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Abstract

We derive the family of tests for a unit root with maximal power against a point alternative
when an arbitrary number of stationary covariates are modeled with the potentially integrated
series. We show that very large power gains are available when such covariates are available. We
then derive tests which are simple to construct (involving the running of vector autoregressions)
and achieve at a point the power envelopes derived under very general conditions. These tests
have excellent properties in small samples. We also show that these are obvious and internally
consistent tests to run when identifying structural VARs using long run restrictions.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the e5ects of the assumption of a unit root in a variable on both the econo-
metric method used and the economic interpretation of the model examined, it is quite
common to pre-test the data for unit roots. This is typically done by either (or both)
testing variables one by one for unit roots or by examining cointegrating rank using
Johansen (1988) tests or their asymptotic equivalent.
In testing variables one by one, commonly the t-test method of Dickey and Fuller

(1979) is employed. This hypothesis test is asymptotically optimal when the data are
stationary and is a natural statistic to consider. However, in the unit root case there
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are many other tests available that have greater power. Elliott et al. (1996) (denoted
ERS in the remainder of the paper) showed that there is no uniformly most powerful
test for this problem and derived tests that were approximately most powerful in the
sense that they have asymptotic power close to the envelope of most powerful tests
for this problem.
This paper considers a model where there is one series that potentially has a unit

root, and that this series potentially covariates with some available stationary variables.
In a model similar to the one examined here, Hansen (1995) demonstrated in a model
with no deterministic terms that no uniformly most powerful test for a unit root in the
presence of stationary covariates exists and that power gains are to be had from using
these covariates. He suggested covariate augmented Dickey–Fuller (CADF) tests and
showed that these tests had greater power than tests that ignored these covariates. 1

This paper extends the results in Hansen (1995) in a number of ways. First, we
show that the point optimal tests implicit in the power envelope derived in Hansen
(1995) and computed when all nuisance parameters are known are feasible when these
parameters are not known. We also extend the results by deriving the power envelope
in the more empirically relevant cases of where constants and/or time trends are also
included in the regression. We propose tests that are feasible to construct with data
and attain the power envelope at a point. These tests have good power at other points
as well. We then show that these are natural tests to report in justifying the unit
root assumption in the popular method of identifying structural vector autoregressions
(VAR’s) from long run restrictions (as suggested by Blanchard and Quah, 1989).
The paper is set up as follows. In the next section the model is introduced, and the

power bounds for the problem are established. In the third section, tests which feasibly
attain these power bounds at a point are derived and discussed. Section 4 examines
the tests empirically using Monte Carlo methods. A Efth section discusses the tests as
they relate to identifying structural VAR’s from long run restrictions. The Enal section
concludes. All proofs are contained in a separate appendix, available from the authors
upon request.

2. Model and power envelopes

Consider the model

zt = �0 + �1t + ut ; t = 1; : : : ; T (1)

and

A(L)

(
(1− 
L)uy; t

ux; t

)
= et ; (2)

where zt = [yt; x′t ]
′; xt is an m× 1 vector, yt is 1× 1, �0 = [�y0; �′

x0]
′, �1 = [�y1; �′

x1]
′,

ut =[uy; t ; u′x; t]
′ and A(L) is a matrix polynomial of Enite order k in the lag operator L.

1 There is also a discussion of this work in Caporale and Pittis (1999).
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For the constructed test statistics we will assume that
(A1) |A(z)|= 0 has roots outside the unit circle.
(A2) Et−1(et) = 0; Et−1(ete′t) = � and suptE‖et‖2+� ¡∞ (a.s.) for some �¿ 0,

where � is positive deEnite and Et−1(:) denotes conditional expectation with respect
to {et−1; et−2; : : :}.
(A3) u0; u−1; : : : ; u−k are Op(1).
DeEne ut(
) = �(1− 
L)uy; t ux; t

′	′ with spectral density at frequency zero (scaled
by 2�) �, so we have �= A(1)−1�A(1)−1′ where we can partition this after the Erst
column and row so that

� =

[
!yy !yx

!′
yx �xx

]
(we partition � similarly). We will further deEne R2 =!−1

yy !yx�−1
xx !′

yx, the frequency
zero correlation between the shocks to xt and the quasi-di5erences of yt . The R2 value
represents the contribution of the stationary variables–it is equal to zero when there is
no long run correlation and one if there is perfect correlation. We impose that R2 ¡ 1,
hereby ruling out the case under the null where the partial sums of xt cointegrate with
yt . If there is such a cointegrating relation, this should be modeled in the system taking
the model outside this framework (unless the coeKcients of the cointegrating vector are
known, in which case the model can be rotated back into this framework, see Elliott
et al., 2002).
We consider Eve cases indexed by superscript i (i=1; 2; 3; 4; 5) for the deterministic

part of the model (where parameters are free unless otherwise stated):

Case 1: �y0 = �y1 = 0 and �x0 = �x1 = 0.
Case 2: �y1 = 0 and �x0 = �x1 = 0.
Case 3: �y1 = 0 and �x1 = 0.
Case 4: �x1 = 0.
Case 5: No restrictions.

Each of these cases can be characterized by the restriction (I2(m+1) − Si)� = 0

where � = [�′
0�

′
1]

′; Si is a 2(m + 1) × 2(m + 1) matrix where S1 = 0, S2 =

(
1 0

0 0

)
,

S3 =

(
Im+1 0

0 0

)
, S4 =

(
Im+2 0

0 0

)
and S5 is the identity matrix.

This represents a fairly general set of models in which we have a VAR in the model
of x and the quasi-di5erence of y. We wish to test that the parameter � is equal to one
(yt has a unit root) against alternatives that this root is less than one. Following the
general methods of King (1980, 1988) we will examine Neyman–Pearson tests for this
hypothesis. Following the application of these methods to testing for unit roots in ERS
and Elliott (1999) we will examine Neyman–Pearson tests for this hypothesis under
simplifying assumptions, and then in the following section we will derive general tests
that are asymptotically equivalent to these optimal tests.
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With the assumption that A(L)= I (so that �=�) and assuming the et are normally
distributed and uy0=0, we will examine tests against the local alternative that c= Nc¡ 0
where 
=1+c=T and N
=1+ Nc=T with c; Nc being Exed (we will suppress the dependence
of 
 on T in the notation).
The system likelihood ratio test statistic for the hypothesis is given by

�i(1; N
) =
T∑

t=1

ûi
t( N
)

′�−1ûi
t( N
)−

T∑
t=1

ûi
t(1)

′�−1ûi
t(1);

where we have for r = N
; 1 that

ûi
t(r) = zt(r)− dt(r)′�̂i(r);

where zt(r) = [(1− rL)yt; x′t ]
′ for t ¿ 1 and z1(r) = [y1; x′1]

′,

dt(r)′ =

[
1− r 0 (1− rL)t 0

0 Im 0 Imt

]
for t ¿ 1;

d1(r)′ =

[
1 0 1 0

0 Im 0 Im

]
;

and

�̂i(r) =

[
Si

(
T∑

t=1

dt(r)�−1dt(r)′
)

Si

]− [
Si

T∑
t=1

dt(r)�−1zt(r)

]
;

where D− is the Moore Penrose inverse of D. The test has rejection regions of the
form {yt; xt :�i(1; N
)− Nc¡b} where b is a critical value.

Theorem 1. 2 For the model in (1) and (2) with A(L) = I , et independent N (0; �)
random variables and (A3) holding then with 
= 1 + c=T and N
= 1 + Nc=T with c, Nc
(xed as T → ∞, the most powerful test of H0 : c=0 vs: Ha : c= Nc¡ 0 has asymptotic
power functions

P(c; Nc; R2) = Pr[ i(c; Nc; R2)¡b( Nc; R2)];

where  i(c; Nc; R2) = gi(c; Nc) + ( Nc2 − 2 Ncc)Q
∫
(Wi

1c)
2 + 2 NcQ1=2

∫
Wi
1c dW2 + hi(c; Nc; R2);

b( Nc; R2) is a constant, Q = R2=(1 − R2); W 1
1c =W1c; W i

1c =W1c −
∫
W1c for i = 2; 3; 4

and W 5
1c =W1c − (4− 6s)

∫
W1c − (12s − 6)

∫
sW1c; gi(c; Nc) = Nc2

∫
W 2
1c − NcW1c(1)2 for

i=1; 2; 3 and gi(c; Nc)= Nc2
∫
W 2
1c+(1− Nc)W1c(1)2− k−1[(1− Nc)W1c(1)+ Nc2

∫
sW1c]2 for

i= 4; 5; hi(c; Nc; R2) is zero except for h4(c; Nc; R2) = k−1[(1− Nc)W1c(1) + Nc2
∫
sW1c]2 −

(k + Q Nc2=12)−1{(1 − Nc)W1c(1) + Nc2
∫
sW1c + Q[ Nc2 (c − Nc)

∫
W1c − Nc(c − Nc)

∫
sW1c] +

Q1=2[ Nc
∫
s dW2− Nc

2

∫
dW2]}2, and k=1− Nc+ Nc2=3. All integrals are 0 to 1 over s with

s suppressed, so e.g.
∫
W1c =

∫ l
0 W1c(s) ds and W1c(s) = c

∫ s
0 ec(s−,)W1(,) d, +W1(s),

W1 and W2 are independent univariate standard Brownian motions.

2Proofs are available in a UCSD discussion paper version of this paper.
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In case 1 this is apart from a scale factor the same as that reported in Hansen
(1995). 3 A number of features are worth noting. Firstly, the dependence of the test
on Nc indicates that no uniformly most powerful test is available for this problem,
power depends on the choice of the alternative. Second, the distribution of the test is
nonstandard. Third, the optimal test statistic depends on � and its distribution depends
on the parameter R2. When R2 = 0 then  i(c; Nc; R2) = gi(c; Nc) which is equivalent
to the asymptotic limits of the tests derived in ERS, thus the most powerful tests
coincide asymptotically with tests with the relevant invariance properties with respect
to deterministic terms which do not use the information in the covariates (cases 1–3
equate to the constant included case, cases 4–5 are the time trend included result).
When R2 is nonzero the optimal univariate and system tests are di5erent, indicating
that information is lost when information in the covariates is ignored.
The results in the Theorem give the local power for any choice of Nc at any local

alternative c. When we set Nc=c, we obtain by construction the test that has the highest
attainable power. By evaluating the powers setting c = Nc we obtain the envelope of
greatest asymptotic power, which we call the power envelope. Fig. 1 examines the
power envelopes for various R2. The power envelope when R2 = 0 has the lowest
power–this is the relevant envelope if no covariate information is employed. When
R2 is greater than zero, the power attainable increases considerably above this lower
bound. Hence, use of covariates has the potential to greatly increase the power of tests
for a unit root, as indicated by Hansen (1995). The larger the R2, the more powerful
the optimal test. 4 These results are true for each of the various assumptions on the
deterministic terms. 5 Comparing the Erst two panels in Fig. 1 we see the e5ect of
estimating the constant terms. This e5ect is small, e.g. when R2 = 0:5 and c = −5
the power envelope in the constants known case is 70% whilst when the constants
are unknown this power is 62%. Both of these powers are substantially above that
of the case where no covariates are employed, where the envelope attains a power
of 32%.
As in the case where there are no covariates, the e5ect on the power envelopes for

the case where the trend terms (coeKcients on time trends) are not known is quite
large. In the case mentioned above, where R2 = 0:5 and c = −5 the maximal power
in case 5 is 33%, far below the 62% when only coeKcients on the constants are
known. Note though that the maximal power in this case even when constants and
coeKcients on the time trend are estimated is (just) above that for the case where
stationary covariates are ignored and the coeKcient on the time trend is known. In
general, the power losses from not knowing the coeKcient on the trends in the xt
regressions is small (di5erences between cases 4 and 5, not pictured in the Egures),
between zero (when R2 is small) and 6% or so (when R2 is large). There is clearly the

3 We also have a notational di5erence in that our R2 is deEned in Hansen (1995) as 1−R2. We changed
the notation to accord with the usual use of R2.

4 The asymptotic results are not appropriate at R2 = 1, which is readily seen from the limit expression
which would not be Enite at this point.

5 Cases 2 and 1 are asymptotically identical, so we omit case 2. Case 4 has functions similar to case 5
and is omitted.
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Fig. 1. Power envelopes for cases 1, 3 and 5, respectively. Note: Envelopes for R2 = 0, 0.3, 0.5, 0.7 and
0.9 where power is increasing in R2.

potential for much to be gained in terms of power from exploiting stationary covariates
in constructing tests for a unit root. The construction of tests that achieve these gains
is addressed in the next section.
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3. Feasible tests

In this section we derive families of tests that asymptotically attain the power bounds
derived above at pre-speciEed points, relaxing the normality and known nuisance pa-
rameter assumptions. The method for constructing the test is set out in four steps

(a) Estimate nuisance parameters for detrending and R2. Run a VAR A(L)zt(1) =
deterministics + et including no deterministic terms for case 1, constants for
cases 2 and 3, constants and time trends for cases 4 and 5. Using the residu-
als from the VAR 6 construct �̂ = T−1∑T

t=k+1 ê t ê′t ; �̂ = Â(1)−1�̂Â(1)−1′ and
R̂2 = !̂yx�̂−1

xx !̂yx′ =!̂yy where Â(1) = I +
∑k

i=1 Ai and Ai is the (i + 1)th matrix
element of A(L).

(b) Construct detrended data under the null and alternative hypotheses, i.e. construct
for r = (1; 
),

ũi
t(r) = zt(r)− dt(r)′�̃i(r);

where

�̃i(r) =

[
Si

(
T∑

t=1

dt(r)�̂−1dt(r)′
)

Si

]− [
Si

T∑
t=1

dt(r)�̂−1zt(r)

]
: (3)

(c) Run VAR’s (for r = 1; N
), i.e. run Ã(L)ũi
t(r) = ẽ t(r) and construct the estimated

variance covariance matrices

�̃(r) = T−1
T∑

t=k+1

ẽ t(r)ẽ t(r)′:

(d) Construct the test statistic

�̃i(1; N
) = T (tr[�̃(1)−1�̃( N
)]− (m+ N
)):

This test will have asymptotic power that achieves the power bound at Nc under
the assumptions.

Theorem 2. For the model in (1) and (2) with assumptions (A1)–(A3) holding and
deterministic terms correctly speci(ed for each case then as T → ∞

�̃i(1; N
) ⇒  i(c; Nc; R2);

where ⇒ denotes weak convergence.

Thus the critical values for the test depend on the alternatively chosen ( Nc) and R2.
The feasible test asymptotically achieves the highest power possible at Nc. We have
chosen here to let Nc = −7 for cases 1–3 and Nc = −13:5 for cases 4 and 5 (which
follows the choice of ERS). In principle and practice we could choose di5erent values

6 In practice one can choose the lag length of the VAR through theory or a consistent lag length estimator
such as the BIC information criterion.
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Table 1
Asymptotic critical values (distribution in Theorem 3)

R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cases 1, 2 3.34 3.41 3.54 3.76 4.15 4.79 5.88 7.84 12.12 25.69
Case 3 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99
Case 4 5.70 5.79 5.98 6.38 6.99 7.97 9.63 12.6 19.03 39.62
Case 5 5.70 5.77 6.00 6.40 7.07 8.15 10.00 13.36 20.35 41.87

Note: Critical values were computed using 1500 steps as approximations to the Brownian motion terms
in the limit theorem representations and 60 000 replications. The critical values reported are for tests of size
5% with Nc =−7 for cases 1, 2 and 3 and Nc =−13:5 for cases 4 and 5.

for Nc depending on R2; however, as R2 rises above zero lack of power becomes less
problematic so it seems reasonable to us to choose Nc for the worst case scenario.
Asymptotic critical values for the test for selected values of R2 are given in Table 1.

The relevant critical value is determined for the estimated R̂2. For values of R2 between
the ones given in Table 1, interpolation can be used to approximate the critical value.

4. Evaluation of the tests

4.1. Large sample evaluation

Fig. 2 examines the power of the feasible test for cases 1, 3 and 5 in each panel,
respectively. The Egures give the results for R2 = 0:3; 0.5 and 0.7. Accompanying the
power curves are the power envelopes for comparison. The feasible point optimal test
has power that is close to the power envelope, suggesting that there is little asymptotic
power loss at points away from where the test is optimal, especially for lower values
for R2. This is similar to results of ERS, where for R2 = 0 this was found to be true.
When R2 = 0:5 the di5erence between the power envelope and the asymptotic power
of the feasible test is small for alternatives at moderate distance and further from the
null, but a little larger for alternatives close to the null. This becomes more apparent
for larger R2. To the extent that very large values for R2 are probably not too relevant
empirically, this may not be too much of a problem. The suggestion from these graphs
appears to be that the most useful choice of Nc in practice may depend on R2. We also
examined the power curves for the case where Nc=−7 perhaps improve the closeness of
the power curves to the envelopes for these near alternatives. When this alternative is
chosen this indeed happens; however, the tradeo5 is that the power curves for R2 small
are not as close to the envelope for more distant alternatives. Thus we recommend that
choosing Nc =−13:5 as power is more of a concern when R2 is small.
The power gains are clearly substantial for each of the cases for the deterministic

terms (results for case 4 are similar to those for case 5). Consider the gains from using
covariates when R2=0:5. At the local alternative Nc=−5, in case 3 power rises by 30%
and in case 5 by 35%. Such gains in power substantially improve the odds of correctly
distinguishing a process with a unit root from a slowly mean reverting process.
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Fig. 2. Power envelopes and power curves for cases 1, 3 and 5. Note: Unbroken lines are envelopes for
R2=0:3, 0.5 and 0.7 and broken lines are power of point optimal tests for each R2 where power is increasing
in R2:

4.2. Small sample evaluation

We will examine various special case models in samples of 100 observations. Along
with the above tests, we report results for the commonly applied test of Dickey and
Fuller (1979) and also the PT test of ERS as well as the Hansen (1995) CADF test.
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Table 2
Small sample results for �̃i(1; N
)


 DF PT �̃i(1; N
)

R2 0 0 0 0.09 0.25 0.49 0.81

Case 1: No deterministic terms
1 0.05 0.048 0.051 0.049 0.05 0.05 0.044
0.98 0.117 0.113 0.119 0.132 0.153 0.195 0.306
0.96 0.237 0.229 0.239 0.276 0.342 0.493 0.848
0.94 0.407 0.396 0.407 0.463 0.576 0.782 0.992
0.92 0.594 0.581 0.59 0.655 0.774 0.926 0.999
0.9 0.758 0.744 0.748 0.807 0.896 0.977 1
0.88 0.878 0.865 0.867 0.905 0.954 0.993 1
0.86 0.947 0.939 0.936 0.957 0.981 0.998 1

Case 3: Constants in each regression
1 0.054 0.059 0.064 0.061 0.06 0.054 0.039
0.98 0.075 0.138 0.145 0.154 0.167 0.192 0.254
0.96 0.105 0.273 0.285 0.308 0.355 0.445 0.716
0.94 0.159 0.453 0.466 0.499 0.572 0.709 0.946
0.92 0.235 0.64 0.648 0.685 0.759 0.875 0.991
0.9 0.332 0.795 0.797 0.825 0.879 0.951 0.998
0.88 0.448 0.899 0.897 0.914 0.943 0.981 1
0.86 0.573 0.956 0.951 0.959 0.974 0.992 1

Case 5: Constants and time trends in each regression
1 0.057 0.039 0.053 0.053 0.051 0.044 0.021
0.98 0.062 0.049 0.065 0.069 0.076 0.085 0.08
0.96 0.078 0.076 0.099 0.111 0.131 0.172 0.262
0.94 0.106 0.119 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.184 0.226 0.267 0.345 0.511 0.871
0.9 0.204 0.27 0.325 0.379 0.488 0.699 0.971
0.88 0.277 0.377 0.441 0.507 0.634 0.834 0.993
0.86 0.365 0.503 0.564 0.635 0.758 0.919 0.998

Note: Based on 20 000 replications of the model with T = 100, normal errors as discussed in the text.
The system test is implemented with R2 estimated.

Table 2 reports results of simulations of the model in (1) and (2) for each of the
cases 1, 3 and 5, respectively, where A(L) = I (and this is known), et is normally
distributed with variances equal to 1 and R2 as reported in the table. Size is given in
the row corresponding to 
=1 and (empirical) power against the indicated alternatives
in the following rows. When there are no deterministic terms in the model the DF and
PT single equation tests do similarly well (see ERS for a discussion of this similarity).
In the test proposed here, when R2=0 power and size are comparable to the univariate
tests indicating that even in small samples little may be lost by including extraneous
information and doing the system test. As R2 increases, size remains well controlled
whilst power rises considerably. Consider the case of the true 
 being equal to 0.96,
the PT test has power around 23% whilst if R2 = 0:25 the system test has power equal
to 34%, roughly a 50% gain.



G. Elliott, M. Jansson / Journal of Econometrics 115 (2003) 75–89 85

Table 3
E5ect of estimating R2


 R2 known Estimated R2

R2 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

Case 3: Constants in each equation
1 0.063 0.06 0.061 0.056 0.053 0.064 0.061 0.06 0.054 0.039
0.98 0.144 0.152 0.167 0.193 0.29 0.145 0.154 0.167 0.192 0.254
0.96 0.283 0.305 0.356 0.45 0.758 0.285 0.308 0.355 0.445 0.716
0.94 0.465 0.497 0.573 0.716 0.967 0.466 0.499 0.572 0.709 0.946
0.92 0.647 0.684 0.761 0.882 0.997 0.648 0.685 0.759 0.875 0.991
0.9 0.796 0.824 0.881 0.956 1 0.797 0.825 0.879 0.951 0.998
0.86 0.951 0.958 0.975 0.994 1 0.951 0.959 0.974 0.992 1

Case 5: Constants and time trends in each equation
1 0.053 0.052 0.052 0.048 0.05 0.053 0.053 0.051 0.044 0.021
0.98 0.065 0.068 0.076 0.087 0.131 0.065 0.069 0.076 0.085 0.08
0.96 0.099 0.109 0.131 0.176 0.342 0.099 0.111 0.131 0.172 0.262
0.94 0.152 0.172 0.221 0.327 0.686 0.152 0.173 0.223 0.32 0.599
0.92 0.225 0.265 0.345 0.522 0.923 0.226 0.267 0.345 0.511 0.871
0.9 0.323 0.377 0.489 0.714 0.989 0.325 0.379 0.488 0.699 0.971
0.86 0.562 0.633 0.764 0.93 1 0.564 0.635 0.758 0.919 0.998

Note: As per Table 2.

When a constant is included, the PT statistic gains in power over the Dickey and
Fuller (1979) t test are very large. Again, when R2 = 0 the test proposed here has
similar size and power to the PT statistic indicating that little is lost adding extraneous
stationary covariates. In general, size is less well controlled, especially for R2 close
to one (where the asymptotic theory would no longer be relevant; however, it would
not be expected that such models would be appropriate for real world data). There is
some evidence of power losses from not knowing the constant term. At a value of

 = 0:96 the power when the constant is known (or zero) is 49% compared to the
unknown constant power of 45% when R2 = 0:49. Even so, power for the test with
the constant unknown is quite high in many cases, and is far beyond that achievable
when covariates are not employed.
Similar results are found for the detrended (case 5) model. In both of these cases

power when using covariates is substantially greater than when relevant covariates are
ignored (for example, in case 3 when 
=0.9, power of the test proposed here when
R2=0.25 is 20% for the Dickey and Fuller test and is 49% for the test with covariates
employed. There are as usual power losses in including a time trend. In the case of

=0.96 and R2=0.25 the power drops from 36% in case 3 to 13% in case 5.
The e5ect of estimating R2 in the computation of the test is examined in Table 3

(for cases 3 and 5 in each of the panels, respectively). Here the results when R2 is
estimated are repeated from Table 2 on the right-hand side panels, whilst the same
results using the critical value chosen using the true R2 are given in the left-hand
panels. There is very little di5erence, even in a sample of 100 observations. Most of
the di5erences in size and power are at the third decimal place. It is only for case 5
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Table 4
CADF and �̃i(1; N
)


 CADF �̃i(1; N
)

R2 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

Case 3: Constants in each equation
1 0.053 0.055 0.056 0.054 0.051 0.064 0.061 0.06 0.054 0.039
0.98 0.075 0.082 0.098 0.135 0.321 0.145 0.154 0.167 0.192 0.254
0.96 0.107 0.123 0.162 0.272 0.675 0.285 0.308 0.355 0.445 0.716
0.94 0.16 0.188 0.262 0.456 0.885 0.466 0.499 0.572 0.709 0.946
0.92 0.234 0.285 0.396 0.639 0.965 0.648 0.685 0.759 0.875 0.991
0.9 0.332 0.4 0.542 0.79 0.991 0.797 0.825 0.879 0.951 0.998
0.86 0.566 0.654 0.798 0.947 0.999 0.951 0.959 0.974 0.992 1

Case 5: Constants and time trends in each equation
1 0.057 0.058 0.057 0.053 0.046 0.053 0.053 0.051 0.044 0.021
0.98 0.061 0.067 0.079 0.106 0.219 0.065 0.069 0.076 0.085 0.08
0.96 0.079 0.093 0.121 0.197 0.525 0.099 0.111 0.131 0.172 0.262
0.94 0.105 0.131 0.182 0.327 0.78 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.186 0.268 0.479 0.916 0.226 0.267 0.345 0.511 0.871
0.9 0.203 0.257 0.375 0.635 0.973 0.325 0.379 0.488 0.699 0.971
0.86 0.363 0.451 0.613 0.861 0.998 0.564 0.635 0.758 0.919 0.998

Note: As per Table 3. The CADF refers to the test procedure in Hansen (1995). In each case the same
R2 estimate is used to determine the critical value.

when R2 is a little larger that there is much of an e5ect, but the e5ect is minor (in
these cases there is a small power loss from estimating R2).
Table 4 compares the CADF test of Hansen (1995) with the feasible test derived

here (again for the leading cases 3 and 5, respectively). The CADF test augments the
usual Dickey and Fuller (1979) test with lags, leads and the contemporaneous values of
xt . In this table, with no serial correlation, this amounts to including xt as a regressor
in the ADF regression and then constructing the t-test of the unit root hypothesis as
normal. As shown in Hansen (1995) this test also depends on R2. In the comparison
we use the same value of R2 to compute critical values for each of the tests. In the Erst
column of the CADF results, where R2=0, we have essentially the same results as the
Dickey and Fuller (1979) test in Table 2 that ignores the covariates. This should be
the case, the included xt variable in the ADF regression has a population coeKcient of
zero in this case. Likewise, the Erst column of the �̂(1; N
) test matches with the PT test
for the reasons we have described. This gives an insight into the di5erence in the two
approaches, the di5erence between the CADF and �̂(1; N
) is similar to the di5erence
between the Dickey and Fuller (1979) approach and the ERS approach. When R2 ¿ 0,
we see that the �̂(1; N
) test outperforms the CADF test in terms of power, although is
slightly worse in size performance. The increases in power can be quite large. In the
case 3 when R2 = 0:09 the power of the �̂(1; N
) test is 2–3 times that of the CADF
test. For case 5 the e5ects are not as dramatic, but still power gains of 50% or so are
available from using the covariates test proposed here over the CADF test.
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5. Unit root tests and long run structural VAR estimation

Blanchard and Quah (1989) derive a method for identifying structural VAR’s from
restrictions placed on the spectral density of the data at frequency zero when there are
known unit roots in the system. Consider the bivariate version of the model considered
in this paper when we impose that the root 
 is equal to unity,

A(L)

[
Syt

xt

]
= -t :

Inverting the lag polynomial gives[
Syt

xt

]
= C(L)-t = C(L)KK−1-t = D(L)0t ;

where C(L) = A(L)−1 and E[0t0t′ ] = I . This model is not identiEed in the usual sense
as for any of the inEnite possible invertible matrices K we obtain a di5erent structural
model. In this bivariate system we require a single restriction so that the rotation K is
unique for the model to be identiEed (this would be the order condition).
In such systems, yt is permanently a5ected by shock(s) since it is an integrated

process. On economic grounds, it may be interesting to identify the model such that
only one of the structural shocks has a permanent e5ect on yt . In Blanchard and Quah
(1989) this argument meant that demand shocks could not have a permanent e5ect.
In King et al. (1991) cointegration was used to imply a smaller number of permanent
shocks than total shocks. In such cases it is possible to identify the model as the
cumulated sum of the structural impulse responses, D(1), will be triangular as only
one of the shocks has a long run e5ect on yt .
For the model above, the identiEcation scheme would set the (1,2) component of

D(1) equal to zero. Since the spectral density of the data at frequency zero (scaled
by 2�) is � = D(1)D(1)′, this amounts to taking the choleski decomposition of the
estimated matrix �̂. Such a restriction is only interesting and useful in identiEcation
when the o5 diagonals for � are indeed nonzero, i.e. when R2 ¿ 0.
The crux of this approach to identiEcation clearly is that yt indeed does have a

unit root. If instead there were no permanent e5ects then we would interpret D(1)
di5erently and would have no reason to make this matrix triangular. So in practice a
useful hypothesis test to report in undertaking this method would be a test for a unit
root in yt . Further, when the imposed restriction is indeed informative, then R2 ¿ 0
and hence we are exactly in the cases where the tests of this paper yield power gains
over univariate testing. Typically, such tests for a unit root to provide evidence of the
validity of this restriction are undertaken using Dickey–Fuller (1979) tests (see Gali
(1999) for example), which neither use the full information in the model nor are they
the most powerful univariate tests. The tests derived in this paper provide a natural test
of the basic identiEcation assumption of the Blanchard and Quah identiEcation scheme.
We apply the tests derived here and other common tests to the Blanchard– Quah

data set. The data are quarterly data on income and unemployment for the US from
1950:2 to 1987:4, where unemployment is the stationary variable xt and income is the
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yt variable. We include constants and time trends in both unemployment and income 7

(so the tests are from case 5) and follow Blanchard and Quah in choosing eight lags.
The DF statistic is −1:78 and the DF-GLS statistic of ERS is −1:37. Neither is close
to rejecting for a 5% or 10% test. The �̃5(1; N
) test is 17.93. For the estimated R2 of
0.76 the critical value is 16.56, so we have a p-value of 0.07 and fail (but only just)
to reject 5% and so End some support for the Blanchard and Quah assumption. 8

6. Conclusion

Typically in economics correlation between the variables is the rule rather than the
exception. Often these are implied by theory. Either way, this information can be
extremely valuable in testing assumptions that are ancillary to the modeling process.
This appears to be especially true in the case of testing for a unit root. Hansen (1995)
showed this with tests he developed based around the statistic of Dickey and Fuller
(1979). In a related paper Horvath and Watson (1995) showed that power gains are
available when there are known cointegrating relationships (which are then stationary
variables). We have shown here that even greater gains are possible. The statistics are
simple to implement and yield extremely large gains in power when the covariates are
relevant.
The statistics we generate, useful in many areas, are directly applicable to testing the

unit root assumption in the identiEcation of structural VAR’s from long run restrictions.
These restrictions do not make sense unless there is a process with a unit root in the
model, yet typically very low power tests are used to examine this assumption. The
tests derived here will have much better power at detecting the mistaken use of this
procedure.
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