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This paper studies a model widely used in the weak instruments literature and es-
tablishes admissibility of the weighted average power likelihood ratio tests recently
derived by Andrews, Moreira, and Stock (2004, NBER Technical Working Paper
199). The class of tests covered by this admissibility result contains the Anderson
and Rubin (1949, Annals of Mathematical Statistics 20, 46–63) test. Thus, there is no
conventional statistical sense in which the Anderson and Rubin (1949) test “wastes
degrees of freedom.” In addition, it is shown that the test proposed by Moreira (2003,
Econometrica 71, 1027–1048) belongs to the closure of (i.e., can be interpreted as a
limiting case of) the class of tests covered by our admissibility result.

1. INTRODUCTION

Conducting valid (and preferably “optimal”) inference on structural coefficients
in instrumental variables (IVs) regression models is known to be nontrivial when
the IVs are weak.1 Influential papers on this subject include Dufour (1997) and
Staiger and Stock (1997), both of which highlight the inadequacy of conventional
asymptotic approximations to the behavior of two-stage least squares and point
out that valid inference can be based on the Anderson and Rubin (1949) test.
Several methods intended to enjoy improved power properties relative to the
Anderson and Rubin (1949) test have been proposed, prominent examples being
the conditional likelihood ratio (CLR) and Lagrange multiplier (LM) tests of
Moreira (2003) and Kleibergen (2002), respectively.

All of the previously mentioned methods and results have been or can be
deduced within an IV regression model with a single endogenous regressor, fixed
(i.e., nonstochastic) IVs, and independent and identically distributed (i.i.d.) ho-
moskedastic Gaussian errors. Studying that model, Andrews, Moreira, and Stock
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(2004) obtain a family of tests, the so-called weighted average power likelihood
ratio (WAP-LR) tests, each member of which enjoys demonstrable optimality
properties within the class of tests satisfying a certain invariance restriction. The
invariance restriction in question, namely, that inference is invariant to transfor-
mations of the minimal sufficient statistic (S,T ) (defined in (2) in Section 2)
corresponding to a rotation of the instruments, is satisfied by the Anderson and
Rubin (1949), CLR, and LM tests. Furthermore, testing problems involving the
structural coefficient are rotation invariant under the distributional assumptions
employed by Andrews et al. (2004). For these reasons (and others), the rota-
tion invariance restriction seems “natural,” in which case the numerical finding of
Andrews et al. (2004) that the CLR test is “nearly” efficient relative to the class
of rotation invariant tests provides strong evidence in favor of the CLR test.

Nevertheless, because best invariant procedures can fail to be admissible even
if they exist, it is not entirely obvious whether it is “natural” to confine attention
to rotation invariant tests when developing optimality theory for hypothesis tests
in the model of Andrews et al. (2004). In particular, it would appear to be an open
question whether the members of the WAP-LR family, upon which the construc-
tion of the two-sided power envelope of Andrews et al. (2004) is based, are even
admissible (in the Gaussian model with fixed IVs). We show that all members
of the WAP-LR family are indeed admissible, essentially because the defining
optimality property of these tests can be reformulated in such a way that rotation
invariance becomes a conclusion rather than an assumption. The Anderson and
Rubin (1949) test belongs to the WAP-LR family and is therefore admissible. In
contrast, the CLR and LM tests do not seem to admit WAP-LR representations,
though we demonstrate here that these test statistics “nearly” admit WAP-LR in-
terpretations in the sense that they belong to the closure (appropriately defined)
of the class of WAP-LR tests.

Section 2 introduces the model and defines some terminology needed for the
development of the formal results of the paper, all of which are stated in Section
3 and proved in Section 4.

2. PRELIMINARIES

Consider the model

y1 = y2β +u,

y2 = Zπ + v2, (1)

where y1, y2 ∈ Rn, and Z ∈ Rn×k are observed variables (for some k ≥ 2), β ∈ R
and π ∈ Rk are unknown parameters, and u, v2 ∈ Rn are unobserved errors.2

Suppose β is the parameter of interest. Specifically, suppose we are interested
in a testing problem of the form

H0 : β = β0 vs. H1 : β �= β0.
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Writing the model in reduced form, we have

y1 = Zπβ + v1,

y2 = Zπ + v2,

where v1 = u +v2β. Following Andrews et al. (2004) (and many others), we treat
Z as a fixed n × k matrix with full column rank, and we assume that

(
v ′

1,v
′
2

)′ ∼
N (0,�⊗ In) , where � is a known, positive definite 2 × 2 matrix. Without loss
of generality we normalize a variety of unimportant constants by assuming that
β0 = 0, Z ′Z = Ik, and � is of the form

� =
(

1 δ

δ 1+ δ2

)
,

where δ ∈ R is known.3

Under the stated assumptions, the model is fully parametric, the (multivariate
normal) distribution of ( y1, y2) being completely specified up to the parameters
β and π. A minimal sufficient statistic for β and π is given by(

S
T

)
=
(

Z ′y1
Z ′ ( y2 − δy1)

)
∼N (ηβ ⊗ π, I2k

)
, (2)

where

ηβ =
(

β
1− δβ

)
.

Because (S,T ) is sufficient, the totality of attainable power functions is spanned
by the set of power functions associated with (possibly randomized) tests based
on (S,T ). Any such test can be represented by means of a [0,1]-valued function
φ (·) such that H0 is rejected with probability φ (s, t) if (S,T ) = (s, t). The power
function of this test is the function (with arguments β and π ) Eβ,πφ (S,T ) , where
the subscript on E indicates the distribution with respect to which the expectation
is taken.

For any α ∈ (0,1), a test with test function φ is of level α if

supπ E0,πφ (S,T ) ≤ α.

A level α test with test function φ is said to be α-admissible if

Eβ,πφ (S,T ) ≤ Eβ,πϕ (S,T ) ∀(β,π) (3)

implies

Eβ,πφ (S,T ) = Eβ,πϕ (S,T ) ∀(β,π) (4)

whenever the test associated with ϕ is of level α.4
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The main purpose of the present paper is to investigate the α-admissibility
properties of certain recently developed rotation invariant α-similar tests. By defi-
nition, a rotation invariant test is one whose test function φ satisfies φ (OS,OT) =
φ (S,T ) for every orthogonal k × k matrix O , and an α-similar test is one for
which

E0,πφ (S,T ) = α ∀π. (5)

The rotation invariant α-similar tests under consideration here are the WAP-LR
tests of Andrews et al. (2004). By construction, a size α WAP-LR test maximizes
a weighted average power (WAP) criterion of the form∫
Rk+1

Eβ,πφ (S,T )dW(β,π) (6)

among rotation invariant α-similar tests, where the weight function W is some
cumulative distribution function (c.d.f.) on Rk+1.

In spite of the fact that the defining property of a WAP-LR test is an optimality
property, it is not obvious whether a WAP-LR is α-admissible, the reason being
that admissibility of optimum invariant tests cannot be taken for granted (e.g.,
Lehmann and Romano, 2005, Sect. 6.7). We show in Section 3 that any WAP-LR
test maximizes a WAP criterion among the class of α-similar tests. In the present
context, that optimality property is sufficiently strong to imply that any WAP-LR
test is α-admissible.

Remark. The fact that the alternative hypothesis is dense in the maintained
hypothesis implies that any α-admissible test is d-admissible in the sense of
Lehmann and Romano (2005). The (rotation invariant) posterior odds ratio tests
of Chamberlain (2007) are d-admissible almost by construction (e.g., Lehmann
and Romano, 2005, Thm. 6.7.2(i)), but because these tests are not necessarily
similar it is unclear whether these tests are also α-admissible (for some α).

3. RESULTS

3.1. Admissible ααα-Similar Tests

Two basic facts about exponential families greatly simplify the construction of
α-admissible α-similar tests. First, because the power function of the test with
test function φ can be represented as

Eβ,πφ (S,T ) =
∫
Rk

∫
Rk

φ (s, t) fS (s|β,π) fT (t |β,π) ds dt,

where fS (·|β,π) and fT (·|β,π) denote the densities (indexed by β and π ) of S
and T, it follows from Lehmann and Romano (2005, Thm. 2.7.1) that Eβ,πφ (S,T )
is a continuous function of (β,π). Therefore, an α-similar test cannot be domi-
nated by a level α test that is not α-similar. By implication, an α-similar test with
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test function φ is α-admissible if (3) implies (4) whenever the test associated with
ϕ is α-similar.

Second, because π is unrestricted, T is a complete, sufficient statistic for π
under H0 (e.g., Moreira, 2001). As a consequence, a test with test function φ is
α-similar if and only if it is conditionally α-similar in the sense that, almost surely,

E0,π [φ (S,T ) |T ] = α ∀π.

It follows from the preceding considerations and the Neyman–Pearson lemma
that if W is a c.d.f. on Rk+1, then the WAP criterion (6) is maximized among
α-similar tests by the test with test function given by

φW
LR (s, t ; α) = 1

[
LRW (s, t) > κW

LR (t ; α)
]
,

where 1[·] is the indicator function,

LRW (s, t) =
∫
Rk+1 fS (s|β,π) fT (t |β,π)dW(β,π)

fS (s|0,0) fT (t |0,0)
,

and κW
LR (t ; α) is the 1 −α quantile of the distribution of LRW (Zk, t) , where Zk

is distributed N (0, Ik) .
5 Because the maximizer φW

LR is essentially unique (in the
measure theoretic sense), the test with test function φW

LR (·; α) is α-admissible.6

To demonstrate α-admissibility of a test, it therefore suffices to show that its
test function can be represented as φW

LR (·; α) for some W. Section 3.2 uses that
approach to show that the WAP-LR tests of Andrews et al. (2004) are all
α-admissible.

3.2. Admissibility of WAP-LR Tests

The WAP-LR tests are indexed by c.d.f.s on R×R+.7 Accordingly, let w be a
c.d.f. on R×R+ and define

Lw (s, t) =
∫
R×R+

exp

(
−λη′

βηβ

2

)
0 F̃1

[
; k

2
; λ

4
η′

β Q (s, t)ηβ

]
dw(β,λ), (7)

where 0 F̃1 is the regularized confluent hypergeometric function,

Q (s, t) =
(

s′s s′t
t ′s t ′t

)
, (8)

and ηβ is defined as in Section 2. By Corollary 1 of Andrews et al. (2004) (these
authors are denoted by AMS in the mathematical expressions that follow), the test
function of the size α WAP-LR test associated with w is

φw
AMS (s, t ; α) = 1

[Lw (s, t) > κw
AMS (t ; α)

]
,

where κw
AMS (t ; α) is the 1−α quantile of the distribution of Lw (Zk, t).8
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For our purposes, it is convenient to characterize the defining optimality prop-

erty of φw
AMS as follows. Let W w

AMS denote the c.d.f. (on Rk+1) of
(
B,

√
�U ′

k

)′
,

where (B,�)′ has c.d.f. w and Uk is uniformly distributed on the unit sphere in
R

k (independently of B and �). In terms of W w
AMS, Theorem 3 of Andrews et al.

(2004) asserts that the test with test function φw
AMS (·; α) maximizes∫

Rk+1
Eβ,πφ (S,T )dWw

AMS (β,π)

among rotation invariant α-similar tests. In this optimality result, the assumption
of rotation invariance is unnecessary because it turns out that

φw
AMS (s, t ; α) = φ

Ww
AMS

LR (s, t ; α). (9)

Equation (9) follows from a calculation performed in the proof of the following
strengthening of Theorem 3 of Andrews et al. (2004).

THEOREM 1. Let w be a c.d.f. on R × R+. If φ satisfies (5), then∫
Rk+1

Eβ,πφ (S,T )dWw
AMS (β,π) ≤

∫
Rk+1

Eβ,πφw
AMS (S,T ; α)dWw

AMS (β,π),

where the inequality is strict unless Prβ,π

[
φ (S,T ) = φw

AMS (S,T ; α)
] = 1 for

some (and hence for all) (β,π). In particular, the size α WAP-LR test associ-
ated with w is α-admissible.

The testing function of the size α Anderson and Rubin (1949) (denoted by AR
in the mathematical expressions that follow) test (for known �) is given by

φAR (s, t ; α) = 1
[
s′s > χ2

α (k)
]
,

where χ2
α (k) is the 1−α quantile of the χ2 distribution with k degrees of freedom.

As remarked by Andrews et al. (2004), Lw (s, t) is an increasing function of s′s
whenever the weight function w assigns unit mass to the set

{
(β,λ) ∈ R×R+ :

β = δ−1
}
. As a consequence, the following result is an immediate consequence

of Theorem 1.

COROLLARY 2. The size α Anderson and Rubin (1949) test is α -admissible.

In spite of the fact that the Anderson and Rubin (1949) test is a k degrees of
freedom test applied to a testing problem with a single restriction, a fact that sug-
gests that its power properties should be poor (e.g., Kleibergen, 2002, p. 1781;
Moreira, 2003, p. 1031), Corollary 2 implies that there is no conventional sta-
tistical sense in which the Anderson and Rubin (1949) test “wastes degrees of
freedom.”

In addition to the Anderson and Rubin (1949) test, Theorem 1 also covers
the two-point optimal invariant similar tests of Andrews et al. (2004), the power
functions of which trace out a two-sided power envelope for rotation invariant
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α-similar tests. On the other hand, the CLR and LM tests do not seem to belong
to the class of WAP-LR tests. Indeed, it would appear to be an open question
whether one or both of these tests even belong to the closure (appropriately de-
fined) of the class of WAP-LR tests. Section 3.3 provides an affirmative answer to
that question.

Remark. As pointed out by a referee, two distinct generalizations of the results
of this section seem feasible. First, the conclusion that a Bayes rule corresponding
to a distribution w on R×R+ can be “lifted” to a Bayes rule corresponding to a
distribution on Rk+1 (by introducing a Uk that is uniformly distributed on the unit
sphere in Rk and independent of (β,λ)) applies to more general decision prob-
lems than the one considered. Second, using Muirhead (1982, Thms. 2.1.14 and
7.4.1) it should be possible to generalize the results to a model with multiple en-
dogenous regressors. To conserve space, we do not pursue these extensions here.

3.3. The CLR Test

The test function of the size α CLR test is

φCLR (s, t ; α) = 1[LR(s, t) > κCLR (t ; α)] ,

where

LR(s, t) = 1

2

(
s′s − t ′t +

√
(s′s + t ′t)2 −4

[
(s′s)(t ′t)− (s′t)2

])

and κCLR (t ; α) is the 1−α quantile of the distribution of LR(Zk, t) .
In numerical investigations, the CLR test has been found to perform remarkably

well in terms of power. For instance, Andrews et al. (2004) find that the power of
the size α CLR test is “essentially the same” as the two-sided power envelope
for rotation invariant α-similar tests. In light of this numerical finding, it would
appear to be of interest to analytically characterize the relation (if any) between
the CLR test and the class of WAP-LR tests.

Theorem 3, which follows, shows that CLR(s, t) can be represented as the limit
as N → ∞ of a suitably normalized version of LwCLR,N (s, t) , where

{
wCLR,N :

N ∈ N} is a carefully chosen collection of c.d.f.s on R×R+.
To motivate this representation and the functional form of wCLR,N , it is conve-

nient to express the test function of the CLR test as

φCLR (s, t ; α) = 1
[
CLR∗ (s, t) > κCLR∗ (t ; α)

]
,

where

CLR∗ (s, t) =
√

s′s + t ′t +
√

(s′s + t ′t)2 −4
[
(s′s)(t ′t)− (s′t)2

]
=√2[LR(s, t)+ t ′t]

and κCLR∗ (t ; α) =
√

2[κCLR (t ; α)+ t ′t].



ADMISSIBLE INVARIANT SIMILAR TESTS 813

The statistic CLR∗ (s, t) is the square root of the largest eigenvalue of Q (s, t)
(defined in (8)) and therefore admits the following characterization:

CLR∗ (s, t) =
√

maxη∈R2:η′η=1 η′Q (s, t)η. (10)

Moreover, the integrand in (7) can be written as

exp

(
−λη′

βηβ

2

)
0 F̃1

[
; k

2
; λη′

βηβ

4
η̃′

β Q (s, t) η̃β

]
,

where η̃β = ηβ/
√

η′
βηβ is a vector of unit length proportional to ηβ. If wCLR,N is

such that its support is the set of all pairs (β,λ) for which λη′
βηβ = N , then the

integrand is maximized (over the support of wCLR,N ) by setting η̃β equal to the
eigenvector associated with the largest eigenvalue of Q (s, t) . This observation,
and the fact that the tail behavior of 0 F̃1 [; k/2; ·/4] is similar to that of exp

(√·) ,
suggests that the large N behavior of LwCLR,N (s, t) “should” depend on Q (s, t)
only through CLR∗ (s, t) .

For any N > 0, let wCLR,N denote the c.d.f. of
(
B, N/

√
η′BηB

)′
, where

B ∼N (0,1).9 By construction, wCLR,N is such that its support is the set of all
pairs (β,λ) for which λη′

βηβ = N . Using that property, the relation (10) , and

basic facts about 0 F̃1 (; k/2; ·) , we obtain the following result.

THEOREM 3. For any
(
s′, t ′
)′ ∈ R2k,

CLR∗ (s, t) = limN→∞
1√
N

[
logLwCLR,N (s, t)+ N

2

]
. (11)

In particular,

CLR(s, t) = limN→∞
1

2N

[
logLwCLR,N (s, t)+ N

2

]2

− t ′t.

Define L∗
CLR,N (s, t) = [logLwCLR,N (s, t)+ N/2

]
/
√

N . The proof of Theorem
3 shows that as N → ∞, L∗

CLR,N (·) converges to CLR∗ (·) in the topology of
uniform convergence on compacta. Using this result, it follows that

limN→∞ Eβ,π

∣∣φwCLR,N
AMS (S,T ; α)−φCLR (S,T ; α)

∣∣= 0 ∀(β,π) .

In particular, the power function of the WAP-LR test associated with wCLR,N

converges (pointwise) to the power function of the CLR test (as N → ∞).
In light of the previous paragraph, it seems plausible that the CLR test enjoys

an “admissibility at ∞” property reminiscent of Andrews (1996, Thm. 1(c)). Ver-
ifying this conjecture is not entirely trivial, however, because the unboundedness
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(in t) of κCLR∗ (t ; α) makes it difficult (if not impossible) to adapt the proofs of
Andrews and Ploberger (1995) and Andrews (1996) to the present situation.

Theorem 3 also suggests a method of constructing tests that share the nice
numerical properties of the CLR test and furthermore enjoy demonstrable opti-
mality properties, namely, tests based on LwCLR,N (s, t) for some “large” (possibly
sample-dependent) value of N . Because the power improvements (if any) attain-
able in this way are likely to be slight, the properties of tests constructed in this
way are not investigated in this paper.

Remark. The test function of the size α LM test is

φLM (s, t ; α) = 1

[(
s′t
)2

t ′t
> χ2

α (1)

]
,

where χ2
α (1) is the 1−α quantile of the χ2 distribution with 1 degree of freedom.

Andrews et al. (2004) show that a one-sided version of the LM test can be inter-
preted as a limit of WAP-LR tests (and is locally most powerful invariant). On the
other hand, we are not aware of any such results that cover the (two-sided) LM
test.

A slight variation on the argument used in Section 3.2 can be used to obtain a
WAP-LR interpretation of the LM test. Indeed, letting wLM,N denote the c.d.f. of[
BN , N/

√
η′BN

ηBN

]′
, where the distribution of N 1/3BN is uniform on [−1,1] ,

it can be shown that10

∣∣s′t
∣∣/√t ′t = limN→∞

1

N 1/6

[
logLwLM,N (s, t)+ N

2
−√

N
√

t ′t
]
,

implying in particular that(
s′t
)2

t ′t
= limN→∞

1

N 1/3

[
logLwLM,N (s, t)+ N

2
−√

N
√

t ′t
]2

.

4. PROOFS

Proof of Theorem 1. It suffices to establish (9) . To do so, it suffices to show
that LRWw

AMS (s, t) is proportional to Lw (s, t) . Now,

fS (s|β,π) fT (t |β,π)

fS (s|0,0) fT (t |0,0)
= exp

(
−1

2

[
‖s −βπ‖2

−‖s‖2 +‖t − (1− δβ)π‖2 −‖t‖2
])

= exp

(
−λπη′

βηβ

2

)
exp
(√

λπ [βs + (1− δβ) t]′ π̃
)

,
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where ‖·‖ signifies the euclidean norm, λπ = π ′π, and π̃ = λ
−1/2
π π.

Because π̃ has unit length, it follows from Muirhead (1982, Thm. 7.4.1) that

LRWw
AMS (s, t) =

∫
Rk+1

fS (s|β,π) fT (t |β,π)

fS (s|0,0) fT (t |0,0)
dWw

AMS (β,π)

∝
∫
R×R+

exp

(
−λη′

βηβ

2

)
0 F̃1

[
; k

2
; λ

4
η′

β Q (s, t)ηβ

]
dw(β,λ),

as was to be shown. (We are grateful to a referee for suggesting the use of
Muirhead, 1982, Thm. 7.4.1.) n

Proof of Theorem 3. The result is obvious if Q (s, t) = 0, and so suppose that
Q (s, t) �= 0.

The proof will make use of the fact (e.g., Andrews and Ploberger, 1995, Lem. 2)
that 0 < C ≤ C < ∞, where

C = infz≥0
0 F̃1 [; k/2; z/4]

exp
(√

z
)

max(z,1)−(k−1)/4 , C = supz≥0
0 F̃1 [; k/2; z/4]

exp
(√

z
) .

By construction,

LwCLR,N (s, t) =
∫
R×R+

exp

(
−λη′

βηβ

2

)
0 F̃1

[
; k

2
; λ

4
η′

β Q (s, t)ηβ

]
dwCLR,N (β,λ)

= exp

(
− N

2

)∫
R

0 F̃1

[
; k

2
; N

4
η̃′

β Q (s, t) η̃β

]
d�(β),

where �(·) is the standard normal c.d.f. Using this representation, the relation
(10) , and monotonicity of 0 F̃1 [; k/2; ·] ,

LwCLR,N (s, t)exp

(
N

2

)
=
∫
R

0 F̃1

[
; k

2
; N

4
η̃′

β Q (s, t) η̃β

]
d�(β)

≤ 0 F̃1

[
; k

2
; N

4
CLR∗ (s, t)2

]

≤ C exp
[√

NCLR∗ (s, t)
]
,

from which it follows immediately that

limN→∞
1√
N

[
logLwCLR,N (s, t)+ N

2

]
≤ CLR∗ (s, t) . (12)
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On the other hand, for any 0 < ε < CLR∗ (s, t) ,

LwCLR,N (s, t)exp

(
N

2

)
=
∫
R

0 F̃1

[
; k

2
; N

4
η̃′

β Q (s, t) η̃β

]
d�(β)

≥
∫
Bε(s,t)

0 F̃1

[
; k

2
; N

4
η̃′

β Q (s, t) η̃β

]
d�(β)

≥ exp
[√

N
(
CLR∗ (s, t)− ε

)]

×C max
[

N ·CLR∗ (s, t)2 ,1
]−(k−1)/4 ∫

Bε(s,t)
d�(β),

where

Bε (s, t) =
{

β :
√

η̃′
β Q (s, t) η̃β ≥ CLR∗ (s, t)− ε

}
,

the first inequality uses positivity of 0 F̃1 [; k/2; ·] , and the second inequality uses
(10) and monotonicity of 0 F̃1 [; k/2; ·] . The integral

∫
Bε(s,t) d�(β) is strictly pos-

itive because �(·) has full support, and so

limN→∞
1√
N

[
logLwCLR,N (s, t)+ N

2

]
≥ CLR∗ (s, t)− ε.

Letting ε tend to zero in the displayed inequality, we obtain an inequality that can
be combined with (12) to yield (11) .

Indeed, because

sup(s′,t ′)′∈K CLR∗ (s, t) < ∞ and inf(s′,t ′)′∈K

∫
Bε(s,t)

d�(β) > 0

for any compact set K ⊂ R2k, the result (11) can be strengthened as follows:

limN→∞ sup(s′,t ′)′∈K

∣∣∣∣ 1√
N

[
logLwCLR,N (s, t)+ N

2

]
−CLR∗ (s, t)

∣∣∣∣= 0. n

NOTES

1. Recent reviews include Stock, Wright, and Yogo (2002), Dufour (2003), Hahn and Hausman
(2003), and Andrews and Stock (2007).

2. It is straightforward to accommodate exogenous regressors in (1) . We tacitly assume that any
such regressors have been “partialed out.” This assumption is made for simplicity and entails no loss
of generality (for details, see Andrews et al., 2004, Sect. 2).

3. These assumptions correspond to the model in which (Z , y1, y2) has been replaced by

(
Z̃ , ỹ1, ỹ2

)
= (Z ′ Z

)−1/2
[

Z ,ω
−1/2
11 ( y1 − y2β0) ,ω

−1/2
22.1 y2

]
,
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where ωi j is the (i, j) element of � and ω22.1 = ω22 − ω−1
11 ω2

12. In the chosen parameterization,
the parameter δ is related to the correlation coefficient ρ computed from � through the formula
δ = ρ/

√
1−ρ2.

4. In the model under study here, the present notion of α-admissibility agrees with that of Lehmann
and Romano (2005, Sect. 6.7) (in which (3) and (4) are required to hold for all β �= 0 and all π ) because
(a) all power functions are continuous and (b) the set {β : β �= 0} is a dense subset of R.

5. Details are provided in an Appendix, available from the authors upon request.
6. As pointed out by a referee, this fact is a special case of the more general decision theoretic

result that (essentially) unique Bayes rules are admissible (e.g., Ferguson, 1967, Thm. 2.3.1).
7. Because the power of an invariant test depends on π only through the scalar π ′π, the corre-

sponding WAP criterion (6) depends on W only through the c.d.f. on R×R+ given by

w(β,λ) =
∫

b≤β,π ′π≤λ
dW(b,π) .

8. The function Lw (s, t) is proportional to ψw (q1,qT ) in Lemma 1 of Andrews et al. (2004)
because 0 F̃1 (; k/2; z/4) is proportional to z−(k−2)/4 I(k−2)/2

(√
z
)
, where Iν (·) denotes the modified

Bessel function of the first kind of order ν. The size α WAP-LR test is α-similar by construction and
is rotation invariant because κw

AMS (t ; α) depends on t only through t ′t.
9. The distributional assumption B ∼N (0,1) is made for concreteness. An inspection of the proof

of Theorem 3 shows that (11) is valid for any distribution (of B) whose support is R. Furthermore, as
pointed out by a referee it is possible to obtain analogous results without making the distribution of
λη′

βηβ degenerate.
10. Details are provided in an Appendix, available from the authors upon request. An inspection of

the proof given there shows that the distributional assumption on N 1/3BN is made for concreteness
insofar as the preceding representations are valid whenever N 1/3BN has a (fixed) distribution whose
support is [−1,1] .
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