th poorest county. Using our notation, xi

denotes the poverty index for county i, which was computed in 1965 using 1960 Census variables,

and x̄ = 59.1984 is the cutoff point and poverty index of the 300th poorest municipality.

A manipulation test in this context amounts to testing whether there is a disproportional number

of counties are situated above x̄ relative to those present below the cutoff, which can be formally

tested by employing our proposed discontinuity in density test. To begin, Figure 2(a) presents the

histogram of counties below and above the cutoff. This rough density estimate is the preliminary

data processing used in the original test proposed by McCrary (2008), which requires choosing first

both the bin length of the histogram and the number (and location) of bins, and then a bandwidth

for the second-step local polynomial fit. Figure 2(b) presents our smooth local polynomial density
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estimate along with pointwise confidence intervals for a grid of points near the cutoff x̄. This fits

is fully automatic, as it is constructed using a local data-driven bandwidth estimate and robust

bias-correction, and is obtained using our general purpose software described in Cattaneo et al.

(2017a).

Table 1 presents the empirical results from our manipulation test. This considers two main

approaches, both covered by our theoretical work and available in our software implementation:

(i) using two distinct bandwidths on each side of the cutoff (h− 6= h+) and (ii) using a common

bandwidth for each side of the cutoff (h− = h+), with h− and h+ denoting the bandwidth on

the left and on the right, respectively. For each of these approaches, we consider three distinct

implementations of our manipulation test, which varies the degree of polynomial approximation

used to smooth-out the empirical distribution function. Specifically, Tq(hp) denotes the test statistic

constructed using a q-th order local polynomial density estimator, with bandwidth choice that is

MSE-optimal for p-th order local polynomial density estimator. For example, our recommended

choice is T3(h2), with either common bandwidth or two different bandwidths, which amounts to

first choose MSE-optimal bandwidth(s) for local quadratic fit, and then conduct inference using

a cubic approximation instead. This approach, as mentioned before, is a simple implementation

of the robust bias-correction method (Calonico et al., 2014, 2017), and has been shown to deliver

not only valid first-order inference but also higher-order improvements in related settings. Notice

that Tp(hp) does not lead to a valid inference approach, in general, because a first-order bias will

make the test over-reject the null hypothesis (for example, see the simulations reported in Cattaneo

et al., 2017b, Section 6).

In this application, our empirical results show no evidence of manipulation. In fact, this finding

is consistent with the underlying institutional knowledge of the program: the poverty index was

constructed in 1965 at the federal level using county level information from the 1960 Census,

which implies it is indeed highly implausible that individual counties could have manipulated their

assigned poverty index. Results in Table 1 suggests that this finding is also robust against different

bandwidth and local polynomial order specifications.
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Figure 2. Manipulation Testing, Head Start Data.
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Notes: (i) panel (a) reports histogram estimate of the running variable (poverty index) computed with default values
in R, and panel (b) reports local polynomial density using companion R (and Stata) package described in Cattaneo
et al. (2017b); and (ii) n− = 2, 504, n+ = 300, and x̄ = 59.1984.

Table 1. Manipulation Testing, Head Start Data.

Bandwidths Eff. n Test

left right left right T p-val

h− 6= h+

T2(ĥ1) 15.771 2.326 581 65 0.024 0.981

T3(ĥ2) 19.776 8.296 762 210 −1.146 0.252

T4(ĥ3) 32.487 10.808 1598 232 −1.083 0.279

h− = h+

T2(ĥ1) 3.274 3.274 99 95 −1.355 0.175

T3(ĥ2) 9.213 9.213 316 221 −0.515 0.607

T4(ĥ3) 12.270 12.270 419 243 −0.712 0.477

Notes: (i) Tp(h) denotes the manipulation test statistic using p-th order density estimators with bandwidth choice h
(which could be common on both sides or different on either side of the cutoff), and ĥp denotes the estimated MSE-
optimal bandwidths for p-th order density estimator or difference of estimators (depending on the case considered); (ii)
Columns under “Bandwidths” report estimated MSE-optimal bandwidths, Columns under “Eff. n” report effective
sample size on either side of the cutoff, and Columns under “Test” report value of test statistic (T ) and two-sided
p-value (p-val); and (iii) first three rows allow for different bandwidths on each side of the cutoff, while last three
rows employ a common bandwidth on both sides of the cutoff (chosen to be MSE-optimal for the difference of density
estimates). All estimates are obtained using companion R (and Stata) package described in Cattaneo et al. (2017b).
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5 Application: Counterfactual Densities

The previous application on manipulation testing focused on density estimation and inference at

a boundary point. The density was also estimated at other points near the boundary but only

for graphical presentation (Figure 2(b)). In this second application, the object of interest are

density functions over their entire support, including boundaries and near-boundary regions. In

addition, we now employ local polynomial density estimation with estimated weighting schemes, as

this is a key feature needed for counterfactual analysis (and many other applications). Our general

estimation strategy is specialized to the counterfactual density approach originally proposed by

DiNardo et al. (1996). The focus of this section is on density estimation, and we refer readers

to Chernozhukov et al. (2013), and references therein, for related methods based on distribution

functions as well as for an overview of the literature on counterfactual analysis.

To construct a counterfactual density or, more generally, reweighted density estimators, we simply

need to set the weights {w1, w2, · · · , wn} appropriately. In most applications, this also requires

constructing preliminary consistent estimators of these weights, as we illustrate in this section.

Following DiNardo et al. (1996), suppose the observed data is {(xi, ti, z′i)′ : 1 ≤ i ≤ n}, where xi

continues to be the main outcome variable, zi collects other covariates, and ti is a binary variable

indicating to which group unit i belongs to. For concreteness, we call these two groups control and

treatment, though our discussion does not need to bear any causal interpretations.

The marginal distribution of the outcome variable xi for the full sample can be easily estimated

without weights (that is, wi = 1). In addition, two conditional densities, one for each group, can

be estimated using w1
i = ti/P[ti = 1] for the treatment group and w0

i = (1 − ti)/P[ti = 0] for the

control group, and are denote by f̂1(x) and f̂0(x), respectively. For example, in the context of

randomized controlled trials, these density estimators can be useful to depict the distribution of

the outcome variables for control and treatment units.

A more challenging question is: What would the outcome distribution have been, had the treated

units had the same covariates distribution as the control units? The resulting density is called the

counterfactual density for the treated, which is denoted by f1B0(x). Knowledge about this distribu-

tion is important for understanding differences between f1(x) and f0(x), as the outcome distribution

is affected by both group status and covariates distribution. Furthermore, the counterfactual distri-
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bution has another useful interpretation: Assume the outcome variable is generated from potential

outcomes, xi = tixi(1) + (1 − ti)xi(0), then under unconfoundedness, that is, assuming ti is inde-

pendent of (xi(0), xi(1))′ conditional on the covariates zi, f1B0(x) is the counterfactual distribution

for the control group: it is the density function associated with the distribution of xi(1) conditional

on ti = 0.

Regardless of which interpretation the researcher takes, f1B0(x) is of interest and can be estimated

using our generic density estimator f̂(x) with the following weights:

w1B0
i = ti ·

P[ti = 0|zi]
P[ti = 1|zi]

P[ti = 1]

P[ti = 0]
.

In practice, this choice of weighting scheme is unknown because the conditional probability P[ti =

1|zi], a.k.a. the propensity score, is not observed. Thus, researchers estimate this quantity using a

flexible parametric model, such as Probit or Logit. Our technical results allow for these estimated

weights to form counterfactual density estimators after replacing the theoretical weights by their

estimated counterparts. All our theoretical results presented in the Supplement Appendix, including

distributional approximations and consistent bandwidth selection, continue to apply in this case.

5.1 Empirical Illustration

We demonstrate empirically how marginal, conditional and counterfactual densities can be esti-

mated with our proposed method. We consider the effect of education on earnings using a subsam-

ple of the data in Abadie et al. (2002). The data consists of individuals who did not enroll in the Job

Training Partnership Act (JTPA). The main outcome variable is the sum of earnings in a 30-month

period, and individuals are split into two groups according to their education attainment: ti = 1

for those with high school degree or GED, and ti = 0 otherwise. Also available are demographic

characteristics, including gender, ethnicity, age, marital status, AFDC receipt (for women), and a

dummy indicating whether the individual worked at least 12 weeks during a one-year period. The

sample size is 5, 447, with 3, 927 being either high school graduates or GED. Summary statistics

are available as the fourth column in Table 2. We leave further details on the JTPA program to

Section 6, where we utilize a larger sample and conduct distribution estimation in a randomized

controlled (intention-to-treat) and instrumental variables (imperfect compliance) setting.
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It is well-known that education has significant impact on labor income, and we first plot earning

distributions separately for subsamples with and without high school degree or GED. The two

estimates, f̂1(x) and f̂0(x), are plotted in panel (a) of Figure 3. There, it is apparent that the

earning distribution for high school graduates is very different compared to those without high

school degree. More specifically, both the mean and median of f̂1(x) are higher than f̂0(x), and

f̂1(x) seems to have much thinner left tail and thicker right tail.

As mentioned earlier, direct comparison between f̂1(x) and f̂0(x) does not reveal the impact of

having high school degree on earning, since the difference is confounded by the fact that individuals

with high school degree can have very different characteristics (measured by covariates) compared

to those without. We employ covariates adjustments, and ask the following question: what would

the earning distribution have been for high school graduates, had they had the same characteristics

as those without such degree?

We estimate the counterfactual distribution f1B0(x) by our proposed method, and is shown in

panel (b) of Figure 3. The difference between f̂1B0(x) and f̂1(x) is not very profound, although

it seems f̂1B0(x) has smaller mean and median. On the other hand, difference between f̂0(x) and

f̂1B0(x) remains highly significant. Our empirical finding is compatible with existing literature on

return to education: It is generally believed that education leads to significant accumulation of

human capital, hence increase in labor income. As a result, educational attainment is usually one

of the most important “explanatory variables” for difference in income and earning.

6 Application: IV Specification and Heterogeneity

Self-selection and treatment effect heterogeneity are important concerns in causal inference and

studies of socioeconomic programs. It is now well understood that classical treatment parameters,

such as the average treatment effect or the treatment effect on the treated, are not identifiable even

when treatment assignment is fully randomized due to imperfect compliance. Indeed, what can

be recovered is either an intention-to-treat parameter or, using the instrumental variables method,

some other more local treatment effect, specific to a subpopulation: the “compliers.” See Imbens

and Rubin (2015) and references therein for further discussion. Practically, this poses two issues

for empirical work employing instrumental variables methods focusing on local average treatment
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Figure 3. Earning Distributions by Education, JTPA.
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Notes: (i) Full: earning distribution for the full sample (n = 5, 447); (ii) HS or GED (N/Y): earning distributions
for subgroups without and with high school degree or GED (n = 1, 520 and 3, 927, respectively); (iii) HS or GED
(Y, counterfactual): counterfactual earning distribution. Point estimates are obtained by using local polynomial
regression with order 2, and robust confidence intervals are obtained with local polynomial of order 3. Bandwidths
are chosen by minimizing integrated mean squared errors. All estimates are obtained using companion R (and Stata)
package described in Cattaneo et al. (2017a).

effects. First, since compliers are usually not identified, it is crucial to understand how different

their characteristics are compared to the population as a whole. Second, it is often desirable to

have a thorough estimate of the distribution of potential outcomes, which provides information not

only on the mean or median, but also its dispersion, overall shape, or local curvatures.

Motivated by these observations, and to illustrate the applicability of our density estimation

methods, we now consider two related problems. First, we investigate specification testing in the

context of Local Average Treatment Effects based on comparison of two densities as discussed

by Kitagawa (2015). This method requires estimating two densities nonparametrically with non-

estimated weights. Second, we consider estimating the density of potential outcomes for compliers

in the IV setting of Abadie (2003), which allows for conditioning on covariates. The resulting

density plots not only provide visual guides on treatment effects, but also can be used for further
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analysis to construct a rich set of summary statistics or as inputs for semiparametric procedures.

This density method requires estimated weights.

We first introduce the notation and the potential outcomes framework. For each individual there

is a binary indicator of treatment assignment (a.k.a. the instrument), denoted by di. The actual

treatment (takeup), however, can be different, due to imperfect compliance. More specifically, let

ti(0) and ti(1) be the two potential treatments, corresponding to di = 0 and 1, then the observed

binary treatment indicator is ti = diti(1) + (1−di)ti(0). We also have a pair of potential outcomes,

xi(0) and xi(1), associated with ti = 0 and 1, and what is observed is xi = tixi(1) + (1− ti)xi(0).

Finally, also available are some covariates, collected in zi. We assume that the observed data is a

random sample {(xi, ti, di, z′i)′ : 1 ≤ i ≤ n}.

There are three important assumptions for identification. First, the instrument has to be ex-

ogenous, meaning that conditional on covariates, it is independent of the potential treatments and

outcomes. Second, the instrument has to be relevant, meaning that conditional on covariates, the

instrument should be able to induce changes in treatment takeups. Third, there are no defiers

(a.k.a. the monotonicity assumption). We do not reproduce the exact details of those assumptions

and other technical requirements for identification; see the references given for more details.

Building on Balke and Pearl (1997) and Heckman and Vytlacil (2005), Kitagawa (2015) discusses

interesting testable implications in this IV setting, which can be easily adapted to test instrument

validity using our density estimator. In the current context, the testable implications take the

following form: for any (measurable) set B ⊂ R,

P[xi ∈ B, ti = 1|di = 1] ≥ P[xi ∈ B, ti = 1|di = 0],

and P[xi ∈ B, ti = 0|di = 0] ≥ P[xi ∈ B, ti = 0|di = 1].

The first requirement holds trivially in the JTPA context, since the program does not allow enroll-

ment without being offered (that is, P[ti = 1|di = 0] = 0). Therefore we demonstrate the second

with our density estimator. Let fd=0,t=0(x) be the earning density for the subsample di = 0 and

ti = 0, that is, for individuals without JTPA offer and not enrolled. Similarly let fd=1,t=0(x) be

the earning density for individuals offered JTPA but not enrolled. Then the second inequality in
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the above display is equivalent to

P[ti = 0|di = 0] · fd=0,t=0(x) ≥ P[ti = 0|di = 1] · fd=1,t=0(x), for all x ∈ R.

Thus, our density estimator can be used directly, where fd=0,t=0(x) is consistently estimated with

weights wd=0,t=0
i = (1− di)(1− ti)/P[di = 0, ti = 0], and fd=1,t=0(x) is consistently estimated with

wd=1,t=0
i = di(1− ti)/P[di = 1, ti = 0].

Abadie (2003) showed that the distributional characteristics of compliers are identified, and can

be expressed as reweighted marginal quantities. We focus on three distributional parameters here.

The first one is the distribution of the observed outcome variable, xi, for compliers, which is denoted

by fc. This parameter is important for understanding the overall characteristics of compliers, and

how different it is from the populations. The other two parameters are distributions of the potential

outcomes, xi(0) and xi(1), for compliers, since the difference thereof reveals the effect of treatment

for this subsample. They are denoted by fc,0 and fc,1, respectively. The three density functions can

also be estimated using our proposed local polynomial density estimator f̂(x) using, respectively,

the following weights:

wci =
1

P[ti(1) > ti(0)]
·
(

1− ti(1− di)
P[di = 0|zi]

− (1− ti)di
P[di = 1|zi]

)
,

wc,0i =
1

P[ti(1) > ti(0)]
· (1− ti) ·

1− di − P[di = 0|zi]
P[di = 0|zi]P[di = 1|zi]

,

wc,1i =
1

P[ti(1) > ti(0)]
· ti ·

di − P[di = 1|zi]
P[di = 0|zi]P[di = 1|zi]

.

Here, the weights need to be estimated in practice, unless the researcher has precise knowledge about

the treatment assignment mechanism, but our results again allow for
√
n-consistenty estimated

weights such as those obtained by fitting a flexible Logit or Probit model to approximate the

propensity score P[di = 1|zi].

6.1 Empirical Illustration

The JTPA is a large publicly funded job training program targeting at individuals who are econom-

ically disadvantaged and/or facing significant barriers to employment. Individuals were randomly

offered JTPA trainings, the treatment takeup, however, was only about 67% among those who
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Table 2. Summary Statistics for the JTPA data.

Full JTPA Offer JTPA Enrollment

N Y N Y

Income 17949.20 17191.13 18321.59 17015.58 19098.44

HS or GED 0.72 0.71 0.72 0.70 0.74

Male 0.46 0.47 0.46 0.48 0.45

Nonwhite 0.36 0.36 0.36 0.36 0.37

Married 0.28 0.27 0.29 0.27 0.29

Work ≤ 12 0.44 0.43 0.44 0.44 0.44

AFDC 0.17 0.17 0.17 0.16 0.19

Age

22-25 0.24 0.25 0.24 0.24 0.25

26-29 0.21 0.20 0.21 0.21 0.21

30-35 0.24 0.25 0.24 0.24 0.25

36-44 0.19 0.19 0.19 0.20 0.19

45-54 0.08 0.08 0.08 0.08 0.07

Sample Size 9872 3252 6620 5447 4425

Columns: (i) Full: full sample; (ii) JTPA Offer: whether offered JTPA services; (iii) JTPA Enrollment: whether
enrolled in JTPA.
Rows: (i) Income: cumulative income over 30-month period post random selection; (ii) HS or GED: whether has
high school degree or GED; (iii) Male: gender being male; (iv) Nonwhite: black or Hispanic; (v) Married: whether
married; (vi) Work ≤ 12: worked less than 12 weeks during one year period prior to random assignment; (vii) Age:
age groups.

were offered. Therefore the JTPA offer provides valid instrument to study the impact of the job

training program. We continue to use the same data as Abadie et al. (2002), who analyzed quantile

treatment effects on earning distributions.

Besides the main outcome variable and covariates already introduced in Section 5, also available

are the treatment takeup (JTPA enrollment) and the instrument (JTPA Offer). See Table 2 for

summary statistics for the full sample and separately for subgroups. As the JTPA offers were

randomly assigned, it is possible to estimate the intent-to-treat effect by mean comparison. Indeed,

individuals who are offered JTPA services earned, on average, $1, 130 more than those not offered.

On the other hand, due to imperfect compliance, it is in general not possible to estimate the effect of

job training (i.e. the effect of JTPA enrollment), unless one is willing to impose strong assumptions

such as constant treatment effect.

We first implement the IV specification test, which is straightforward using our density estimator

f̂(x): one first constructs two density estimates using the weights given earlier, wd=0,t=0
i and

wd=1,t=0
i , and then scales down the density estimates by the corresponding conditional probabilities.
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Figure 4. Testing Validity of Instruments, JTPA.
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∑
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f̂d=1,t=0(x). Point estimates are obtained by using

local polynomial regression with order 2, and robust confidence intervals are obtained with local polynomial of order
3. Bandwidths are chosen by minimizing integrated mean squared errors. All estimates are obtained using companion
R (and Stata) package described in Cattaneo et al. (2017a).

We plot the two estimated (scaled) densities in Figure 4. A simple eyeball test suggests no evidence

against instrumental variable validity. A formal hypothesis test, justified using our theoretical

results, confirms this finding.

Second, we estimate the density of the potential outcomes for compliers. In panel (a) of Figure

5, we plot earning distributions for the full sample and that for the compliers, where the second

is estimated using the weights wci , introduced earlier. The two distributions seem quite similar,

while compliers tend to have higher mean and thinner left tail in the eaning distribution. Next we

consider the intent-to-treat effect, as the difference in earning distributions for subgroups with and

without JTPA offer (a.k.a. the reduced form estimate in the 2SLS context). This is given in panel

(b) of Figure 5. The effect is significant, albeit not very large. We also plot earning distributions for

individuals enrolled (and not) in JTPA in panel (c). Not surprisingly, the different is much larger.

Simple mean comparison implies that enrolling in JTPA is associated with $2, 083 more income.

Unfortunately, neither panel (b) nor (c) reveals information on distribution of potential outcomes.
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To see the reason, note that in panel (b) earning distributions are estimated according to treatment

assignment, but potential outcomes are defined according to treatment takeup. And panel (c) does

not give potential outcome distributions since treatment takeup is not randomly assigned. In panel

(d) of Figure 5, we use weighting schemes wc,0i and wc,1i to construct potential earning distributions

for compliers, which estimates the identified distributional treatment effect in this IV setting.

Indeed, treatment effect on compliers is larger than the intent-to-treat effect, but smaller than that

in panel (c). The result is compatible with the fact that JTPA has positive and nontrivial effect on

earning. Moreover, it demonstrates the presence of self-selection: those who participated in JTPA

on average would benefit the most, followed by compliers who are regarded as “on the margin of

indifference”.

7 Simulation Evidence

We discuss briefly a representative example of the simulation results reported in the Supplemental

Appendix, which includes more comprehensive Monte Carlo evidence employing with different data

generating process, evaluation point, sample size, and polynomial order, among other features.

We generate i.i.d. sample of size 2,000 from the standard exponential distribution, which has

distribution function F (x) = 1−e−x and density e−x with support [0,∞). We choose two evaluation

points, x = 0 and 1.5, corresponding to boundary and interior cases, respectively. For estimating

density, we use the triangular kernel K(x) = (1−|x|)1(|x| ≤ 1) and local polynomial of order 2. For

bandwidth, we consider both a fixed bandwidth grid as multiples of the MSE optimal bandwidth,

as well a as data-driven bandwidth estimated from data. Details about our bandwidth selection

procedure are also available in the Supplemental Appendix.

We collect the simulation results in Table 3. First, note that the bias increases as the bandwidth

gets larger, while variance decreases. This is compatible with classical results in nonparametrics:

undersmoothing tend to make the estimator more biased but less volatile. Second, standard errors

constructed from Theorem 2 works extremely well. Indeed, average standard errors across simu-

lations (column “mean”) match the simulated variability of our estimator (column “sd”) almost

perfectly. Third, empirical size is well controlled. For fixed bandwidths, the empirical rejection rate

is very close to the nominal 5% level, while for estimated bandwidth we have slight over-rejection,
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Figure 5. Earning Distributions, JTPA.
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(d) Potential Outcome Distributions

Notes: panel (a) earning distributions in the full sample and for compliers; panel (b) earning distributions by JTPA
offer; panel (c) earning distributions by JTPA enrollment; panel (d) distributions of potential outcomes for compliers.
Point estimates are obtained by using local polynomial regression with order 2, and robust confidence intervals are
obtained with local polynomial of order 3. Bandwidths are chosen by minimizing integrated mean squared errors.
All estimates are obtained using companion R (and Stata) package described in Cattaneo et al. (2017a).

due to the extra variability introduced by estimating bandwidth. Note that we center the test

statistic at simulated average of our estimator, to eliminate the impact of smoothing bias.
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Table 3. Simulation Results.

(a) x = 0 (boundary point)

f̂ SE

bias sd
√

mse mean size

hMSE×
0.1 0.000 0.187 0.187 0.185 5.36

0.3 0.000 0.103 0.103 0.103 5.54

0.5 −0.007 0.078 0.078 0.077 5.08

0.7 −0.017 0.063 0.065 0.063 4.90

0.9 −0.028 0.054 0.061 0.053 4.92

1 −0.034 0.051 0.061 0.050 4.88

1.1 −0.039 0.048 0.062 0.047 4.90

1.3 −0.052 0.042 0.067 0.041 5.12

1.5 −0.065 0.038 0.075 0.037 5.36

1.7 −0.078 0.035 0.085 0.034 5.86

1.9 −0.091 0.032 0.097 0.031 5.88

ĥ −0.031 0.073 0.079 0.064 8.70

(b) x = 1.5 (interior point)

f̂ SE

bias sd
√

mse mean size

hMSE×
0.1 0.001 0.037 0.037 0.036 6.12

0.3 0.001 0.021 0.021 0.020 5.96

0.5 0.002 0.016 0.016 0.016 5.62

0.7 0.003 0.013 0.013 0.013 5.14

0.9 0.005 0.011 0.012 0.011 4.92

1 0.006 0.011 0.012 0.011 5.04

1.1 0.007 0.010 0.012 0.010 5.00

1.3 0.010 0.009 0.013 0.009 4.94

1.5 0.013 0.008 0.015 0.008 4.90

1.7 0.016 0.008 0.018 0.008 4.54

1.9 0.020 0.007 0.021 0.007 4.60

ĥ 0.005 0.012 0.013 0.011 8.24

Notes: (i) bias: empirical bias of the estimators; (ii) sd: empirical standard deviation of the estimators; (iii)
√

mse:
empirical MSE of the estimators; (iv) mean: empirical average of the estimated standard errors; (v) size: empirical
size of testing the hypothesis at nominal 5% level, the test statistic is centered at Ef̂ . For each simulation, we use
sample of size n = 2, 000, triangular kernel, and local polynomial of order 2. 5,000 Monte Carlo repetitions are used.

Additional simulations for density estimation are available in the Supplemental Appendix, and

simulation evidence specialized to the density continuity test are given in our companion paper

Cattaneo et al. (2017b).

8 Conclusion

We introduced a new kernel-based density estimator employing local polynomial approximation,

which is intuitive, easy to implement and boundary adaptive. It requires choosing only one tuning

parameter, and it avoids the need for data transformation (such as pre-binning), additional tun-

ning parameter choices, or other boundary-specific transformations. Furthermore, the estimator

can be used directly for all evaluation points on the support of the variable of interest (boundary,

near-boundary or interior). From a technical perspective, we developed valid bias and variance
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approximations, large sample distributional approximations, consistent standard errors, consistent

data-driven bandwidth selectors, all these results allowing for root-n estimable weighted distribu-

tions. All these results were illustrated with three methodological applications: discontinuity-in-

density testing, counterfactual comparisons, and specification testing and compliers heterogeneity

analysis in IV settings.

Our methods can also be applied to many other contexts of interest in empirical work, including

auctions, bunching, missing data, measurement error, and data combination, just to mention a

few more. In fact, our distribution, density and derivatives thereof estimators can be used in any

nonparametric and semiparametric setting where these objected need to be estimated. To make

our methods as accessible as possible we also provide general purpose software in Stata and R, as

described in Cattaneo et al. (2017a,b).
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1 Setup

We repeat the setup in the main paper for completeness. Recall that {xi}1≤i≤n is a random sample

from the distribution G, supported on X = [xL, xU]. Note that it is possible to have xL = −∞
and/or xU = ∞, and we only need the extra requirement that P[xi = ±∞] = 0 so that G is a

tight distribution. We will assume both xL and xU are finite, to facilitate discussion on boundary

estimation issues. Since the method we propose is local in nature, whether or not G has bounded

support is not relevant, and we introduce the two “end points” xL and xU to simplify notation and

discussions later.

Without loss of generality, we assume there is a companion set of weights {wi}1≤i≤n, such that

F (u) := E[1[xi ≤ u]wi] is a well-defined distribution function. Detailed assumptions are postponed

to a later section. Note that when wi ≡ 1, F reduces to G. We also allow the weights to be

estimated, and discussions thereof is also postponed.

Define the empirical distribution function (hereafter e.d.f.)

F̂ (u) =
∑
i

wi1[xi ≤ u]
/∑

i

wi,

and summations are understood as from 1 to n, unless otherwise specified. F̂ has appealing

properties such as it is 0 below the first order statistic, and 1 above the largest one.

Remark 1 (Alternative: F̃ ). In the main paper we used another specification of the e.d.f., as

F̃ (u) =
1

n

∑
i

wi1[xi ≤ u].

The difference between F̂ and F̃ is the scaling factor, and is negligible for most purposes. We note,

however, that there are some subtle differences.

First, F̃ , viewed as a process, does not converge to a Brownian bridge unless wi = 1. To

see this, simply plugin u = xU, leading to F̃ (xU) =
∑

iwi/n which has nondegenerate distribution

asymptotically. If one is interested in nonparametric estimates such as density or further derivatives,

using both F̂ and F̃ are fine. The “asymmetry” in F̃ will only affect the estimated intercept in our

local polynomial regression.

The major difference between F̂ and F̃ emerges when the weights do not sum up to 1, i.e.

0 < E[wi] < 1. To see this, consider the density test example introduced in the main paper. There

the object of interest is the density at one point, x̄, estimated from left (or right). Consider the

weights wi = 1[xi < x̄], which effectively restricts to the subsample to the left of cutoff. Then

F̃ constructed from the weights is not a proper distribution function, since it starts from 0 and

reaches maximum
∑

i 1[xi ≤ x̄]/n at the cutoff, hence the density estimated thereof is not proper,

as does not integrates to 1. On the other hand, using F̂ will give a proper density. The difference

between those two densities is simply a scaling factor.

In the main paper we use F̃ to simplify exposition and discussion, while in this Supplemental

Appendix we use F̂ to develop the general theory, as it has better mathematical properties. We
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note that using either will deliver asymptotically equivalent nonparametric estimates.

Given p ∈ N, our local polynomial distribution estimator is defined as

β̂p(x) = arg min
β∈Rp+1

∑
i

(
F̂ (xi)− rp(xi − x)′β

)2
K
(xi − x

h

)
,

where rp(u) = [1, u, u2, · · · , up] is a (one-dimensional) polynomial expansion; K is a kernel function

whose properties are to be specified later; and h = hn is a bandwidth sequence. The estimator,

β̂p(x), is motivated as a local Taylor series expansion, hence the target parameter is (i.e. the

population counterpart, assuming exists)

βp(x) =

[
1

0!
F (x),

1

1!
F (1)(x), · · · , 1

p!
F (p)(x)

]′
.

Therefore, we also write

β̂p(x) =

[
1

0!
F̂p(x),

1

1!
F̂ (1)
p (x), · · · , 1

p!
F̂ (p)
p (x)

]′
,

or equivalently, F̂
(v)
p = v!e′vβ̂p(x), provided that v ≤ p, and ev is the (v+ 1)-th unit vector of Rp+1.

We also use f = F (1) to denote the corresponding probability density function (hereafter p.d.f) for

convenience.

The estimator has the following matrix form, which we will utilize:

β̂p(x) = H−1

(
1

n
X′hKhXh

)−1(
1

n
X′hKhY

)
,

where

Xh =
[ (xi − x

h

)j ]
1≤i≤n, 0≤j≤p

,

Kh is a diagonal matrix collecting {h−1K((xi − x)/h)}1≤i≤n, and Y is a column vector collecting

{F̂ (xi)}1≤i≤n. We also use the convention Kh(u) = h−1K(u/h).

Before giving an overview of our results, we make a short digression on definition of boundary

regions. Boundary region is defined as [xL, xL + h) ∪ (xU − h, xU], and the two segments are called

lower and upper boundaries, respectively. As the bandwidth vanishes as the sample size n increases,

boundary region is really a finite sample concept. To facilitate discussion on boundary issues, it

is common to consider a drifting sequence of evaluation points, x = xL + ch with 0 ≤ c < 1 or

x = xU − ch. We call such evaluation points in the lower and upper boundary region, respectively.

Therefore we allow the evaluation point x to depend on h (hence implicitly n), but do not make it

explicit to conserve notation. Remarks will be made when it is crucial to distinguish whether x is

fixed or a drifting sequence.

Remark 2 (More general notion of interior points). We assumed the support of the sample

being a (possibly unbounded) line segment in R purely for notational convenience. Assume the

support is a general measurable set X ⊂ R, interior points are then {x ∈ X : B(x, h) ⊂ X}, where

B(x, h) = {y ∈ R : |y− x| < h}. We don’t find this level of generality very useful, but note all our
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results easily adapt.

1.1 Additional Notation

In this Supplemental Appendix, we use n to denote sample size, and limits are taken with n→∞,

unless otherwise specified. Euclidean norms are denoted by | · |, and other norms will be defined at

their first appearances.

For sequence of numbers (or random variables), an - bn implies lim supn |an/bn| is finite, and an �
bn implies both directions. The notation an -P bn is used to denote that |an/bn| is asymptotically

tight: lim supε↑∞ lim supn P[|an/bn| ≥ ε] = 0. an �P bn implies both an -P bn and bn -P an.

When bn is a sequence of nonnegative numbers, an = O(bn) is sometimes used for an - bn, so does

an = OP(bn).

For probabilistic convergence, we use →P for convergence in probability and  for weak conver-

gence (convergence in distribution). Standard normal distribution is denoted as N (0, 1), with c.d.f.

Φ and p.d.f. φ.

throughout, we use C to denote generic constant factor which does not depend on sample size.

The exact value can change in different contexts.

1.2 Overview of Main Results

In this subsection, we give an overview of our results, including a (first order) mean squared error

(hereafter m.s.e.) expansion, and asymptotic normality. Fix some v ≥ 1 and p, we have the

following:

∣∣∣F̂ (v)
p (x)− F (v)(x)

∣∣∣ = OP

(
hp+1−vBp,v,x + hp+2−vB̃p,v,x +

√
1

nh2v−1
Vp,v,x

)
.

The previous result gives m.s.e. expansion for nonparametric derivative estimators, 1 ≤ v ≤ p, but

not for v = 0. With v = 0, F̂p(x) is essentially a smoothed e.d.f., which estimates the c.d.f. F (x).

Since F (x) is
√
n-estimable, it should be expected that it has very different properties compared

to the nonparametric components. Indeed, we have

∣∣∣F̂p(x)− F (x)
∣∣∣ = OP

(
hp+1Bp,0,x + hp+2B̃p,0,x +

√
1

n
Vp,0,x

)
.

There is another complication, however, when x is in the boundary region. For a drifting sequence

x in the boundary region, the e.d.f. F̂ (x) is “super-consistent” in the sense that it converges at

rate
√
h/n. The reason is that when x is near xL or xU, F̂ (x) is essentially estimating 0 or 1, and

the variance, F (x)(1−F (x)) vanishes asymptotically, giving rise to the additional factor
√
h. This

is shared by our estimator: for v = 0 and x in the boundary region, the c.d.f. estimator F̂p(x) is

super-consistent, with Vp,0,x � h.

Also note that for the m.s.e. expansion, we provide not only the first order bias, but also the

second order bias. We will only use the second order bias for bandwidth selection, since it is

well-known that in some cases the first order bias can vanish.
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The m.s.e. expansion provides rate of convergence of our estimators. The following shows that,

under suitable regularity conditions, they are also asymptotically normal. Again first consider

v ≥ 1.

√
nh2v−1

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v,x

)
 N (0,Vp,v,x) ,

provided that the bandwidth is not too large, so that after scaling, the remaining bias does not

explode. For v = 0, i.e. the smoothed e.d.f., we have√
n

Vp,0,x

(
F̂p(x)− F (x)− hp+1Bp,0,x

)
 N (0, 1) ,

where we moved the variance Vp,0,x as a scaling factor in the above display, to encompass the

situation where x lies in boundary region (recall from the previous subsection that in this case the

scaling factor has order
√
n/h).

1.3 Some Matrices

In this subsection we collect some matrices which will be used throughout this Supplemental Ap-

pendix. They show up in asymptotic results as components of bias and variance. Recall that x can

be either a fixed point or a drifting sequence, and for the latter, it takes the form x = xL + ch or

x = xU − ch for some c ∈ [0, 1).

Sp,x =

∫
h−1(X−x)

rp(u)rp(u)′K(u)du =

∫ xU−x
h

xL−x
h

rp(u)rp(u)′K(u)du,

cp,x =

∫
h−1(X−x)

rp(u)up+1K(u)du =

∫ xU−x
h

xL−x
h

rp(u)up+1K(u)du,

c̃p,x =

∫
h−1(X−x)

rp(u)up+2K(u)du =

∫ xU−x
h

xL−x
h

rp(u)up+1K(u)du,

c̃p,x =

∫
h−1(X−x)

rp(u)up+2K(u)du =

∫ xU−x
h

xL−x
h

rp(u)up+2K(u)du,

Γp,x =

∫∫
h−1(X−x)

(u ∧ v)rp(u)rp(v)K(u)K(v)dudv =

∫∫ xU−x
h

xL−x
h

(u ∧ v)rp(u)rp(v)K(u)K(v)dudv,

Tp,x =

∫
h−1(X−x)

rp(u)rp(u)′K(u)2du =

∫ xU−x
h

xL−x
h

rp(u)rp(u)′K(u)2du,

where h−1(X − x) = {h−1(y − x) : y ∈ X}. Later we will assume the kernel function K being

supported on [−1, 1], hence with bandwidth h ↓ 0, the region of integration in the above display

can be replaced by
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x (xL − x)/h (xU − x)/h

x interior −1 +1

x = xL + ch in lower boundary −c +1

x = xU − ch in upper boundary −1 +c

Since we do not allow xL = xU, no drifting sequence x can be in both boundary regions, at least

asymptotically.

1.4 Assumptions

In this section we give detailed assumptions supporting results, including preliminary lemmas and

our main results. Other specific assumptions will be given in corresponding sections.

Let O be a subset of Euclidean space with nonempty interior, Cs(O) denotes functions that are

at least s-times continuously differentiable in the interior of O, and that the derivatives can be

continuously extended to the boundary of O.

Assumption 1 (DGP).

(i) {xi, wi}1≤i≤n is a random sample.

(ii) xi has support X = [xL, xU] with xU > xL and distribution G. Further, G ∈ Cαx(X ).

(iii) Let ws(x) = E[wsi |xi = x], and ws ∈ Cαw,s(X ).

(iv) E[wi] = 1 and E[wi|xi] is nonnegative almost surely.

Part (i) is standard. Part (ii) and (iii) together implies smoothness of F . Part (iv) ensures that

F is a proper distribution function. To see this, note that F (xU) = E[wi] = 1, and for any Borel

subset A, F (A) =
∫
Aw1(x)dG(x), hence by construction F is absolute continuous with respect to

G, and w1(x) ≥ 0 almost surely implies F is a positive measure. For notational convenience, we

use w(·) = w1(·).
Technically, part (iv) is not essential for our theory. It is possible to drop this assumption entirely,

then the object of interest will be a general Radon-Nikodym derivative (and derivatives thereof)

that can be negative.

Assumption 2 (Kernel).

The kernel function K(·) is nonnegative, symmetric, and belongs to C0([−1, 1]). Further, it inte-

grates to one:
∫
RK(u)du = 1.

Assumption 2 is standard in nonparametric estimation, and is satisfied for common kernel func-

tions. We exclude kernels with unbounded support (for example the Gaussian kernel) for simplicity,

since such kernels will always hit boundaries. Our results, however, remain to hold with careful

analysis, albeit the notation becomes more cumbersome.

Also note that if we simply have
∫
RK(u)du > 0, i.e. the last part of the previous assumption is

violated, we can simply redefine K̃(u) = K(u)/
∫
RK(u)du. This is not essential since least squares

is invariant to multiplicative scaling.
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Assumption 3 (Positive density).

G(1)(x) > 0 for x ∈ X .

Technically, we do not need the density to be positive for all the support X . Since all our results

are local in nature, it suffices to have G(1)(x) > 0 for the evaluation point (hence strictly positive in

a neighborhood by continuity). We also use g to denote the density G(1) just to follow conventions.

2 Large Sample Properties with Observed Weights

2.1 Preliminary Lemmas

We first consider the object X′hKhXh/n

Lemma 1. Assume Assumptions 1–3 hold with αx ≥ 1. Further h→ 0 and nh→∞. Then

1

n
X′hKhXh = g(x)Sp,x + o(1) +OP

(
1/
√
nh
)
.

Note that with Lemma 1, the quantity X′hKhXh/n is asymptotically invertible. Since the density

g(x) enters as a multiplicative factor, it also shows why we need Assumption 3. Also note that this

result covers both interior x and boundary x. And depending on the nature of x, the exact form

of Sp,x differs.

With simple algebra, we have

β̂p(x)− βp(x) = H−1

(
1

n
X′hKhXh

)−1(
1

n
X′hKh(Y −Xβp(x))

)
,

and the following gives a further decomposition of the “numerator”.

1

n
X′hKh(Y −Xβp(x)) =

1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp
(xi − x

h

)(
F (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

+

∫ xU−x
h

xL−x
h

rp(u)
(
F̂ (x+ hu)− F (x+ hu)

)
K(u)g(x+ hu)du

+
1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− F (xi)

)
Kh(xi − x)−

∫ xU−x
h

xL−x
h

rp(u)
(
F̂ (x+ hu)− F (x+ hu)

)
K(u)g(x+ hu)du.

The first part represents the smoothing bias, and the second part can be analyzed as a sample

average, which will be given in a lemma. The real difficulty comes from the third term, which can

have nonnegligible (first order) contribution. We give it a further decomposition:

1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− F (xi)

)
Kh(xi − x) =

1 + oP(1)

n2

∑
i,j

rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

=
1 + oP(1)

n2

∑
i

rp
(xi − x

h

)
wi
(

1− F (xi)
)
Kh(xi − x) +

1 + oP(1)

n2

∑
i,j;i 6=j

rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x),
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hence we have the final decomposition:

1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp
(xi − x

h

)(
F (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x) (smoothing bias B̂S)

+ (1 + oP(1))

∫ xU−x
h

xL−x
h

rp(u)
(
F̂ (x+ hu)− F (x+ hu)

)
K(u)g(x+ hu)du (linear variance L̂)

+
1 + oP(1)

n2

∑
i

rp
(xi − x

h

)
wi
(

1− F (xi)
)
Kh(xi − x) (leave-in bias B̂LI)

+
1 + oP(1)

n2

∑
i,j;i6=j

{
rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

− E
[
rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

∣∣∣xj , wj]}. (quadratic variance R̂)

Now it becomes clear that for the estimator β̂p(x), it consists the following parts: (i) smoothing bias;

(ii) linear influence function; (iii) leave-in bias; (iv) second order degenerate U-statistic. To provide

intuition for the previous decomposition, the smoothing bias is a typical feature of nonparametric

estimators; leave-in bias occurs since each observation is used twice, in constructing the e.d.f. F̂ ,

and as a design point (that is, F̂ has to be evaluated at xi); finally the second order U-statistic

shows up since the “dependent variable”, Y, is estimated, so that a double sum is involved.

We first handle the two biases.

Lemma 2. Assume Assumptions 1–3 hold with αx ≥ p+ 1, αw ≥ p and αw,2 ≥ 0. Further h→ 0

and nh→∞. Then

B̂S = hp+1F
(p+1)(x)g(x)

(p+ 1)!
cp,x + oP(hp+1), B̂LI = OP

(
n−1) .

By imposing additional smoothness, it is also possible to characterize the next term in the

smoothing bias, which has order hp+2. Since that result is only used for bandwidth selection when

the leading bias vanishes, we do not report it here.

Next we consider the “influence function” part, L̂. This term is crucial in the sense that (under

suitable conditions such that R̂ is negligible) it determines the asymptotic variance of our estimator,

and with correct scaling, it is asymptotically normally distributed.

Lemma 3. Assume Assumptions 1–3 hold with αx ≥ 2, αw ≥ 1, αw,2 ≥ 0, and E[w4
i ] < ∞.

Further h→ 0 and nh→∞. Define the scaling matrix

Nx =

diag
{

1, h−1/2, h−1/2, · · · , h−1/2
}

x interior,

diag
{
h−1/2, h−1/2, h−1/2, · · · , h−1/2

}
x boundary,

then

√
nNx

[
g(x)Sp,x

]−1

L̂ N (0, Vp,x),
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with

Vp,x =


(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
e0e
′
0 +H(1)(x)(I− e0e

′
0)S−1

p,xΓp,xS
−1
p,x(I− e0e

′
0) x interior

H(1)(x)
(
S−1
p,xΓp,xS

−1
p,x + ce0e

′
0

)
x = xL + ch

H(1)(x)
(
S−1
p,xΓp,xS

−1
p,x + ce0e

′
0 − (e1e

′
0 + e0e

′
1)
)

x = xU − ch.

H(u) := E[w2
i 1[xi ≤ u]].

The scaling matrix depends on whether the evaluation point is located in the interior or boundary,

which is a unique feature of our estimator. To see the intuition, consider an interior point x, and

recall that the first element of β̂p(x) is the smoothed e.d.f. Since the distribution function is
√
n-estimable, its property is very different from the rest of β̂p(x), which are nonparametric in

nature. Indeed, let wi ≡ 1, then F = G = H, and the first component of the variance becomes

G(x)(1 − G(x)) = F (x)(1 − F (x)), which is the variance of the standard e.d.f. Furthermore, the

smoothed e.d.f. F̂p(x) is asymptotically independent of the rest of β̂p(x).

When x is either in the lower or upper boundary region, F̂p(x) essentially estimates 0 or 1,

respectively, hence it is super-consistent in the sense that it converges even faster than 1/
√
n. In

this case, the leading 1/
√
n-variance vanishes, and higher order residual noise dominates, which

makes F̂p(x) no longer independent of other nonparametric estimates, justifying the formula of

boundary evaluation points.

It is tempting to estimate the variance Vp,x in a plug-in manner, where unknown objects H, H(1)

and F are replaced with estimates. This is feasible, and can be appealing if wi ≡ 1, which forces

H to be the distribution function and H(1) the density. In general, however, a plug-in estimator

for Vp,x requires estimating the nuisances functions H and H(1) nonparametrically. Later we will

propose a fully data-driven and design adaptive estimator, which does not require estimating H

and H(1) explicitly.

Finally we consider the second order U-statistic component.

Lemma 4. Assume Assumptions 1–3 hold with αx ≥ 1, αw ≥ 0, and αw,2 ≥ 0. Further h → 0

and nh→∞. Then

V[R̂] =
2

n2h
g(x)

[
H(x)− 2H(x)F (x) +H(xU)F (x)2

]
Tp,x +O(n−2).

In particular, when x is in the boundary region, the above has order O(n−2).

2.2 Main Results

In this section we provide two main results, one on asymptotic normality, and the other on standard

error.

Theorem 1 (Asymptotic Normality). Assume Assumptions 1–3 hold with αx ≥ p+1, αw ≥ p,

αw,2 ≥ 0 for some integer p ≥ 0, and E[w4
i ] < ∞. Further h → 0, nh2 → ∞ and nh2p+1 = O(1).
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Then

√
nh2v−1

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v,x

)
 N

(
0, Vp,v,x

)
, 1 ≤ v ≤ p,√

n

Vp,0,x

(
F̂p(x)− F (x)− hp+1Bp,0,x

)
 N

(
0, 1

)
.

The constants are

Bp,v,x = v!
F (p+1)(x)

(p+ 1)!
e′vS

−1
p,xcp,x,

and

Vp,v,x =


(v!)2H(1)(x)e′vS

−1
p,xΓp,xS

−1
p,xev 1 ≤ v ≤ p

H(x)− 2H(x)F (x) +H(xU)F (x)2 v = 0, x interior

hH(1)(x)
(
e′0S

−1
p,xΓp,xS

−1
p,xe0 + c

)
v = 0, x = xL + ch or xU − ch.

Remark 3 (On nh2p+1 = O(1)). This condition ensures that higher order bias, after scaling, is

asymptotically negligible.

Remark 4 (On nh2 → ∞). This condition ensures that the second order U-statistic, R̂, has

smaller order compared to L̂. Note that this condition can be dropped for boundary x or when the

parameter of interest is F̂p, the smoothed e.d.f.

Remark 5 (On Vp,0,x). One might be tempted to conclude that the variance formula has a

discontinuity in x for the smoothed e.d.f. (i.e. v = 0), when x switches from interior to boundary.

This phenomenon, however, is purely an artifact of different asymptotic frameworks. To see this,

assume xL = 0 and xU = 1, and for some sample the bandwidth h = 0.2 is used. Given our

convention, the point x = 0.3 is not a boundary point, hence we should consider
√
n as the correct

scaling for F̂p(0.3).

On the other hand, one can also consider 0.3 as part of the asymptotic sequence x = 1.5h, in

which case one promises to move the evaluation point closer to the lower boundary as sample size

increases. Then despite the fact that such x is not a boundary point, F̂p(x) is still an estimator of

zero, which means it is super consistent and the correct scaling is
√
n/h.

To reconcile, note that the above discussion also applies to the usual e.d.f. F̂ (x), and depending

on the “promise” one makes, either x is fixed or drifts to boundaries, asymptotic claims change

accordingly. Therefore the “discontinuity” of Vp,0,x in x is really the effect of a combination of

(i) at boundaries c.d.f. estimators are
√
n-degenerate; and (ii) c.d.f. estimators target at different

objectives in different asymptotic frameworks.

Such phenomenon does not occur for other components of β̂p(x), since they have nonparametric

nature, and the evaluation point only affects the exact form of multiplicative constants, but not

the rate of convergence.

Now we consider the problem of variance estimation. Given the formula in Theorem 1, it is

possible to estimate the asymptotic variance by “plug-in” unknown quantities regarding the data

generating process. For example consider Vp,1,x for the estimated density. Assume the researcher
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knows the location of the boundary xL and xU, the matrices Sp,x and Γp,x can be constructed

with numerical integration, since they are related to features of the kernel function, not the data

generating process. The unknown function H(1)(x) can also be estimated, at least when wi ≡ 1.1

Another approach is to utilize the decomposition of the estimator, in particular the L̂ term. To

introduce our variance estimator, we make the following definitions.

Ŝp,x =
1

n
XhKhXn =

1

n

∑
i

rp
(xi − x

h

)
rp
(xi − x

h

)′
Kh(xi − x)

Γ̂p,x =
1

n3

∑
i,j,k

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
1[xi ≤ xj ]− F̂ (xj)

)(
1[xi ≤ xk]− F̂ (xk)

)
.

Following is the main result regarding variance estimation. It is automatic and fully-adaptive, in

the sense that no knowledge about the location of boundaries is needed, neither does it require

estimating nuisance parameters (such as H or its derivatives when the weights are not identically

1).

Theorem 2 (Variance Estimation).

Assume Assumptions 1–3 hold with αx ≥ p + 1, αw ≥ p, αw,2 ≥ 0, and αw,4 ≥ 0 for some integer

p ≥ 0. Further h→ 0, nh2 →∞ and nh2p+1 = O(1). Then

V̂p,v,x ≡ (v!)2e′vNxŜ
−1
p,xΓ̂p,xŜ

−1
p,xNxev →P Vp,v,x.

Define the standard error as

σ̂p,v,x ≡ (v!)

√
1

nh2v
e′vŜ

−1
p,xΓ̂p,xŜ

−1
p,xev,

then

σ̂−1
p,v,x

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v,x

)
 N

(
0, 1

)
.

Remark 6 (σ̂p,v,x being automatic and fully-adaptive). Constructing V̂p,v,x requires the

knowledge of the location of boundaries, since the scaling matrix Nx depends on whether x is

interior or boundary. This is not surprising, since it is used in Theorem 1 to stabilize the estimator.

For statistical inference, it is not necessary to construct the scaling matrix Nx, which is why

the location of boundaries is irrelevant for constructing valid standard errors. Indeed, we do not

use this information when defining σ̂p,v,x. Furthermore, despite that we have to split the definition

of Vp,v,x according to v and x, σ̂p,v,x automatically adapts to different scenarios, hence provides a

unified approach for variance estimation.

3 Large Sample Properties with Estimated Weights

In this section we consider the case that the weights wi are estimated in a previous step. Although

intuitive, it is not easy to give general theories encompassing all estimated weights, since how the

1In this case H(1) = F (1) = f = g, which can be estimated by the consistent estimator f̂p.
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weights are estimated may differ in applications, which in turn, is likely to have nontrivial impact on

first order asymptotic results. For example in constructing the counterfactual density, the weights

are ratios of frequencies of individuals with certain characteristics at two time points, while for

Abadie (2003), the weights are constructed by employing binary treatment variable, instrument,

and additional covariates. On one hand, we would like to present a framework that is general enough

to encompass a wide range of applications, and on the other hand, it should also be tractable so

that it is empirically relevant.

Assume the weights take the form wi = w(zi; θ0), where zi are additional available information

besides xi (note that it is possible to make xi part of zi), and θ0 is some parameter to be estimated.

Of course it is possible to let the parameter θ to be vector-valued. This will only make the notation

more involved, which we will suppress. Let θ̂ be a consistent estimator of θ0, the weights used in

estimating the distributional properties are ŵi = w(zi; θ̂). To avoid introducing additional notation,

let F̂ be the e.d.f. except now it is constructed with estimated weights.

Consider the following expansion:

1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp
(xi − x

h

)(
F (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x) (B̂S)

+
1 + oP(1)

n

∑
i

∫ xU−x
h

xL−x
h

rp(u)ŵi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du (L̂)

+
1 + oP(1)

n2

∑
i

rp
(xi − x

h

)
ŵi
(

1− F (xi)
)
Kh(xi − x) (B̂LI)

+
1 + oP(1)

n2

∑
i,j;i 6=j

ŵj
{

rp
(xi − x

h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

−
∫ xU−x

h

xL−x
h

rp(u)
(
1[xj ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

}
, (R̂)

provided that n−1
∑

i ŵi →P 1. The component representing smoothing bias, i.e. B̂S remains the

same as before, hence the first half of Lemma 2 remains to apply. For the other terms, we collect

some preliminary lemmas in the following subsection.

Assumption 4 (Estimated weights).

(i) θ 7→ w(·; θ) is twice continuously differentiable, with derivatives denoted by ẇ and ẅ.

(ii) For some δ > 0, E[sup|θ−θ0|≤δ |w(zi; θ)|+ |ẇ(zi; θ)|+ |ẅ(zi; θ)|] <∞.

(iii)
√
n(θ̂ − θ0) =

∑
i ψi/
√
n+ oP(1), with ψi having zero mean and finite variance.

3.1 Preliminary Lemmas

We first consider the leave-in bias.

Lemma 5. Assume Assumptions 1–4 hold with αx ≥ 1. Further h → 0 and nh → ∞. Then

B̂LI = OP(1/n) = oP(
√
h/n).

The next lemma handles the quadratic variance R̂.
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Lemma 6. Assume Assumptions 1–4 hold with αx ≥ 1, αw ≥ 0, and αw,2 ≥ 0. Further h → 0

and nh2 →∞. Then R̂ = OP(1/
√
n2h+ 1/n) = oP(

√
h/n).

Note that we emphasize the two terms, B̂LI and R̂, having smaller order than
√
h/n, since the

latter is the rate of the L̂ term.

Lemma 7. Assume Assumptions 1–4 hold with αx ≥ 1, αw ≥ 0, and αw,2 ≥ 0. Further h → 0

and nh→∞. Then for x in interior,

√
nNxS

−1
p,x

1 + oP(1)

n

∑
i

∫ xU−x
h

xL−x
h

rp (u)
(
ŵi − wi

)(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

= g(x)
(
I(x)− I(xU)F (x)

)
e0

[
1√
n

∑
i

ψi

]
+ oP(1).

And for x in the boundary,

√
nNxS

−1
p,x

1 + oP(1)

n

∑
i

∫ xU−x
h

xL−x
h

rp (u)
(
ŵi − wi

)(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du = oP(1).

Here I(x) = E[ẇi1[xi ≤ x]].

This lemma has an important implication: estimating the weights will have first order impact

only on the smoothed c.d.f., e′0β̂p(x) when x is in interior. That is, it does not affect the estimated

derivatives, since they are nonparametric objects, compared to which θ̂ has a much faster rate of

convergence.

3.2 Main Results

We first give the theorem showing asymptotic normality of β̂p(x) with estimated weights.

Theorem 3 (Asymptotic normality with estimated weights: β̂p(x)).

Assume Assumptions 1–4 hold with αx ≥ p + 1, αw ≥ p, αw,2 ≥ 0 for some integer p ≥ 0, and

E[w4
i ] <∞. Further h→ 0, nh2 →∞ and nh2p+1 = O(1). Then

√
nh2v−1

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v,x

)
 N

(
0, Vp,v,x

)
, 1 ≤ v ≤ p,√

n

Vp,0,x

(
F̂p(x)− F (x)− hp+1Bp,0,x

)
 N

(
0, 1

)
.

The variance Vp,v,x is redefined as

Vp,v,x =



(v!)2H(1)(x)e′vS
−1
p,xΓp,xS

−1
p,xev 1 ≤ v ≤ 0

H(x)− 2H(x)F (x) +H(xU)F (x)2

+
(
I(x)− I(xU)F (x)

)2
V[ψi] + 2

(
I(x)− I(xU)F (x)

)
E[ψiwi1[xi ≤ x]] v = 0, x interior

hH(1)(x)
(
e′0S

−1
p,xΓp,xS

−1
p,xe0 + c

)
v = 0, x = xL + ch or xU − ch.

Compared to Theorem 1, the only complication appears when v = 0 for interior evaluation

point. The reason is simple, with weights estimated at
√
n-rate, the first step estimation will have

12



nontrivial impact on the smoothed e.d.f., since the latter object is also estimated at
√
n-rate. The

variance comes from essentially a two-step GMM problem.

The following is a companion result for constructing standard errors.

Theorem 4 (Variance Estimation).

Assume Assumptions 1–4 hold with αx ≥ p + 1, αw ≥ p, αw,2 ≥ 0, and αw,4 ≥ 0 for some integer

p ≥ 0. Further h → 0, nh2 → ∞ and nh2p+1 = O(1). Assume either x is in the boundary regions

or v ≥ 1. Then

V̂p,v,x ≡ (v!)2e′vNxŜ
−1
p,xΓ̂p,xŜ

−1
p,xNxev →P Vp,v,x.

Define the standard error as

σ̂p,v,x ≡ (v!)

√
1

nh2v
e′vŜ

−1
p,xΓ̂p,xŜ

−1
p,xev,

then

σ̂−1
p,v,x

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v,x

)
 N

(
0, 1

)
.

We excluded the case for v = 0 and interior x, since constructing valid standard error requires

knowledge of how the weights ŵi are constructed, and is not captured by our variance estimator.

If the object of interest is the smoothed e.d.f., we recommend to construct standard error using

standard two-step GMM procedure, or using nonparametric bootstrap.

4 Additional Results

In this section we collect some results that are not essential to our main results, but otherwise will

be useful in various applications. In the first part, we briefly illustrate how consistent MSE-optimal

bandwidth can be constructed. Then we consider the problem of restricted estimation, when there

is a natural way of data splitting. In a third subsection, we illustrate how valid standard errors can

be constructed using a jackknife-based method.

4.1 Bandwidth Selection

In this subsection we consider the problem of constructing m.s.e.-optimal bandwidth for our local

polynomial regression-based distribution estimators. We focus exclusively on the case v ≥ 1,

hence the object of interest is nonparametric in nature, and will be either the density function or

derivatives thereof. Valid bandwidth choice for the distribution function F̂p(x) is also an interesting

topic, but difficulty arises since it is estimated with (at least) parametric rate. We will briefly

mention m.s.e. expansion of the estimated c.d.f. at the end.

4.1.1 For Nonparametric Estimates (v ≥ 1)

Consider some 1 ≤ v ≤ p, the following lemma gives finer characterization of the bias.

13



Lemma 8. Assume Assumptions 1–4 hold with αx ≥ p + 2, αw ≥ p + 1 and αw,2 ≥ 0. Further

h→ 0 and nh3 →∞. Then the leading bias of F̂
(v)
p (x) is characterized by

hp+1−vBp,v,x = hp+1−v
{
F (p+1)(x)

(p+ 1)!
v!e′vS

−1
p,xcp,x + h

(
F (p+2)(x)

(p+ 2)!
+
F (p+1)(x)

(p+ 1)!

G(2)(x)

G(1)(x)

)
v!e′vS

−1
p,xc̃p,x

}
.

The previous lemma is a refinement of Lemma 1 and 2, with both leading and higher-order bias

explicitly characterized. To see its necessity, we note that when p − v is even and x is in interior,

the leading bias is zero, since e′vS
−1
p,xcp,x is zero. This is well-documented in the local polynomial

regression literature. See Fan and Gijbels (1996) for a discussion. In general (that is, when rare

cases such as F (p+1)(x) = 0 or F (p+2)(x) = 0 are excluded), we have the following:

Order of bias: hp+1−vBp,v,x ∝

p− v odd even

x interior hp+1−v hp+2−v

boundary hp+1−v hp+1−v

Note that for boundary evaluation points, the leading bias never vanishes.

The leading variance is also characterized by Theorem 1, and we reproduce it here:

1

nh2v−1
Vp,v,x =

1

nh2v−1
(v!)2H(1)(x)e′vS

−1
p,xΓp,xS

−1
p,xev.

The m.s.e.-optimal bandwidth is defined as a minimizer of the following:

hMSE,p,v,x = arg min
h>0

[
1

nh2v−1
Vp,v,x + h2p+2−2vB2

p,v,x

]
.

Given the discussion we had earlier on the bias, it is easy to see that the MSE-optimal bandwidth

has the following asymptotic order:

Order of m.s.e.-optimal bandwidth: hMSE,p,v,x ∝

p− v odd even

x interior n
− 1

2p+1 n
− 1

2p+3

boundary n
− 1

2p+1 n
− 1

2p+1

Again only the case where p− v is even and x is interior needs special attention.

Next we consider the problem of bandwidth estimation/construction. There are two notions of

consistency for estimated bandwidth. Let h be some nonstochastic bandwidth sequence, and ĥ be

the estimated bandwidth (sequence). Then ĥ is consistent in rate if ĥ � h (in most cases it is even

true that ĥ/h→P C ∈ (0,∞)). And ĥ is consistent in rate and constant if ĥ/h→P 1.

To construct consistent bandwidth, either rate consistent or consistent in both rate and constant,

we need estimates for both the bias and variance. The variance part is easy, since it is demonstrated

in Theorem 2 (or Theorem 4 for estimated weights) that the standard error, being completely

14



automatic and adaptive, is consistent:

n`2v−1 σ̂
2
p,v,x

Vp,v,x
→P 1,

provided conditions specified in those theorems are satisfied. Here ` is some preliminary bandwidth

used to construct σ̂p,v,x.

For the bias, there are two approaches. The first one is more common in the literature, where

one distinguishes between the boundary and interior case, and provide consistent bias estimators

separately. This method is appealing in the sense that the bandwidth constructed will be consistent

both in rate and constant. The drawback, however, is that it requires precise knowledge about the

location of x relative to the boundaries, which is not always obvious.

We will follow the second approach, where we replace the unknown bias by an estimate which

is consistent in rate (but not necessarily in constant). More precisely, our bias estimator will be

consistent in rate and constant if either x is boundary or p−v is odd, and will be consistent in rate

otherwise. This bias estimator has an appealing feature: it is purely data-driven and no precise

knowledge about relative positioning of x to the boundaries is needed, with the price that it (and

the bandwidth constructed thereof) is not consistent in constant when x is interior and p − v is

even.

To introduce this approach, first assume there are consistent estimators for F (p+1)(x) and

F (p+2)(x), denoted by F̂ (p+1)(x) and F̂ (p+2)(x). We will not be too explicit about how those

estimators are constructed. They can be obtained using our local polynomial regression-based ap-

proach, or can be constructed with some reference model (such as normal distribution). The critical

step is to obtain consistent estimators of the matrices, which are given in the following lemma.

Lemma 9. Assume Assumptions 1–3 hold with αx ≥ 1. Further `→ 0 and n`→∞. Then

̂S−1
p,xcp,x =

(
1

n

∑
i

rp
(xi − x

`

)
rp
(xi − x

`

)′
K`(xi − x)

)−1(
1

n

∑
i

(xi − x
`

)p+1

rp
(xi − x

`

)
K`(xi − x)

)
→P S−1

p,xcp,x,

and

̂S−1
p,xc̃p,x =

(
1

n

∑
i

rp
(xi − x

`

)
rp
(xi − x

`

)′
K`(xi − x)

)−1(
1

n

∑
i

(xi − x
`

)p+2

rp
(xi − x

`

)
K`(xi − x)

)
→P S−1

p,xc̃p,x.

Note that we used different notation, `, for bandwidth.

Now we have enough ingredients for bandwidth selection. Define:

hp+1−vB̂p,v,x = hp+1−v

{
F̂ (p+1)(x)

(p+ 1)!
v!e′v

̂S−1
p,xcp,x + h

F̂ (p+2)(x)

(p+ 2)!
v!e′v

̂S−1
p,xc̃p,x

}
,
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and assume that σ̂p,v,x is constructed using the preliminary bandwidth `. Then

ĥMSE,p,v,x = arg min
h>0

[
`2v−1

h2v−1
σ̂2
p,v,x + h2p+2−2vB̂2

p,v,x

]
.

We make three remarks here.

Remark 7 (Optimization argument h and preliminary bandwidth `). The optimization

argument h enters the RHS of the previous display in three places. First it is part of the variance

component, by 1/h2v−1. Second it shows as a multiplicative factor of the bias component, h2p−2v+2.

Finally within the definition of B̂p,v,x, there is another multiplicative h, in front of the higher order

bias.

The preliminary bandwidth `, serves a different role. It is used to estimate the variance and

bias components. Of course one can use different preliminary bandwidths for σ̂p,v,x, Ŝ−1
p,xcp,x and

Ŝ−1
p,xc̃p,x, provided they satisfy corresponding regularity conditions.

Remark 8 (Known boundaries). If boundary locations are known, either from a priori knowl-

edge or suggested by the data, then it is possible to simplify the problem, and closed-form solution

for ĥMSE,p,v,x is feasible. To be precise, if it is known that x is a boundary point or p− v is odd, one

can simply ignore the second component in B̂p,v,x. Similarly, if it is the case that x is interior and

p− v is even, then the first component in B̂p,v,x can be skipped.

The option we opt-for is more flexible in the sense that it adapts to any p− v (odd or even) and

any x (interior or boundary).

Remark 9 (Consistent bias estimator). The bias estimator we proposed, hp−v+1B̂p,v,x, is

consistent in rate for the true leading bias, but not necessarily in constant. Compare B̂p,v,x and

Bp,v,x, it is easily seen that the term involving F (p+1)(x)G(2)(x)/G(1)(x) is not captured. To capture

this term, we need two additional nonparametric estimators, one for G(2)(x) and the other for

G(1)(x). This is indeed feasible, as one can employ our local polynomial regression-based estimator

for this purpose. The complication, however, is that G is a different distribution, hence one needs

to construct the estimator from scratch. This leads to additional computational burden which may

not be attractive in practice.

There is one case, however, where estimating G(1)(x) and G(2)(x) is almost free – when the

weighting satisfies wi ≡ 1. Then F = G, and with p ≥ 2, both are automatically produced hence

requires no additional estimation effort.

Theorem 5 (Consistent bandwidth). Let 1 ≤ v ≤ p. Assume the preliminary bandwidth ` is

chosen such that nh2v−1σ̂2
p,v,x/Vp,v,x →P 1, Ŝ−1

p,xcp,x →P S−1
p,xcp,x, and Ŝ−1

p,xc̃p,x →P S−1
p,xc̃p,x, with

other regularity conditions given in Lemma 1 and Theorem 2/4.

• If either x is in boundary regions or p− v is odd, let F̂ (p+1)(x) be consistent for F (p+1) 6= 0.

Then

ĥMSE,p,v,x
hMSE,p,v,x

→P 1.
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• If x is in interior and p − v is even, let F̂ (p+2)(x) be consistent for F (p+2) 6= 0. Further

assume nh3 → 0 and hMSE,p,v,x is well-defined. Then

ĥMSE,p,v,x
hMSE,p,v,x

→P C ∈ (0,∞).

4.1.2 For C.D.F. Estimate (v = 0)

In this subsection we mention briefly how to choose bandwidth for the c.d.f. estimate, F̂
(0)
p (x) ≡

F̂p(x). We assume x is in interior. Previous discussions on bias also applies to F̂p(x):

hp+1Bp,0,x = hp+1

{
F (p+1)(x)

(p+ 1)!
e′0S

−1
p,xcp,x + h

(
F (p+2)(x)

(p+ 2)!
+
F (p+1)(x)

(p+ 1)!

G(2)(x)

G(1)(x)

)
e′0S

−1
p,xc̃p,x

}
,

so that the bias for F̂p(x) has order hp+1 if either x is boundary or p is odd, and hp+2 otherwise.

Difficulty does arise since the c.d.f. estimator has leading variance of order2

Vp,0,x ∝
1[x interior] + h

n
,

which cannot be used for bandwidth selection, since the leading variance is proportional to the

bandwidth, which means there is no bias-variance tradeoff.

The trick is to use a higher order variance term. Recall that the local polynomial regression-

based estimator is essentially a second order U-statistic, which is then decomposed into two terms,

the linear term L̂, and a quadratic term R̂ which is a degenerate second order U-statistic. The

variance of the quadratic term R̂ has been ignored so far, since it is negligible compared to the

variance of the linear term. For the c.d.f. estimator, however, it is the variance of this quadratic

term that leads to bias-variance trade-off, hence should be used to define m.s.e.-optimal bandwidth.

The exact form of this variance is given in Lemma 4/6, and we will not repeat here. With this

additional variance term included, we have (with some abuse of notation)

Vp,0,x ∝
1[x interior] + h

n
+
1[x interior] + h

n2h
,

so that provided x is an interior point, the additional variance term increases as the bandwidth

shrinks. Therefore the m.s.e.-optimal bandwidth for F̂p(x) is well-defined. And estimating this

bandwidth is also straightforward, simply by replacing unknown quantities with their estimates.

The following table summarizes the order of the m.s.e.-optimal bandwidth for the estimated c.d.f.

Order of m.s.e.-optimal bandwidth: hMSE,p,0,x ∝

p− v odd even

x interior n
− 2

2p+3 n
− 2

2p+5

boundary undefined undefined

2More precisely, the leading variance depends on the asymptotic framework used – whether x is regarded as a
fixed point in the interior, or it is a drifting sequence to boundaries.
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What if x is in boundary region? Then the m.s.e.-optimal bandwidth for F̂p(x) is not well defined.

The leading variance now takes the form h/n+1/n2, which is proportional to the bandwidth – this

is not surprising, for boundary x, the c.d.f. is known, hence a very small bandwidth (as long as

one still has enough observations to construct the estimator numerically) gives a super-consistent

estimator, although not an interesting one, as it estimates either 0 or 1. However, we would like to

mention that, although m.s.e.-optimal bandwidth for F̂p(x) is not well-defined for boundary x, it

is still feasible to minimize the empirical MSE. To see how this works, one first estimate the bias

term and variance term with some preliminary bandwidth `, leading to B̂p,0,x and V̂p,0,x. Then the

m.s.e.-optimal bandwidth can be constructed by minimizing the empirical m.s.e.. Under regularity

conditions, B̂p,0,x will converge to some nonzero constant, while, if x is boundary, V̂p,0,x has order

`, the same as the preliminary bandwidth. Then the MSE-optimal bandwidth constructed in this

way will have the following order:

Order of estimated m.s.e.-optimal bandwidth: ĥMSE,p,0,x ∝

p− v odd even

x interior n
− 2

2p+3 n
− 2

2p+5

boundary (n2/`)
− 1

2p+3 (n2/`)
− 1

2p+5

Note that the preliminary bandwidth enters the rate of ĥMSE,p,0,x for boundary x, since it determines

the rate at which the variance estimator V̂p,0,x vanishes. Although this estimated bandwidth is not

consistent for any well-defined object, it can be useful in practice, and it does reflect the fact that

for boundary x it is appropriate to use bandwidth shrinks fast when the object of interest is the

c.d.f.

4.2 Imposing Restrictions with Joint Estimation

We devote this subsection to estimation problems where it can be desirable to have joint estima-

tion and/or impose restrictions. To illustrate the idea, we will discuss in the context of density

discontinuity (manipulation) tests in regression discontinuity designs.

Assume there is a natural (and known) partition of the support X = [xL, xU] = [xL, x̄)∪ [x̄, xU] =

X− ∪ X+, and the regularity conditions we imposed so far are satisfied on each of the partitions,

X− and X+, but not necessarily the union. To be more precise, assume the distribution F is

continuously differentiable to a certain order on each of the partitions, but the derivatives are not

necessarily continuous across the cutoff x̄. In this case consistent estimates of the densities and

derivatives thereof require fitting local polynomials separately on each sides of x̄, with corresponding

subsamples. Alternatively, one can use the joint estimation framework introduced below.

In problems with joint estimation and/or restrictions, notation tends to be cumbersome. For

the ease of exposition, we will assume wi ≡ 1 throughout this subsection. Corresponding results

with nontrivial weighting scheme or even estimated weights can be obtained with some additional

efforts. Also we fix the evaluation point x̄, and drop the corresponding subscript whenever possible.
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4.2.1 Unrestricted Model

By an unrestricted model with cutoff x̄, we consider the following polynomial basis rp

rp(u) =
[
1{u<0} u1{u<0} · · · up1{u<0}

∣∣∣ 1{u≥0} u1{u≥0} · · · up1{u≥0}

]′
∈ R2p+2.

The following two vectors will arise later, which we give the definition here:

r−,p(u) =
[
1 u · · · up 0 · · · 0

]′
r+,p(u) =

[
0 0 · · · 0 1 · · · up

]′
.

Also we define the vectors to extract the corresponding derivatives

I2p+2 =
[
e0,− e1,− · · · ep,− e0,+ e1,+ · · · ep,+

]
.

With the above definition, the estimator at the cutoff is3

β̂p(x̄) = arg min
b∈R2p+2

∑
i

(
F̂ (xi)− rp(xi − x̄)′b

)2
Kh(xi − x̄).

Other notations (for example X and Xh) are redefined similarly, with the scaling matrix H adjusted

so that H−1rp(u) = rp(h
−1u) is always true.

Note that the above is equivalent to fitting local polynomials separately on each side, while the

joint estimation framework is more systematic which we will keep using. To see the connection

between the joint estimation and estimating separately on each side, we observe the following result,

which can be easily seen using least squares algebra:

Relation between joint and separate estimations.

Joint estimation Separate estimation

F̂p(x̄−) e′0,−β̂p(x̄) = e′0,−β̂p,−(x̄) “joint”× n
n−

F̂p(x̄+) e′0,+β̂p(x̄) = e′0,+β̂p,+(x̄) “joint”× n
n+
− n−

n+

F̂
(v)
p (x̄−) e′v,−β̂p(x̄) = e′v,−β̂p,−(x̄) “joint”× n

n−

F̂
(v)
p (x̄+) e′v,+β̂p(x̄) = e′v,+β̂p,+(x̄) “joint”× n

n+

and the difference comes from the fact that by separate estimation, one obtains estimates of the

conditional c.d.f. and the derivatives. Here n− and n+ are the sample sizes in the two regions, X−
and X+, respectively.

In the following lemmas, we will give asymptotic results of the joint estimation problem. Proofs

are omitted.

Lemma 10. Let Assumptions of Lemma 1 hold separately on X− and X+, then

1

n
X′hKhXh = f(x̄−)S−,p + f(x̄+)S+,p +O

(
h
)

+OP

(
1/
√
nh
)

= Sf,p +O(h) +OP(1/
√
nh),

3The e.d.f. is defined with the whole sample as before: F̂ (u) = n−1∑
i 1[xi ≤ u].
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where

S−,p =

∫ 0

−1

r−,p(u)r−,p(u)′K(u)du, S+,p =

∫ 1

0

r+,p(u)r+,p(u)′K(u)du.

Again we decompose the estimator into four terms, namely B̂LI, B̂S, L̂ and R̂.

Lemma 11. Let Assumptions of Lemma 2 hold separately on X− and X+, then

B̂S = hp+1

{
F (p+1)(x̄−)f(x̄−)

(p+ 1)!
c−,p +

F (p+1)(x̄+)f(x+)

(p+ 1)!
c+,p

}
+ oP(hp+1), B̂LI = OP

(
1

n

)
,

where

c−,p =

∫ 0

−1

up+1r−,p(u)K(u)du, c+,p =

∫ 1

0

up+1r+,p(u)K(u)du.

Lemma 12. Let Assumptions of Lemma 3 hold separately on X− and X+, then

V
[
L̂
]

= F (x̄)
(

1− F (x̄)
)
Sf,p

(
e0,− + e0,+

)(
e0,− + e0,+

)′
Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄−)

f(x̄−)
− F (x̄)f(x̄−) + f(x̄−)

}
Sf,p

(
e0,−e′1,− + e1,−e′0,−

)
Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄+)

f(x̄+)
− F (x̄)f(x̄+)

}
Sf,p

(
e0,+e′1,+ + e1,+e′0,+

)
Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄−)

f(x̄−)
− F (x̄)f(x̄−) + f(x̄−)

}
Sf,p

(
e1,−e′0,+ + e0,+e′1,−

)
Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄+)

f(x̄+)
− F (x̄)f(x̄+)

}
Sf,p

(
e0,−e′1,+ + e1,+e′0,−

)
Sf,p

+ h
{
f(x̄−)3ΨΓ+,pΨ + f(x̄+)3Γ+,p

}
+O(h2),

where

Γ−,p =

∫∫
[−1,0]2

(u ∧ v)r−,p(u)r−,p(v)′K(u)K(v) dudv,

Γ+,p =

∫∫
[0,1]2

(u ∧ v)r+,p(u)r+,p(v)′K(u)K(v) dudv,

and

Ψ =



(−1)0

(−1)1

. . .

(−1)p

(−1)0

(−1)1

. . .

(−1)p


(2p+2)×(2p+2)

.

We would like to consider the asymptotic variance (hence asymptotic distribution) after proper
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scaling. Here we define the scaling matrix by

N = diag

{√
n,

√
n

h
, · · · ,

√
n

h
,
√
n,

√
n

h
, · · · ,

√
n

h

}
(2p+2)×(2p+2)

=

[
1 0

0 1

]
2×2

⊗ diag

{√
n,

√
n

h
, · · · ,

√
n

h

}
(p+1)×(p+1)

,

then

V
[
NS−1

f,pL̂
]

= F (x̄)
(

1− F (x̄)
)(

e0,− + e0,+

)(
e0,− + e0,+

)′
+
(
I−

(
e0,− + e0,+

)(
e0,− + e0,+

)′)
S−1
f,p

(
f(x̄−)3ΨΓ+,pΨ + f(x̄+)3Γ+,p

)
S−1
f,p

(
I−

(
e0,− + e0,+

)(
e0,− + e0,+

)′)
+O(

√
h),

where O(
√
h) represent the order of the covariances between the c.d.f. (the parametric part) and

the derivatives (nonparametric part). By using the notation S−1
f,p = 1

f(x̄−)S
−1
−,p+ 1

f(x̄+)S
−1
+,p, we have4

V
[
NS−1

f,pL̂
]

= F (x̄)
(

1− F (x̄)
)(

e0,− + e0,+

)(
e0,− + e0,+

)′
+ f(x̄−)

(
I− e0,−e′0,−

)
ΨS−1

+,pΓ+,pS
−1
+,pΨ

(
I− e0,−e′0,−

)
+ f(x̄+)

(
I− e0,+e′0,+

)
S−1
+,pΓ+,pS

−1
+,p

(
I− e0,+e′0,+

)
+ o(1)

=


F (x̄)

(
1− F (x̄)

)
0 F (x̄)

(
1− F (x̄)

)
0

0
{
f(x̄−)ΨS−1

+,pΓ+,pS
−1
+,pΨ

}
(2:p+1)

0 0

F (x̄)
(

1− F (x̄)
)

0 F (x̄)
(

1− F (x̄)
)

0

0 0 0
{
f(x̄+)S−1

+,pΓ+,pS
−1
+,p

}
(p+3:2p+2)

 ,

where the operator {·}(2:p+1) indicates keeping only the second to (p + 1)-th rows and columns.

Therefore asymptotically

1. the c.d.f. (parametric part) and the derivatives (nonparametric part) are independent;

2. the two c.d.f. estimators (on each sides) have correlation 1 (not surprising, since we assume

the DGP does not have point mass);

3. the derivatives (nonparametric part) on the two sides are independent.

Finally the order of R̂ can also be established.

Lemma 13. Let Assumptions of Lemma 4 hold separately on X− and X+, then

R̂ = OP

(√
1

n2h

)
.

4S−,p and S+,p are not invertible. Here S−1
−,p and S−1

+,p are obtained by inverting the corresponding nonzero blocks.
More precisely, they are Moore-Penrose inverse.
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We note that it is also possible to give exact form of the variance of R̂.

In what follows we will consider the bias and the asymptotic distribution of f̂p(x̄+) − f̂p(x̄−),

which is the object of interest for density discontinuity tests.

Theorem 6. Let Assumptions of Theorem 1 hold separately on X− and X+, then

√
nhn

f̂p(x̄+)− f̂p(x̄−)−
(
f(x̄+)− f(x̄−)

)
− hpBp,1√

Vp,1
 N (0, 1),

where

Bp,1 =
{F (p+1)(x̄+)

(p+ 1)!
e′1,+S−1

+,pc+,p −
F (p+1)(x̄−)

(p+ 1)!
e′1,−S−1

−,pc−,p
}

Vp,1 =
(
f(x̄+) + f(−)

)
e′1,+S−1

+,pΓ+,pS
−1
+,pe1,+.

Remark 10. We make two remarks here.

(1) The asymptotic variance takes additive form.

(2) The standard error proposed earlier remains valid. Note that by the specific structure of r−,p

and r+,p, it is equivalent to apply the method on each side with the corresponding subsample.

4.2.2 Restricted Model

In previous discussion, we gave a test procedure on the discontinuity of the density by estimating on

the two sides of the cutoff separately. This procedure is flexible and requires minimum assumptions.

There are ways, however, to improve the power of the test when the densities are estimated with

additional assumptions on the smoothness of the c.d.f.

In a restricted model, the polynomial basis is re-defined as

rp(u) =
[
1 u1(u < 0) u1(u ≥ 0) u2 u3 · · · up

]′
∈ Rp+2,

and the estimator in the fully restricted model is

β̂p(x̄) =
[
F̂p(x̄) f̂p(x̄−) f̂p(x̄+) 1

2
F̂

(2)
p (x̄) · · · 1

p!
F̂

(p)
p (x̄)

]′
= arg max

b∈Rp+2

∑
i

(
F̂ (xi)− rp(xi − x̄)′b

)2
Kh(xi − x̄).

Again the notations (for example X and Xh) are redefined similarly, with the scaling matrix H

adjusted to make sure H−1rp(u) = rp(h
−1u). Here F̂p(x̄) is the estimated c.d.f. and 1

2 F̂
(2)
p (x̄), · · · ,

1
p! F̂

(p)
p (x̄) are the estimated higher order derivatives, which we assume are all continuous at x̄, while

f̂p(x̄−) and f̂p(x̄+) are the estimated densities on the two sides of x̄. Therefore we call the above

model restricted, since it only allows discontinuity of the first derivative of F (i.e. the density) but

not the other derivatives.

With the modification of the polynomial basis, all other matrices in the previous subsection are

redefined similarly, and

Ip+2 =
[
e0 e1,− e1,+ e2 · · · ep

]
(p+2)×(p+2)

.
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where the subscripts indicate the corresponding derivatives to extract. Moreover

r−,p(u) =
[
1 u 0 u2 · · · up

]
, r+,p(u) =

[
1 0 u u2 · · · up

]
.

Lemma 14. Let Assumptions of Lemma 1 hold with the exception that f may be discontinuous

across x̄, then

1

n
X′hKhXh = {f(x̄−)S−,p + f(x̄+)S+,p}+O (h) +OP(1/

√
nh)

= Sf,p +O (h) +OP(1/
√
nh),

where

S−,p =

∫ 0

−1

r−,p(u)r−,p(u)′K(u)du, S+,p =

∫ 1

0

r+,p(u)r+,p(u)′K(u)du.

Again we decompose the estimator into four terms, B̂LI, B̂S, L̂ and R̂, which correspond to

leave-in bias, smoothing bias, linear variance and quadratic variance, respectively.

Lemma 15. Let Assumptions of Lemma 2 hold with the exception that f may be discontinuous

across x̄, then

B̂S = hp+1

{
F (p+1)(x̄−)f(x̄−)

(p+ 1)!
c−,p +

F (p+1)(x̄+)f(x̄+)

(p+ 1)!
c+,p

}
+ oP(hp+1), B̂LI = OP

(
1

n

)
, (1)

where

c−,p =

∫ 0

−1

up+1r−,p(u)K(u)du, c+,p =

∫ 1

0

up+1r+,p(u)K(u)du.

Lemma 16. Let Assumptions of Lemma 3 hold with the exception that f may be discontinuous

across x̄, then

V [Lh(xi)]

= F (x̄)
(

1− F (x̄)
)
Sf,pe0e

′
0Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄−)

f(x̄−)
− F (x̄)f(x̄−) + f(x̄−)

}
Sf,pe0e

′
1,−Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄−)

f(x̄−)
− F (x̄)f(x̄−) + f(x̄−)

}
Sf,pe1,−e′0Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄+)

f(x̄+)
− F (x̄)f(x̄+)

}
Sf,pe0e

′
1,+Sf,p

+ h
{
F (x̄)

(
1− F (x̄)

)f ′(x̄+)

f(x̄+)
− F (x̄)f(x̄+)

}
Sf,pe1,+e′0Sf,p

+ hf(x̄−)3ΨΓ+,pΨ + hf(x̄+)3Γ+,p +O(h2) (2)

where

Γ−,p =

∫∫
[−1,0]2

(u ∧ v)r−,p(u)r−,p(v)′K(u)K(v) dudv,

Γ+,p =

∫∫
[0,1]2

(u ∧ v)r+,p(u)r+,p(v)′K(u)K(v) dudv,
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and

Ψ =



(−1)0

(−1)1

(−1)1

(−1)2

(−1)3

. . .

(−1)p


.

Remark 11. Now we consider the asymptotic variance after proper scaling. The proper scaling

matrix is

N = diag

{√
n,

√
n

h
, · · · ,

√
n

h

}
(p+2)×(p+2)

then

V
[
NS−1

f,pL̂
]

= F (x̄)
(

1− F (x̄)
)
e0e
′
0

+
(
I− e0e

′
0

)
S−1
f,p

(
f(x̄−)3ΨΓ+,pΨ + f(x̄+)3Γ+,p

)
S−1
f,p

(
I− e0e

′
0

)
+O(

√
h).

=

 F (x̄)
(

1− F (x̄)
)

0

0
{

S−1
f,p

(
f(x̄−)3ΨΓ+,pΨ + f(x̄+)3Γ+,p

)
S−1
f,p

}
(2:p+2)

 ,
where the operator {·}(2:p+2) excludes the first row and column. Therefore asymptotically

1. the c.d.f. (parametric part) and the derivatives (nonparametric part) remain to be indepen-

dent;

2. the derivatives (nonparametric part) on the two sides are not independent.

Again we can show that the quadratic part is negligible.

Lemma 17. Let Assumptions of Lemma 4 hold with the exception that f may not be continuous

across x̄, then

R̂ = OP

(√
1

n2h

)
.

Theorem 7. Let Assumptions of Theorem 1 hold with the exception that f may not be continuous

across x̄, then

√
nhn

f̂p(x̄+)− f̂p(x̄−)−
(
f(x̄+)− f(x̄−)

)
− hpBp,1√

Vp,1
 N (0, 1),
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where

Bp,1 =
1

(p+ 1)!

(
e1,+ − e1,−

)′
S−1
f,p

(
F (p+1)(x̄+)f(x̄+)c+,p + F (p+1)(x̄−)f(x̄−)c−,p

)
,

Vp,1 =
(
e1,+ − e1,−

)′
S−1
f,p

(
f(x̄−)3ΨΓ+,pΨ + f(x̄+)3Γ+,p

)
S−1
f,p

(
e1,+ − e1,−

)
.

Remark 12.

(1) Now the matrix Sf,p is no longer block diagonal, which indicates f̂p(x̄+) and f̂p(x̄−) have

nonzero covariance. Therefore the asymptotic variance does not take an additive form.

(2) The standard error estimator remains valid.

4.3 Plug-in and Jackknife-based Standrd Errors

The standard error σ̂p,v,x (see Theorem 2/4) is fully automatic and adapts to both interior and

boundary regions. In this section we consider two other ways to construct standard errors.

4.3.1 Plug-in Standard Error

Take v ≥ 1. Then the asymptotic variance of F̂
(v)
p (x) takes the following form:

Vp,v,x = (v!)2H(1)(x)e′vS
−1
p,xΓp,xS

−1
p,xev.

One way of constructing estimate of the above quantity is to plug-in a consistent estimator of

H(1)(x). This may not be appealing, since H(1)(x) is a nonparametric object. There is, however,

one case in which H(1)(x) is automatically available. Assume the weights are identically 1, i.e.

wi ≡ 1, then H(1)(x) = F (1)(x) = G(1)(x), which is simply the estimated density. Hence we can

use

V̂p,v,x = (v!)2F̂ (1)
p (x)e′vS

−1
p,xΓp,xS

−1
p,xev.

The next question is how Sp,x and Γp,x should be constructed. Note that they are related to the

kernel, evaluation point x and the bandwidth h, but not the data generating process. Therefore

the three matrices can be constructed by either analytical integration or numerical method.

Back to the original case. How to estimate H(1)(x) with nontrivial weighting scheme? Recall that

H(x) = E[w2
i 1[xi ≤ x]]. Then Ĥ(x) =

∑
iw

2
i 1[xi ≤ x]/n is unbiased and

√
n-consistent. On the

other hand, it has the same problem as the empirical distribution function: it is not differentiable.

Local polynomial smoothing can be applied here, the same as how it is applied to smooth out the

empirical distribution function to obtain estimates of derivatives. More precisely, one can replace

F̂ (xi) by Ĥ(xi) in β̂p(x), and the slope coefficient will be consistent for H(1)(x), under very mild

regularity conditions.

4.3.2 Jackknife-based Standard Error

The standard error σ̂p,v,x is obtained by inspecting the asymptotic linear representation. It is fully

automatic and adapts to both interior and boundaries. In this part, we present another standard
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error which resembles σ̂p,v,x, albeit with a different motivation.

Recall that β̂p(x) is essentially a second order U-statistic, and the following expansion is justified:

1

n
X′hKh

(
Y −Xβp(x)

)
=

1

n

∑
i

rp
(xi − x

h

)(
F̂ (xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp
(xi − x

h

) 1

n− 1

∑
j;j 6=i

wj
(
1(xj ≤ xi)− rp(xi − x)′βp(x)

)Kh(xi − x) +OP

(
1

n

)

=
1

n(n− 1)

∑
i,j;i 6=j

rp
(xi − x

h

)
wj
(
1(xj ≤ xi)− rp(xi − x)′βp(x)

)
Kh(xi − x) +OP

(
1

n

)
,

where the remainder represents leave-in bias. Note that the above could be written as a U-statistic,

and to apply the Hoeffding decomposition, define

U(xi, wi, xj , wj) = rp
(xi − x

h

)
wj
(
1(xj ≤ xi)− rp(xi − x)′βp(x)

)
Kh(xi − x)

+ rp
(xj − x

h

)
wi
(
1(xi ≤ xj)− rp(xj − x)′βp(x)

)
Kh(xj − x),

which is symmetric in its two arguments. Then (with estimated weights one has to make further

expansion, but the main idea is the same)

1

n
X′hKh

(
Y −Xβp(x)

)
= E [U(xi, wi, xj , wj)]

+
1

n

∑
i

(
U1(xi, wi)− E [U(xi, wi, xj , wj)]

)

+

(
n

2

)−1 ∑
i,j;i<j

(
U(xi, wi, xj , wj)−U1(xi, wi)−U1(xj , wj) + E [U(xi, wi, xj , wj)]

)
.

Here U1(xi) = E [U(xi, wi, xj , wj)|xi, wi]. The second line in the above display is the analogue of

L̂, which contributes to the leading variance, and the third line is negligible. The new standard

error, we call the jackknife-based standard error, is given by the following:

σ̂(JK)
p,v,x ≡ (v!)

√
1

nh2v
e′vŜ

−1
p,xΓ̂

JK

p,xŜ
−1
p,xev,

with

Γ̂
JK

p,x =
1

n

∑
i

 1

n− 1

∑
j;j 6=i

Û(xi, wi, xj , wj)

 1

n− 1

∑
j;j 6=i

Û(xi, wi, xj , wj)

′

−

(n
2

)−1 ∑
i,j;i6=j

Û(xi, wi, xj , wj)

(n
2

)−1 ∑
i,j;i 6=j

Û(xi, wi, xj , wj)

′ ,
and

Û(xi, wi, xj , wj) = rp
(xi − x

h

)
wj
(
1(xj ≤ xi)− rp(xi − x)′β̂p(x)

)
Kh(xi − x)

+ rp
(xj − x

h

)
wi
(
1(xi ≤ xj)− rp(xj − x)′β̂p(x)

)
Kh(xj − x).

The name jackknife comes from the fact that we use leave-one-out “estimator” for U1(xi, wi): with
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xi and wi fixed,

“
1

n− 1

∑
j;j 6=i

Û(xi, wi, xj , wj)→P U1(xi, wi)”.

Under the same conditions specified in Theorem 2, one can show that the jackknife-based standard

error is consistent. For estimated weights, regularity conditions specified in Theorem 4 suffice.

5 Simulation Study

5.1 DGP 1: Truncated Normal Distribution

In this subsection, we conduct simulation study based on truncated normal distribution. To be

more specific, the underlying distribution of xi is the standard normal distribution truncated below

at −0.8. We do not incorporate extra weighting, hence

G(x) = F (x) =
Φ(x)− Φ(−0.8)

1− Φ(−0.8)
, x ≥ −0.8,

and zero otherwise. Equivalently, xi has Lebesgue density Φ(1)(x)/(1− Φ(−0.8)) on [−0.8,∞].

In this simulation study, the target parameter is the density function evaluated at various points.

Note that both the variance and the bias of our estimator depend on the evaluation point, and

in particular, the magnitude of the bias depends on higher order derivatives of the distribution

function.

1. Evaluation point. We estimate the density at x ∈ {−0.8, −0.5, 0.5, 1.5}. Note that −0.8 is

the boundary point, where classical density estimators such as the kernel density estimator

has high bias. The point −0.5, given our bandwidth choice, is fairly close to the boundary,

hence should be understood as in the lower boundary region. The two points 0.5 and 1.5 are

interior, but the curvature of the normal density is quite different at those two points, and

we expect to see the estimators having different bias behaviors.

2. Polynomial order. We consider p ∈ {2, 3}. For density estimation using our estimators, p = 2

should be the default choice, since it corresponds to estimating conditional mean with local

linear regression. Such choice is also recommended by Fan and Gijbels (1996), according to

which one should always choose p − s = 2 − 1 = 1 to be an odd number. We include p = 3

for completeness.

3. Kernel function. For local polynomial regression, the choice of kernel function is usually not

very important. We use the triangular kernel k(u) = (1− |u|) ∨ 0.

4. Sample size. The sample size used consists of n ∈ {1000, 2000}. For most empirical studies

employing nonparametric density estimation, the sample size is well above 1000, hence n =

2000 is more representative.
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Overall, we have 4 × 2 × 2 = 16 designs, and for each design, we conduct 5000 Monte Carlo

repetitions.

We consider a grid of bandwidth choices, which correspond to multiples of the MSE-optimal

bandwidth, ranging from 0.1hMSE to 2hMSE. We also consider the estimated bandwidth. The MSE-

optimal bandwidth, hMSE, is chosen by minimizing the asymptotic mean squared error, using the

true underlying distribution.

For each design, we report the empirical bias of the estimator, E[f̂p(x)− f(x)], under bias. And

empirical standard deviations, V1/2[f̂p(x)], and empirical root-m.s.e., under sd and
√

mse, respec-

tively. For the standard errors constructed from the variance estimators, we report their empirical

average under mean, which should be compared to sd. We also report the empirical rejection rate of

t-statistics at 5% nominal level, under size. The t-statistic is (f̂p(x)− Ef̂p(x))/se, which is exactly

centered, hence rejection rate thereof is a measure of accuracy of normal approximation.

5.2 DGP 2: Exponential Distribution

In this subsection, we conduct simulation study based on exponential distribution. To be more

specific, the underlying distribution of xi is F (x) = 1−e−x. We do not incorporate extra weighting.

Equivalently, xi has Lebesgue density e−x for x ≥ 0.

In this simulation study, the target parameter is the density function evaluated at various points.

Note that both the variance and the bias of our estimator depend on the evaluation point, and

in particular, the magnitude of the bias depends on higher order derivatives of the distribution

function.

1. Evaluation point. We estimate the density at x ∈ {0, 1, 1.5}. Note that 0 is the boundary

point, where classical density estimators such as the kernel density estimator has high bias.

The two points 1 and 1.5 are interior.

2. Polynomial order. We consider p ∈ {2, 3}. For density estimation using our estimators, p = 2

should be the default choice, since it corresponds to estimating conditional mean with local

linear regression. Such choice is also recommended by Fan and Gijbels (1996), according to

which one should always choose p − s = 2 − 1 = 1 to be an odd number. We include p = 3

for completeness.

3. Kernel function. For local polynomial regression, the choice of kernel function is usually not

very important. We use the triangular kernel k(u) = (1− |u|) ∨ 0.

4. Sample size. The sample size used consists of n ∈ {1000, 2000}. For most empirical studies

employing nonparametric density estimation, the sample size is well above 1000, hence n =

2000 is more representative.

Overall, we have 3 × 2 × 2 = 12 designs, and for each design, we conduct 5000 Monte Carlo

repetitions.
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We consider a grid of bandwidth choices, which correspond to multiples of the MSE-optimal

bandwidth, ranging from 0.1hMSE to 2hMSE. We also consider the estimated bandwidth. The MSE-

optimal bandwidth, hMSE, is chosen by minimizing the asymptotic mean squared error, using the

true underlying distribution.

For each design, we report the empirical bias of the estimator, E[f̂p(x)− f(x)], under bias. And

empirical standard deviations, V1/2[f̂p(x)], and empirical root-m.s.e., under sd and
√

mse, respec-

tively. For the standard errors constructed from the variance estimators, we report their empirical

average under mean, which should be compared to sd. We also report the empirical rejection rate of

t-statistics at 5% nominal level, under size. The t-statistic is (f̂p(x)− Ef̂p(x))/se, which is exactly

centered, hence rejection rate thereof is a measure of accuracy of normal approximation.
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6 Proof

6.1 Proof of Lemma 1

Proof. A generic element of the matrix 1
n
X′hKhXh takes the form:

1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)
, 0 ≤ s ≤ 2p.

Then we compute the expectation:

E

[
1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)]
= E

[
1

h

(xi − x
h

)s
K
(xi − x

h

)]
=

∫ xU

xL

1

h

(u− x
h

)s
K
(u− x

h

)
g(u)du

=

∫ xU−x
h

xL−x
h

vsK (v) g(x+ vh)dv =

∫ xU−x
h

xL−x
h

vsK (v) g(x+ vh)dv,

hence for x in the interior,

E

[
1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)]
= g(x)

∫
R

rp(v)rp(v)′K(v)dv + o(1),

and for x = xL + ch with c ∈ [0, 1],

E

[
1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)]
= g(xL)

∫ ∞
−c

rp(v)rp(v)′K(v)dv + o(1),

and for x = xU − ch with c ∈ [0, 1],

E

[
1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)]
= g(xU)

∫ c

−∞
rp(v)rp(v)′K(v)dv + o(1),

provided that G ∈ C1.
The variance satisfies

V

[
1

n

∑
i

1

h

(xi − x
h

)s
K
(xi − x

h

)]
=

1

n
V
[

1

h

(xi − x
h

)s
K
(xi − x

h

)]
≤ 1

n
E
[

1

h2

(xi − x
h

)2s
K
(xi − x

h

)2]
= O

(
1

nh

)
,

provided that G ∈ C1. �

6.2 Proof of Lemma 2

Proof. First consider the smoothing bias. The leading term can be easily obtain by taking expectation together with
Taylor expansion of F to power p + 1. The variance of this term has order n−1h−1h2p+2, which gives the residual
estimate oP(hp+1) since it is assumed that nh→∞.

Next for the leave-in bias, note that it has expectation of order n−1, and variance of order n−3h−1, hence overall
this term of order OP(n−1). �
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6.3 Proof of Lemma 3

Proof. We first compute the variance. Note that∫ xU−x
h

xL−x
h

rp (u)
(
F̂ (x+ hu)− F (x+ hu)

)
K(u)g(x+ hu)du

=
1 + oP(1)

n

∫ xU−x
h

xL−x
h

rp (u)wi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du,

and

V

[∫ xU−x
h

xL−x
h

rp (u)wi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

]

=

∫∫ xU−x
h

xL−x
h

rp (u) rp (v)′K(u)K(v)g(x+ hu)g(x+ hv)[∫
R
w2(t) (1[t ≤ x+ hu]− F (x+ hu)) (1[t ≤ x+ hv]− F (x+ hv)) g(t)dt

]
dudv. (I)

For notational simplicity, let

H(u) = E[w2
i1[xi ≤ u]] =

∫ u

xL

w2(t)g(t)dt.

Then

(I) =

∫∫ xU−x
h

xL−x
h

rp (u) rp (v)′K(u)K(v)g(x+ hu)g(x+ hv)(
H(x+ h(u ∧ v))−H(x+ hu)F (x+ hv)− F (x+ hu)H(x+ hv) +H(xU)F (x+ hu)F (x+ hv)

)
dudv.

We first consider the interior case, where the above reduces to:

(I)interior

=

∫∫
R

rp (u) rp (v)′K(u)K(v)g(x)2
(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
dudv

+ h

∫∫
R
(u ∧ v)rp (u) rp (v)′K(u)K(v)g(x)2H(1)(x)dudv

− h
∫∫

R
(u+ v)rp (u) rp (v)′K(u)K(v)g(x)2

(
H(1)(x)F (x) +H(x)F (1)(x)

)
dudv

+ h

∫∫
R
(u+ v)rp (u) rp (v)′K(u)K(v)g(x)2H(xU)F

(1)(x)F (x)dudv

+ h

∫∫
R
(u+ v)rp (u) rp (v)′K(u)K(v)G(2)(x)2

(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
dudv + o(h)

= g(x)2
(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
Sp,xe0e

′
0Sp,x

− hg(x)2
(
H(1)(x)F (x) +H(x)F (1)(x)

)
Sp,x(e1e

′
0 + e0e

′
1)Sp,x

+ hg(x)2H(xU)F
(1)(x)F (x)Sp,x(e1e

′
0 + e0e

′
1)Sp,x

+ hG(2)(x)2
(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
Sp,x(e1e

′
0 + e0e

′
1)Sp,x

+ hg(x)2H(1)(x)Γp,x + o(h).
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For x = xL + hc with c ∈ [0, 1) in the lower boundary region,

(I)lower boundary

=

∫∫
R

rp (u) rp (v)′K(u)K(v)g(xL)
2
(
H(xL)− 2H(xL)F (xL) +H(xU)F (xL)

2
)

dudv

+ h

∫∫
R
(u ∧ v + c)rp (u) rp (v)′K(u)K(v)g(xL)

2H(1)(xL)dudv

− h
∫∫

R
(u+ v + 2c)rp (u) rp (v)′K(u)K(v)g(xL)

2
(
H(1)(xL)F (xL) +H(xL)F

(1)(xL)
)

dudv

+ h

∫∫
R
(u+ v + 2c)rp (u) rp (v)′K(u)K(v)g(xL)

2H(xU)F
(1)(xL)F (xL)dudv

+ h

∫∫
R
(u+ v + 2c)rp (u) rp (v)′K(u)K(v)G(2)(xL)

2
(
H(xL)− 2H(xL)F (xL) +H(xU)F (xL)

2
)

dudv + o(h)

= hg(xL)
2H(1)(xL)

(
Γp,x + cSp,xe0e

′
0Sp,x

)
+ o(h).

Finally, we have

(I)upper boundary

=

∫∫
R

rp (u) rp (v)′K(u)K(v)g(xU)
2
(
H(xU)− 2H(xU)F (xU) +H(xU)F (xU)

2
)

dudv

+ h

∫∫
R
(u ∧ v − c)rp (u) rp (v)′K(u)K(v)g(xU)

2H(1)(xU)dudv

− h
∫∫

R
(u+ v − 2c)rp (u) rp (v)′K(u)K(v)g(xU)

2
(
H(1)(xU)F (xU) +H(xU)F

(1)(xU)
)

dudv

+ h

∫∫
R
(u+ v − 2c)rp (u) rp (v)′K(u)K(v)g(xU)

2H(xU)F
(1)(xU)F (xU)dudv

+ h

∫∫
R
(u+ v − 2c)rp (u) rp (v)′K(u)K(v)G(2)(xU)

2
(
H(xU)− 2H(xU)F (xU) +H(xU)F (xU)

2
)

dudv + o(h)

= hg(xU)
2H(1)(xU)

(
Γp,x + cSp,xe0e

′
0Sp,x − Sp,x(e1e

′
0 + e0e

′
1)Sp,x

)
+ o(h).

With the above results, it is easy to varify the variance formula, provided that we can show the asymptotic normality.
We first consider the interior case, and verify the Lindeberg condition on the fourth moment. Let α ∈ Rp+1 be an

arbitrary nonzero vector, then

∑
i

E

(
1√
n
α′Nx(g(x)Sp,x)−1

∫ xU−x
h

xL−x
h

rp (u)wi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

)4

=
1

n
E

(
α′Nx(g(x)Sp,x)−1

∫ xU−x
h

xL−x
h

rp (u)wi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

)4

=
1

n

∫∫∫∫
A

∏
j=1,2,3,4

(
α′Nx(g(x)Sp,x)−1rp (uj)K(uj)

)
g(x+ huj)[∫

R
w4(t)

∏
j=1,2,3,4

(
1[t ≤ x+ huj ]− F (x+ huj)

)
g(t)dt

]
du1du2du3du4

≤ C

n
·
∫∫∫∫

A

∏
j=1,2,3,4

(
α′Nx(g(x)Sp,x)−1rp (uj)K(uj)

)
g(x)du1du2du3du4 +O

(
1

nh

)
,

where A = [xL−x
h
, xU−x

h
]4 ⊂ R4. The first term in the above display is asymptotically negligible, since it is takes the

form C · (α′Nxe0)4/n where the constant C depends on the DGP, and is finite since we assumed E[w4
i ] < ∞. The

order of the next term is 1/(nh), which comes from multiplying n−1, h−2 (from the scaling matrix Nx), and h (from
linearization), hence is also negligible.

Under the assumption that nh→∞, the Lindeberg condition is verified for interior case. The same logic applies to
the boundary case, whose proof is easier than the interior case, since the leading term in the calculation is identically
zero for x in either the lower or upper boundary. �
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6.4 Proof of Lemma 4

Proof. For R̂, we rewrite it as a second order degenerate U-statistic:

R̂ =
1 + oP(1)

n2

∑
i,j;i<j

Ûij ,

where

Ûij = rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

+ rp
(xj − x

h

)
wi
(
1[xi ≤ xj ]− F (xj)

)
Kh(xj − x)

− E
[
rp
(xi − x

h

)
wj
(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

∣∣∣xj , wj]
− E

[
rp
(xj − x

h

)
wi
(
1[xi ≤ xj ]− F (xj)

)
Kh(xj − x)

∣∣∣xi, wi] .
To compute the leading term, it suffices to consider

2E
[
rp
(xi − x

h

)
rp
(xi − x

h

)′
w2
j (1[xj ≤ xi]− F (xi))

2Kh(xi − x)2
]

= 2E
[
rp
(xi − x

h

)
rp
(xi − x

h

)′ (
H(xi)− 2H(xi)F (xi) +H(xU)F (xi)

2
)
Kh(xi − x)2

]
=

2

h

∫ xU−x
h

xL−x
h

rp (v) rp (v)′
(
H(x+ hv)− 2H(x+ hv)F (x+ hv) +H(xU)F (x+ hv)2

)
K(v)2g(x+ hv)dv

=
2

h

∫ xU−x
h

xL−x
h

rp (v) rp (v)′
(
H(x)− 2H(x)F (x) +H(xU)F (x)2

)
K(v)2g(x)dv +O(1)

=interior
2

h
g(x)

[
H(x)− 2H(x)F (x) +H(xU)F (x)2

]
Tp,x +O(1),

=boundary O(1),

which closes the proof. �

6.5 Proof of Theorem 1

Proof. This follows from previous lemmas. �

6.6 Proof of Theorem 2

Proof. First we note that the second half of the theorem follows from the first half and the asymptotic normality
result of Theorem 1, hence it suffices to prove the first half, i.e. the consistency of V̂p,v,x.

The analysis of this estimator is quite involved, since it takes the form of a third order V-statistic. Moreover, since
the empirical d.f. F̂ is involved in the formula, a full expansion leads to a fifth order V-statistic. However, some
simple tricks will greatly simplify the problem.

We first split Γ̂p,x into four terms, respectively

Σ̂p,x,1 =
1

n3

∑
i,j,k

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
1[xi ≤ xj ]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
Σ̂p,x,2 =

1

n3

∑
i,j,k

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
F (xj)− F̂ (xj)

)(
1[xi ≤ xk]− F̂ (xk)

)
Σ̂p,x,3 =

1

n3

∑
i,j,k

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
1[xi ≤ xj ]− F̂ (xj)

)(
F (xk)− F̂ (xk)

)
Σ̂p,x,4 =

1

n3

∑
i,j,k

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
F (xj)− F̂ (xj)

)(
F (xk)− F̂ (xk)

)
.
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Leaving Σ̂p,x,1 for a while, since it is the key component in this variance estimator. We first consider NxŜ
−1
p,xΣ̂p,x,4Ŝ

−1
p,xNx.

By the uniform consistency of the empirical d.f., it can be shown easily that

NxŜ
−1
p,xΣ̂p,x,4Ŝ

−1
p,xNx = OP

(
(nh)−1) .

Note that the extra h−1 comes from the scaling matrix Nx, but not the kernel function Kh. Next we consider
NxŜ

−1
p,xΣ̂p,x,2Ŝ

−1
p,xNx, which takes the following form (up to the negligible smoothing bias):

NxŜ
−1
p,xΣ̂p,x,2Ŝ

−1
p,xNx

=NxH(βp(x)− β̂p(x))

 1

n2

∑
i,k

rp
(xk − x

h

)′
Kh(xk − x)w2

i

(
1[xi ≤ xk]− F̂ (xk)

) Ŝ−1
p,xNx

=OP((nh)−1/2) = oP(1),

where the last line uses the asymptotic normality of β̂p(x). For Σ̂p,x,1, we make the observation that it is possible to
ignore all “diagonal” terms, meaning that

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
1[xi ≤ xj ]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
+ oP(h),

under the assumption that nh2 →∞. As a surrogate, define

Ui,j,k = rp
(xj − x

h

)
rp
(xk − x

h

)′
Kh(xj − x)Kh(xk − x)w2

i

(
1[xi ≤ xj ]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
,

which means

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

Ui,j,k.

The critical step is to further decompose the above into

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

E[Ui,j,k|xi] (I)

+
1

n3

∑
i,j,k

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj ]

)
(II)

+
1

n3

∑
i,j,k

distinct

(
E[Ui,j,k|xi, xj ]− E[Ui,j,k|xi]

)
. (III)

We already investigated the properties of term (I) in Lemma 3, hence it remains to show that both (II) and (III) are
o(h), hence does not affect the estimation of asymptotic variance. We consider (II) as an example, and the analysis
of (III) is similar. Since (II) has zero expectation, we consider its variance (for simplicity treat U as a scaler):

V[(II)] = E

 1

n6

∑
i,j,k

distinct

∑
i′,j′,k′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj ]

)(
Ui,j,k − E[Ui′,j′,k′ |xi′ , xj′ ]

) .
The expectation will be zero if the six indices are all distinct. Similarly, when there are only two indices among the
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six are equal, the expectation will be zero unless k = k′, hence

V[(II)] = E

 1

n6

∑
i,j,k

distinct

∑
i′,j′,k′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj ]

)(
Ui,j,k − E[Ui′,j′,k′ |xi′ , xj′ ]

)

= E

 1

n6

∑
i,j,k,i′j′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj ]

)(
Ui,j,k − E[Ui′,j′,k|xi′ , xj′ ]

)
+ · · · ,

where · · · represent cases where more than two indices among the six are equal. We can easily compute the order
from the above as

V[(II)] = O(n−1) +O((nh)−2),

which shows that

(II) = OP(n−1/2 + (nh)−1) = oP(h),

which closes the proof. �

6.7 Proof of Lemma 5

Proof. First replace ŵi by wi, then it reduces to the leave-in bias, which has been shown in Lemma 2 to have order
OP(n−1). Then consider the remaining piece:

1 + oP(1)

n2

∑
i

rp
(xi − x

h

)
(ŵi − wi)

(
1− F (xi)

)
Kh(xi − x) (I)

≤ (θ̂ − θ0) · 1

n2

∑
i

sup
|θ−θ0|≤δ

|ẇ(zi, θ)| ·
∣∣∣rp (xi − x

h

)∣∣∣ (1− F (xi)
)
Kh(xi − x)

≤ 1√
nn

[
1

n

∑
i

sup
|θ−θ0|≤δ

|ẇ(zi, θ)| ·
∣∣∣rp (xi − x

h

)∣∣∣ (1− F (xi)
)
Kh(xi − x)

]
,

where the remaining term can be further bounded by expectation calculation:

E

[
sup

|θ−θ0|≤δ
|ẇ(zi, θ)| ·

∣∣∣rp (xi − x
h

)∣∣∣ (1− F (xi)
)
Kh(xi − x)

]

= E
[
a(xi) ·

∣∣∣rp (xi − x
h

)∣∣∣ (1− F (xi)
)
Kh(xi − x)

]
, a(xi) = E

[
sup

|θ−θ0|≤δ
|ẇ(zi, θ)|

∣∣∣xi]

=

∫
a(x+ hv) · |rp (v)|

(
1− F (x+ hv)

)
K(v)g(x+ hv)dv

≤ C
∫ 1

−1

a(x+ hv)g(x+ hv)dv

≤ CE

[
sup

|θ−θ0|≤δ
|ẇ(zi, θ)

]
<∞.

Therefore (I) has order OP(n−3/2), hence is asymptotically negligible. �
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6.8 Proof of Lemma 6

Proof. First replace ŵi by wi, then Lemma 4 shows that it has order OP(
√
n−2h−1) = oP(

√
n−1h), provided that

nh2 →∞. Then we consider the difference, which can be written as (ignoring the oP(1) term in R̂)

1

n2

∑
i,j;i 6=j

(ŵj − wj)
{

rp
(xi − x

h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

−
∫ xU−x

h

xL−x
h

rp(u)
(
1[xj ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

}
=
(
θ̂ − θ0

) 1

n2

∑
i,j;i6=j

ẇj
{

rp
(xi − x

h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x) (I)

−
∫ xU−x

h

xL−x
h

rp(u)
(
1[xj ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

}
+
(
θ̂ − θ0

) 1

n2

∑
i,j;i 6=j

(ẇ(zj , θ̃)− ẇj)
{

rp
(xi − x

h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x) (II)

−
∫ xU−x

h

xL−x
h

rp(u)
(
1[xj ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

}
.

Term (I) remains to be a U-statistic with zero expectation, but not necessarily degenerate. Its order can easily be
seen to be, with standard variance calculation:

(I) = OP

(
1√
n

(
1√
n

+
1√
n2h

))
= OP

(
1

n
+

1

n
√
nh

)
,

which has the same order as the leave-in bias, hence can be ignored (provided that ẇi has finite variance).
For (II), we observe:

|(II)| ≤ |θ̂ − θ0|2 ·
1

n2

∑
i,j;i 6=j

sup
|θ−θ0|≤δ

|ẅ(zi, θ)| ·
∣∣∣rp (xi − x

h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

−
∫ xU−x

h

xL−x
h

rp(u)
(
1[xj ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

∣∣∣
= OP

(
1

n

)
,

by direct expectation calculation. �

6.9 Proof of Lemma 7

Proof. First note that

1 + oP(1)

n

∑
i

∫ xU−x
h

xL−x
h

rp (u)
(
ŵi − wi

)(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

=
1 + oP(1)

n

[∑
i

∫ xU−x
h

xL−x
h

rp (u) ẇi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

](
θ̂ − θ0

)
(I)

+
1 + oP(1)

n

[∑
i

∫ xU−x
h

xL−x
h

rp (u) (ẇ(zi, θ̃)− ẇi)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

](
θ̂ − θ0

)
. (II)
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We first consider the interior case, with the following expectation calculation for (I):

E

[
S−1
p,x

1

n

∑
i

∫ xU−x
h

xL−x
h

rp (u) ẇi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

]

= S−1
p,x

∫ xU−x
h

xL−x
h

rp (u)
(
I(x+ hu)− I(xU)F (x+ hu)

)
K(u)g(x+ hu)du

= g(x)(I(x)− I(xU)F (x))e0 +O(h).

Since the variance of the above quantity has order 1/n, we have, when x is in interior, that

NxS
−1
p,x

1

n

∑
i

∫ xU−x
h

xL−x
h

rp (u) ẇi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du = g(x)(I(x)− I(xU)F (x))e0 +OP

(√
h+

1√
nh

)
.

When x is in either the lower boundary or the upper boundary region,

NxS
−1
p,x

1

n

∑
i

∫ xU−x
h

xL−x
h

rp (u) ẇi
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)du = OP

(√
h+

1√
nh

)
,

since the leading constant term vanishes.
As for (II), it is bounded through the following quantity:

(II) �P

(
θ̂ − θ0

) 1

n

[∑
i

∫ xU−x
h

xL−x
h

rp (u) (ẇ(zi, θ̃)− ẇi)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)du

]

≤ |θ̂ − θ0|2 ·
1

n

[∑
i

∫ xU−x
h

xL−x
h

sup
|θ−θ0|≤δ

|ẅ(zi, θ)|
∣∣∣rp (u)

(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)g(x+ hu)

∣∣∣du] ,
which has the order OP(n−1) by expectation calculation. �

6.10 Proof of Theorem 3

Proof. This follows from previous lemmas. �

6.11 Proof of Theorem 4

Proof. The proof resembles that of Theorem 2 with minor changes. �

6.12 Proof of Lemma 8

Proof. We rely on Lemma 1 and 2 (note that whether the weights are estimated is irrelevant here), hence will not
repeat arguments already established there. Instead, extra care will be given to ensure the characterization of higher
order bias.

Consider the case where with enough smoothness on G, then the bias is characterized by

h−vv!e′v

[
G(1)(x)Sp,x + hG(2)(x)S̃p,x + o(h) +OP(1/

√
nh)
]−1

[
hp+1F

(p+1)(x)

(p+ 1)!
G(1)(x)cp,x + hp+2

[
F (p+2)(x)

(p+ 2)!
G(1)(x) +

F (p+1)(x)

(p+ 1)!
G(2)(x)

]
c̃p,x + o(hp+2)

]
= h−vv!e′v

[
1

G(1)(x)
S−1
p,x − h

G(2)(x)

[G(1)(x)]2
S−1
p,xS̃p,xS

−1
p,x +OP

(
1/
√
nh
)]

[
hp+1F

(p+1)(x)

(p+ 1)!
G(1)(x)cp,x + hp+2

[
F (p+2)(x)

(p+ 2)!
G(1)(x) +

F (p+1)(x)

(p+ 1)!
G(2)(x)

]
c̃p,x + o(hp+2)

]
{1 + oP(1)},

which gives the desired result. Here S̃p,x =
∫ xU−x

h
xL−x

h

urp(u)rp(u)′k(u)du. And for the last line to hold, one needs the

extra condition nh3 →∞ so that OP

(
1/
√
nh
)

= oP(h). See Fan and Gijbels (1996) (Theorem 3.1, pp. 62). �
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6.13 Proof of Lemma 9

Proof. The proof resembles that of Lemma 1, and is omitted here. �

6.14 Proof of Theorem 5

Proof. The proof splits into two cases. We sketch one of them. Assume either x is boundary or p − v is odd, the
MSE-optimal bandwidth is asymptotically equivalent to the following:

h̃MSE,p,v,x
hMSE,p,v,x

→ 1, h̃MSE,p,v,x =

 1

n

(2v − 1)H(1)(x)e′vS
−1
p,xΓp,xS

−1
p,xev

(2p− 2v + 2)(F
(p+1)(x)
(p+1)!

e′vS
−1
p,xcp,x)2

 1
2p+1

,

which is obtained by optimizing MSE ignoring the higher order bias term. With consistency of the preliminary
estimates, it can be shown that

ĥMSE,p,v,x =

 1

n

(2v − 1)σ̂2
p,v,xn`

2v−1

(2p− 2v + 2)(v! F̂
(p+1)(x)
(p+1)!

e′vS
−1
p,xcp,x)2

 1
2p+1

{1 + oP(1)}.

Apply the consistency assumption of the preliminary estimates again, one can easily show that ĥMSE,p,v,x is consistent
both in rate and constant.

A similar argument can be made for the other case, and is omitted here. �
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ĥ

0
.0

0
5

0
.0

1
4

0
.0

1
5

0
.0

1
1

1
2
.1

2

Q
u

a
n
ti

le

0.
10

0.
25

0.
50

0.
75

0.
90

ĥ
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ĥ
/h

M
S
E

0
.4

9
0.

53
1

0.
5
9
4

0.
7
0
5

0.
9

N
o
te

.
(i

)
b

ia
s:

em
p

ir
ic

a
l

b
ia

s
o
f

th
e

es
ti

m
a
to

rs
;

(i
i)

sd
:

em
p

ir
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

es
ti

m
a
to

rs
;

(i
ii
)
√

m
se

:
em

p
ir

ic
a
l

m
.s

.e
.

o
f

th
e

es
ti

m
a
to

rs
;

(i
v
)

m
ea

n
:

em
p

ir
ic

a
l

a
v
er

a
g
e

o
f

th
e

es
ti

m
a
te

d
st

a
n
d

a
rd

er
ro

rs
;

(v
)

si
ze

:
em

p
ir

ic
a
l

si
ze

o
f

te
st

in
g

th
e

h
y
p

o
th

es
is

a
t

n
o
m

in
a
l

5
%

le
v
el

,
th

e
te

st
st

a
ti

st
ic

is
ce

n
te

re
d

a
t
Ef̂
p
.

49



T
ab

le
11

.
S

im
u

la
ti

on
(E

x
p

on
en

ti
al

).
x

=
1,
p

=
2,

tr
ia

n
gu

la
r

ke
rn

el
.

(a
)
n

=
1
0
0
0

f̂
p

S
E

b
ia

s
sd

√
m

se
m

ea
n

si
ze

h
M
S
E
×

0
.1

0
.0

0
6

0
.0

6
5

0
.0

6
5

0
.0

6
5

5
.8

8

0
.3

0
.0

0
3

0
.0

3
6

0
.0

3
6

0
.0

3
6

5
.3

0

0
.5

0
.0

0
4

0
.0

2
7

0
.0

2
7

0
.0

2
7

5
.3

2

0
.7

0
.0

0
6

0
.0

2
2

0
.0

2
3

0
.0

2
2

5
.2

2

0
.9

0
.0

0
9

0
.0

1
9

0
.0

2
1

0
.0

1
8

5
.0

0

1
0
.0

1
1

0
.0

1
7

0
.0

2
0

0
.0

1
7

5
.1

0

1
.1

0
.0

1
3

0
.0

1
6

0
.0

2
0

0
.0

1
6

4
.9

0

1
.3

0
.0

1
7

0
.0

1
4

0
.0

2
2

0
.0

1
4

4
.7

4

1
.5

0
.0

2
3

0
.0

1
2

0
.0

2
6

0
.0

1
2

4
.6

6

1
.7

0
.0

2
8

0
.0

1
1

0
.0

3
0

0
.0

1
1

4
.4

2

1
.9

0
.0

3
3

0
.0

1
0

0
.0

3
4

0
.0

1
0

4
.1

0

ĥ
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ĥ
/h

M
S
E

0
.7

8
3

0.
8
46

0.
93

4
1.

0
65

1.
26

9

Q
u

a
n
ti

le

0.
10

0.
25

0.
5
0

0
.7

5
0
.9

0

ĥ
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ĥ
/h

M
S
E

0
.8

3
0.

88
0.

9
5
2

1.
0
4
6

1.
1
5
7

N
o
te

.
(i

)
b

ia
s:

em
p

ir
ic

a
l

b
ia

s
o
f

th
e

es
ti

m
a
to

rs
;

(i
i)

sd
:

em
p

ir
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

es
ti

m
a
to

rs
;

(i
ii
)
√

m
se

:
em

p
ir

ic
a
l

m
.s

.e
.

o
f

th
e

es
ti

m
a
to

rs
;

(i
v
)

m
ea

n
:

em
p

ir
ic

a
l

a
v
er

a
g
e

o
f

th
e

es
ti

m
a
te

d
st

a
n
d

a
rd

er
ro

rs
;

(v
)

si
ze

:
em

p
ir

ic
a
l

si
ze

o
f

te
st

in
g

th
e

h
y
p

o
th

es
is

a
t

n
o
m

in
a
l

5
%

le
v
el

,
th

e
te

st
st

a
ti

st
ic

is
ce

n
te

re
d

a
t
Ef̂
p
.

52



T
ab

le
14

.
S

im
u

la
ti

on
(E

x
p

on
en

ti
al

).
x

=
1.

5,
p

=
3,

tr
ia

n
gu

la
r

ke
rn

el
.

(a
)
n

=
1
0
0
0

f̂ p
S

E

b
ia

s
sd

√
m

se
m

ea
n

si
ze

h
M
S
E
×

0
.1

0
.0

0
0

0
.0

4
9

0
.0

4
9

0
.0

4
8

6
.1

4

0
.3

0
.0

0
0

0
.0

2
7

0
.0

2
7

0
.0

2
7

4
.8

8

0
.5

0
.0

0
0

0
.0

2
1

0
.0

2
1

0
.0

2
1

4
.3

4

0
.7

−
0
.0

0
1

0
.0

1
8

0
.0

1
8

0
.0

1
8

4
.5

8

0
.9

−
0
.0

0
3

0
.0

1
6

0
.0

1
6

0
.0

1
6

4
.6

2

1
−

0
.0

0
4

0
.0

1
5

0
.0

1
6

0
.0

1
5

4
.7

6

1
.1

−
0
.0

0
6

0
.0

1
5

0
.0

1
6

0
.0

1
5

4
.6

8

1
.3

−
0
.0

0
7

0
.0

1
4

0
.0

1
6

0
.0

1
4

4
.7

8

1
.5

−
0
.0

0
6

0
.0

1
4

0
.0

1
5

0
.0

1
4

4
.7

8

1
.7

−
0
.0

0
4

0
.0

1
3

0
.0

1
4

0
.0

1
3

4
.8

6

1
.9

−
0
.0

0
2

0
.0

1
2

0
.0

1
2

0
.0

1
2

4
.9

2

ĥ
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