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Many empirical studies estimate the structural effect of some variable on an out-
come of interest while allowing for many covariates. We present inference methods
that account for many covariates. The methods are based on asymptotics where the
number of covariates grows as fast as the sample size. We find a limiting normal
distribution with variance that is larger than the standard one. We also find that with
homoskedasticity this larger variance can be accounted for by using degrees-of-
freedom-adjusted standard errors. We link this asymptotic theory to previous results
for many instruments and for small bandwidth(s) distributional approximations.

1. INTRODUCTION

Many empirical studies estimate the structural, causal, or treatment effect of some
variable on an outcome of interest. For example, we might be interested in esti-
mating the effect of some government policy on an outcome such as income.
Since policies and many other variables are not exogenous, researchers rely on a
variety of approaches based on observational data when trying to estimate such
effects. One important method is based on assuming that the variable of interest
can be taken as exogenous after controlling for a sufficient set of other factors
or covariates. See, for example, Heckman and Vytlacil (2007) and Imbens and
Wooldridge (2009) for recent reviews and further references.
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A problem empirical researchers face when relying on covariates to estimate a
structural effect is the availability of many potential controls. Typically, intuition
will suggest a set of variables that might be important but will not identify ex-
actly which variables are important or the functional form with which variables
should enter the model. This lack of clear guidance about what variables to use
leaves researchers with a potentially vast set of potential covariates including raw
regressors available in the data as well as interactions and other nonlinear transfor-
mations thereof. Many economic studies include many of these variables in order
to control for as broad array of covariates as possible. For example, it is com-
mon to include dummy variables for many potentially overlapping groups based
on age, cohort, geographic location, etc. Even when some controls are dropped
after valid covariate selection, as was developed by Belloni, Chernozhukov, and
Hansen (2014), many controls may remain in the final regression specification.

We present inference methods that account for the presence of many controls
in regression models. We do this using a large sample approximation where the
number of covariates grows as fast as the sample size. We find a limiting normal
distribution with variance that is larger than the standard asymptotic variance.
We show that with homoskedasticity this larger variance is fully accounted for by
using standard errors with a degrees-of-freedom adjustment for inclusion of many
covariates. This asymptotics and the associated standard errors provides an impor-
tant justification for the practice of adjusting for degrees of freedom even when
disturbances are not normally distributed. As always the asymptotics are meant as
an approximation that provides useful inference methods for applications. In this
way the asymptotic approximation given here should prove useful in practice.

This paper also adds to the literature on regression where the number of regres-
sors grow with the sample size. Huber (1973) showed that fitted regression values
are not asymptotically normal when the number of regressors grows as fast as
sample size. The problem is circumvented here by focusing on the coefficients of
some regressors when the number of covariates gets large. Recently, El Karoui,
Bean, Bickel, Lim, and Yu (2013) showed that, with a Gaussian distributional as-
sumption on the regressors, certain coefficients and contrasts are asymptotically
normal when the number of regressors grows as fast as sample size, but do not
give inference results. We do give inference results in showing that the degrees-
of-freedom adjustment to standard errors accounts correctly for many covariates
and do not impose distributional assumptions on the regressors. We also use a
different and simpler approach to the asymptotic theory. We note that our re-
sults were presented at the 2010 Joint Statistical Meetings and are independent of
El Karoui et al. (2013).

The asymptotics here are based on asymptotic normality results for degenerate
U-statistics. To help explain and motivate this theory we note that asymptotic nor-
mality for degenerate U-statistics has already been used in other settings. Such
results are the basis for the many instrument asymptotics where the number of
instruments grows as fast as the sample size. Kunitomo (1980) and Morimune
(1983) derived asymptotic variances that are larger than the usual formulae
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when the number of instruments and sample size grow at the same rate, and
Bekker (1994) and others provided consistent estimators of these larger variances.
Hansen, Hausman, and Newey (2008) showed that the use of many instrument
standard errors provides an improvement for a range of number of instruments.
Such asymptotics have also proven useful for small bandwidth approximations for
kernel-based density-weighted average derivative estimators in Cattaneo, Crump,
and Jansson (2010, 2014b). They show that when the bandwidth shrinks faster
than needed for consistency of the kernel estimator, the variance of the estima-
tor is larger than the usual formula. They also find that correcting the variance
provides an improvement over standard asymptotics for a range of bandwidths.

We use a common framework for these results to motivate the asymptotic
theory. The common framework is that the object determining the limiting
distribution is a V-statistic, which can be decomposed into a bias term, a
sample average, and a “remainder” that is an asymptotically normal degener-
ate U-statistic. Asymptotic normality of the remainder distinguishes this setting
from others with degenerate U-statistic. Here asymptotic normality occurs be-
cause the number of covariates goes to infinity, while the behavior of a degen-
erate U-statistic is different in other settings. When the number of covariates
grows as fast as the sample size the remainder has the same magnitude as the
leading term, resulting in an asymptotic variance larger than just the variance of
the leading term. The many covariate, many instrument, and small bandwidth re-
sults share this structure. In keeping with this common structure, we refer here
to such results under the general heading of “alternative asymptotics.” While not
all semiparametric estimation problems share this structure, we show by example
that its scope may indeed be useful for econometrics. In the conclusions section
below we also discuss its limitations and its relation to other types of alternative
asymptotic approximations in semiparametrics problems and other loosely related
contexts.

An important generalization to the results presented herein is to asymptotics
and inference with many covariates under heteroskedasticity. Constructing con-
sistent standard error estimators under heteroskedasticity of unknown form in
this setting turns out to be quite challenging. In Cattaneo, Jansson, and Newey
(2015), we present a detailed discussion of heteroskedasticity-robust standard er-
rors for linear models where the number of covariates increases at the same rate as
the sample size, which covers the partially linear model when the number terms
grows at the same rate as the sample size.

The rest of the paper is organized as follows. Section 2 describes the common
structure of many instrument and small bandwidth asymptotics, and also shows
how the structure leads to new results for the partially linear model. Section 3
formalizes the new distributional approximation for many covariates. Section 4
reports results from a small simulation study aimed to illustrate our results in
small samples. Section 5 concludes. Appendix A collects the proofs of our results,
while Appendix B discusses heuristically how our results can be extended to the
case of generated regressors and related problems.
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2. ACOMMON STRUCTURE

We consider inference on structural effects in an environment where variables
of interest may be taken as exogenous conditional on covariates. We pose the
problem in the framework of a partially linear model. Let (y;, x/,2;),i =1,...,n,
be a random sample satisfying

yi =xfo+8i) +¢i, Eleilxi,zi]1 =0, @

where y; is a scalar dependent variable, x; € R are the treatment/policy vari-
ables of interest, z; are explanatory variables, g(z) is an unknown function, and
E[V[x;|z;]] is of full rank. The goal of the analysis is to conduct inference about
the structural effect fy.

A series estimator of fy is obtained by regressing y; on x; and functions
of z;. To describe the estimator, let p'(z), p?(z), ... be approximating func-
tions, such as polynomials or splines, and let px (z) = (p'(2),..., pX(z))’ be a
K-dimensional vector of such functions. We consider a regression that includes
a K x 1 vector of covariates pg(z;) that may consist of z; and transforma-
tions of z; to adequately approximate g(z;). The conditional mean restriction
Elei|x;, zi] = 0 means that x; may be considered exogenous after controlling lin-
early for variables that can approximate g(z;). We will assume that linear combi-
nations of these variables provide approximations to g(z;) and to E[x;|z;] with
relatively small approximation errors for each object. To describe the estima-
tor let M;; denote the (i, j)-th element of M = I,, — PK(P;(PK)_IP;(, where
Px =[pk(z1),..., pk(zn)]. A series estimator of Sy in (1) is given by

-1

n n n n
B={D.> Mixix] D Mijxiy;
i=1j=1 i=1j=1

Donald and Newey (1994) gave conditions for asymptotic normality of this esti-
mator using standard asymptotics. See also Linton (1995) and references therein
for related asymptotic results when using kernel estimators.

Conditional on Z = [z1,...,z2.], ﬁ depends on a V-statistic. Plugging in for y;
for each i and solving gives

ﬁ(ﬁ— ,b’o) . 2
with
1 n n 1 n n
F,,:;ZZM,-,-x,-x]’-, S":ﬁzzfoif (gj+gj),
i=1 j=1 i=1j=1

where g; = g(z;). Conditional on Z, the term S, is a V-statistic

n n
Sw= 2. 2 iy (Wi W),

i=1j=1
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where W; = (x/,¢;) and wi; (Wi, Wj) = xi Mij (g +¢&j)/+/n. We assume through-
out this section that there exists a sequence of nonrandom matrices I',, satisfy-
ing I';; 1f,, —p 1q for I; the d x d identity matrix, and hence we focus on the
V-statistic S,,. (All limits are taken as n — oo unless explicitly stated otherwise.)

To explain the many covariate asymptotics, and to provide a link to previous
work on many instruments and small bandwidths, it is helpful to provide a general
analysis of the V-statistic S,. This V-statistic has a well known (Hoeffding-type)
decomposition that we describe here because it is an essential feature of the com-
mon structure. For notational simplicity we will drop the W; and W; arguments

and set ufj = u:’j (Wi, W;) and zlf’j = ufj —}—u;?i —E[ul’.’j —I—u;’i]. Let || - || denote the
Euclidean norm. If E[||u?j Il < oo foralli, j,n, then

Sy =B, +¥,+U,, 3
where

n n
By=E[S,],  Wa=D (W),  Uy=D D! (Wi...,W),
i=1 i=2

n

v (W) =uly —Elul ]+ > B[ |wi],

j=Lj#i
n
D} (Wi,...,. W)= > (ﬁg—E[ﬁg]Wi]—E[ﬁU}W’j]).
j=1j<i
It is straightforward to see that E[y]'(W;)] = 0, E[D!(W;,...,W)|
Wizt,...,W1] = 0, and E[Y¥,U,] = 0. This decomposition of a V-statistic

is well known (e.g., van der Vaart (1998, Chapter 11)), and shows that S, can
be decomposed into a sum ¥, of independent terms, a U-statistic remainder U,
that is a martingale difference sum and uncorrelated with ¥, and a pure bias
term B,.! The decomposition is important in many of the proofs of asymptotic
normality of semiparametric estimators, including Powell, Stock, and Stoker
(1989), with the limiting distribution being determined by ¥,, and U, being
treated as a “remainder” that is of smaller order under a particular restriction on
the tuning parameter sequence (e.g., when the number of covariates increases
slowly enough).

An interesting property of U, is that it is asymptotically normal at some rate
when the number of covariates grows. To be specific, if regularity conditions spec-
ified below hold and K — oo with the sample size, it turns out that

V¥,
VU, 172U,
In other settings, where the underlying kernel of the U-statistic does not vary with

the sample size, the asymptotic behavior of U,, can be different. Many degenerate
U-statistics will converge to a weighted sum of independent chi-squared random

i| —a N(0, ILy).
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variables (e.g., van der Vaart (1998, Chapter 12)). However, as the number of
covariates grows, the kernel of the underlying U-statistic forming U,, changes with
the sample in such a way that the individual contributions Df’ Wi, ...,Wp) to U,
are small enough to satisfy a Lindeberg—Feller condition leading to a Gaussian
limiting distribution (usually established using the martingale property of U,).
For an interesting discussion of this phenomenon, see de Jong (1987). This type of
asymptotic normality result for degenerate U-statistics has previously been shown
in other settings, as further explained below.

When the number of covariates grows as fast as the sample size V[¥,] and
VI[U,] have the same magnitude in the limit. Because of uncorrelatedness of ¥,
and U, the asymptotic variance will be larger than the usual formula which is
limy,— 00 V[, ] (assuming the limit exists). As a consequence, consistent vari-
ance estimation under many covariate asymptotics requires accounting for the
contribution of U, to the (asymptotic) sampling variability of the statistic.

To apply this calculation to many covariates, note that by E[e;|x;,z;] =0 we
have E[x;&;|Z] = 0. Therefore, for u:’j = u:’j (W;, W;) as introduced previously,
we have

E[MZ’Z:I :hiMijgj/«/E, u:’] —E[MZ‘Z] = M;; (l)igj —I—xiej) /«/E,
iy = Mij (vjgi +vigj +xjei +xiej) /v/n,
E[ﬁmWi,Z] = M;j (vigj +hjei) /v/n,

fori # j, where h; = h(z;) = E[x;|z;] and v; = x; — h;. In this case, the bias term

in (3)is

1 n n
B, = ﬁ ;;Mijhigj,

= j =

which will be negligible under regularity conditions, as shown in the next section.
Moreover,

l n l n n
Vo=—7=D Miviei+ Ry,  Ri=— Mij (vigj +higj)

s i)

where R, has mean zero and converges to zero in mean square as K grows, as
further discussed below. Under standard asymptotics M;; will go to one and hence
the limiting variance of the leading term in ¥,, corresponds to the usual asymptotic
variance. Finally, we find that the degenerate U-statistic term is

1 n n 1 n n
Up=—= Z Z M;j (viej +vjei) = ——= Z Z Qij (viej +vjei),
Vn i=1j=1,j<i v i=lj=1,j<i

where Q;; is the (i, j)-th component of Px (P PK)_lP;(. Remarkably, as dis-
cussed below, this term is essentially the same as the degenerate U-statistic
term for certain instrumental variables estimators. Consequently, a central limit
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theorem of Chao, Swanson, Hausman, Newey, and Woutersen (2012) that was
applied to many instrument asympotics is applicable to regression with many co-
variates. We will employ it to show that U, is asymptotically normal as K — oo.

Distribution theory with many covariates may be seen as a generalization of
the conventional asymptotics in the sense that under conventional asymptotics the
asymptotic variances emerging from both approaches coincide. But, the alternative
asymptotic approximation also allows for the covariates to grow at the same rate as
the sample size, where the limiting asymptotic variance is larger. Thus, in general,
there is no reason to expect that the usual standard error formulas derived under
conventional asymptotics will remain valid more generally. From this perspective,
our many covariate asymptotics provides a theoretical justification for new standard
error formulas that are consistent under both conventional and alternative asymp-
totics. We refer to the latter standard error formulas as being more robust than the
usual standard errors available in the literature. For instance, using these ideas, more
robust standard errors were derived previously for many instrument asymptotics in
IV models (Hansen, Hausman, and Newey (2008)) and small bandwidth asymp-
totics in kernel-based semiparametrics (Cattaneo, Crump, and Jansson (2014b)).

Accounting for the presence of U, should also yield improvements when num-
bers of covariates do not satisfy the knife-edge condition of growing at the same
rate as the sample size. For instance, if the number of covariates grows just slightly
slower than the sample size then accounting for the presence of U, should still
give a better large sample approximation. Hansen, Hausman, and Newey (2008)
show such an improvement for many instrument asymptotics. It would be good to
consider such improved approximations more generally, though it is beyond the
scope of this paper to do so.

To motivate and provide background for this approach we show next that both
many instrument asymptotics and small bandwidth asymptotics have the structure
described above.

2.1. Connection with Many Instrument Asymptotics

To link many covariate asymptotics with many instrument asymptotics we focus

on the JIVE2 estimator of Angrist, Imbens, and Krueger (1999), but the idea ap-

plies to other IV estimators such as the limited information maximum likelihood

estimator. See Chao et al. (2012) for more details, including regularity conditions

under which the following discussion can be made rigorous. See also Alvarez and

Arellano (2003) for a discussion of many instrument IV asymptotics for panels.
Let (yi,x/,2;)',i =1,...,n, be arandom sample generated by the model

vi=x/po+ei, Eleilzil =0, @

where y; is a scalar dependent variable, x; € R? is a vector of endogenous vari-
ables, ¢; is a disturbance, and z; € RX is a vector of instrumental variables.

To describe the JIVE2 estimator of Sy in (4), now let Q;; denote the (i, j)-
th element of Q = Z(Z'Z)~'Z’, where Z = [z1,--- ,za]’. After centering and
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scaling, the JIVE2 estimator ﬁ satisfies
-1
R 1 n n 1 n n
V(B — o) = ;Z > Qijxix] 7 DD Qixigj
i=1j=1,j#i ML=t i

Conditional on Z, ﬁ has the structure in (2) with W; = (xlf ,&;) and

PO I .
I, = ;Z Z Qijxix;, g (Wi, W;) = 1G # j) Qijxiej/~/n,
i=1j=1,j#i
where 1(-) is the indicator function.
For i ¢j,E[u;Zj Wi, w,-)|z] —0and

Eliu?] (W;, Wj)|W,‘, Z] = Q,‘j)C,‘E[EﬂZ] =0,
E [ (W), Wo| Wi, Z] = 0y Yyei/ /i,

where Y; = E[x;|z;] can be interpreted as the reduced form for observation i. As
a consequence, (3) is satisfied with B, =0,

n n
pr W)= D QY| ei="i(l—Qi)ei//n—[Yi=D Qi) |ei/v/n.
J=li#i =1

n
D! (W;,..., W)= Z Qij (viej +vjei) /v/n, vi =x; —Y;.

Jj=lj<i

Because Y; — Z;Z: 1 Qij Y is the i-th residual from regressing the reduced form
observations on Z, by appropriate definition of the reduced form this can generally
be assumed to vanish as the sample size grows. In that case,

1 n
¥, = NG ;ml — Qinei+o,(1).

Furthermore, under standard asymptotics Q;; will go to zero, so the limiting vari-
ance of the leading term in ¥, corresponds to the usual asymptotic variance for
IV. The degenerate U-statistic term is

n n
U, = % Z Z Qij (l)i&‘j +l)j8i) .

i=1j=1,j<i
Chao et al. (2012) apply a martingale central limit theorem to show that this U,
will be asymptotically normal when K — oo and certain regularity conditions
hold. Here we see that the U,, term for JIVE2 has the same form as for many
covariates. Thus, many covariate asymptotics can be obtained by using previous
results for many instruments.
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2.2. Connection with Small Bandwidth Asymptotics

We can also show that small bandwidth asymptotics for certain kernel-based semi-
parametric estimators are based on a degenerate U-statistic like that considered
above. To keep the exposition simple we focus on an estimator of the integrated
squared density, but the structure of this estimator is shared by the density-
weighted average derivative estimator of Powell, Stock, and Stoker (1989) treated
in Cattaneo, Crump, and Jansson (2014b) and more generally by estimators of
density-weighted averages and ratios thereof (see, e.g., Newey, Hsieh, and Robins
(2004, Section 2) and references therein). Furthermore, these ideas are also appli-
cable to other semiparametric problems such as those involving (i) certain func-
tionals of U-processes arising in latent models as in Aradillas—Lopéz, Honoré,
and Powell (2007) and references therein, (i) U-statistics used for specification
testing as in Li and Racine (2007, Chapter 12) and references therein, and (ii7)
U-statistics obtained from convolution estimators as in Schick and Wefelmeyer
(2013) and references therein. Since the main purpose here is to highlight the
connections between many covariate asymptotics and other alternative asymp-
totics in the literature, rather than to extend the scope of alternative asymptotics,
we do not discuss those other potential applications here.

Suppose xj, i = 1,...,n, are i.i.d. continuously distributed p-dimensional
random vectors with smooth p.d.f. fy and consider estimation of the integrated
squared density

Bo— /R fo(dx = ELfoGa]

A leave-one-out kernel-based estimator is

ﬁzn(n_l)z Z Kn(xi —x)),

i=1j=1,j#i

where /C(u) is a symmetric kernel and /Cp, (1) = h=PKC(u/h). As shown by Giné
and Nickl (2008), this estimator is optimal, attaining root-n consistency under
weak conditions. This estimator has the V-statistic form of (2) with W; = x; and
I, =1, ui; (Wi, Wy) = ]l(l?éj){’Ch( i —xj) — po}.
NZICES)) (
Let fi(x) = [gp K(u) fo(x +hu)du and B, = [, fi(x) fo(x)dx. By symmetry
of K(u),
1
B [uy (We, W) [ Wi | = [u (W, W) W] = =y ) = o,

n _ 1
E [ty (W6, ) | = e =5 = o)
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so the terms in the decomposition (3) are of the form

1 n
By = /i (Bh — fo), \n=QEEMﬁm%ﬁm

_ 2
~ Jn(n—1)

Here, 2{ fi (x;) — fr} is an approximation to the well known influence function
2{ fo(xi) — Po} for estimators of the integrated squared density. Under regularity
conditions, f;(x;) converges to fo(x;) in mean square as 7 — 0, so that

> > i —x) = i) = fale) + Bu} -

i=1j=1,j<i

Un

1 n
%z;igkuwm—mmmﬂm

A martingale central limit theorem can be applied as in Cattaneo, Crump, and
Jansson (2014b) to show that the degenerate U-statistic term U, will be asymp-
totically normal as &~ — 0 and n — oo, provided that n?h” — oo. It is easy to
show that n>h?V[U,] — A = fo Jro K (1)*du, under mild regularity conditions.
Alternative asymptotics occurs when /47 shrinks as fast as 1/n, resulting in V[V, ]
and V[U,] having the same magnitude in the limit.

3. MANY COVARIATE ASYMPTOTICS

In this section we make precise the previous discussion for many covariate
asymptotics and also consider inference under homoskedasticity. The estimator ﬁ
described above for many covariates can be interpreted as a two-step semipara-
metric estimator with tuning parameter K, the first step involving series estima-
tion of the unknown (regression) functions g(z) and 4(z). Donald and Newey
(1994) gave conditions for asymptotic normality of this estimator when K /n — 0.
Here we generalize their findings by obtaining an asymptotic distributional result
that is valid even when K /n is bounded away from zero.
The analysis proceeds under the following assumption.

Assumption PLM (Partially Linear Model)
(@) (vi,x/,z;)',i=1,...,n,is arandom sample.
(b) Thereisa C < oo such that E[e}|x;,z;] < C and E[|lv; |*|z;] < C.
(c) Thereis a C > 0 such that E[eﬂxi,zi] > C and Amin(E[v;0]]2;]) > C.
(d) rank(Pg) = K (a.s.) and there is a C > O such that M;; > C.
(e) For some ag,a, > 0, thereis a C < oo such that
min E[lg(zi) — 1 px (2)*] < CK 2%,
g eRK

min  E[|lh(zi) — uj,px (z)I*] < CK 2%,

Th eRKxd
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Because >, M;; =n— K, an implication of part (d) is that K /n < 1—C <1,
but crucially Assumption PLM does not imply that K /n — 0. Part (e) is im-
plied by conventional assumptions from approximation theory. For instance, when
the support of z; is compact, commonly used bases for approximation, such
as polynomials or splines, will satisfy this assumption with ag; = s,/d, and
ap = sp/d;, where s, and s;, denote the number of continuous derivatives of g(z)
and h(z), respectively. Further discussion and related references for several bases
of approximation may be found in Chen (2007).

3.1. Asymptotic Distribution

From the discussion in the previous section, we see that the asymptotic distribu-
tion of # will be determined by the behavior of I', and S,,. The following lemma
approximates I',, without requiring that K /n — O.

LEMMA 1. If Assumption PLM is satisfied and if K — oo, then

A

1 n
Ly=Ty4o0,(1), TIy= ;ZMiiE[l)il)”Zi].
i=1

Because Z:Z: | Mji =n— K, it follows from this result that in the homoskedas-
tic v; case (i.e., when E[v;0]|z;] = E[v;v]]) [, is close to

I,=(-K/nT, I =E[v;v}],

in probability. More generally, with heteroskedasticity, I, will be close to the
weighted average I',,. Importantly, this result includes standard asymptotics as a
special case when K /n — 0, where >_7_,(1 — M;;)/n = K /n, the law of large
numbers and iterated expectations imply

1< 1
T, = ;;E[viv;}zi]—;;(l — Mi)E [0)]21] + 0,(1)
i= i—

1

n
= ;ZE[viv”zi] +0,(1) =T +0,(1).
i=1

Next, we study
1 n n
S, = _zzMijvi3j+Bn+Rn~
ﬁi:l j=1

The following lemma quantifies the magnitude of the bias term B,, as well as the
additional variability arising from the (remainder) term R,,.
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LEMMA 2. If Assumption PLM is satisfied and if K — oo, then B, =
O, (VnK~%~%) and R, = o0,(1).

Like the previous lemma, this lemma does not require K /n — 0. Interestingly,
the bias term B, involves approximation of both unknown functions g(z) and
h(z), implying an implicit trade-off between smoothness conditions for g(z) and
h(z). The implied bias condition K2(«+%) /n — oo only requires that Og+ap
be large enough, but not necessarily that a, and o, separately be large. It follows
that if this bias condition holds, then

1 L
S, = WZZMUDI'E,‘]' +0p(1),

i=1j=1

as argued heuristically in the previous section.

Having dispensed with asymptotically negligible contributions to S,,, we turn
to its leading term. This term is shown below to be asymptotically Gaussian with
asymptotic variance given by

1 non
E"ZZV ZZM,‘jU,‘Sj Z
i=1j=1
1 S 2 /.2 1 S S 2 ’.2
:_ZMiiE[vivigi‘Zi]_i_;Z D MjE[vivjef |z ]
i=1 i

i=1j=1,j#i

Here, the first term following the second equality corresponds to the usual asymp-
totic approximation, while the second term adds an additional term that accounts
for large K. Once again it is interesting to consider what happens in some special
cases. Under homoskedasticity of ¢; (i.e., when E[eizlxi,zi] = E[eiz]),

2 n n 2 n
= %ZZMIZJE[Z),D”Z,] = %ZM,','E[U,'U”ZZ'] :o—gzl",,,
i=1j=1 i=1

because Z;-Z:lMizj = M;;. If, in addition, E[v;0]|z;] = E[v;0], then X, =

o2 (1—K/n)T. Also, if K/n — 0, then by >7_, D1 Mi2j/n < K/n and
the law of large numbers, we have

1 n
3= - ZMizi]E[viv{sﬂzi] +o,(1) = ]E[v,-vlfsiz] +0,(1),
i=1

which corresponds to the standard asymptotics limiting variance.
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The following theorem combines Lemmas 1 and 2 with a central limit theorem
for quadratic forms to show asymptotic normality of 5.

THEOREM 1. If Assumption PLM is satisfied and if K*@st%1) /n — oo, then
Q"2 (B o) Sa NO 1), Q=T 5,1,

If, in addition, E[e ’xl,zl] —0 , then Q,, =0 F L

This theorem shows that ,[;’ is asymptotically normal when K /n need not con-
verge to zero. An implication of this result is that inconsistent series-based non-
parametric estimators of the unknown functions g(z) and A (z) may be employed
when forming ,bA’ that is, K/n - 0 is allowed (increasing the variability of the
nonparametric estimators), provided that K — oo (to remove nonparametric
smoothing bias). This asymptotic distributional result does not rely on asymptotic
linearity, nor on the actual convergence of the matrices I';, and X,,, and leads to a
new (larger) asymptotic variance that captures terms that are assumed away by the
classical result. The asymptotic distribution result of Donald and Newey (1994) is
obtained as a special case where K /n — 0. More generally, when K /n does not
converge to zero, the asymptotic variance will be larger than the usual formula
because it accounts for the contribution of “remainder” U, in equation (3). For
instance, when both ¢; and v; are homoskedastic, the asymptotic variance is

e, =620 =620 - K /n)7 ),
which is larger than the usual asymptotic variance 0821"_1 by the degrees-of-

freedom correction (1 — K /n)~ 1.

3.2. Asymptotic Variance Estimation under Homoskedasticity

Consistent asymptotic variance estimation is useful for large sample inference. If
the assumptions of Theorem 1 are satisfied and if X, — X, — 0, then

A

1,0

Qll/zx/ﬁ(ﬁ—ﬂo) —a N0, Iy), Q,

implying that valid large-sample confidence intervals and hypothesis tests for
linear and nonlinear transformations of the parameter vector f can be based
on fl,,.z Under (conditional) heteroskedasticity of unknown form, constructing
a consistent estimator 3, turns out to be very challenging if K/n — 0. Intu-
itively, the problem arises because the estimated residuals enterlng the construc-
tion of X, are not consistent unless K/n — 0, implying that I “+p
0 in general. Solving this problem is beyond the scope of this paper; see
Cattaneo, Jansson, and Newey (2015).

Under homoskedasticity of ¢;; however, the asymptotic variance X, simplifies
and admits a correspondingly simple consistent estimator. To describe this result,
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note that if E[¢?|x;,z; ] = 02 then X, = ¢TI, where [, —T,—,0byLemmal.
It therefore suffices to find a consistent estimator of 2. Let

1 n R R n .
=8, &= M (yj —,B’Xj),
n—d=Ki= j=1

denote the usual OLS estimator of 032 incorporating a degrees-of-freedom
correction.

The following theorem shows that s2 is a consistent estimator, even when the
number of terms is “large” relative to the sample size.

THEOREM 2. Suppose the conditions of Theorem 1 are satisfied. If
E[eﬂxi,zi] =02 then s*> -, c? and M — %, — , 0, where ZHOM = 52T,

This theorem provides a distribution free, large sample justification for the
degrees-of-freedom correction required for exact inference under homoskedastic
Gaussian errors. Intuitively, accounting for the correct degrees of freedom is im-
portant whenever the number of terms in the semilinear model is “large” relative
to the sample size.

4. SMALL SIMULATION STUDY

We conducted a Monte Carlo experiment to explore the extent to which the
asymptotic theoretical results obtained in the previous section are present in small
samples. Using the notation already introduced, we consider the following par-
tially linear model:

yi =x!p+g(zi) +ei, Eleilxi,zi1 =0, Ele?|xi,zi] = 02,
xi =h(z)+vi, E[vi]zi]1=0, E[v} |zi] = 0, (z0),
whered =1, =1,d, =5,z; = (z1i,- , 24,i)’ With zz; ~i.i.d. Uniform(—1,1),
¢ =1,---,d,. The unknown regression functions are set to g(z;) = h(z;) =

exp(||zi||?), which are not additive separable in the covariates z;. The simula-
tion study is based on S = 5,000 replications, each replication taking a random
sample of size n = 500 with all random variables generated independently. We
consider 6 data generating processes (DGPs) as follows:

Data Generating Process for Monte Carlo Experiment

(&i,v;) — Distributions
Gaussian  Asymmetric Bimodal
cl(zi) =1 Model 1 Model 3 Model 5

02(z)=c(1+]zl?)° Model2  Model4  Model 6

Specifically, Models 1, 3, and 5 correspond to homoskedastic (in ;) DGPs, while
Models 2, 4, and 6 correspond to heteroskedastic (in v;) DGPs. For the latter
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models, the constant ¢ was chosen so that E[viz] = 1. The three distributions con-
sidered for the unobserved error terms &; and v; are: the standard Normal (labelled
“Gaussian”) and two Mixture of Normals inducing either an asymmetric or a bi-
modal distribution; their Lebesgue densities are depicted in Figure 1. We explored
other specifications for the regression functions, heteroskedasticity form, and dis-
tributional assumptions, but we do not report these additional results because they
were qualitatively similar to those discussed here.

The estimators considered in the Monte Carlo experiment are constructed using
power series approximations. We do not impose additive separability on the basis,
though we do restrict the interaction terms to not exceed degree 5. To be specific,
we consider the following polynomial basis expansion:

Polynomial Basis Expansion: d; =5 and n = 500

K Pk (zi) K/n
6 (1,z17,22i,23i» 24i» 25i) 0.012
/
11 (P6(zi)s 215 25255 2412 25;) 0.022
21 p11(z;i) + first-order interactions 0.042
26 (P212i). 5323230 200 23) . 0.052
56  prs(zi) + second-order interactions  0.112
61 (pse(zi) 2t aa ah,2h,2d) 0122
126 Pe1(zi) + third-order interactions 0.252
131 (pios(a)s23,23;, 230 230025) 0262
252 p131(zi) + fourth-order interactions  0.504
257 (pesa(z). 28,2525, 25,.28)" 0514

262 (pas7(zi)sz]n 28,255 20;522) 0.524
267 (P262(zi)', Z?i ) Zgi ) Zgi ) Zii ) Zgi)/ 0.534
272 (paer(@i), z?l V29220 205020)  0.544
277 (pona(zi), 219,200,209, 209, 210 0.554
Thus, our simulations explore the consequences of introducing many terms in
the partially linear model by varying K on the grid above from K =6to K =277,
which gives a range for K /n of {0.012, ---,0.554}. For each point on the grid of
K /n, we report average bias, average standard deviation, mean square error and
average standardized bias of ﬁ across simulations. We also consider the coverage
error rates and interval length for two asymptotic 95% confidence intervals:

61,12 R e
G porl, ,—= .

LSBT o s12
Cl = | p—o7! a2 ﬁ+®1—a/27 ,

where 62 = (n —d — K)s?/n, and (I)u_1 = ®!(u) denotes the inverse of the
Gaussian distribution function. That is, Clp and CI; are formed employing the

Cly = [/3 cpl—la/2
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FIGURE 1. Lebesgue densities of error terms distributions.

t-statistic constructed using the homoskedasticity-consistent variance estimators
without and with degrees-of-freedom correction, respectively.

The main findings from the Monte Carlo experiment are presented in
Tables 1-3. All results are consistent with the theoretical conclusions presented
in the previous section. First, the results for standard Normal and non-Normal
errors are qualitatively similar. This indicates that the Gaussian approximation
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TABLE 1. Simulation results, models 1-2, Gaussian distribution

(a) Model 1: Homoskedastic v;

K/n  Bias SD  RMSE Bias Cl crLy

Q>
[

0.012  0.481 0.040 0.483 11.898  0.000  0.000  0.039  0.039
0.022  0.001 0.045 0.045 0.031 0.947 0950 0.045  0.045
0.042  0.002  0.047 0.047 0.051 0.939 0945 0.045  0.046
0.052  0.002  0.046 0.046 0.049 0940 0947 0.045 0.046
0.112  0.002  0.047 0.047 0.041 0936 0952 0.045  0.048
0.122  0.000  0.048 0.048 0.005 0935 0949  0.045  0.048
0.252  0.001 0.052 0.052 0.013 0.907 0947  0.045  0.052
0.262  0.000  0.052 0.052 —0.008  0.904 0949 0.045  0.052
0.504  0.000  0.063 0.063 0.003 0.841 0.951 0.045  0.064
0.514  0.000  0.064 0.064 —0.002  0.828  0.947  0.045  0.064
0.524  0.000  0.064 0.064 —0.003 0.827 0948  0.045  0.065
0.534  0.000  0.066 0.066 —0.003 0.821 0.950  0.045  0.066
0.544  0.001 0.068 0.068 0.010 0.803 0946  0.045  0.067
0.554  0.000  0.067 0.067 0.004  0.808 0949  0.045 0.067

(b) Model 2: Heteroskedastic v;

K/n  Bias SD  RMSE Bias Cly cL & s

0.012  0.483  0.046 0.485 10.460  0.000  0.000  0.039  0.040
0.022  0.002  0.045 0.045 0.034 0949 0953 0.045 0.046
0.042  0.001 0.046 0.046 0.015 0.946 0949 0.045  0.046
0.052  0.002  0.046 0.046 0.034 0947 0955 0.045 0.046
0.112  0.001 0.049 0.049 0.015 0932 0950 0.045  0.048
0.122  0.001 0.049 0.049 0.025 0929 0946  0.045  0.049
0.252  0.000  0.052 0.052 0.009 0914 0951 0.046  0.053
0.262  0.001 0.053 0.053 0.025 0915 0952 0.046  0.054
0.504  0.000  0.068 0.068 0.002  0.827 0947  0.048  0.068
0.514  0.001 0.068 0.068 0.019  0.829 0953  0.048  0.068
0.524  0.003  0.068 0.069 0.050 0.824 0953  0.047  0.069
0.534  0.000  0.070 0.070 0.003 0.819 0949 0.048  0.070
0.544  0.002  0.070 0.070 0.024  0.819 0948  0.048  0.071
0.554  0.000  0.074 0.074 —0.004  0.801 0.943  0.048  0.072

Notes:

(i) columns Bias, SD, RMSE and % report, respectively, average bias, average standard deviation, root mean
square error, and average standarized bias of the estimator ﬁ across simulations;

(ii) columns Clj and CI; report empirical coverage for homoskedastic-consistent confidence intervals, respectively,
without and with degrees-of-freedom correction;

(iii) columns ¢ and s report the average across simulations of the standard errors estimators, respectively, without
and with degrees-of-freedom correction.

obtained in Theorem 1 is a good approximation in finite samples, even when K
is a nontrivial fraction of the sample size. Second, as expected, a small choice of
K leads to important smoothing biases. This affects the finite sample properties
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TABLE 2. Simulation results, models 3—4, asymmetric distribution

(a) Model 3: Homoskedastic v;

K/n Bias SO Rvse B Cly cL & s

0.012 0.481  0.039 0.483 12.486  0.000  0.000 0.038  0.038
0.022 0.002  0.043 0.043 0.040 0943 0946 0.042  0.042
0.042 0.001  0.044 0.044 0.032 0942 0947 0.042 0.043
0.052 0.001  0.043 0.043 0.023 0946 0954 0.042 0.043
0.112 0.001  0.045 0.045 0.023 0931 0947 0.042 0.044
0.122 0.002  0.045 0.045 0.036 0936 0951 0.042  0.045
0.252 0.001  0.049 0.049 0.013 0902 0950 0.042  0.048
0.262 0.001  0.049 0.049 0.013 0915 0953 0.042  0.049
0.504 0.000  0.060 0.060 0.001  0.829 0950 0.042  0.059
0.514 0.000  0.060 0.060  —0.007 0.828  0.948  0.042  0.060
0.524 0.000  0.060 0.060 —0.006 0.830 0.952 0.042  0.061
0.534 0.000  0.061 0.061 —0.001  0.819  0.950  0.042  0.061
0.544 0.000  0.062 0.062 0.000  0.809 0951 0.042  0.062
0.554 0.001  0.064 0.064 0.009 0.794 0944 0.042 0.063

(b) Model 4: Heteroskedastic v;

K/n Bias SO RmSE  Biss CI I, & s

0.012 0.485  0.046 0.488 10.566  0.000  0.000  0.038  0.038
0.022 0.001  0.042 0.042 0.031 0947 0949 0.042 0.043
0.042 0.001  0.043 0.043 0.025 0946 0951 0.042 0.043
0.052 0.002  0.044 0.044 0.047 0937 0943 0.042 0.043
0.112 0.002  0.045 0.045 0.037 0933 0945 0.043  0.045
0.122 0.001  0.046 0.046 0.025 0929 0945 0.043  0.046
0.252 0.000  0.050 0.050  —0.004 0910 0.949 0.043  0.050
0.262 0.001  0.050 0.050 0.020 0907 0951 0.043  0.050
0.504 0.000  0.064 0.064  —0.002 0.832  0.947 0.045  0.064
0.514 0.001  0.065 0.065 0.008  0.827 0.948  0.045 0.064
0.524  —0.001 0.065 0.065 —0.015 0.817 0.948 0.045  0.065
0.534 0.001  0.066 0.066 0.013  0.824 0948  0.045 0.065
0.544 0.000  0.067 0.067  —0.002  0.799 0951 0.045  0.066
0.554 0.000  0.067 0.067  —0.001  0.811 0.948 0.045  0.067

Notes:
(i) columns Bias, SD, RMSE and _BS% report, respectively, average bias, average standard deviation, root mean

square error, and average standarized bias of the estimator j8 across simulations;

(ii) columns Clj and CI; report empirical coverage for homoskedastic-consistent confidence intervals, respectively,
without and with degrees-of-freedom correction;

(iii) columns ¢ and s report the average across simulations of the standard errors estimators, respectively, without
and with degrees-of-freedom correction.

of the point estimators as well as the distributional approximations obtained in
this paper. In particular, it affects the empirical size of all the confidence inter-
vals. Third, in all cases the results under homoskedasticity or heteroskedasticity
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TABLE 3. Simulation results, models 5—6, bimodal distribution
(a) Model 5: Homoskedastic v;

K/n Bias SO Rvse B Cly cL & s

0.012 0.482  0.058 0.486 8340  0.000  0.000 0.059  0.059
0.022 0.001  0.076 0.076 0.009 0948 0950 0.076  0.077
0.042 0.001  0.078 0.078 0.008 0944 0948 0.076  0.077
0.052 0.001 0.078 0.078  —=0.010 0940 0948 0.076  0.078
0.112 0.002  0.081 0.081 0.026 0930 0946 0.076  0.080
0.122 0.001  0.080 0.080 0.018 0936 0953 0.076  0.081
0.252 0.002  0.088 0.088 0.026 0912 0949 0.076  0.088
0.262 0.001  0.087 0.087 0.008 0908 0952 0.076  0.088
0.504 0.001 0.109 0.109 -0.013  0.827 0.950 0.076  0.108
0.514 0.001  0.108 0.108 0.012  0.832 0953 0.076  0.109
0.524 0.000  0.110 0.110 0.003 0.825 0948 0.076  0.110
0.534 0.004  0.110 0.110  -0.033  0.818 0.950 0.076  0.111
0.544 0.001  0.111 0.111 0.012  0.819 0949 0.076  0.112
0.554  —-0.001  0.111 0.111 —0.006 0817 0956 0.076  0.114

(b) Model 6: Heteroskedastic v;

K/n Bias SO Rvse B Cly cLy 6 5

0.012 0483 0.062  0.487 7811 0.000 0.000 0.059  0.060
0.022 0001 0077 0077 0011 0945 0948 0.076 0.077
0.042 0001 0077 0077 0011 0945 0951 0076 0.078
0.052 —0.001 0.079  0.079 —0.009 0941 0948 0.077 0.079
0.112 0000 0.082 0082  0.001 0938 0954 0.077 0.082
0.122  0.004 0080 0080 0046 0942 0955 0.077 0.082
0.252  0.000 0.092  0.092  0.002 0904 00946 0.078  0.090
0.262  0.002 0.8 008  0.026 0910 00957 0.078 0.091
0.504 —0.001 0.117  0.117 —0.005 0.826 0.946 0.080 0.114
0.514 —0.002 0.116 0.116 —0.017 0828 00951 0.081 0.116
0.524 0000 0.118  0.118  0.003 0821 0945 0.081 0.117
0.534  0.001 0.118 0118 0010 0815 0953 0081 0.119
0.544 0000 0.119  0.119 —0.003 0816 0952 0.081 0.120
0.554 0000 0.125  0.125  0.001 0797 00943 0.081 0.121

Notes:

(i) columns Bias, SD, RMSE and —BS% report, respectively, average bias, average standard deviation, root mean
square error, and average standarized bias of the estimator j across simulations;

(ii) columns Clg and CI; report empirical coverage for homoskedastic-consistent confidence intervals, respectively,
without and with degrees-of-freedom correction;

(iii) columns ¢ and s report the average across simulations of the standard errors estimators, respectively, without
and with degrees-of-freedom correction.

in v; are qualitatively similar, showing that our theoretical results provide a good
finite sample approximation in both cases, even when K is a nontrivial fraction of
the sample size. Fourth, as suggested by Theorem 2, confidence intervals without
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degrees-of-freedom correction (Clp) are under-sized, while the confidence inter-
vals with degrees-of-freedom correction (CI; ) have close-to-correct empirical size
in all cases. This result shows that the degrees-of-freedom correction is crucial to
achieve close-to-correct empirical size when K /n is non-negligible.

In conclusion, we found in our small-scale simulation study that our theoreti-
cal results for the partially linear model with possibly many terms provide good
approximation in samples of moderate size. In particular, under homoskedasticity
of &;, we showed that confidence intervals constructed using s2 exhibit good em-
pirical coverage even when K /n is “large”. We also confirmed that the Gaussian
distributional approximation given in Theorem 1 represents well the finite sample
distribution of ﬁ even when K /n is “large”.

In Cattaneo, Jansson, and Newey (2015) we analyze in detail the case of (con-
ditional) heteroskedasticity in ¢;, which requires the use of a new standard error
formula, and also compare those results to the case of homoskedasticity analyzed
herein. The reader is referred to that work for further details.

5. CONCLUSION

This paper showed asymptotic normality and gave consistent standard errors for
coefficients of interest when the number of covariates grows as fast as the sample
size. It is also shown how this asymptotics has a similar structure to previously
established results for many instrument asymptotics or small bandwidths. These
results are all based on results for degenerate U-statistics, where asymptotic nor-
mality happens when the number of covariates diverges to infinity or the band-
width shrinks to zero.
Our results apply to a class of semiparametric estimators ﬁ satisfying

Vi (B=po) =180 +0p(1),

where fn and S, take a particular V-stastistic form, as discussed in Section 2.
This class of semiparametric estimators covers several interesting problems, but
it is by no means exhaustive. For example, Cattaneo and Jansson (2015) show that
a large class of (kernel-based) semiparametric estimators admit an expansion of
the form

Vi (B=po) =178, =Bat0p(1),

where the bias term B, is quantitatively and conceptually distinct from the
smoothing bias B, described in Section 2 and, crucially, dominates the quadratic
term U, arising from the V-statistic S, ; thatis, U, = 0, (B,) in that setting. Nev-
ertheless, the structure we have considered in this paper is useful, providing new
results for the partially linear model and a common structure for disparate litera-
tures on many instruments and small bandwidths.

Finally, as a reviewer pointed out, the alternative asymptotics discussed in this
paper are also qualitatively distinct, but conceptually similar, to that encountered
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in the recent literature on “large” panel data models where the number of units n
and the number of periods 7' are proportional; see, for example, Alvarez and Arel-
lano (2003), Hahn and Newey (2004) and references therein. Specifically, whereas
the “large-(n, T') asymptotics” lead to the presence of a first-order bias in the dis-
tributional approximation (centering), the alternative asymptotics discussed in this
paper lead to a change in the first-order variance of the distributional approxima-
tion (scale). Therefore, the “large-(n, T') asymptotics” in panel data contexts are
more closely related to those obtained in Cattaneo and Jansson (2015) for nonlin-
ear semiparametric problems, than to the distribution theory emerging from the
common structure highlighted in this paper.

NOTES

1. In time series contexts, the exact decomposition is less useful, but approximations thereof with
properties similar to those we discuss herein can be developed. For an example and related references
see Atchadé and Cattaneo (2014).

2. Another approach to inference would be via the bootstrap. For small bandwidth asymptotics,
Cattaneo, Crump, and Jansson (2014a) showed that the standard nonparametric bootstrap does not
provide a valid distributional approximation in general. We conjecture that the standard nonparametric
bootstrap will also fail to provide valid inference for other alternative asymptotic frameworks.
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APPENDIX A: Proofs

All statements involving conditional expectations are understood to hold almost surely.
Qualifiers such as “a.s.” will be omitted to conserve space. Throughout the appendix, C
will denote a generic constant that may take different values in each case.

Proof of Lemma 1. Let X = [xq,...,x,], H =[hy,...,h,],and V = [vq,...,0,].
By Assumption PLM and the Markov inequality,
1 1< )
w(—H'MH) = min =" |h@) — kG| = 0p (K72) =) 0.
r(n ) R ;II @) =, pr @]~ = 0p p
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Also, V'V /n= Op (1) by Assumption PLM and the Markov inequality, so by the Cauchy—
Schwarz inequality and M idempotent, | H' MV /n| < [tr(H' M H /n) (V' V /n)]1/? —,0.
By the triangle inequality, we then have

L1 1 1
fy=-X'MX==(V+HYMV+H)==V'MV +opy(1).
n n n

Next, by Lemma A1 of Chao et al. (2012),
—V MV = ZM”v v+ — Z Z M;jv; D = ZM”v v’ +0p(1)
l—l l_lj_l,];él
Finally, by the Markov inequality and using [E [n_l Z;’:l M;; u,-ul’. |Z] =TIy,
1< ,
;ZM,‘,‘U,‘DZ- —In—p0
i=1

because Assumption PLM implies that v,-vl’. and v; vj’. are uncorrelated conditional on Z
and that E[M2|v; | Z] < C. n

Proof of Lemma 2. Let G = [gy,...,gn]" and ¢ = [¢1,...,&,]. By the Cauchy—
Schwarz inequality, M idempotent, Assumption PLM, and the Markov inequality,

1 1
< \/tr (—G’MG)\/tr(—H’MH) = Op (K™% 7%h),
n n

which gives B, = G'M H //n = O, (/nK ™% ~%).
Also, Ry = (VMG + H'Me)//n= O0p(K~% + K~%) = 0,(1) because

1 /
-G'MH
n

I 1 / 2 L, / 1, —2a
El|l—=VMG| |Z|=-G ME[VV|Z]MG§C—GMG=OP(K ")
n n

Jn
and
I 1 / 2 1 / / 1 / 2
E||—=H'Me| |Z|=t(-H ME[e|1ZIMH) < Cue(-H'MH) =0, (K_ “h)
Jn n n
by Assumption PLM and the Markov inequality. n

Proof of Theorem 1. By Lemma A2 of Chao et al. (2012),

n

_1 2 1

z, / IZZM’JU i&j —a N, 1)
i=1j=1

under Assumption PLM. Combining this result with Lemmas 1 and 2, we obtain the results

stated in the theorem. n
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Proof of Theorem 2. Let ¥ = [y|,...,yu] and & = [61,....8,] = M(Y — XJ). Tt
follows similarly to the proof of Lemma 1 that

1 1 & , 1 n n
;E/M&‘:;ZMI'I'EI- +;Z Z SiMiij
i=1 i=1j=1j#i

:—ZM”E[

so it suffices to show that &'¢/n = &' Me/n+o0p(1).
Lemma 1 and f— 8 = op (1) imply B-=B'X'MX(B—p)/n= op (1), which together
with the Cauchy—Schwarz inequality and ¢’ Me/n = Op(1) gives

—K
a2 +op(1),

Z,] +op (1) =

% (Y—Xﬁ—G)/M(Y—Xﬁ—G) - %e Me+ - (ﬂ ﬂ) X'MX (ﬁ—ﬁ) - %ZE’MX (/?—/3)
= %S/M&‘-i-()p(l).

Similarly, G'MG/n = o), (1) together with (Y — X —G)M(Y — X — G)/n = Op (1)
and the Cauchy—Schwarz inequality gives

%é’é - % (Y—X/?)/M(Y—X/?) - % (Y—X/?—G)/M(Y—X[?—G)-i—op(l).

The conclusion follows by the triangle inequality. n

APPENDIX B: Extension to Two-step Estimation

The common structure highlighted in Section 2, and later used to study IV models with
many instruments, kernel-based semiparametric estimators and the series-based semipara-
metric semilinear model, can be extended to account for preliminary estimation. This ex-
tension, though conceptually not difficult, may be important in series-based sample se-
lection models as discussed in Newey (2009), or kernel-based estimators as discussed in
Aradillas-Lopéz, Honoré, and Powell (2007) and Escanciano and Jacho-Chavez (2012).
In this appendix we discuss this extension heuristically, but relegate a formal analysis for
future work.

Following the ideas and notation introduced in Section 2, consider a generic estimator
,8(0) of the parameter Sy = fo(0p) € R4 . In this appendix, the notation ,B (0) (as opposed
to ﬁ ) makes explicit that the estimator depends on an estimator 0 of the unknown * ‘param-
eter” 0 € ®, not necessarily finite dimensional. As a natural generalization of (2) we then
assume that

Vi (BO)=po) = Ea@ 'S0 0).  S10) = D] D ul (Wi, Wj:0)
i=1j=1

The exact form of u:’j (W;, W;;0) is context specific; u?] (W;, W)) = u:’j (W;, Wj;0) in
Section 2 and other examples are given in the references above. Suppose, in addition, that
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the estimator  is consistent in the sense that ||é —0pll = op (1), where || - || is some context
specific norm (e.g., if ® C R™ then | - | will typically be the Euclidean norm).

It follows from the discussion in the paper, that the limiting distribution of ﬁ(/? (é) -
fo) is determined by S,,(é) whenever I, (6’0)_1 'y —p Iy and I, (00)_1fn (9) —p 1.
In many cases, the latter assumption only imposes a consistency requirement (without a
rate) on the estimator # and is therefore not particularly restrictive. The term S, (9) can be
handled, for example, by employing the obvious decomposition

$p0) = Fu@)+Sn,  Fu(0) = Sn(0)—Sn (@),  Sn=Sn(0),

where now the asymptotic distributional approximation for Sy, (9) is explained by the first-
step estimation contribution £y, (0), and the “oracle” term Sy, already studied in the main
paper.

The additional term F, (é) may be analyzed in multiple ways. For example, if d is
finite-dimensional, /n-consistent, and some regularity conditions hold (including 6 —
ul’.’j (wy,wn;0) sufficiently “smooth” and well-behaved), then it may be shown that

Fa@) = Fa @) =0p (%), Fu®)= iiu?j<w,-,vvj;eo) (0-0).

i=1j=1

where u:’j (wi,wy;6p) is some function. For instance, u?j (w1, wy;600) =
6ul'.’]. (w1, wy;0)/00 if 0 — ufj (w1, wy; ) is differentiable or, otherwise, u:’] (w1, wy;0p)
may be obtained using U-process theory.

The above heuristics lead to the expansion

Sn(é) = Fn(é)'i‘sn = YA‘n (é—e()) +Sn +0p (n—l/Z)’

where

n n
Yo =D D il (Wi, Wy 6).

i=1j=1

This illustrates how the discussion given in the main text may be extended to the case of
two-step estimation. Assuming the first-step estimator 0 is J/n-consistent (as will be the
case whenever it is regular), it follows that the first step makes a non-negligible contri-
bution to the asymptotic distribution unless the “orthogonality” condition Y, = op (nz) is
satisfied.

Formalizing the above ideas is beyond the scope of this paper, but we conjecture it can
be done in fairly large generality, including some cases where @ is infinite dimensional and
(possibly) not /n-consistent.
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