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a b s t r a c t

Under minimal assumptions, finite sample confidence bands for quantile regression models can be
constructed. These confidence bands are based on the ‘‘conditional pivotal property’’ of estimating
equations that quantile regression methods solve and provide valid finite sample inference for linear
and nonlinear quantile models with endogenous or exogenous covariates. The confidence regions can be
computed using Markov Chain Monte Carlo (MCMC) methods. We illustrate the finite sample procedure
through two empirical examples: estimating a heterogeneous demand elasticity and estimating
heterogeneous returns to schooling. We find pronounced differences between asymptotic and finite
sample confidence regions in cases where the usual asymptotics are suspect.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Quantile regression (QR) methods, initiated largely in the
seminal work of Koenker and Bassett (1978), provide useful tools
for examining the effects of covariates on an outcome variable of
interest. Perhaps the most appealing feature of QR methods is that
they allow estimation of the effect of covariates on many points of
the outcome distribution, including the tails as well as the center
of the distribution. While the central effects are useful summary
statistics of the impact of a covariate, they do not capture the
full distributional impact of a variable unless the variable affects
all quantiles of the outcome distribution in the same way. Due
to its ability to capture heterogeneous effects and its interesting
theoretical properties, QR has been used inmany empirical studies
and has been studied extensively in theoretical econometrics; see
Koenker and Bassett (1978), Portnoy (1991), Buchinsky (1994), and
Chamberlain (1994), among others. Koenker (2005) provides an
excellent introduction to QR methods.
In this paper, we contribute to the existing literature by

considering finite sample inference for quantile regressionmodels.
We show that valid finite sample confidence regions can be
constructed for parameters of a model defined by quantile
restrictions underminimal assumptions. These assumptions donot
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require the imposition of distributional assumptions and will be
valid for both linear and nonlinear conditional quantile models
and for models which include endogenous as well as exogenous
variables. The approach makes use of the fact that the estimating
equations that correspond to conditional quantile restrictions
are conditionally pivotal; that is, conditional on the exogenous
regressors and instruments, the estimating equations are pivotal
in finite samples. Thus, valid finite sample tests and confidence
regions can be constructed based on these estimating equations.
The approach we pursue is related to early work on finite

sample inference for the sample (unconditional) quantiles. The
existence of finite sample pivots is immediate for unconditional
quantiles as illustrated, for example, in Walsh (1960) and
MacKinnon (1964). We extend the results from the unconditional
case to the estimation of regression quantiles by noting that,
conditional on the exogenous variables and instruments, the
estimating equations solved by QR methods are pivotal in
finite samples. This property suggests that tests based on these
quantities can be used to obtain valid finite sample inference
statements. The resulting approach is similar in spirit to the rank-
score methods and related ‘‘pivotal’’ resampling methods, see e.g.
Gutenbrunner and Jurečková (1992) andParzen et al. (1994), but, in
sharp contrast to these approaches, it does not require asymptotics
or homoskedasticity (in the case of the rank score methods) for its
validity.
The finite sample approach that we develop has a number

of appealing features. The approach will provide valid inference
statements under minimal assumptions, requiring only weak
independence assumptions on the sampling mechanism and
continuity of quantile functions in the probability index. In
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endogenous settings, the finite sample approach will remain valid
in cases of weak identification or set identification (e.g. as in Haile
and Tamer (2003) and Chernozhukov et al. (2007a)). In this sense,
the finite sample approach usefully complements asymptotic
approximations and can be used in situations where the validity
of the assumptions necessary to justify these approximations is
questionable.
The chief difficulty with the finite sample approach is compu-

tational. In general, implementing the approach will require in-
version of an objective function-like quantity, which may be quite
difficult if the number of parameters is large. To help alleviate
this computational problem, we explore the use of Markov Chain
Monte Carlo (MCMC) methods for constructing joint confidence
regions. The use of MCMC methods allows us to draw an adap-
tive set of grid points which offers potential computational gains
relative to more naive grid based methods. We also consider a
simple combination of search and optimization routines for con-
structing marginal confidence bounds. When interest focuses on
a single parameter, this approach may be computationally conve-
nient andmay bemore robust in nonregular situations than an ap-
proach aimed at constructing the joint confidence region.
Another potential disadvantage of the proposed finite sample

approach is that one might expect that minimal assumptions
would lead to wide confidence intervals. We show that this
concern is unwarranted for joint inference: the finite sample tests
have correct size and good asymptotic power properties. However,
conservativity may be induced by going from joint to marginal
inference by projection methods. In this case, the finite sample
confidence bounds may not be sharp.
We consider the use of finite sample inference in two empirical

examples. In the first, we consider estimation of a demand
curve in a small sample; and in the second, we estimate the
returns to schooling in a large sample. In the demand example,
we find modest differences between the finite sample and
asymptotic intervals when we estimate conditional quantiles
not instrumenting for price and large differences when we
instrument for price. In the schooling example, the finite sample
and asymptotic intervals are almost identical in models in which
we treat schooling as exogenous, and there are large differences
when we instrument for schooling. These results suggest that the
identification of the structural parameters in the instrumental
variables models in both cases is weak.
The remainder of this paper is organized as follows. In the next

section, we formally introduce the modelling framework we are
considering and the basic finite sample inference results. Section 3
presents results from the empirical examples, and Section 4
concludes. Asymptotic properties of the finite sample procedure
that include asymptotic optimality results are contained in an
Appendix.

2. Finite sample inference

2.1. The model

We consider finite sample inference in the quantile regression
model characterized below.

Assumption 1. Let there be a probability space (Ω,F , P) and a
random vector (Y ,D′, Z ′,U) defined on this space, with Y ∈ R,
D ∈ Rdim(D), Z ∈ Rdim(Z), and U ∈ (0, 1)P-a.s., such that

A1. Y = q(D,U) for a function q(d, u) that is measurable.
A2. q(d, u) is strictly increasing in u for each d in the support of D.
A3. U ∼ Uniform(0, 1) and is independent from Z .
A4. D is statistically dependent on Z .
When D = Z , the model in A1–A4 corresponds to
the conventional quantile regression model with exogenous
covariates, see Koenker (2005), where Y is the dependent variable,
D is the regressor, and q(d, τ ) is the τ -quantile of Y conditional
on D = d for any τ ∈ (0, 1). In this case, A1, A3, and A4 are not
restrictive and provide a representation of Y , while A2 restricts
Y to have a continuous distribution function. The exogenous
model was introduced in Bhattacharya (1963), Doksum (1974),
Hogg (1975), Koenker and Bassett (1978) and Matzkin (2003), as
discussed in more detail in Koenker (2005). It usefully generalizes
the classical linear model Y = D′γ0 + γ1(U) by allowing for
quantile specific effects of covariates D. Estimation and asymptotic
inference for the linear version of this model, Y = D′θ(U),
were developed in Koenker and Bassett (1978), and estimation
and inference results have been extended in a number of useful
directions by subsequent authors. Matzkin (2003) provides many
economic examples that fall in this framework and considers
general nonparametric methods for asymptotic inference.
When D 6= Z but Z is a set of instruments that are

independent of the structural disturbance U , the model A1–A4
provides a generalization of the conventional quantile model that
allows for endogeneity. See Chernozhukov and Hansen (2001,
2005, 2006, 2008) for discussion of the model as well as for
semi-parametric estimation and inference theory under strong
and weak identification. See Chernozhukov et al. (2007b) for a
nonparametric analysis of this model and Chesher (2003) for a
related nonseparable model. The model A1–A4 can be thought
of as a general nonseparable structural model that allows for
endogenous variables as well as a treatment effects model with
heterogeneous treatment effects. In this case, D and U may be
jointly determined, rendering the conventional quantile regression
invalid for making inference on the structural quantile function
q(d, τ ). This model generalizes the conventional instrumental
variables model with additive disturbances, Y = D′α0 + α1(U),
where U | Z ∼ U(0, 1), to cases where the impact of D varies
across quantiles of the outcome distribution. Note that, in this
case, A4 is necessary for identification. However, the finite sample
inference results presented below will remain valid even when A4
is not satisfied.
Under Assumption 1, we state the following result, which

provides the basis for the finite sample inference results that
follow.

Proposition 1 (Main Statistical Implication). Suppose A1–A3 hold,
then

1. P[Y ≤ q(D, τ ) | Z] = τ , (2.1)
2. {Y ≤ q(D, τ )} is Bernoulli(τ ) conditional on Z . (2.2)

Proof. {Y ≤ q(D, τ )} is equivalent to {U ≤ τ }, which is
independent of Z . The results then follow from U ∼ U(0, 1). �

Eq. (2.1) provides a set of moment conditions that can be used
to identify and estimate the quantile function q(d, τ ). When D =
Z , these are the standard moment conditions used in quantile
regression which have been analyzed extensively, starting with
Koenker and Bassett (1978), and when D 6= Z , the identification
and estimation of q(d, τ ) from (2.1) is considered in Chernozhukov
and Hansen (2005).
Eq. (2.2) is the key result fromwhichweobtain the finite sample

inference results. The result states that the event {Y ≤ q(D, τ )}
conditional on Z is distributed exactly as a Bernoulli(τ ) random
variable regardless of the sample size. This random variable
depends only on τ , which is known, and so is pivotal in finite
samples. These results allow the construction of exact finite sample
confidence regions and tests conditional on the observed data, Z .
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2.2. Model and sampling assumptions

In the preceding section, we outlined a general heterogeneous
effect model and discussed how the model relates to quantile
regression. We also showed that the model implies that {Y ≤
q(D, τ )} conditional on Z is distributed exactly as a Bernoulli(τ )
random variable in finite samples. In order to operationalize the
finite sample inference, we also impose the following conditions.

Assumption 2. Let τ ∈ (0, 1) denote the quantile of interest.
Suppose that there is a sample (Yi,Di, Zi, i = 1, . . . , n) on
probability space (Ω,F , P) (possibly dependent on the sample
size), such that A1–A4 hold for each i = 1, . . . , n, and the following
additional conditions hold:

A5 (Parameterization): There exists θ0 ∈ Θn ⊂ RKn such
that q(D, τ ) = q(D, θ0, τ ), with equality holding up to a
numerically negligible error, where the function q(D, θ, τ ) is
known, but θ0 is not.

A6 (Conditionally Independent Sampling): (U1, . . . ,Un) are i.i.d.
Uniform(0, 1), conditional on (Z1, . . . , Zn).

We will use the letter P to denote the collection of all probability
laws P on themeasure space (Ω,F ) that satisfy conditions A1–A6.
Conditions A5–A6 restrict themodel A1–A4 sufficiently to allow

finite sample inference. A5 requires that the τ -quantile function
q(d, τ ) can be approximated by a finite-dimensional model
q(d, τ , θ0) (where θ0may varywith τ ), up to a negligible numerical
error. The finite sample inference results of this paper in principle
apply to any parameter space, including a function space. However,
from a practical point of view,we should require that each element
of the function space can be approximated in a suitable norm
by a finite-dimensional model, and the approximation error can
be made arbitrarily small. In this sense, we can allow flexible
(approximating) functional forms for q(D, θ0, τ ) such as linear
combinations of B-splines, trigonometric, power, and spline series.
Of course, the usual parametric assumptions are permitted. A5
allows themodel to depend on the sample size in the Pitman sense
and allows the dimension of themodel, Kn, to increasewith n in the
sense of Huber (1973) and Portnoy (1985), where Kn →∞ as n→
∞. Condition A6 is obviously satisfied if (Yi, Xi, Zi, i = 1, . . . , n)
are i.i.d., but in principle should allow for some dynamics, e.g. of
the kinds considered in Koenker and Xiao (2004a,b).

2.3. The finite sample inference procedure

Using the conditions discussed in the previous sections, we
are able to provide the key results on finite sample inference.
We start by noting that Eq. (2.1) in Proposition 1 justifies the
following generalized method-of-moments (GMM) function for
estimating θ0:

Ln(θ) =
1
2

[
1
√
n

n∑
i=1

mi(θ)

]′
Wn

[
1
√
n

n∑
i=1

mi(θ)

]
, (2.3)

where mi (θ) = [τ − 1(Yi ≤ q(Di, θ, τ ))] g(Zi). In this expression,
g(Zi) is a known vector of functions of Z , andWn is a positive semi-
definite weight matrix which is fixed conditional on Z1, . . . , Zn.
One would typically choose g(Z) such that dim(g(Z)) ≥

dim(θ0), though this is not required for validity of the approach.
A convenient and natural choice of Wn is given by Wn =
1

τ(1−τ)

[ 1
n

∑n
i=1 g(Zi)g(Zi)

′
]−1
, which equals the inverse of the

variance of n−1/2
∑n
i=1mi(θ0) conditional on Z1, . . . , Zn. Since this

conditional variance does not depend on θ0, the GMM function
with Wn defined above also corresponds to the continuous-
updating estimator of Hansen et al. (1996). In all examples in this
paper, we use the identity function for g(·).
We focus on the GMM function Ln(θ) for defining the key
results for finite sample inference. The GMM function provides an
intuitive statistic for performing inference given its close relation
to standard estimation and asymptotic inference procedures. In
addition, we show in the Appendix that testing based on Ln(θ)may
have useful asymptotic optimality properties.
We now state the key finite sample results.

Proposition 2. Under A1–A6, statistic Ln(θ0) is conditionally pivotal:
Ln(θ0)

d
=Ln, conditional on (Z1, . . . , Zn), where

Ln =
1
2

(
1
√
n

n∑
i=1

(τ − Bi) · g(Zi)

)′

×Wn

(
1
√
n

n∑
i=1

(τ − Bi) · g(Zi)

)
,

and (B1, . . . , Bn) are i.i.d. Bernoulli random variables with EBi = τ ,
which are independent of (Z1, . . . , Zn).

Proof. Implication 2 of Proposition 1 and A6 imply the result. �

Proposition 2 states the finite sample distribution of the GMM
function Ln(θ) at θ = θ0. Conditional on (Z1, . . . , Zn), the
distribution does not depend on any unknown parameters, and
appropriate critical values from the distribution may be obtained
allowing finite sample inference on θ0.
Given the finite sample distribution of Ln(θ0), a 1− α-level test

of the null hypothesis that θ = θ0 is given by the rule that rejects
the null if Ln(θ) > cn(α), where cn(α) is the α-quantile of Ln. By
inverting this test-statistic, one obtains confidence regions for θ0.
Let CR(α) be the cn(α)-level set of the function Ln(θ): CR(α) ≡

{θ : Ln(θ) ≤ cn(α)}. It follows immediately from the previous
results that CR(α) is a valid α-level confidence region for θ0. This
result is stated formally in Proposition 3.

Proposition 3. Fix an α ∈ (0, 1). CR(α) is a valid α-level confidence
region for inference about θ0 in finite samples: PrP(θ0 ∈ CR(α)) ≥ α.
CR(α) is also a valid critical region for obtaining a 1 − α-level test
of θ = θ0: PrP(θ0 6∈ CR(α)) ≤ 1 − α. Moreover, these results
hold uniformly in P ∈ P , infP∈P PrP(θ0 ∈ CR(α)) ≥ α and
supP∈P PrP(θ0 6∈ CR(α)) ≤ 1− α.

Proof. θ0 ∈ CR(α) is equivalent to {Ln(θ0) ≤ cn(α)} and
PrP{Ln(θ0) ≤ cn(α)} ≥ α, by the definition of cn(α) := inf{l :
P{Ln ≤ l} ≥ α} and Ln(θ0)=dLn. �

Proposition 3 demonstrates how one may obtain valid finite
sample confidence regions and tests for the parameter vector
θ characterizing the quantile function q(D, θ0, τ ). Thus, this
result generalizes the approach of Walsh (1960) from the sample
quantiles to the regression case. It is also apparent that the
pivotal nature of the finite sample approach is similar to the
asymptotically pivotal nature of the rank-score method, see
Gutenbrunner and Jurečková (1992) and Gutenbrunner et al.
(1993), and the pivotal bootstrapmethod of Parzen et al. (1994). In
contrast to the pivotal bootstrap and the rank-score method, the
finite sample approach does not rely on asymptotics for its validity
and is valid in finite samples. Moreover, the rank-score method
relies on a homoskedasticity assumption, while the finite sample
approach does not.
It is worth emphasizing the distinction between the finite

sample approach and some other inferential procedures. The
pivotal bootstrap produces a ‘‘fiducial’’ distribution,whose support
is a finite set of points that generically does not contain the
true parameter θ0. Therefore, the pivotal bootstrap does not
posses formal finite sample validity. Furthermore, Parzen et al.
(1994) establish its asymptotic validity under conditions of strong
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identifiability and asymptotic normality for the QR estimator. We
conjecture that the asymptotic validity of the pivotal bootstrap
does not hold in more nonstandard settings such as cases
with weak instruments, under set identification, or for extreme
quantiles. In contrast, the finite sample approach is shown to work
under all such conditions. The finite sample method should not be
confused with the Gibbs bootstrap proposed in He and Hu (2002),
which may be viewed as a computationally attractive alternative
to Parzen et al. (1994). Themethod is also different from specifying
the finite sample density of quantile regression as in Koenker and
Bassett (1978). The finite sample density of QR is not pivotal and
it cannot be used for finite sample inference unless the nuisance
parameters (the conditional density of the outcome given the
regressors) are specified.
Finally, we note that, while the statement of Proposition 3 is for

joint inference about the entire parameter vector, one can define a
confidence region for a real-valued functional ψ(θ0, τ ) as

CR(α, ψ) = {ψ(θ, τ ) : θ ∈ CR(α)}.

Since the event {θ0 ∈ CR(α)} implies the event {ψ(θ0, τ ) ∈
CR(α, ψ)}, it follows that infP∈P PrP(ψ(θ0, τ ) ∈ CR(α, ψ)) ≥ α by
Proposition 3. For example, if one is interested in inference about
a single component of θ , say θ[1], a confidence region for θ[1] may
be constructed as the set {θ[1] : θ ∈ CR(α)}. That is, the confidence
region for θ[1] is obtained by first taking all vectors of θ in CR(α)
and then extracting the element from each vector corresponding
to θ[1]. Confidence bounds for θ[1] may be obtained by taking the
infimum and supremum over this set of values for θ[1].

2.4. Primary properties of the finite sample inference

The finite sample tests and confidence regions obtained in the
preceding section have a number of interesting and appealing
features. Perhaps the most important feature of the proposed
approach is that it allows for finite sample inference under weak
conditions. Working with a model defined by quantile restrictions
makes it possible to construct exact joint inference in a general
nonlinear, nonseparable model with heterogeneous effects that
allows for endogeneity.
The approach is valid without imposing distributional assump-

tions and allows for general forms of heteroskedasticity and some
forms of dynamics. The result is obtained without relying on
asymptotic arguments and essentially requires only that Y has a
continuous conditional distribution function given Z . In contrast
with conventional asymptotic approaches to inference in quantile
models, the validity of the finite sample approach does not depend
upon having a well-behaved density for Y : it does not rely on the
density of Y given D = d and Z = z being continuous or differen-
tiable in y or having connected support around q(d, τ ), as required
for example in Chernozhukov and Hansen (2006).
In addition to these features, the finite sample inference

procedure will remain valid in situations where the parameters of
the model are only set-identified. The confidence regions obtained
from the finite sample procedurewill provide valid inference about
q(D, τ ) = q(D, θ0, τ ) even when θ0 is not uniquely identified by
P[Y ≤ q(D, θ0, τ ) | Z] = τ . This builds on the point made in Hu
(2002). In addition, since the inference is valid for any n, it follows
trivially that it remains valid under the asymptotic formalization
of ‘‘weak instruments’’, as defined for example in Stock andWright
(2000).
As noted previously, inference statements obtained from the fi-

nite sample procedure will also remain valid in models where the
dimension of the parameter space Kn is allowed to increase with
future increases of n since the statements are valid for any given n.
Thus, the results of the previous section remain valid in the asymp-
totics of Huber (1973) and Portnoy (1985), where Kn/n → 0,
Kn →∞, n→∞. These rate conditions are considerably weaker
than those required for conventional inference using Wald statis-
tics, as described in Portnoy (1985) and Newey (1997), which re-
quire K 2n /n→ 0, Kn →∞, n→∞.
Inference statements obtained from the finite sample proce-

durewill be valid for inference about extremal quantiles where the
usual asymptotic approximation may perform quite poorly. One
alternative to using the conventional asymptotic approximation
for extremal quantiles is to pursue an approach explicitly aimed
at performing inference for extremal quantiles, for example as in
Chernozhukov (2005). The extreme value approach improves upon
the usual asymptotic approximation but requires a regular varia-
tion assumption on the tails of the conditional distribution of Y | D,
that the tail index does not vary with D, and also relies heavily
on linearity and exogeneity. None of these assumptions are re-
quired in the finite sample approach, so the inference statements
apply more generally than those obtained from the extreme value
approach.
It is also worth noting that while the approach presented above

is explicitly finite sample, it will remain valid asymptotically. Un-
der conventional assumptions and asymptotics the inference ap-
proaches conventional GMM based joint inference, as for example
in Pakes and Pollard (1989), Abadie (1995) and Chernozhukov et al.
(2003).
Finally, it is important to note that inference is simultaneous on

all components of θ and that for joint inference the approach is not
conservative. Inference about subcomponents of θ may be made
by projections, as illustrated in the previous section, and may be
conservative.

2.5. Computation

The main difficulty with the approach introduced in the
previous sections is computing the confidence regions. The
distribution of Ln(θ0) is not standard, but its critical values can be
easily constructed by simulation. Themore serious problem is that
inverting the function Ln(θ) to find joint confidence regions may
pose a significant computational challenge. One possible approach
is to simply use a naive grid-search, but as the dimension of θ
increases, this approach becomes intractable. To help alleviate this
problem, we explore the use of MCMC methods. MCMC methods
seem attractive in this setting because they generate an adaptive
set of grid points and so should explore the relevant region of
the parameter space more quickly than performing a conventional
grid search. We also consider a marginalization approach that
combines a one-dimensional grid search with optimization for
estimating a confidence bound for a single parameter which may
be computationally convenient in some cases.

2.5.1. Computation of the critical value
The computation of the critical value cn(α) may proceed by

simulating the distribution Ln. We outline a simulation routine
below.

Algorithm 1 (Computation of cn(α)). Given (Zi, i = 1, . . . , n), for
j = 1, . . . , J: 1. Draw (Ui,j, i ≤ n) as i.i.d. Uniform, and let
(Bi,j = 1(Ui,j ≤ τ), i ≤ n). 2. Compute Ln,j =

1
2 (

1
√
n

∑n
i=1(τ −

Bi,j) · g(Zi))′Wn( 1√n
∑n
i=1(τ − Bi,j) · g(Zi)). 3. Obtain cn(α) as the

α-quantile of the sample (Ln,j, j = 1, . . . , J), for a large number J .

2.5.2. Computation of confidence regions
Finding the confidence region requires computing the cn(α)-

level set of the function Ln(θ), which involves inverting a
nonsmooth, nonconvex function. For even moderately sized
problems, the use of a conventional grid search is impractical due
to the computational curse of dimensionality.
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To help resolve this problem, we consider the use of a generic
random walk Metropolis–Hastings MCMC algorithm. Of course,
other MCMC algorithms or stochastic search methods could also
be employed. The idea is that the MCMC algorithm will generate
a set of adaptive grid-points that are placed in relevant regions of
the parameter space only. By focusing more on relevant regions
of the parameter space, the use of MCMC methods may alleviate
the computational problems associated with a conventional grid
search.
To implement the MCMC algorithm, we treat f (θ) ∝

exp(−Ln(θ)) as a quasi-posterior density and feed it into a
random walk MCMC algorithm. The idea is similar to that in
Chernozhukov et al. (2003), except that we use it here to get
level sets of the objective function rather than pseudo-posterior
means and quantiles. A related suggestion would be to use f (θ) ∝
exp(−max[Ln(θ), cn(α)]) as a quasi-posterior density. This choice
of f (θ) samples the confidence region uniformly.
Given f , the basic random walk MCMC algorithm is imple-

mented as follows:

Algorithm 2 (Random Walk MCMC). For a symmetric proposal
density h(·) and given θ (t), 1. Generate θ (t)prop ∼ h(θ − θ (t)). 2. Take
θ (t+1) = θ

(t)
prop with probability min{1, f (θ

(t)
prop)/f (θ (t))} and θ (t)

otherwise. 3. Store (θ (t), θ (t)prop, Ln(θ (t)), Ln(θ
(t)
prop)). 4. Repeat Steps

1–3 J times replacing θ (t) with θ (t+1) as the starting point for each
repetition.

At each step, the MCMC algorithm considers two potential
values for θ and obtains the corresponding values of the objective
function. Step 3 above differs from a conventional random
walk MCMC algorithm in that we are interested in every value
considered not just those accepted by the procedure.
The implementation of the MCMC algorithm requires the user

to specify a starting value for the chain and a transition density
h(·). The choice of both quantities can have important practical
implications, and implementation in any given example will
typically involve some fine tuning in both the choice of h(·) and
the starting value.1 Robert and Casella (1998) provide an excellent
overview of these and related issues.
As illustrated above, the MCMC algorithm generates a set of

grid points {θ (1), . . . , θ (k)} and, as a by-product, a set of values
for the objective function {Ln(θ (1)), . . . , Ln(θ (k))}. Using this set of
evaluations of the objective function, we can construct an estimate
of the critical region by taking the set of draws for θ where the
value of Ln(θ) ≤ cn(α): C̃R(α) = {θ (i) : Ln(θ (i)) ≤ c(α)}.

2.5.3. Computation of confidence bounds for individual regression
parameters
The MCMC approach outlined above may be used to estimate

joint confidence regions. If one is interested solely in inference
about an individual regression parameter, there may be a
computationally more convenient approach. In particular, for
constructing a confidence bound for a single parameter, knowledge
of the entire joint confidence region is unnecessary, which
suggests that we may collapse the d-dimensional search to a one-
dimensional search.
For concreteness, suppose we are interested in constructing a

confidence bound for a particular element of θ , denoted θ[1], and
let θ[−1] denote the remaining elements of the parameter vector.
We note that a value of θ[1], say θ∗[1], will lie inside the confidence

1 In our applications, we use estimates of θ and the corresponding asymptotic
distribution obtained from the quantile regression of Koenker and Bassett (1978)
in exogenous cases and from the inverse quantile regression of Chernozhukov and
Hansen (2006) in endogenous cases as starting values and transition densities.
bound as long as there exists a value of θ with θ[1] = θ∗
[1] that

satisfies Ln(θ) ≤ cn(α). Since only one such value of θ is required to
place θ∗

[1] in the confidence bound, we may restrict consideration
to θ∗, the point that minimizes Ln(θ) conditional on θ[1] = θ∗[1]. If
Ln(θ∗) > cn(α), we may conclude that there will be no other point
that satisfies Ln(θ) ≤ cn(α), and exclude θ∗[1] from the confidence
bound. On the other hand, if Ln(θ∗) ≤ cn(α), we have found a point
that satisfies Ln(θ) ≤ cn(α) and can include θ∗[1] in the confidence
bound.
This suggests that a confidence bound for θ[1] canbe constructed

using the following simple algorithm that combines a one-
dimensional grid search with optimization.

Algorithm 3 (Marginal Approach). 1. Define a suitable set of values
for θ[1], {θ

j
[1], j = 1, . . . , J}. 2. For j = 1, . . . , J , find θ j

[−1] =

arg infθ[−1]Ln((θ
j
[1], θ

′

[−1])
′). 3. Calculate the confidence region for

θ[1] as {θ
j
[1] : Ln((θ

j
[1], θ

j′
[−1])

′
≤ cn(α)}}.

In addition to its being computationally convenient for finding
confidence bounds for individual parameters in high-dimensional
settings, we also anticipate that this approach will perform well in
some irregular cases. Since the marginal approach focuses on only
one parameter, it will typically be easy to generate a tractable and
reasonable search region. The approach will have some robustness
to multimodal objective functions and potentially disconnected
confidence sets because it considers all values in the grid search
region and will not be susceptible to getting stuck at a local mode.

3. Empirical examples

In the preceding section, we presented an inference procedure
for quantile regression that provides exact finite sample inference
for joint hypotheses and discussed how confidence bounds for
subsets of quantile regression parameters may be obtained. In the
following, we further explore the properties of the proposed finite
sample approach through two simple case studies.2 In the first, we
consider estimation of a demand model in a small sample; and
in the second, we consider estimation of the impact of schooling
on wages in a rather large sample. In both cases, we find that
the finite sample and asymptotic intervals are similar when the
variables of interest, price and years of schooling, are treated as
exogenous. However, when we use instruments, the finite sample
and asymptotic intervals differ significantly. In each of these
examples, we consider specifications that include only a constant
and the covariate of interest. In these two-dimensional situations,
computation is relatively simple, so we consider estimating the
finite sample intervals using a simple grid search, MCMCmethods,
and the marginal inference approach suggested in the previous
section. We find that all methods result in similar confidence
bounds for the parameter of interest in the demand example, but
there are some discrepancies in the schooling example.

3.1. Demand for fish

In this section, we present estimates of demand elasticities
which may potentially vary with the level of demand. The data
contain observations on price and quantity of fresh whiting sold

2 Simulation results are available in a previous working paper version of this
paper, Chernozhukov et al. (2006). In the simulations, we find that tests about the
entire parameter vector based on the finite sample method have the correct size
and that tests about individual parameters based on the finite sample method have
correct size in the sense that the size is less than the nominal level but may be
conservative. In both cases, conventional asymptotic procedures have large size
distortions in situations where the asymptotic approximationsmay be suspect. The
results also suggest the finite sample procedure has nontrivial power.
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in the Fulton fish market in New York over the five month period
from December 2, 1991 to May 8, 1992. These data were used
previously in Graddy (1995) to test for imperfect competition in
themarket. The price andquantity data are aggregated by day,with
the price measured as the average daily price and the quantity as
the total amount of fish sold that day. The total sample consists of
111 observations for the days in which the market was open over
the sample period.
For the purposes of this illustration, we focus on a simple

Cobb–Douglas random demand model with nonadditive distur-
bance: ln(Qp) = α0(U) + α1(U) ln(p) + X ′β(U), where Qp is the
quantity that would be demanded if the price were p, U is an un-
observable affecting the level of demand normalized to follow a
U(0, 1) distribution, α1(U) is the random demand elasticity when
the level of demand is U , and X is a vector of indicator variables
for day of the week that enter the model with random coefficient
β(U). We consider two different specifications. In the first, we set
β(U) = 0, and in the second, we estimate β(U). A supply function
Sp = f (p, Z,U)describes howmuchproducerswould supply if the
pricewere p, subject to other factors Z and unobserved disturbance
U. The factors Z affecting supply are assumed to be independent
of demand disturbance U .
As instruments, we consider two different variables capturing

weather conditions at sea: Stormy is a dummy variable which
indicates wave height greater than 4.5 feet andwind speed greater
than 18 knots, and Mixed is a dummy variable indicating wave
height greater than 3.8 feet and wind speed greater than 13 knots.
These variables are plausible instruments sinceweather conditions
at sea should influence the amount of fish that reaches the market
but should not influence demand for the product.3 Simple OLS
regressions of the log of price on these instruments suggest they
are correlated to price, yielding R2 and F-statistics of 0.227 and
15.83 when both Stormy and Mixed are used as instruments.
Asymptotic intervals are based on the inverse quantile regres-

sion estimator of Chernozhukov and Hansen (2006) whenwe treat
price as endogenous. For models in which we set D = Z , i.e., in
which we treat the covariates as exogenous, we base the asymp-
totic intervals on the conventional quantile regression estimator of
Koenker and Bassett (1978). We use the Hall–Sheather bandwidth
choice suggested by Koenker (2005) to implement the asymptotic
standard errors.
Estimation results are presented in Table 1. Panel A of Table 1

gives estimation results treating price as exogenous, and Panel
B contains confidence intervals for the random elasticities when
we instrument for price using both of the weather condition
instruments described above. Panels C and D include a set of
dummy variables for day of the week as additional covariates and
are otherwise identical to Panels A andB respectively. In every case,
we provide estimates of the 95% level confidence interval obtained
from the usual asymptotic approximation and the finite sample
procedure. For the finite sample procedure, we report intervals
obtained via MCMC, a grid search, and the marginal procedure
in Panels A and B.4 In Panels C and D, we report only intervals
constructed using the asymptotic approximation and themarginal
procedure. For each model, we report estimates for τ = .25,
τ = .50, and τ = .75.
Looking first at Panels A and C, which report results for models

that treat price as exogenous, we see modest differences between
the asymptotic and finite sample intervals. At the median when
no covariates (other than price and intercept) are included, the
asymptotic 95% level interval is (−0.785,−0.037), and the widest
of the finite sample intervals is (−1.040,0.040). The differences

3 More detailed arguments may be found in Graddy (1995).
4 Details of the computation are described in Chernozhukov et al. (2006).
becomemore pronounced at the 25th and 75th percentiles, where
wewould expect the asymptotic approximation to be less accurate
than at the center of the distribution. When day of the week
effects are included, the asymptotic intervals tend to become
narrower, while the finite sample intervals widen slightly, leading
to larger differences in this case. However, the basic results remain
unchanged. Also, all three computational methods for obtaining
the finite sample confidence bounds give similar answers in the
model with only an intercept and price. This finding provides some
evidence that MCMC and the marginal approach may do as well
computationally as a grid search, which may not be feasible in
high-dimensional problems.
Turning now to results for estimation of the demand model

using instrumental variables in Panels B and D, we see quite large
differences between the asymptotic intervals and the intervals
constructed using the finite sample approach. As above, the
differences are particularly pronounced at the 25th and 75th
percentiles, where the finite sample intervals are extremely wide.
Even at the median in the model with only price and an intercept,
the finite sample intervals are approximately twice as wide as the
corresponding asymptotic intervals. When additional controls are
included, the finite sample bounds for all three quantiles include
the entire grid search region. The large differences between the
finite sample and asymptotic intervals definitely call into question
the validity of the asymptotic approximation in this case, which is
not surprising given the relatively small sample size and the fact
that we are estimating a nonlinear instrumental variables model.
Finally, it is worth noting again that the three approaches

to constructing the finite sample interval in general give similar
results in this case. This finding is graphically illustrated in Fig. 1
for instrumental variables estimates at themedian. The differences
between the grid search and marginal approaches could easily be
resolved by increasing the search region for themarginal approach,
which was restricted to values we felt were a priori plausible. The
difference between the grid search andMCMC intervals at the 25th
percentile is more troubling, though it could likely be resolved
through additional simulations.5

3.2. Returns to schooling

As our final example, we consider estimation of a simple return
to schooling model that allows for heterogeneity in the effect
of schooling on wages. We use data and the basic identification
strategy employed in the schooling study of Angrist and Krueger
(1991). The data are drawn from the 1980 US Census and include
observations on men born between 1930 and 1939. The data
contain information on wages, years of completed schooling, state
and year of birth, and quarter of birth. The total sample consists of
329,509 observations.
As in the previous section, we focus on a simple linear quantile

model of the form Y = α0(U) + α1(U)S + X ′β(U), where Y is
the log of the weekly wage, S is years of completed schooling,
X is a vector 51 state of birth and 9 year of birth dummies that
enter with random coefficients β(U), and U is an unobservable
normalized to follow a uniform distribution over (0, 1). We might
think of U as indexing unobserved ability, in which case α1(τ )may
be thought of as the return to schooling for an individual with
unobserved ability τ . Since we believe that years of schooling may
be jointly determined with unobserved ability, we use quarter of

5 Further evidence provided in Chernozhukov et al. (2006) suggests that the
problem at τ = .25 is due to the confidence set’s being disconnected. The simple
MCMC algorithm explores one region of the confidence set but fails to jump to
the other region. This problem could likely be remedied by employing a more
sophisticated search algorithm.



V. Chernozhukov et al. / Journal of Econometrics 152 (2009) 93–103 99
Table 1
95% level confidence interval estimates for demand for fish example.

Estimation method τ = 0.25 τ = 0.50 τ = 0.75

Panel A. Quantile regression (No instruments)
Quantile regression (Asymptotic) (−0.874, 0.073) (−0.785,−0.037) (−1.174,−0.242)
Finite sample (MCMC) (−1.348, 0.338) (−1.025, 0.017) (−1.198, 0.085)
Finite sample (Grid) (−1.375, 0.320) (−1.015, 0.020) (−1.195, 0.065)
Finite sample (Marginal) (−1.390, 0.350) (−1.040, 0.040) (−1.210, 0.090)

Panel B. IV Quantile Regression (Stormy, Mixed as Instruments)
Inverse quantile regression (Asymptotic) (−2.486,−0.250) (−1.802, 0.030) (−2.035,−0.502)
Finite sample (MCMC) (−4.403, 1.337) (−3.566, 0.166) (−5.198, 25.173)
Finite sample (Grid) (−4.250, 40] (−3.600, 0.200) (−5.150, 24.850)
Finite sample (Marginal) (−4.430, 1] (−3.610, 0.220) [−5, 1]

Panel C. Quantile regression — Day effects (No Instruments)
Quantile Regression (Asymptotic) (−0.695,−0.016) (−0.718,−0.058) (−1.265,−0.329)
Finite Sample (Marginal) (−1.610, 0.580) (−1.360, 0.320) (−1.350, 0.400)

Panel D. IV Quantile regression — Day effects (Stormy, Mixed as Instruments)
Inverse quantile regression (Asymptotic) (−2.403,−0.324) (−1.457, 0.267) (−1.895,−0.463)
Finite sample (Marginal) [−5, 1] [−5, 1] [−5, 1]

Note: The first row in each panel reports the interval estimated using the asymptotic approximation, and the remaining rows report estimates of the finite sample interval
constructed through various methods.
Fig. 1. Computation of a confidence region byMCMC. The left panel shows theMCMCdrawswith the darker points corresponding to draws that fall outside of the confidence
region. The solid line in the right panel is the grid search confidence region which is plotted against the MCMC confidence region.
birth as an instrument for schooling, following Angrist and Krueger
(1991).We consider two different specifications. In the first, we set
β(U) = 0, and in the second, we estimate β(U).
We present estimation results in Table 2. Panel A of Table 2

gives estimation results treating schooling as exogenous, and
Panel B contains confidence intervals for the schooling effect
when we instrument for schooling using quarter of birth. Panels
C and D include a set of 51 state of birth and 9 year of
birth dummy variables, but are otherwise identical to Panels
A and B, respectively. In every case, we provide estimates of
the 95% confidence interval obtained from the usual asymptotic
approximation and the finite sample procedure. For the finite
sample procedure, we report intervals obtained via MCMC and a
modified MCMC procedure (MCMC-2) that better accounts for the
specifics of the problem, a grid search, and the marginal procedure
in Panels A and B.6 The modified MCMC procedure we employ
is a simple stochastic search algorithm that simultaneously runs
five MCMC chains, each started at a local mode of the objective
function. The idea behind the procedure is that the simple MCMC
tends to get ‘‘stuck’’ because of the sharpness of the contours in this
problem. By using multiple chains started at different values, we
may potentially explore more of the function even if the chains get
stuck near a local mode. If the starting points sufficiently cover the
function, the approach should accurately recover the confidence
region more quickly than the unadjusted MCMC procedure. In

6 Details of the computation are described in Chernozhukov et al. (2006).
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Table 2
95% level confidence interval estimates for the returns to schooling example.

Estimation method τ = 0.25 τ = 0.50 τ = 0.75

Panel A. Quantile regression (No instruments)
Quantile regression (Asymptotic) (0.0715, 0.0731) (0.0642, 0.0652) (0.0637, 0.0650)
Finite sample (MCMC) (0.0710, 0.0740) (0.0640, 0.0660) (0.0637, 0.0656)
Finite sample (Grid) (0.0710, 0.0740) (0.0641, 0.0659) (0.0638, 0.0655)
Finite sample (Marginal) (0.0706, 0.0742) (0.0638, 0.0662) (0.0634, 0.0658)

Panel B. IV Quantile regression (Quarter of birth instruments)
Inverse quantile regression (Asymptotic) (0.0784, 0.2064) (0.0563, 0.1708) (0.0410, 0.1093)
Finite sample (MCMC) (0.1151, 0.1491) (0.0378, 0.1203) (0.0595, 0.0703)
Finite sample (MCMC-2) (0.0580, 0.2864) (0.0378, 0.1203) (0.0012, 0.0751)
Finite sample (Grid) (0.059, 0.197) (0.041, 0.119) (0.021, 0.073)
Finite sample (Marginal) (0.05, 0.39) (0.03, 0.13) (0.00, 0.08)

Panel C. Quantile regression — State and year of birth effects (No instruments)
Quantile regression (Asymptotic) (0.0666, 0.0680) (0.0615, 0.0628) (0.0614, 0.0627)
Finite sample (Marginal) (0.0638, 0.0710) (0.0594, 0.0650) (0.0590, 0.0654)

Panel D. IV Quantile regression — State and year of birth effects
(Quarter of birth instruments)
Inverse quantile regression (Asymptotic) (0.0890, 0.2057) (0.0661, 0.1459) (0.0625, 0.1368)
Finite sample (Marginal) (−0.24, 1] [−1, 1] [−1, 0.35]

Note: The first row in each panel reports the interval estimated using the asymptotic approximation, and the remaining rows report estimates of the finite sample interval
constructed through various methods.
Panels C and D, we report only intervals constructed using the
asymptotic approximation and the marginal procedure. For each
model, we report estimates for τ = .25, τ = .50, and τ = .75.
Looking first at estimates of the conditional quantiles of log

wages given schooling presented in Panels A and C, we see that
there is very little difference between the finite sample and
asymptotic inference results. In Panel A, where the model includes
only a constant and the schooling variable, the finite sample
and asymptotic intervals are almost identical. There are larger
differences between the finite sample and asymptotic intervals
in Panel C, which includes 51 state of birth effects and 9 year of
birth effects in addition to the schooling variable; though even in
this case the differences are quite small. The close correspondence
between the results in not surprising since in the exogenous case
the parameters are well identified and the sample is large enough
that one would expect the asymptotic approximation to perform
quite well for all but the most extreme quantiles.
While there is close agreement between the finite sample

and asymptotic results in the model which treats schooling as
exogenous, there are still substantial differences between the
asymptotic and finite sample results in the case where we
instrument for schooling using quarter of birth. The finite sample
intervals, with the exception of the interval at the median, are
substantially wider than the asymptotic intervals in the model
with only schooling and an intercept. When we consider the finite
sample intervals in the model that includes the state of birth and
year of birth covariates, the differences are huge. For all three
quantiles, the finite sample interval includes at least one endpoint
of the search region, and in no case are the bounds informative.
While the finite sample bounds may be quite conservative in
models with covariates, the differences in this case are extreme.
Also, we have evidence from the model which treats education
as exogenous that in a well-identified setting the inflation of
the bounds need not be large. Taken together, this suggests that
identification in this model is quite weak.
While the finite sample intervals constructed through the

different methods are similar at the median in the instrumented
model, there are large differences between the finite sample
intervals for the .25 and .75 quantiles. The difficulty in this case
is that the objective function has extremely sharp ‘‘line’’-like
contours.7 The shape of the confidence region poses difficulties for

7 The shape of the contours is illustrated graphically in Fig. 8 of Chernozhukov
et al. (2006).
both the traditional grid search and the basic MCMC procedure.
The problem with the grid search is that the interval is so narrow
that even with a very fine grid one is unlikely to find more than
a few points in the region unless the grid is chosen carefully to
include many points along the ‘‘line’’ describing the confidence
region, and with a coarse grid, one maymiss the confidence region
entirely. The narrowness of the confidence set causes problems
with MCMC by making transitions quite difficult. The MCMC-2
procedure alleviates the problems with the random walk MCMC
somewhat by running multiple chains with different starting
values. In this example, the marginal approach seems to clearly
dominate the other approaches to computing the finite sample
confidence regions that we have considered. It finds more points
that lie within the confidence bound for the parameter of interest
than any of the other approaches.

4. Conclusion

In this paper, we have presented an approach to inference in
models defined by quantile restrictions that is valid underminimal
assumptions. The approach does not rely on any asymptotic
arguments, does not require the imposition of distributional
assumptions, and will be valid for both linear and nonlinear
conditional quantile models and for models which include
endogenous as well as exogenous variables. The approach relies
on the fact that objective functions that quantile regression
solves are conditionally pivotal in finite samples. This conditional
pivotal property allows the construction of exact finite sample
joint confidence regions and of finite sample confidence bounds
for quantile regression coefficients. The chief drawbacks of the
approach are that it may be computationally difficult and that
it may be quite conservative for performing inference about
subsets of regression parameters. We suggest that MCMC or
other stochastic search algorithms may be used to construct joint
confidence regions. In addition, we suggest a simple algorithm that
combines optimization with a one-dimensional search that can
be used to construct confidence bounds for individual regression
parameters. Finally, we illustrate the finite sample procedure in
two empirical examples: estimation of a demand curve in a small
sample and estimation of the returns to schooling in a large sample.
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Appendix. Optimality arguments for Ln

In the preceding sections, we introduced a finite sample infer-
ence procedure for quantile regression models and demonstrated
that this procedure provides valid inference statements in finite
samples. In this section, we show that the approach also has desir-
able large sample properties. First, under strong identification, the
class of statistics of the form (2.3) contains a (locally) asymptot-
ically uniformly most powerful (UMP) invariant test. Inversion of
this test therefore gives (locally) uniformly most accurate invari-
ant regions. (The definitions of power and invariance follow those
in Choi et al. (1996).) Second, under weak identification, the class
of statistics of the form (2.3)maximizes an average power function
within a broad class of normal weight functions.
Here, we suppose (Yi,Di, Zi, i = 1, . . . , n) is an i.i.d. sample

from the model defined by A1–A6 and assume that the dimension
K of θ0 is fixed. Although this assumption can be relaxed, the
primary purpose of this section is to motivate the statistics used
for finite sample inference from an optimality point of view.
Recall that, under A1–A6, P [Y − q (D, θ0, τ ) ≤ 0 | Z] = τ .

Consider the problem of testing H0 : θ0 = θ∗ vs. Ha : θ0 6= θ∗,
where θ∗ ∈ RK is some constant.
Let ei = 1 [Yi ≤ q (Di, θ∗, τ )]. As defined, e | Z ∼

Bernoulli[τ (Z, θ0)], where τ (Z, θ0) = P [Y ≤ q (D, θ0, τ ) | Z].
Suppose testing is to be based on (ei, Zi, i = 1, . . . , n). Because
ei | Z1, . . . , Zn ∼ i.i.d. Bernoulli (τ ) under the null, any statistic
based on (ei, Zi, i = 1, . . . , n) is conditionally pivotal under H0.
Let G be the class of functions g for which E

[
g (Z) g (Z)′

]
exists

and is positive definite; that is, let G =
⋃
∞

j=1 Gj, where Gj is the
class of Rj-valued functions g for which E

[
g (Z) g (Z)′

]
exists and

is positive definite. As mentioned in the text, a ‘‘natural’’ class of
test statistics is given by {Ln (θ∗, g) : g ∈ G}, where

Ln (θ∗, g) =

[
n∑
i=1

g (Zi) (ei − τ)

]′

×

[
τ (1− τ)

n∑
i=1

g (Zi) g (Zi)′
]−1 [ n∑

i=1

g (Zi) (ei − τ)

]
. (A.1)

Being based on (ei, Zi, i = 1, . . . , n), any such Ln (θ∗, g) is
conditionally pivotal under the null. In addition, under the null,
Ln (θ∗, g)→d

1
2χ
2
dim(g) for any g ∈ G. Moreover, the class

{Ln (θ∗, g) : g ∈ G} enjoys desirable large sample power properties
under the following strong identification assumption in whichΘ∗
denotes some open neighborhood of θ∗.

Assumption 3. (a) The distribution of Z does not depend on θ0.
(b) For every θ ∈ Θ∗ (and for almost every Z),

τ̇ (Z, θ) =
∂

∂θ
τ (Z, θ) (A.2)

exists and is continuous (in θ ). (c) τ̇∗ (Z) = τ̇ (Z, θ∗) ∈ G.
(d) E

[
supθ∈Θ∗ ‖τ̇ (Z, θ)‖

2] <∞.
If Assumption 3 holds and g ∈ G, then under contiguous
alternatives induced by the sequence θ0,n = θ∗ + b/

√
n,

Ln (θ∗, g)→d
1
2
χ2dim(g)

[
1

τ (1− τ)
δS (b, g)

]
, (A.3)

where δS (b, g) = b′E
[
τ̇∗ (Z) g (Z)′

]
E
[
g (Z) g (Z)′

]−1 E[g(Z)
τ̇∗(Z)′]b. By a standard argument, δS (b, g) ≤ δS (b, τ̇∗) for
any g ∈ G. As a consequence, Ln (θ∗, τ̇∗) maximizes the local
asymptotic power within the class {Ln (θ∗, g) : g ∈ G}. An even
stronger optimality result is the following.

Proposition 4. Among tests based on (ei, Zi, i = 1, . . . , n), the test
which rejects for large values of Ln (θ∗, τ̇∗) is a locally asymptotically
UMP (rotation) invariant test of H0. Therefore, {Ln (θ∗, g) : g ∈ G}
is an (asymptotically) essentially complete class of tests of H0 under
Assumption 3.

Proof. The conditional (on Z = (Z1, . . . , Zn)) log likelihood
function is given by `n

(
θ | Z

)
=
∑n
i=1{log[τ(Zi, θ)]ei + log[1− τ

(Zi, θ)](1 − ei)}. Assumption 3 implies that the following LAN
expansion is valid under the null. For any b ∈ RK , `n

(
θ∗ +

b
√
n

)
−

`n (θ∗) = b′S∗n −
1
2b
′I∗nb + op (1), where `n is the (unconditional)

log likelihood function, S∗n =
1
√
n

∑n
i=1

1
τ(1−τ) τ̇∗(Zi)(ei − τ)

→dN (0, I∗), and I∗n =
1
n

∑n
i=1

1
τ(1−τ) τ̇∗(Zi)τ̇∗(Zi)

′
→p I∗ =

1
τ(1−τ)E[τ̇∗(Z)τ̇∗(Z)

′
]. Theorem 3 of Choi et al. (1996) now shows

that Ln(θ∗, τ̇∗) = 1
2S
∗′
n I∗−1n S∗n is the asymptotically UMP invariant

test of H0. �

In view of Proposition 4, a key role is played by τ̇∗. This
gradient will typically be unknown, but will be estimable under
various assumptions ranging from parametric assumptions to
nonparametric ones. As an illustration, consider the linear quantile
model

Y = D′θ0 + ε, (A.4)

where P [ε ≤ 0 | Z] = τ . If the conditional distribution of ε
given (X, Z) admits a density (with respect to Lebesgue measure)
fε|X,Z (· | X, Z) and certain additional mild conditions hold, then
Assumption 3 is satisfied with τ̇∗ (Z) = −E

[
Dfε|X,Z (0 | X, Z) | Z

]
,

an object which can be estimated nonparametrically. If, moreover,
it is assumed that

D = Π ′Z + v, (A.5)

where
(
ε, v′

)
| Z ∼ N (0,Σ) for some positive definite matrix

Σ , then τ̇∗ (Z) is proportional to Π ′Z , and parametric estimation
of τ̇∗ becomes feasible. (Assuming that the gradient belongs to a
particular subclass of G will not affect the optimality result, as
Proposition 4 (tacitly) assumes that τ̇∗ is known.)

Comment A.1 (Estimation of the Optimal Instrument). If one is
interested in using optimal instruments in practice, they need to
be estimated. The asymptotic properties of the test will hold with
estimated optimal instruments using the full sample as long as a
consistent estimate of the gradient function which τ̂∗(·) belongs
to a Donsker class T of functions is used; see Andrews (1994) for
a list of parametric or nonparametric methods for estimation of
the gradient that will satisfy this condition. In addition, estimation
of the gradient will not affect the validity of the finite sample
inference provided sample splitting is used. By the latter, wemean
that consistent estimation of τ∗(·) and finite sample inference are
performed using different subsamples of sizes b and n − b of the
full sample of size n. If an asymptotically negligible fraction of the
sample is used for the estimation of the gradient, i.e., b/n → 0,
the first-order efficiency of the test is unaffected. In the case of the
sample splitting, we can drop the technical requirement that T is
Donsker.
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Under weak identification, Proposition 4will not hold as stated,
but a closely related optimality result is available. The key differ-
ence between the strongly and weakly identified cases is that the
defining property of a weakly identified model is that the coun-
terpart of the gradient τ̇∗ is not consistently estimable. As such,
asymptotic optimality results are too optimistic. Nevertheless, it is
still possible to show that the statistic used in the main text has an
attractive optimality property under the followingweak identifica-
tion assumption in which τ (Z, θ0) is modeled as a ‘‘locally linear’’
sequence of parameters.8

Assumption 4. (a) The distribution of Z does not depend on θ0.
(b) τ(Z, θ∗) = τ + n−1/2[Z ′C∆θ + Rn(Z, θ∗, C)] for some
C ∈ Rdim(Z)×K and some function Rn, where ∆θ = θ0 −
θ∗. (c) ΣZZ = E

(
ZZ ′
)
exists and is positive definite. (d)

limn→∞ E
[
Rn (Z, θ, C)2

]
= 0 for every θ and every C .

If Assumption 4 holds and g ∈ G, then

Ln (θ∗, g)→d
1
2
χ2dim(g)

[
1

τ (1− τ)
δW (∆θ , C, g)

]
, (A.6)

where δW (∆θ , C, g) = ∆′θE
[
C ′Zg (Z)′

]
E
[
g (Z) g (Z)′

]−1 E[g(Z)
Z ′C]∆θ . As in the strongly identified case, the limiting distribution
of Ln (θ∗, g) is 1

2 times a noncentral χ
2
dim(g) in the weakly

identified case. Within the class of tests based on a member of
{Ln (θ∗, g) : g ∈ G}, the asymptotically most powerful test is the
one based on Ln (θ∗, gC ), where gC (Z) = C ′Z . This test furthermore
enjoys an optimality property analogous to the one established in
Proposition 4. The proof of the result for Ln (θ∗, gC ) is identical to
that of Proposition 4, with b, S∗n , and I∗n of the latter proof replaced
by∆θ ,

Sn (C) = C ′
[
1
√
n

n∑
i=1

1
τ (1− τ)

Zi (ei − τ)

]
and

In (C) = C ′
[
1
n

n∑
i=1

1
τ (1− τ)

ZiZ ′i

]
C,

respectively. (In particular, the proof utilizes the fact that, if C is
known, then the statistic Sn (C) is asymptotically sufficient under
Assumption 4.)
However, the consistent estimation of C is infeasible in the

present (weakly identified) case. Indeed, because C cannot be
treated ‘‘as if’’ it was known, it seemsmore reasonable to search for
a test which is implementable without knowledge of C and enjoys
an optimality property that does not rely on this knowledge. To
that end, let

L∗n =

[
n∑
i=1

Zi (ei − τ)

]′ [
τ (1− τ)

n∑
i=1

ZiZ ′i

]−1

×

[
n∑
i=1

Zi (ei − τ)

]
; (A.7)

that is, let L∗n be the particular member of {Ln (θ∗, g) : g ∈ G} for
which g is the identity mapping.
It follows from Muirhead (1982, Exercise 3.15 (d)) that, for any

κ > 0, and any dim (D) × dim (D), matrix Σvv, L∗n is a strictly
increasing transformation of∫
exp

(
κ

1+ κ
Ln (θ∗, gC )

)
dJ (C;Σvv) , (A.8)

8 Assumption 4 is motivated by the Gaussian model (A.4)–(A.5). In that model,
parts (b) and (d) of Assumption 4 hold (with C proportional to

√
nΠ ) if part (c)

does andΠ varies with n in such a way that
√
nΠ is a constant dim (Z)× K matrix

(as in Staiger and Stock (1997)).
where J (·) is the cdf of the normal distribution with mean 0
and variance Σvv ⊗

(
n−1

∑n
i=1 ZiZ

′

i

)−1. In (A.8), the functional
form of J (·) is ‘‘natural’’ insofar as it is corresponds to the
weak instruments prior employed by Chamberlain and Imbens
(2004). Moreover, following Andrews and Ploberger (1995), the
integrand in (A.8) is obtained by averaging the LAN approximation
to the likelihood ratio with respect to the weight/prior measure
KC (θ0) associated with the distributional assumption ∆θ ∼

N
[
0, κIn (C)−1

]
. In view of the foregoing, it follows that the

statistic L∗n enjoys weighted average power optimality properties
of the Andrews and Ploberger (1995) variety. As discussed by
Andrews and Ploberger (1995, p. 1384), L∗n can therefore be
interpreted as (being asymptotically equivalent to) a Bayesian
posterior odds ratio. This statement is formalized in the following
result.

Proposition 5. Among tests based on (ei, Zi, i = 1, . . . , n), under
Assumption 4 the test based on L∗n is asymptotically equivalent to the
test that maximizes the asymptotic average power:

lim sup
n→∞

∫∫
Pr(reject θ∗ | θ0, C)dKC (θ0)dJ(C).
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