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Theory often specifies a particular cointegrating vector among integrated variables, and testing for a unit
root in the known cointegrating vector is often required. Although it is common to simply use a univariate
test for a unit root for this test, it is known that this does not take into account all available information.
We show here that in such testing situations, a family of tests with optimality properties exists. We use
this to characterize the extent of the loss in power from using popular methods, as well as to derive a test
that works well in practice. We also characterize the extent of the losses of not imposing the cointegrating
vector in the testing procedure. We apply various tests to the hypothesis positing that price forecasts from
the Livingston data survey are cointegrated with prices, and find that although most tests fail to reject
the presence of a unit root in forecast errors, the tests presented here strongly reject this (implausible)

hypothesis.
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1. INTRODUCTION

This article examines tests for cointegration when the re-
searcher knows the cointegrating vector a priori and when the
“X” variables in the cointegrating regression are known to be
integrated of order one [I(1)]. In particular, we characterize
a family of optimal tests for the null hypothesis of no cointe-
gration when there is one cointegrating vector. This enables us
to examine the loss in power from suboptimal methods (e.g.,
univariate unit root tests on the cointegrating vector) and also
losses that arise from testing cointegration with estimated coin-
tegrating vectors.

There are a number of practical reasons for our interest in
this family of tests. First, in many applications a potential coin-
tegrating vector is specified by economic theory (see Zivot
2000 for a list of examples), and researchers are confident or
willing to assume that variables are I(1). The test of interest
then becomes testing whether the implied cointegrating vector
has a unit root (which would falsify the theory). The empiri-
cal strategy commonly followed is to simply construct the po-
tential cointegrating vector and use a univariate test for a unit
root. Howeyver, this method avoids using useful information in
the original multivariate model that could lead to more pow-
erful tests (see Zivot 2000). Although tests are available that
do exploit this extra information in the problem (e.g., those
in Horvath and Watson 1995; Johansen 1988, 1995; Kremers,
Ericsson, and Dolado 1992; Zivot 2000), these tests do not use
this information optimally. The class of tests suggested herein,
identical apart from the treatment of deterministic terms to
those of Elliott and Jansson (2003) for testing for unit roots
with stationary covariates, do have optimality properties.

Second, the optimal family that we derive allows the power
bound of such tests to be derived. This is interesting in the

34

sense that it gives an objective for examining the loss of power
in estimating rather than specifying the cointegrating vector.
A quantitative understanding of this loss and how it varies with
nuisance parameters of the model is important for understand-
ing differences in empirical results. If one researcher specifies
the parameters of the cointegrating vector and rejects while an-
other estimates the vector and fails to reject, then we are more
certain that this is likely due to loss of power when there are
large losses in power from estimating the cointegrating vector.
If the power losses were small, then we would probably con-
clude that the imposed parameters are in error. By deriving the
results analytically, we are able to say what types of models
(or, more concretely, what values for a certain nuisance para-
meter) are likely to be related to large or small power losses
in estimating the cointegrating vector. For many values of the
nuisance parameter (which is consistently estimable and is pro-
duced as a byproduct of the test proposed herein) the differ-
ences in power is large.

Section 2 presents our model and relates it to error-correction
models (ECMs). Section 3 considers tests for cointegration
when the cointegrating vector is known. We discuss a number
of approaches that have been used in the literature and present
the methods of Elliott and Jansson (2003) in the context of
this problem. Section 4 presents numerical results to show the
asymptotic and small sample performances of the Elliott and
Jansson (2003) test relative to others in the literature. Section 5
describes an empirical application relating to the cointegration
of forecasts and their outcomes.
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2. THE MODEL AND ASSUMPTIONS

We consider the case where a researcher observes an
(m + 1)-dimensional vector time series z; = (yr, X;)’ generated
by the triangular model

Vi =My + Tl + X+ uy (1)
X; = fy + Txl + Uxf, (2)
and
(I —pL)uy:\ _
A(L) ( Auy, =g, 3

where y; is univariate, X; is of dimensionm x 1, A(L) =L,4+1 —
Z]]le A;I/ is a matrix polynomial of finite (known) order k in
the lag operator L, and the following assumptions hold:

Assumption 1. max_g<;<o || (uy,r,uy )'[| = Op(1), where
| - || is the Euclidean norm.

Assumption 2. |A(r)| = 0 has roots outside the unit circle.

Assumption 3. Er_1(e) = 0 (ass.), Ei—1(e;€}) = X (as.),
and sup,E||a,||2+’S < oo for some § > 0, where X is positive
definite and E;_1(-) refers to the expectation conditional on
{er—1,€1-2,...}.

We are interested in the problem of testing

Hy:p=1 versus Hi:—1<p<l.

Under the maintained hypothesis, X; is vector-integrated process
whose elements are not mutually cointegrated. There is no coin-
tegration between y; and X, under the null, whereas y; and x;
are cointegrated under the alternative because y; — p'x; =
My + Tyt + uy, mean reverts to its deterministic component
when —1 < p < 1. We assume that the researcher knows the
value of y, the parameter that characterizes the potentially coin-
tegrating relation between y; and x;. This assumption is plausi-
ble in many empirical applications, including the one discussed
in Section 5. We entertain various assumptions on iy, iy, Ty,
and 7.

Assumptions 1-3 are fairly standard and are the same as
(A1)-(A3) of Elliott and Jansson (2003). Assumption 1 ensures
that the initial values are asymptotically negligible, Assump-
tion 2 is a stationarity condition, and Assumption 3 implies that
{e;} satisfies a functional central limit theorem (e.g., Phillips
and Solo 1992).

There are a number of different vector autoregressive
(VAR)-type representations of the model in (1)—(3). Ignoring
deterministic terms for the sake of exposition, we now present
three such representations, each of which sheds light on the
properties of our model and the precise restrictions of the for-
mulation of the foregoing problem. The restrictions are pre-
cisely those embodied in the idea that x; is known to be (1)
under both the null and alternative hypotheses.

A general ECM representation for the data is

AWDMyi1(1 = L) —af'Llz, =&, 4

where B = (1, —y’)’. Comparing this with the (1) form, we
note that the two representations are equivalent when a =
((p—1),0), where a is (m+ 1) x 1 and also

AL) =A(L) (é _IZ ) .
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These are precisely the restrictions on the full system that
impose the assumed knowledge over the system that we are
exploiting as well as the correct normalization on the root of
interest when testing for a unit root in the known cointegrating
vector.

First, because A(L) is a rotation of A(L), the roots of each
lag polynomial are equivalent, and hence Assumption 2 rules
out the possibility of other unit roots in the system. Second, the
normalization of the first element of & to (1 — p) merely ensures
that the root that we are testing is scaled correctly under the
alternative.

The important restriction is setting elements 2 through m + 1
of & to 0, which is the typical assumption in the triangular form.
This restriction is precisely the restriction that the x;’s are con-
strained to be /(1) under the null and alternative—this is the
known information that the testing procedures developed here
are intended to exploit. We assume that x; is /(1) in the sense
that the weak limit of 7~!/2x;7.j is a Brownian motion under
the null and local alternatives of the form p =1+ T ¢, where
c is a fixed constant.

To see this, we show that if z; is generated by (4) and As-
sumptions 1-3 hold, then x; is /(1) under local alternatives only
if = (p—1)(1,0)'. Now suppose that z, is generated by (4)
and let & = (p — 1)(1, &)’. Then

A (ﬂx,Zt) —(p—1) (1 —a;; ozx>ﬂ,zt_1 + <:i’r) (5)

where v, = (vy1, vy ) = A(L)"'e,. Using the fact that
T’I/ZZZI]V, = B(-), where B = (B,,B})’ is a Brown-
jan motion with covariance matrix £ = A(1)"'TA(1)V
and = denotes weak convergence, it is easy to show that
T-12 Zig (B'2:) = By(-) and hence

[T] [T-]

T-xiry = caxT ' Y T 2Bz + T2 v
t=1 =1

= cax [ Bi(o)ds +B()
0

under local alternatives p = 1 + T~ !¢, where B; (r) =
for exp(c(r—s)) dBy(s). The process on the last line is a Brown-
ian motion if and only if cay = 0. As a consequence, X; is (1)
under local alternatives if and only if ax = 0, as claimed. It
follows from the foregoing discussion that if ey were nonzero
in (5), then under the null hypothesis we would have that x; is
I(1) whereas under the alternative hypothesis, we would sud-
denly have a small but asymptotically nonnegligible persistent
component in Ax,. This would be an artificial difference be-
tween the null and alternative models that is unlikely to map
into any real life problem.

A second form of the model is the ECM representation of the
model,

Az;=0a" Bz + A" (L) Az | + &, (6)

where A*(L) is a lag polynomial of order k. Under the restric-
tions that we are imposing,

a*:A(l)a:(p—l)(i;S;), (7
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where we have partitioned A (L) after the first row and column.
From this formulation, we are able to see that x; is weakly
exogenous for p if and only if A(1) is block upper triangular
when partitioned after the first row and column (i.e., elements 2
through m + 1 of the first column of A(1) are equal to 0). Thus
the “directional” restriction that we place on & and the restric-
tion on the ECM implicit in the triangular representation are
distinct from the assumption of weak exogeneity. They become
equivalent only when there is no serial correlation [i.e., when
A(L) =1,,+1]. We do not impose weak exogeneity in general.
Finally, our model can be written as

AD ((1 —)gL)Y,)

where Y; = y; — y'x; and X; = Ax;. In other words, the model
can be represented as a VAR model of the form examined by
Elliott and Jansson (2003). Apart from deterministic terms, the
testing problem studied here is therefore isomorphic to the unit
root testing problem studied by Elliott and Jansson (2003). In
the next section we use the results of that work to construct
powerful tests for the testing problem under consideration here.

=&, ®)

3. TESTING POTENTIAL COINTEGRATING
VECTORS WITH KNOWN PARAMETERS
FOR NONSTATIONARITY

3.1 Existing Methods

There are a number of tests derived for the null hypothe-
sis considered in this article. An initial approach (for the PPP
hypothesis see, e.g., Cheung and Lai 2000; for income con-
vergence see Greasley and Oxley 1997 and, in a multivariate
setting, Bernard and Durlauf 1995) was to realize that with y
known, one could simply undertake a univariate test for a unit
root in y; — p’X;. Any univariate test for a unit root in y, — y’x;
is indeed a feasible and consistent test; however, this amounts
to examining (1) ignoring information in the remaining m equa-
tions in the model. As is well understood in the stationary con-
text, correlations between the error terms in such a system can
be exploited to improve estimation properties and the power of
hypothesis tests. For the testing problem under consideration
here, we have that under both the null and alternative hypothe-
ses, the remaining m equations can be fully exploited to im-
prove the power of the unit root test. Specifically, there is extra
exploitable information available in the “known” stationarity
of Ax;. [That such stationary variables can be used to improve
power is evident from the results of Hansen (1995) and Elliott
and Jansson (2003).] The key correlation that describes the
availability of power gains is the long-run (“zero frequency”)
correlation between Auy; and Auy,. In the case where this
correlation is zero, an optimal univariate unit root test is op-
timal for this problem. Outside of this special case many tests
have better power properties. There is still a small sample is-
sue: Univariate tests require fewer estimated parameters. This
is analyzed in small-sample simulations in Section 4.4.

For a testing problem analogous to ours, Zivot (2000) used
the covariate augmented Dickey—Fuller test of Hansen (1995)
using Ax; as a covariate. Hansen’s (1995) approach extends the
approach of Dickey and Fuller (1979) to testing for a unit root
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by exploiting the information in stationary covariates. These
tests deliver large improvements in power over univariate unit
root tests, but they do not make optimal use of all available
information. The analysis of Zivot (2000) proceeds under the
assumption that x; is weakly exogenous for the cointegrating
parameters y under the alternative. In addition, Zivot (2000,
p- 415) assumed (as do we) that x; is 7(1). As discussed in the
previous section, these two assumptions are different in gen-
eral even though they are equivalent in the leading special case
when there is no serial correlation [i.e., when A(L) = L;41].
The theoretical analysis of Zivot (2000) therefore proceeds un-
der assumptions that are identical to ours in the absence of serial
correlation and strictly stronger than ours in the presence of se-
rial correlation. Similarly, all local asymptotic power curves of
Zivot (2000) are computed under assumptions that are strictly
stronger than ours in the presence of serial correlation.

One could also use a trace test to test for the number of
cointegrating vectors when the cointegrating vectors are pre-
specified. Horvath and Watson (1995) computed the asymptotic
distribution of the test under the null and the local alternatives.
The trace test does exploit the correlation between the errors
to increase power, but does not do so optimally for the model
that we consider. We show numerically that the power of the
Horvath and Watson (1995) test is always below the power of
the Elliott and Jansson (2003) test when it is known that the
covariates are I(1). All of the tests that we consider are able
to distinguish alternatives other than the one on which we fo-
cus in this article; however, for none of these alternatives (say,
oy is nonzero) are optimality results available for any of the
tests. This lack of any optimality result means that we have no
theoretical prediction as to which test is the best test for those
models. This implication is brought out in simulation results
showing that the rankings between the statistics change for var-
ious models when the assumption that x; is /(1) under the alter-
native is relaxed.

3.2 Optimal Tests

The development of optimality theory for the testing prob-
lem considered here is complicated by the nonexistence of a
uniformly most powerful (UMP) test. Nonexistence of a UMP
test is most easily seen in the special case where y = 0 and x; is
strictly exogenous. In that case our testing problem is simply
that of testing if y; has a unit root, and it follows from the results
of Elliott, Rothenberg, and Stock (1996) that no UMP-invariant
(to the deterministic terms) test exists. By implication, a like-
lihood ratio test statistic constructed in the standard way will
not give tests that are asymptotically optimal. That the more
general model is more complicated than this special case will
not override this lack of optimality on the part of the likelihood
ratio test. Elliott and Jansson (2003) therefore returned to first
principles to construct tests that will enjoy optimality proper-
ties. Apart from the test suggested here, none of the tests dis-
cussed in the previous section are in the family of optimal tests
discussed here except in special cases (i.e., particular values for
the nuisance parameters). In this section we describe the deriva-
tion of the test of Elliott and Jansson (2003), the functional form
of which is presented in the next section.

Given values for the parameters of the model other than p
[i.e., A(L), ty, fy, Ty, and Tx] and a distributional assumption
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of the form &; ~ iid F(-) [for some known cdf F(-)], it follows
from the Neyman—Pearson lemma that a UMP test of

Hy:p=1 versus Hz:p=p

exists and can be constructed as the likelihood ratio test be-
tween the simple hypotheses Hy and H;. Even in this special
case, the statistical curvature of the model implies that the func-
tional form of the optimal test statistic depends on the simple
alternative H chosen. To address this problem, one could fol-
low Cox and Hinkley (1974, sec. 4.6) and construct a test that
maximizes power for a given size against a weighted average of
possible alternatives. (The existence of such a test follows from
the Neyman—Pearson lemma.) Such a test, with the test statistic
denoted by ¥ ({z,}, GIA(L), iy, g, Ty, Tx, F), would then max-
imize (among all tests with the same size) the weighted power
function

/Prp (1// rejects |A(L), [y, Ry, Ty, Tx, F) dG(p),

where G(-) is the chosen weighting function and the subscript
on Pr denotes the distribution with respect to which the prob-
ability is evaluated. An obvious shortcoming of this approach
is that all nuisance parameters of the model are assumed to be
known, as is the joint distribution of {&;}. Nevertheless, a vari-
ant of the approach is applicable. Specifically, we can use var-
ious elimination arguments to remove the unknown nuisance
features from the problem and then construct a test that max-
imizes a weighted average power function for the transformed
problem.

To eliminate the unknown nuisance features from the model,
we first make the testing problem invariant to the joint distri-
bution of {&;} by making a “least favorable” distributional as-
sumption. Specifically, we assume that &, ~ iid A/(0, X). This
distributional assumption is least favorable in the sense that the
power envelope developed under that assumption is attainable
even under the more general Assumption 3 of the previous sec-
tion. In particular, the limiting distributional properties of the
test statistic described later are invariant to distributional as-
sumptions, although the optimality properties of the associated
test are with respect to the normality assumption. With other
distributional assumptions, further gains in power may be avail-
able (Rothenberg and Stock 1997). Next, we remove the nui-
sance parameters X, A(L), and p, from the problem. Under
Assumption 2 and the assumption that &, ~ iid A/ (0, X), the
parameters ¥ and A(L) are consistently estimable, and (due
to asymptotic block diagonality of the information matrix) the
asymptotic power of a test that uses consistent estimators of
Y and A(L) is the same as if the true values were used. Under
Assumption 1, the parameter u, does not affect the analysis,
because it is differenced out by the known unit root in x,. For
these reasons, we can and do assume that the nuisance parame-
ters X, A(L), and u, are known.

Finally, we follow the general unit root literature by consider-
ing ¢ = (uy, Ty, 7)’ to be partially known and using invariance
restrictions to remove the unknown elements of ¢. We consider
the following four combinations of restrictions:

Case 1 (No deterministics): uy =0, 7x =0, 7, =0.
Case 2 (Constants, no trend): Ty =0, 7, =0.
Case 3 (Constants, no trend in B'z,): 7, = 0.
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Case 4 No restrictions.

The first of these cases corresponds to a model with no de-
terministic terms. The second has no drift or trend in Ax; but
has a constant in the cointegrating vector, and the third case has
X; with a unit root and drift with a constant in the cointegrating
vector. The no-restrictions case adds a time trend to the cointe-
grating vector. Cases 1-4 correspond to Cases 1-4 considered
by Elliott and Jansson (2003). Elliott and Jansson (2003) also
considered the case corresponding to a model where Ax; has
a drift and time trend. That case seems unlikely in the present
problem, so we ignore it (the extension is straightforward).

Having reduced the testing problem to a scalar parameter
problem (involving only the parameter of interest, p), it remains
to specify the weighting function, G(-). We follow the sugges-
tions of King (1988) and consider a point-optimal test. The
weighting functions associated with point-optimal tests are of
the form G(p) = 1(p > p), where 1(-) is the indicator function
and p is a prespecified number. In other words, the weighting
function places all weight on the single point, p = p. By con-
struction, a test derived using this weighting function has maxi-
mal power against the simple alternative Hj : p = p. As it turns
out, it is possible to choose p in such a way that the correspond-
ing point-optimal test delivers nearly optimal tests against al-
ternatives other than the specific alternative H; : p = p (against
which optimal power is achieved by construction). Studying a
testing problem equivalent (in the appropriate sense) to the one
considered here, Elliott and Jansson (2003) found that the point-
optimal tests with p = 1 + ¢/T, where ¢ = —7 for all but the
no-restrictions model and ¢ = —13.5 for the model with a trend
in the cointegrating vector, are nearly optimal against a wide
range of alternatives (in the sense of having “nearly” the same
local asymptotic power as the point-optimal test designed for
that particular alternative). These choices accord with alterna-
tives where local power is 50% when Xx; is strictly exogenous.
We give the functional form of the point optimal test statistics
later.

The shape of the local asymptotic power function of our
tests is determined by an important nuisance parameter. This
nuisance parameter, denoted by R?, measures the useful-
ness of the stationary covariates Ax; and is given by R?> =
@l Q) wxy/wyy, Where

Xy S9xx

/
Q= (‘“W “’X>’) =AM 'TAM) Y,
Wxy dbxx

and we have partitioned €2 after the first row and column. Be-
ing a squared correlation coefficient, R* lies between 0 and 1.
When R? = 0, there is no useful information in the stationary
covariates, and so univariate tests on the cointegrating vector
are not ignoring exploitable information. The “common fac-
tors” restriction discussed by Kremers et al. (1992) provides
an example of a model where R> = 0. As R gets larger, the
potential power gained from exploiting the extra information in
the stationary covariates gets larger.

3.3 Our Method

Our proposed test statistic for cases i = 1,...,4, denoted
by Al(1, p), can be constructed by following the five-step pro-
cedure described in this section. The test based on A’ (1,p)isa
point-optimal (invariant) test against a fixed alternative p = p.
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Forr € {1, p}, let

Zl (r) — <yl —Oy/Xl) ,

Zt(r)z((1_rL)i);ll_y/xf))’ t=2,...,T,

and
101Y
m

/!
4\(r) = (15r10 Rl I N ¢

Step 1. Impose the null (p = 1) and estimate the VAR

AWz (1) =det, +&, 1=k+2,....T,

where the deterministic terms are as according to the
case under consideration and we have dropped the
first observation. (We drop this observation only in
this step.) From this regression, we obtain consistent
estimates of the nuisance parameters 2 and R?,

A A/
A () A A A
Wxy Lyx
o P .
and R? = &, Q@ Wxy/wyy, where X = 7! x

Xy UXX

Y2 &)

Estimate the coefficients ¢ on the deterministic
terms under the null and alternative hypotheses.
Each case i = 1,...,4 imposes a restriction of the
form (I,;,42 — S;)¢ = 0, where S; is an (m + 2) X
(m + 2) matrix and S; =0, S, = () §), S3 =
(Tt 9), and S4 = Lu42. For r € {1, p}, the for-
mula for the case i estimate is

T —
¢'(rn) = [s,» (Z d,(r)ledz(r)) SZ}

=1

Step 2.

T
X [Sizdz(r)ﬁ_lzz(r)},

=1

where [-]” is the Moore—Penrose inverse of the ar-
gument.

Construct the detrended series under the null and al-
ternative hypotheses. For r € {1, p}, let

Step 3.
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Step 4. For r € {1, p}, run the VAR,

AL)ui(r) =& (), t=k+1,...,T,

and construct the estimated variance—covariance ma-
trices,

T
~ o ) _
Ery=1" )" @meEn).
t=k+1
Step 5. Construct the test statistic as

A1, p) =T(ulE (1) 'E @)~ (m + ).

The test rejects for small values of Al (1, p). As noted earlier,
we suggest using the alternatives p; = 1 +¢;/T where c; = c¢2 =
¢c3 = —7 and ¢4 = —13.5. Critical values for these tests were
provided by Elliott and Jansson (2003) and are given in Table 1.
The critical values are valid under Assumptions 1-3.

The equivalence between our testing problem and that of
Elliott and Jansson (2003) enables us to use the results of that
article, reinterpreted in the setting of our model, to show the up-
per power bound for tests for cointegration when the cointegrat-
ing vector is known and the x; variables are known to be I(1).
This power bound is of practical value for two reasons. First,
it gives an objective standard to compare how efficiently tests
use the data. Second, it allows us to study the size of the loss in
power when the cointegrating vector is not known. We under-
take both of these examinations in the next section.

4. GAINS OVER ALTERNATIVE METHODS AND
COMPARISON OF LOSSES FROM NOT KNOWING
THE COINTEGRATING VECTORS

The results derived earlier enable us to make a number of
useful asymptotic comparisons. First, there are a number of
methods available to a researcher in testing for the possibil-
ity that a prespecified cointegrating vector is (under the null)
not a cointegrating vector. We can directly examine the relative
powers of these methods in relation to the envelope of possi-
ble powers for tests. (The nonexistence of a UMP test for the
hypothesis means that there is no test that has power identical
to the power envelope; however, some or all of the tests may
well have power close to this envelope with the implication that
they are nearly efficient tests.) We examine power for various
values for R2. A second comparison that can be made is exam-
ination of the loss involved in estimating cointegrating vectors
in testing the hypothesis that the cointegrating vector does not
exist. Pesavento (2004) examined the local asymptotic power
properties of a number of methods that do not require that the
cointegrating vector be known. However, little is known regard-
ing the extent of the loss involved in knowing or not knowing
the cointegrating vector. All results are for tests with asymptotic

U, (r) = 2:(r) — di(r)' ' (1), t=1,....T. size equal to 5%.
Table 1. Critical Values
R? 0 .1 2 .3 4 5 .6 .7 .8 .9
Cases 1and 2 3.34 3.41 3.54 3.76 415 4.79 5.88 7.84 12.12 25.69
Case 3 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99
Case 4 5.70 5.79 5.98 6.38 6.99 7.97 9.63 12.6 19.03 41.87
NOTE: Reprinted from Elliott and Jansson (2003).
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4.1 Relative Powers of Tests When the Cointegrating
Vector Is Known

Figures 1-4 examine the case where the cointegrating vec-
tor of interest is known, and we are testing for a unit root in
the cointegrating vector (null of no cointegration). As noted in
Section 2, tests available for testing this null include univari-
ate unit root test methods, represented here by the ADF test
of Dickey and Fuller (1979) (note that the Z; test of Phillips
1987 and Phillips and Perron 1988 has the same local asymp-
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Figure 1. Asymptotic Power for (a) R? = 0 (b) R = .3, and
(c) R2 = .5. No deterministic terms. (— EJ; ---- CADF; ---- PT;
— ADF; — ENVELOPE; --- HW.)
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totic power) and the P7 test of Elliott et al. (1996). They also in-
clude methods that exploit information in the covariates, which
in addition to the test presented earlier include Hansen’s (1995)
CADF test and Horvath and Watson’s (1995) Wald test. Be-
cause power is influenced by the assumptions on the deter-
ministics, we present results for each of the four cases for the
deterministics (Figs. 1-4 are Cases 1-4). The power also de-
pends on R?, the squared zero frequency correlation between
the shocks driving the potentially cointegrating relation and the
X variables. We present three sets of results for each case. Fig-
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<

Figure 2. Asymptotic Power, (a) R = 0 (b) R2 = .3, and (¢) R = .5.
Constants, no trend. (— EJ; ---- CADF; ----- PT;, — ADF; — ENVE-
LOPE; - HW,)



40

Power

Power

01234567 8 9101121314151617 18 192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3¢

<

()

=rer —

R

Power

01234567 8 9101121314151617 18 192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3¢
<

Figure 3. Asymptotic Power, (a) R? = 0, (b) R® = .3, and
(c) RZ = .5. Constants, no trend in the cointegrating vector. (— EJ;
---- CADF; ----- PT; — ADF; — ENVELOPE; --- HW.)

ures 1(a)-1(c) are for the model with no deterministic terms
with R2 =0, .3, and .5 (and similarly for each of the other mod-
els of the deterministic component).

When R” = 0, there is no gain in using the system meth-
ods over the univariate unit root methods, because there is no
exploitable information in the extra equations. In this case the
Elliott and Jansson (2003) test is equivalent to the Pr test, and
the CADF test has equivalent power to the ADF test. This is
clear from Figures 1(a), 2(a), 3(a), and 4(a), where the power
curves lie on top of each other for these pairs of tests. When
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Figure 4. Asymptotic Power, (a) R = 0, (b) R? = .3, and
(c) R? = .5. No restrictions in the deterministic terms. (— EJ;
---— CADF; - PT; — ADF; — ENVELOPE; —- HW.)

there are no deterministic terms, it has previously been shown
(Stock 1994; Elliott et al. 1996) that there is very little distinc-
tion between the power envelope, the Pr test, and the ADF test.
This is evident in Figure 1(a) which shows that all of the tests
have virtually identical power curves with the power envelope.
When there are deterministic terms (the remaining cases), these
papers show that the Pr test remains close to the power enve-
lope, whereas the ADF test has lower power. This is also clear
from the results in Figures 2(a), 3(a), and 4(a). As the equiva-
lence between the test presented here and the Pr test holds (as
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does the equivalence between the CADF and ADF tests), the
test presented herein has similarly better power than the CADF
test.

In all cases when R% > 0, the multivariate tests have extra
information to exploit. In parts (b) and (c) of Figures 1-4, we
see that the power of the test presented herein is greater than
that of the Pr test (and the power of the CADF test is greater
than that of the ADF test). As was to be expected, these dif-
ferences are increasing as R” gets larger. The differences are
smaller when there is a trend in the potentially cointegrating re-
lation (Case 4) than when the specification restricts such trends
to be absent (Cases 1-3). There is a trade-off between using
the most efficient univariate method (the Pr statistic) and using
the system information inefficiently [the CADF statistic and the
Horvath and Watson (1995) Wald test]. Figure 2(b) shows that
the P test has power in excess of the CADF test, whereas the
ranking is reversed in Figure 2(c), where the system informa-
tion is stronger. In the model with a trend in 8z, the reversal of
the ranking is already apparent when R> = .3, implying that the
relative value of the system information is larger in that case.

In all of the models, the power functions for the Elliott and
Jansson (2003) tests are quite close to the power envelopes. In
this sense they are nearly efficient tests. For the choices of the
point alternatives suggested earlier, there is some distinction be-
tween the power curve and the power envelope in the model
where the cointegrating vector has a trend and R? is very large
(not shown in the figures). However, this appears to be an un-
likely model in practice. The power is adversely affected by
less information on the deterministic terms (a common result
in the unit root testing literature). We can see this clearly by
holding R? constant and looking across the figures. Comparing
the constants-only model to the model with a trend in the coin-
tegrating vector when R? = .3, we have that the test achieves
power at 50% for ¢ around 4.9 when there are constants only,
whereas with trends this requires a ¢ around 8.8, a more distant
alternative. This difference essentially means that in the model
with a trend in the cointegrating vector, we require about 80%
more observations to achieve power at 50% against the same
alternative value for p.

Also in all models, the test presented herein has higher
power than the CADF test for the null hypothesis. Again us-
ing the comparisons at power equal to 50%, we have that in
the model with constants only and R? = .3, we would require
80% more observations for the same power at the same value
for p. As R? rises, this distinction lessens. When R? = .5, the
extra number of observations is around 60%. The distinctions
are smaller when trends are possibly present. When R> = .3,
we would require only 28% more observations when there is
a trend in B’z;, whereas when R? = .5, this falls to 15%. For
these alternatives, the Horvath and Watson test tends to have
lower power, although, as noted, this test was not designed di-
rectly for this particular set of alternatives.

Overall, large power increases are available by using system
tests over univariate tests except in the special case of R? very
small. Because this nuisance parameter is simply estimated, it
seems that one could simply evaluate the likely power gains
for a particular study using the system tests from the graphs
presented.
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4.2 Power Losses When the Cointegrating
Vector Is Unknown

When the parameters of the cointegrating vector of interest
are not specified, they are typically estimated as part of the test-
ing procedure. Methods of doing this include the Engle and
Granger (1987) two-step method of estimating the cointegrat-
ing vector and then testing the residuals for a unit root using
the ADF test, and the Zivot (2000) and Boswijk (1994) tests
in the error-correction models. One could also simply use a
rank test, testing the null hypothesis of m + 1 unit roots ver-
sus m unit roots. These tests include the Johansen (1988, 1995)
and Johansen and Juselius (1990) methods and the Harbo et al.
(1998) rank test in partial systems. The Zivot (2000) test is
equivalent to the #-test of Banerjee, Dolado, Hendry, and Smith
(1986) and Banerjee, Dolado, Galbraith, and Hendry (1993)in a
conditional ECM with unknown cointegration vector (denoted
by ECR thereafter). In addition, for the case examined in this
article in which the right side variables are not mutually coin-
tegrated and there is at most one cointegration vector, the rank
test of Harbo, Johansen, Nielsen, and Rahbek (1998) is equiva-
lent to the Wald test of Boswijk (1994). The rank tests are not
derived under the assumption that x; is /(1), implying that they
spread power (in an arbitrary and random way) among the al-
ternatives that we examine here as well as alternatives in the
direction of one (or more) of the X, variables being stationary.
Although the rank tests do not make optimal use of the infor-
mation about X;, these tests will, of course, still be consistent
against the alternatives considered in this article. We demon-
strate numerically that the failure to impose the information
on X; comes at a relatively high cost.

Pesavento (2004) gave a detailed account of the aforemen-
tioned methods and computed power functions for tests of the
null hypothesis that there is no cointegrating vector. The pow-
ers of the tests are found to depend asymptotically on the
specification of the deterministic terms and R?, just as in the
known cointegrating vector case. Pesavento (2004) found that
the ECMs outperform the other methods for all models, and the
ranking between the Engle and Granger (1987) method and the
Johansen (1988, 1995) methods depends on the value for R2,
with the first method (a univariate method) being useful when
there is little extra information in the remaining equations of
the system (i.e., when R? is small) and the Johansen full-system
method being better when the amount of extra exploitable infor-
mation is substantial.

The absolute loss from not knowing the cointegrating vec-
tor can be assessed by examining the difference between the
power envelope when the cointegrating vector is known versus
the power functions for these tests. The quantification of this
gap is useful for researchers in examining results where one
estimates the cointegrating vector even though theory specifies
the coefficients of the vector (a failure to reject may be due to a
large decrease in power), and also can provide guidance for test-
ing in practice when one has a vector and does not know if they
should specify it for the test. In this case, if the power losses are
small, then it would be prudent to not specify the coefficients of
the cointegrating vector, but instead estimate it.

Figures 5—7 show the results for these power functions for
values for R2 = 0, .3, and .5. Each figure has two panels, (a) for
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Figure 5. Asymptotic Power Known and Unknown Cointegration
Vector, RZ = 0, (a) Constants, No Trend, and (b) No Restrictions
in the Deterministic Terms. (— Envelope-Case2; —— EG-Case2;
————— Zivot/ECR-Case2; ---- Johansen-Case2; — Wald/Harbo-Case2.)

the model with constants only and (b) for the model with a trend
in the cointegrating vector. The first point to note is that in all
cases, the gap between the power envelope when the coeffi-

Figure 7. Asymptotic Power Known and Unknown Cointegration Vec-
tor, R2 = .5, (a) Constants, No Trend, and (b) No Restrictions in
the Deterministic Terms. (— Envelope-Case2; —— EG-Case2; -----
Zivot/ECR-Case2; ---- Johansen-Case2; — Wald/Harbo-Case2.)

cients of the cointegrating vector are known and the best test
is very large. This means that there is a large loss in power
from estimating the cointegrating vector. Comparing panels
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Figure 6. Asymptotic Power Known and Unknown Cointegration Vector, RZ=.3, (a) Constants, No Trend, and (b) No Restrictions in the Deter-
ministic Terms. (— Envelope-Case2; —— EG-Case2; ----- Zivot/ECR-Case2; ---- Johansen-Case2; — Wald/Harbo-Case2.)
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(a) and (b) for each of these figures, we see that additional deter-
ministic terms (trend vs. constant) results in a smaller gap. This
is most apparent when R?> = 0 and lessens as R> gets larger. In
Case 2, when R2 = .3 [Fig. 6(a)] at ¢ = —5, we have power
of 53% for the power envelope and just 13% for the best test
examined that does not have the coefficients of the cointegrat-
ing vector known (the ECR test). In Case 2 with R?> =3, we
have that at c = —5, the envelope is 53%, but the power of the
ECR testis 13%, as noted earlier. For the model with trends, the
envelope is 24% and the power of the ECR test is 8%. The dif-
ference falls from 40% to 16%. In general, for the model with
trends, the power curves tend to be closer together than in the
constants-only, model compressing all of the differences.

As R? rises, the gap between the power envelope and the
power of the best test falls. This is true for both cases. In the
constants-only model when R? =0, we have at ¢ = —10, we
have 79% power for the envelope and 27% power for the ECR
test. When R? increases to .5, we have power for the enve-
lope of 98% and 54% for the ECR test. The difference falls
from 52% to 44%.

4.3 Power of the Test When «a Is Different From 0 in (5)

Although the assumption that x; is /(1) under both the null
and local alternative is a reasonable assumption in the context
of cointegration, we can also examine the sensitivity of the pro-
posed tests to different values of ax in (5). Recall that for these
models X; is /(1) under the null but under the alternative has a
small additional local to /(2) component. We simulate (5) with
scalar x, and 8 = (1, —1)/,

A(yr—x) = (o — D(yr—1 —Xr—1) + Vy.r

and

Axy = (p — Dax(ye—1 — Xe—1) + V.
The error process v, = (vy,, vx.r) is generated by the VAR(1)

model
3.2
Vi=Av; |+ &, A=<1 2>,

where &; ~iid N'(0, X) and X is chosen in such a way that =
(L—A)"'T@—A)7Y, the long-run variance—covariance ma-

trix of v;, is given by
1 R

where R € [0, 1) is the positive square root of R?, the nuisance
parameter that determines asymptotic power (when o, = 0).
The system can be written as

Ay —x) = (p — D — Ra) (yr—1 — x1-1)

+RAx +V1—Rn,; (9)

and

Axp = (p = Dax(yi—1 = Xi—1) + .t (10)

where 73, = (ny,t,nx,t)’ = 971/2vt has long-run variance—

covariance matrix I. In this example, if p < 1 but Ro, > 1,
then the error-correction term, y;—_1, is not mean-reverting, and
tests based on (9) will be inconsistent (see also Zivot 2000,
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p. 429). For this reason, we consider only values for «, such
that Ra, < 1.

The number of lags (one) is assumed known [for the Hansen
(1995) and Zivot (2000) tests, one lead of Ax; is also included].
The regressions are estimated for the models with no determin-
istic terms, with constants only and with no restrictions. We
do not report results for case 3, because they are similar to the
included results. The sample size is 7 = 1,500, and we used
10,000 replications.

Tables 2—4 report the rejection rates for various values of «.
The rejection rates for ¢ = 0 do not vary with o, and are not re-
ported, because they equal .05. When o, = 0, the power of the
Elliott and Jansson (2003) test is higher than the power of any
other tests, including the Horvath and Watson (1995) test. In
the simulated data-generated process, A is not lower triangular,
so oy = 0 does not coincide with weak exogeneity. The Elliott
and Jansson (2003) test exploits the information contained in
the covariates in an optimal way and thus rejects the null hy-
pothesis with higher probability than the Horvath and Watson
(1995) test.

When «, is positive, the root of y; in (9) is larger (in our sim-
ulations wyy is positive, so R, > 0), so all of the tests based on
(9) will have smaller power, as will the test proposed herein. For
positive but small values of oy, the Elliott and Jansson (2003)
test still performs relatively well compared with other tests.
Only when there are no deterministic terms and R is 0 does the
proposed test reject a false null with probability smaller than
Hansen’s (1995) CADF test. As «a, increases, the Horvath and
Watson (1995) trace test outperforms the other tests in most
cases. When the deterministic terms include a constant but not
a trend, the Elliott and Jansson (2003) test has power similar to
the Horvath and Watson (1995) test in a neighborhood of the
null.

The Pr test of Elliott et al. (1996) does not use the informa-
tion in the covariates, and the power for a, = 0 is lower than
that of the Elliott and Jansson (2003) test when R? is different
than 0. Given that the Pr test is based on the single equation,
it is not sensitive to «, and it rejects with higher probability
than the Elliott and Jansson (2003) test for large positive values
of o, when R? is positive. Finally, the test proposed by Zivot
(2000) rejects the null with lower probability than the Elliott
and Jansson (2003) test for any value of «,. This is not surpris-
ing given that Zivot’s test does not fully utilize the information
that the cointegrating vector is known.

When «, is negative, the coefficient for the error-correction
term in the conditional equation is forther away from 0, and all
of tests reject the null of no cointegration more often with the
Elliott and Jansson (2003) test having the highest power as soon
as R? departs from 0.

4.4 Small-Sample Comparisons

The results of the previous sections show that the Elliott and
Jansson (2003) family of tests has optimality properties when
applied in the context of model (1)-(3) and has asymptotic
power that depends on the nuisance parameter R2. Although
the particular estimator used to estimate the nuisance parame-
ters does not affect the asymptotic distributions under the local
alternatives, the finite-sample properties of tests for no cointe-
gration can be sensitive to the choice of the estimation method.
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Table 2. Rejection Rates When ax # 0 in (5), No Deterministic Terms

EJ HW CADF Zivot Pr
oy R?\c -5 —10 -5 —-10 -5 —-10 -5 —10 -5 —10
—1 0 .33 .76 43 .89 28 .63 14 32 .30 73
3 .93 1.00 .82 1.00 .93 1.00 .50 .98 29 72
5 .99 1.00 .94 1.00 .99 1.00 .76 1.00 29 72
-5 0 .33 .76 25 .64 .30 .69 .16 .38 .30 73
3 77 .99 .56 .95 78 .99 .32 .86 29 72
5 .93 1.00 77 .99 92 1.00 49 .96 29 72
0 0 .33 .76 18 49 32 75 18 45 .30 73
3 51 .92 29 72 .50 .90 21 .58 29 72
5 .68 .98 43 .88 67 .96 25 72 29 72
5 0 .33 .76 25 .64 .35 .81 19 48 .30 73
3 29 61 18 49 26 57 14 .31 29 72
5 .36 73 .20 .54 31 61 13 .30 29 72
1 0 .33 .76 44 .89 .39 .86 19 50 .30 73
3 15 .26 .26 .66 A3 25 .08 14 29 72
5 16 27 22 59 A1 A7 .06 .09 29 72
1.3 0 .33 .76 59 97 41 .88 19 51 .30 73
3 10 14 39 85 .09 14 06 08 29 72
5 10 12 36 82 05 .06 04 04 29 72
1.4 0 .33 .76 .64 .98 42 .89 19 52 .30 73
3 09 1 44 89 .08 12 05 06 29 72
5 08 09 42 88 .04 04 03 03 29 72

To study the small-sample behavior of the proposed test, we where
simulate (5) with scalar x;, @y =0, and g = (1, —1)’,

A= (P12 - 01 02
A(yr—x) =(p — D(yr—1 = x—1) +vys " \Naxay )’ T \60, )
and .. . .
and &; ~ iid N'(0, X), where X is chosen in such a way that the
Ax; = vy . long-run variance—covariance matrix of v; satisfies
The error process v; = (vy,t,vx,t)’ is generated by the Q= — A1 o)x( (I — A)-V
VARMA(, 1) model L-A" " L+0)XNL+0)I,—A)
1 R
(L — ALV, = (L + ©L)e, = <R 1)7 Rel0.D.

Table 3. Rejection Rates When ax # 0 in (5), Constants, No Trend

EJ HW CADF Zivot Pr
ox R2\c -5 —10 -5 —10 -5 —10 -5 —10 -5 —10
-1 0 34 .76 .19 59 A1 .24 .10 19 .30 73
3 94 1.00 48 .96 61 .98 28 85 .30 73
5 .99 1.00 72 .99 .89 1.00 .50 .98 29 72
-5 0 34 76 12 31 RE 27 10 22 .30 73
3 .78 1.00 .25 74 .38 .88 17 .58 .30 .73
5 93 1.00 43 93 66 .98 26 .82 29 72
0 0 .33 .76 .10 23 12 .31 A1 24 .30 73
3 53 92 13 .38 21 56 A1 32 .30 73
5 69 .98 19 59 .35 .79 13 44 29 72
5 0 33 76 12 32 13 35 12 27 .30 73
3 .30 .61 .09 24 A1 .25 .09 .18 .30 73
5 .38 74 10 26 14 32 .08 A7 29 72
1 0 34 76 19 59 14 40 13 31 .30 73
3 16 27 A1 34 .05 .09 .07 10 .30 73
5 17 .29 A1 29 .05 .07 .06 .07 29 72
1.3 0 34 .76 .27 77 15 43 13 .32 .30 73
3 A1 15 17 53 .04 .05 .05 .06 .30 73
5 10 13 15 49 .03 .02 .04 .03 29 72
1.4 0 34 76 .31 .82 15 44 14 33 .30 73
3 .09 12 19 61 .03 .04 .05 .05 .30 73

5 .08 .10 .18 .58 .02 .02 .03 .02 .29 .72




Elliott et al.: Testing Cointegrating Vectors

45

Table 4. Rejection Rates When ax # 0 in (5), No Restrictions

EJ HW CADF Zivot Pr
ax R?\c -5 —-10 -5 —-10 -5 —-10 -5 —-10 -5 —10
—1 0 12 32 A3 41 .08 15 .08 A3 10 27
3 51 .98 31 .87 40 .93 13 .56 .09 26
5 75 1.00 51 .98 74 .99 21 .85 .09 26
-5 0 12 31 .09 22 .08 A7 .08 A5 10 27
3 .33 .87 16 .56 24 .69 .09 32 .09 26
5 .50 .98 26 81 48 .94 12 52 .09 26
0 0 A1 .31 .08 16 .09 19 .08 16 10 27
3 .20 .56 10 26 A3 .36 .08 18 .09 26
5 28 77 A3 40 23 .62 .08 22 .09 26
5 0 A1 31 .09 22 .09 21 .09 18 10 27
3 A 26 .08 16 .07 15 .07 A2 .09 26
5 13 .35 .08 18 10 21 .06 A1 .09 26
1 0 12 .31 A3 41 10 24 .09 21 10 27
3 .06 10 .09 23 .04 .05 .06 .09 .09 26
5 .06 10 .08 20 .04 .04 .06 .07 .09 26
1.3 0 12 32 A7 .60 10 .26 10 22 10 27
3 .04 .05 A2 .36 .03 .03 .06 .06 .09 26
5 .04 .04 A1 .33 .02 .01 .05 .04 .09 26
1.4 0 12 .32 19 .65 A1 27 .10 23 10 27
3 .04 .04 A3 42 .02 .02 .05 .05 .09 26
5 .03 .03 A2 40 .02 .01 .04 .03 .09 26

We estimated the number of lags and leads by the Bayesian
information criterion on a VAR on the first differences (under
the null) with a maximum of eight lags. For Case 2, we esti-
mated the regressions with a mean. For the model with a trend
in the cointegrating vector, we estimated the regressions with
a mean and a trend; results for other cases were similar. The
sample size is T = 100, and we used 10,000 replications.

Tables 5 and 6 compare the small sample size of the Elliott
and Jansson (2003) test and Hansen (1995) CADF test for var-
ious values of ® and A. To compute the critical values in each
case, we estimated the value of R” as suggested by Elliott and
Jansson (2003) and Hansen (1995). Overall, the Elliott and
Jansson (2003) test is worse in terms of size performance than
the CADF test. This is the same type of difference found be-
tween the Py and DF tests in the univariate case, and so is not
surprising given that these methods are extensions of the two
univariate tests. The difference between the two tests is more
evident for large values of R> and for the case with no trend.
When O is nonzero, both tests present size distortions that are
severe in the presence of a large negative moving average root
(as is the case for unit root tests), emphasizing the need for
proper modeling of the serial correlation present in the data.

5. COINTEGRATION BETWEEN FORECASTS
AND OUTCOMES

There are a number of situations where if there is a cointe-
grating vector, then we have theory that suggests the form of the
cointegrating vector. In the purchasing power parity literature,
the typical assumption is that logs of the nominal exchange rate
and home and foreign prices all have unit roots and the real
exchange rate does not. The real exchange rate is constructed
from the 7(1) variables with the cointegrating vector (1, 1, —1)’.
In examining interest rates, we find that term structure theories
often imply a cointegrating structure of (1, —1) between in-
terest rates of different maturities; however, one might find it
difficult to believe that the log interest rate is unbounded, and
hence is unlikely to have a unit root.

Another example involves the forecasts and outcomes of
the variable of interest. Because many variables that macro-
economists would like to forecast have trending behavior, often
taken to be unit root behavior, some researchers have examined
whether or not the forecasts made in practice are indeed coin-
tegrated with the variable being forecast. The expected cointe-
grating vector is (1, —1)’, implying that the forecast error is sta-
tionary. This has been undertaken for exchange rates (Liu and

Table 5. Small Sample Size, Constants, No Trend

A e EJ CADF
ay ap 64 65 R?=0 R?=.3 R?=.5 R?=0 R?=.3 R?=.5
0 0 0 0 .059 .070 074 .051 .055 .058
2 0 0 0 .060 077 .089 047 .058 .062
8 0 0 0 .066 .083 103 075 .085 .086
2 5 0 0 .089 .078 076 104 .069 .059
0 0 -2 0 104 A12 113 077 .068 .061
0 0 8 0 106 152 207 .057 .063 .067
0 0 -5 0 167 169 189 102 .082 .068
0 0 -8 0 352 341 372 256 197 144
2 0 -5 0 160 166 181 104 .085 070
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Table 6. Small Sample Size, No Restrictions

A e EJ CADF
ay as 0 02 R?=0 R?=.3 R?=.5 R?=0 R?=.3 R?=.5
0 0 0 0 048 054 057 055 051 052
2 0 0 0 .037 052 062 039 051 059
8 0 0 0 043 .088 143 083 091 100
2 5 0 0 061 057 .060 142 082 063
0 0 -2 0 098 104 123 091 073 064
0 0 8 0 057 122 207 .059 .067 075
0 0 -5 0 173 187 219 131 097 082
0 0 -8 0 371 324 350 299 232 176
2 0 -5 0 161 148 153 134 100 .080

Maddala 1992) and macroeconomic data (Aggarwal, Mohanty,
and Song 1995). In the context of macroeconomic forecasts,
Cheung and Chinn (1999) also relaxed the cointegrating vector
assumption.

The requirement that forecasts be cointegrated with out-
comes is a very weak requirement. Note that the forecaster’s
information set includes the current value of the outcome vari-
able. Because the current value of the outcome variable is
trivially cointegrated with the future outcome variable to be
forecast (they differ by the change, which is stationary), the
forecaster has a simple observable forecast that satisfies the
requirement that the forecast and outcome variable be cointe-
grated. We can also imagine what happens under the null hy-
pothesis of no cointegration. Under the null, forecast errors are
I(1) and hence become arbitrarily far from 0 with probability 1.
It is hard to imagine that a forecaster would stick with such a
method when the forecast gets further away from the current
value of the outcome than typical changes in the outcome vari-
able would suggest are plausible.

This being said, of course it is useful if tests reject the hy-
pothesis of no cointegration and is quite indicative of power
problems if they do not. Here we use forecasts of the price level
from the Livingston dataset over the period 1971-2000. The
survey recipients forecast the consumer price index 6 months
ahead. Figure 8 shows the forecast errors. Because the vari-
ables are indexes, a value of 1 is a 1% difference relative to
the base of 1982-1984. Forecast errors at different times have
been quite large, especially around the times of the oil shocks
in the 1970s. They have been smaller and more often negative
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Figure 8. Forecast Errors for 6-Months-Ahead Forecasts.

over the last two decades—this was a period of falling inflation
rates that appears to have induced the error on average of over-
estimating prices. There is no indication from the data that the
errors are getting larger in variance over time, although there
are long swings in the forecast error that may lead lower-power
tests into failing to reject the hypothesis that the forecast error
does not have a unit root.

Indeed, the Dickey and Fuller (1979) test is unable to reject
a unit root in the forecast error, even at the 10% level. This
is shown in Table 7, which provides the results of the test in
column 1. We have allowed for a nonzero mean under the al-
ternative (i.e., the constant included case of the test). Com-
monly used multivariate tests do a little better. The Horvath
and Watson (1995) test fails to reject at the 10% level, whereas
the CADF test rejects at the 5% level but not at the 1% level.
Thus, even though the null hypothesis is an extremely weak re-
quirement of the data, the forecasts fail the test in most cases.
However, the problem could be one of power rather than of ex-
tremely poor forecasting. This is further backed up by the tests
of Elliott et al. (1996), which reject at the 5% level but not at
the 1% level. The p value for the Pr test is .02.

The first two columns of Table 8 presents results for the
Elliott and Jansson (2003) test under the assumption that the
change in the forecasts is on the right side of the cointegrating
regression. Our X variable is chosen to be price expectations.
Results are similar when prices are chosen as the X variable, as
reported in Table 8. We examine Case 3, that is, the statistic is
invariant to a mean in the change in forecasts (so that this vari-
able has a drift, prices rise over time, suggesting a positive drift)
and a mean in the quasi-difference of the cointegrating vector
under the alternative. For there to be gains over univariate tests,
the R? value should be different from 0. Here we estimate R>
to be .19, suggesting that there are gains from using this mul-
tivariate approach. Comparing the statistic developed here with
its critical value, we are able to reject not only at the 5% level,
but also at the 1% level. Comparing this results with those for
the previous tests, we see results that we may have expected
from the asymptotic theory. Standard unit root tests have low

Table 7. Cointegration Tests

ADF HW CADF

—2.72 743  -2.48*
@) 2 @)

NOTE: The number of lags was chosen by MAIC and is reported in parentheses.
*Significance at 5%.

Pr
2.38*

DF-GLS

—2.72*
@)

Forecast errors
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Table 8. Cointegration Tests, Stationary Covariate

EJ, Case 3, Apfcov R? EJ, Case 3, Apscov R?

Forecast errors .60** .60**

%) 19 (1) 10
p value .003 .001
NOTE: The first two columns give results for tests where X; = pf; the remaining two columns

give results for X; = p;.
**Significance at 1%.

power (and we do not reject with the Dicken—Fuller test). We
can improve power by using additional information, such as us-
ing CADEF, or by using the data more efficiently through P7. In
these cases we do reject at the 5% level. Finally, using the addi-
tional information and using all information efficiently, where
we expect to have the best power, we reject not only at the 5%
level, but also at the 1% level. We are able to reject that the
cointegrating vector has a unit root and conclude that the fore-
cast errors are indeed mean-reverting, a result that is not avail-
able with current multivariate tests and is less assured from the
higher-power univariate tests.

As a robustness check, we also tested the data for a unit root
allowing for a break at unknown time. The forecast errors in
Figure 8 appear to have a shift in the level around 1980-1983
that could lower the probability of rejection of conventional
tests. To test the data for a unit root with break, we use the
test of Perron and Vogelsang (1992). Let DU, =1 if t > T}, and
0 otherwise, where T}, is the break date. Following Perron and
Vogelsang (1992), we first remove the deterministic part of the
series for a given break 7} by estimating the regression

yi = +38DU; + ;.

The unit root test is then computed as the 7-test for @ = 1 in the
regression

k k
Vi = ZwiD(TB)t—l +ayi-1 + Z ciAyi—1 +er,
i=0 i=1
where D(TB); = 1 if t =T = 1 and O otherwise.

Panel A in Table 9 corresponds to the case in which the break
is estimated as the date that minimizes the z-statistics #; in the
unit root test. The number of lags is chosen for a given break
such that the coefficient on the last included lag of the first dif-
ferences of the data is significant at 10% level (for details, see
Perron and Vogelsang 1992). Panel B corresponds to the case
in which the break is chosen to minimize the #-statistics testing
6 =0 in the first regression.

Table 9. Unit Root Test With Breaks

Min t-stat Lags Estimated break
(A)
6 months —4.37% 0 1994:11
(B)
6 months -.10 4 197911
NOTE: Panel A corresponds to the case in which the break is estimated as the date that

minimizes the t-statistics in the unit root test, Panel B corresponds to the case in which the
break is chosen to minimize the t-statistics testing in the break regression (see Perron and
Vogelsang 1992). The small sample 5% and 10% critical values that take into account the lag
selection procedure are —4.67 and —4.33 for Panel A and —3.68 and —3.35 for Panel B.

t Rejection at 10%.

47

As the table shows, standard methods reject for some cases
but not everywhere. When the break is chosen to minimize the
t-statistic in the unit root test, the unit root with break test re-
jects at 10% level. When the break is chosen as the date that
minimizes the z-statistic in the regression for the deterministic,
we cannot reject the unit root hypothesis. Overall, it appears
that if there is a break, it is small. This is all the more reason to
use tests that use the data as efficiently as possible.

6. CONCLUSION

In this article we have examined the idea of testing for a unit
root in a cointegrating vector when the cointegrating vector is
known and the variables are known to be /(1). Early studies
simply performed unit root tests on the cointegrating vector;
however, this approach omits information that can be very use-
ful in improving the power of the test for a unit root. The re-
strictions placed on the multivariate model for this “known a
priori” information renders the testing problem equivalent to
that of Elliott and Jansson (2003), and so we use those tests
here. Whereas there exists no UMP test for the problem, the
point-optimal tests derived by Elliott and Jansen (2003) and ap-
propriate here are among the asymptotically admissible class
(because they are asymptotically equivalent to the optimal test
under normality at a point in the alternative) and were shown to
perform well in general.

The method is quite simple, requiring the running of a VAR
to estimate nuisance parameters, detrending the data (under
both the null and the alternative), and then running two VARs,
one on the data detrended under the null and another based on
the data detrended under the alternative. The statistic is then
constructed from the variance—covariance matrices of the resid-
uals of these VARs.

We then applied the method to examine the cointegration of
forecasts of the price level with the actual price levels. The idea
that forecasts and their outcomes are cointegrated with cointe-
grating vector (1, —1) (so forecast errors are stationary) is a
very weak property. It is difficult to see that such a property
could be violated by any serious forecaster. The data we exam-
ine here comprise 6-month-ahead forecasts from the Livingston
data for prices for 1971-2000. However, most simple univariate
tests and some of the more sophisticated multivariate tests cur-
rently available to test the proposition do not reject the null that
the forecast errors have a unit root. The tests derived here are
able to reject this hypothesis with a great degree of certainty.
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APPENDIX: NOTES ON THE DATA

The current CPI is the non—seasonally adjusted CPI for all
Urban Consumers from the Bureau of Labor and Statistics
(code CUUROO0OSADO) corresponding to the month being fore-
casted. All the current values for the CPI are in 1982—1984 base
year.
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The forecasts CPI data are the 6-month price forecasts from
the Livingston Tables at the Philadelphia Fed from June 1971
to December 2001. The survey is conducted twice a year (early
June and early December) to obtain the 6-month-ahead fore-
casts from a number of respondents. The number of respondents
varies for each survey, so each forecast in our sample is com-
puted as the average of the forecasts from all the respondents
from each survey. The data in the Livingston Tables are avail-
able in the 1967 base up to December 1987 and the 1982-1984
base thereafter. Given that there are not overlapping forecasts
at both base years, we transformed all of the forecasts to the
1982-1984 base as follows. We first computed the average of
the actual values for the 1982—1984 base CPI for the year 1967,
then used this value to multiply all the forecasts before 1987 to
transform the forecasts to the 1982—-1984 base.

At the time of the survey, the respondents were also given
current figures on which to base their forecasts. The surveys
are sent out early in the month, so the available information to
the respondents for the June and December survey are April and
October. For this reason, although traditionally the forecasts are
called 6-month-ahead forecasts, they are truly 7-month-ahead
forecasts. Carlson (1977) presented a detailed description of the
issues related to the price forecasts from the Livingston Survey.

[Received August 2002. Revised May 2004. ]
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