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THE ERROR IN REJECTION PROBABILITY OF SIMPLE
AUTOCORRELATION ROBUST TESTS

BY MICHAEL JANSSON1

A new class of autocorrelation robust test statistics is introduced. The class of tests
generalizes the Kiefer, Vogelsang, and Bunzel (2000) test in a manner analogous to
Anderson and Darling’s (1952) generalization of the Cramér–von Mises goodness of fit
test. In a Gaussian location model, the error in rejection probability of the new tests is
found to be O(T−1 logT)� where T denotes the sample size.

KEYWORDS: Asymptotic expansion, autocorrelation robust inference.

1. INTRODUCTION

IN MANY APPLICATIONS in time series econometrics, estimators that enjoy optimality
properties in cross-sectional environments remain asymptotically normally distributed,
albeit with a covariance matrix that depends on the autocovariance function of the
data. A leading example is the OLS estimator in a linear regression model with ex-
ogenous regressors and an autocorrelated error term. In such cases, autocorrelation
robust inference is typically based on Wald-type test statistics constructed by employing
a standardization involving a consistent estimator of the asymptotic covariance matrix
of an estimator of the parameter of interest (e.g., Robinson and Velasco (1997) and
Wooldridge (1994)). While this approach often delivers inference procedures with cer-
tain asymptotic optimality properties, the finite sample null rejection probabilities of
these procedures have been found to be somewhat less than satisfactory in many cases
(e.g., den Haan and Levin (1997)).

Kiefer, Vogelsang, and Bunzel (2000, hereafter denoted KVB) demonstrate that the
properties of Wald-type test statistics can be ameliorated if an inconsistent covariance
matrix “estimator” is used and the critical values are adjusted to accommodate the
randomness of the matrix employed in the standardization. Using higher-order asymp-
totic theory, the present paper provides an analytical explanation of the encouraging
performance of the KVB procedure. In a Gaussian location model, the error in rejec-
tion probability (ERP) of the KVB test is found to be O(T−1 logT)� where T denotes
the sample size. The ERP of conventional procedures is no better thanO(T−1/2) under
similar circumstances (Velasco and Robinson (2001)). In spite of the restrictive nature
of the assumptions under which the higher-order asymptotic result is obtained, the rate
O(T−1 logT) is remarkable in view of the fact that existing results on the performance
of bootstrap-based autocorrelation robust inference procedures indicate that most of
these procedures fail to achieve the same rate of convergence in the presence of non-
parametric autocorrelation (Härdle, Horowitz, and Kreiss (2003)).

The bound on the ERP of the KVB test is established as a special case of a result
characterizing the ERP of tests belonging to a new class of autocorrelation robust in-

1A previous version of this paper was entitled “Autocorrelation Robust Tests with Good
Size and Power.” The author thanks an editor, two referees, Guido Imbens, Jim Powell, Tom
Rothenberg, Paul Ruud, Tim Vogelsang, and seminar participants at Aarhus, Brown, Cornell,
Harvard/MIT, Houston/Rice, the 2002 NBER/NSF Time Series Conference, UC Berkeley, and
USC for helpful comments.
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ference procedures. Analogously to Anderson and Darling’s (1952) generalization of
the Cramér–von Mises goodness of fit test, the class of autocorrelation robust tests in-
troduced here generalizes the KVB test by accommodating a weight function in the
definition of the covariance matrix “estimator” used in the construction of the test sta-
tistic. All members of the new class of tests have an ERP exhibiting the same rate of
decay as the ERP of the KVB test.

Section 2 introduces the model, states the assumptions under which formal results
will be developed and introduces the new class of inference procedures. Section 3 stud-
ies the ERP of these procedures in a Gaussian location model, while mathematical
derivations appear in Section 4.

2. PRELIMINARIES

Consider the location model

yt = β+ut (t = 1� � � � � T )�(1)

where ut is an unobserved error term satisfying the following high-level assumption.

ASSUMPTION A1: T−1/2
∑�T ·�

t=1 ut →d ωW (·)� where ω2 > 0� W (·) is a Wiener process,
and �·� denotes the integer part of the argument.

Assumption A1 is satisfied under a wide range of primitive moment and memory
conditions on ut (e.g., Phillips and Solo (1992)). An important implication of As-
sumption A1 is that the OLS estimator β̂ = T−1 ∑T

t=1 yt of β is root-T consistent and
asymptotically normal:

√
T(β̂−β) d→N (0�ω2)�

Suppose the objective is to conduct a two-sided test of the simple null hypothesis
H0 :β= β0� where β0 is some constant. The standard approach is to base inference on
a test statistic of the form

FHAC = T(β̂−β0)
2

ω̂2
HAC

�

where ω̂2
HAC is a consistent estimator of ω2� the long-run variance of ut� Although

consistent estimators of ω2 are available under conditions resembling Assumption A1
(e.g., Andrews (1991), Andrews and Monahan (1992), Hansen (1992), Jansson (2002),
de Jong and Davidson (2000), Newey and West (1987, 1994), and Robinson (1991)), the
ERP of tests based on FHAC can be quite unsatisfactory in finite samples (e.g., den Haan
and Levin (1997)).2

To the extent that the poor finite-sample properties of FHAC are likely to be due to
the fact that distributional approximations based on conventional asymptotic theory

2Kiefer and Vogelsang (2003) find that this problem can be mitigated by modeling the band-
width (employed in the construction of ω̂2

HAC) as a fixed proportion of the sample size when
developing first-order asymptotic theory for FHAC�
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fail to capture the finite-sample variability in ω̂2
HAC� it seems plausible that tests with

better ERP can be obtained by employing an “estimator” of ω2 whose limiting distrib-
ution is nondegenerate. Corroboration of this conjecture has been provided by KVB,
who proposed the test statistic

FKVB = T(β̂−β0)
2

ω̂2
KVB

�

where ω̂2
KVB = T−2

∑T−1
t=1 Ŝ

2
t and Ŝt = ∑t

s=1(ys − β̂)�
Unlike ω̂2

HAC� ω̂
2
KVB is not a consistent estimator of ω2� Nevertheless, FKVB is asymp-

totically pivotal under H0 and the associated test has good finite-sample ERP and
respectable (finite-sample and local asymptotic) power properties. Recently, Kiefer
and Vogelsang (2002a) have shown that ω̂2

KVB equals one half times the kernel esti-
mator of ω2 computed using the Bartlett kernel with the bandwidth parameter equal
to the sample size, while Kiefer and Vogelsang (2002b) have shown that the Bartlett
kernel dominates other popular kernels in terms of the local asymptotic power of tests
based on kernel estimators implemented with the bandwidth parameter equal to the
sample size.

The present paper studies test statistics of the form

Fκ = T(β̂−β0)
2

ω̂2
κ

�

where ω̂2
κ = T−2

∑T−1
t=1 κ(t/T )Ŝ

2
t and κ(·) : (0�1)→ [0�∞) is a (nonzero) weight func-

tion satisfying the following smoothness condition.

ASSUMPTION A2: For some Cκ < ∞� |√κ(r) − √
κ(s)| ≤ Cκ|r − s| for all 0 ≤

r ≤ s ≤ 1�

When the weight function κ(·) is constant, the statistic Fκ is equivalent to FKVB� On
the other hand, nonconstant weight functions give rise to test statistics that are not
covered by the results of Kiefer and Vogelsang (2002b). The statistic Fκ generalizes
FKVB in a manner analogous to Anderson and Darling (1952) generalization of the
Cramér–von Mises goodness of fit test. Specifically, the limiting distribution of ω̂2

KVB is
of the Cramér–von Mises variety, whereas the limiting representation of ω̂2

κ turns out
to be the same as the statisticW 2 appearing in equation (4.5) of Anderson and Darling
(1952).

3. ERP IN A GAUSSIAN LOCATION MODEL

In Monte Carlo experiments, KVB and Bunzel, Kiefer, and Vogelsang (2001) have
found the ERP of FKVB to be much smaller than that of FHAC�A heuristic explanation of
these findings can be found in Bunzel, Kiefer, and Vogelsang (2001, p. 1093), but to the
best of this author’s knowledge no previous paper has attempted to use higher-order
asymptotic theory to provide an analytical explanation of the encouraging performance
of the KVB procedure. As a first step in that direction, this paper derives the rate of
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convergence of Fκ to its (non-normal) limiting null distribution under the following
strengthening of Assumption A1.

ASSUMPTION A1∗: ut = ψ(L)ηt� where ηt ∼ i�i�d�N (0�1) and ψ(L)= ∑∞
i=0ψiL

i is
a lag polynomial with ψ(1) 	= 0 and

∑∞
i=1 i|ψi|<∞�

Employing a model similar to the one studied here, Velasco and Robinson (2001)
derive Edgeworth expansions of the distribution of FHAC under the assumption that
ω̂2

HAC belongs to a certain class of kernel estimators. The leading term in the asymp-
totic expansion of the distribution function of FHAC is no smaller than O(T−1/2) when
the bandwidth expansion rate is such that the order of the asymptotic mean squared
error of ω̂2

HAC is minimized (Velasco and Robinson (2001, Section 4)).3 In contrast,
Theorem 1 shows that the ERP associated with Fκ is O(T−1 logT)�

THEOREM 1: If yt is generated by (1) and Assumptions A1∗ and A2 hold, then

sup
c∈R

∣∣∣∣Pr
(
T(β̂−β)2

ω̂2
κ

≤ c
)

− Pr
(

Z2∫ 1
0 κ(r)B(r)

2dr
≤ c

)∣∣∣∣ =O(T−1 logT)�

where B(·) is a Brownian bridge and Z ∼ N (0�1) is independent of B(·)�
Normality plays an important simplifying role in the proof of Theorem 1, greatly

facilitating the construction of a good coupling between the test statistic and its (non-
normal) asymptotic representation. It is plausible that an extension of Theorem 1 to
non-Gaussian time series can be based on Götze and Tikhomirov (2001), but an inves-
tigation along those lines is beyond the scope of this paper.

In view of Theorem 1, the fact that FKVB dominates FHAC in terms of finite-sample
ERP is consistent with the predictions of higher-order asymptotic theory. Theorem 1
therefore complements the Monte Carlo results of KVB and Bunzel, Kiefer, and
Vogelsang (2001) and sheds new light on these. Heuristically, the fast rate of decay
of the ERP of Fκ is achieved by employing a standardization factor ω̂2

κ whose finite-
sample distribution is well approximated by its asymptotic counterpart. Indeed, the
contribution of the stochastic difference between ω̂2

κ and its limiting representation to
the asymptotic expansion reported in Theorem 1 is (apart from a slowly varying factor)
of the same order of magnitude as the contribution due to the stochastic difference
between T 1/2(β̂−β) and its limiting normal distribution. In contrast, only the discrep-
ancy between ω̂2

HAC and its probability limit is reflected in the leading term in Velasco
and Robinson’s (2001) asymptotic expansion of the ERP of FHAC�

The best currently available results on the performance of bootstrap-based auto-
correlation robust symmetrical testing procedures in the presence of nonparametric

3Specifically, it follows from equation (4) of Velasco and Robinson (2001) that

Pr
(
T 1/2(β̂−β0)

ω̂HAC
≤ z

)
−Φ(z)= p(z)T−γ + o(T−γ)

for any z ∈ R� where tHAC = T 1/2(β̂− β0)/ω̂HAC� Φ(·) is the standard normal cdf, p(·) is an odd
function, and γ < 1/2 is a constant. By implication, the leading term in the asymptotic expansion
of Pr(FHAC ≤ c) is of the form 2p(

√
c )T−γ =O(T−γ) for any c > 0�
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autocorrelation would appear to be those of Inoue and Shintani (2003).4 Under some-
what weaker distributional assumptions than those of Theorem 1, Inoue and Shintani
(2003) find that the rate of decay of the ERP can be made arbitrarily close to T−1 if
the block bootstrap is applied to FHAC and ω̂2

HAC is constructed using the truncated ker-
nel.5 Kitamura (1997) gives conditions under which the ERP of a Bartlett corrected
blockwise empirical likelihood ratio test is O(T−5/6)�6

REMARKS: (i) One-sided tests of H0 :β= β0 can be based on tκ = T 1/2(β̂−β0)/ω̂κ�
The null distribution of this statistic is symmetric under the assumptions of Theorem 1.
As a consequence, Pr(tκ ≤ c) = 1

2 + 1
2 Pr(Fκ ≤ c2) for any c > 0 (with an analogous

result holding for c < 0) and it follows that the ERP of one-sided tests is O(T−1 logT)
under the assumptions of Theorem 1.

(ii) Bootstrap-based autocorrelation robust one-sided testing procedures have been
studied by Choi and Hall (2000) and Götze and Künsch (1996). Choi and Hall (2000)
find that the sieve bootstrap delivers an ERP with a polynomial rate of decay arbitrarily
close to O(T−1) under conditions similar to those of Theorem 1. Under weaker con-
ditions, Götze and Künsch (1996) show that the ERP is no better than O(T−3/4) when
the block bootstrap is applied to FHAC and ω̂2

HAC is constructed using the truncated
kernel. (The ERP is no better than O(T−2/3) when ω̂2

HAC is constructed using a kernel
guaranteed to yield positive semidefinite estimates.)

(iii) It is an open question whether the rate reported in Theorem 1 can be improved.
Shorack (2000, p. 261) claims that

sup
c∈R

|Pr(W +∆≤ c)− Pr(W ≤ c)| ≤ 4E|W ∆| + 4E|∆|

for any random variables W and ∆� If that claim was correct, the factor logT could
be omitted in Theorem 1. An easy counterexample to the displayed inequality is the
following. Let W and ∆ satisfy Pr(W = 0)= Pr(∆= −δ)= 1 for some δ > 0� Then

sup
c∈R

|Pr(W +∆≤ c)− Pr(W ≤ c)| = |Pr(W +∆≤ 0)− Pr(ξ≤ 0)| = 1�

whereas 4E|W ∆| + 4E|∆| = 4δ can be made arbitrarily close to zero.
(iv) As do conventional testing procedures, the test based on Fκ has nontrivial

power against alternatives of the form β = β0 + O(T−1/2)� Specifically, suppose yt is
generated by (1) and suppose Assumptions A1 and A2 hold. If b= T 1/2ω−1(β−β0) is
fixed as T increases without bound, then

Fκ
d→ (Z + b)2∫ 1

0 κ(r)B(r)
2dr

�(2)

4Contemporary reviews of bootstrap methods for time series can be found in Bühlmann (2002),
Härdle, Horowitz, and Kreiss (2003), and Politis (2003).

5The ERP is no better than O(T−2/3) when ω̂2
HAC is constructed using a kernel guaranteed to

yield positive semidefinite estimates.
6The ERP of the blockwise empirical likelihood ratio test is O(T−2/3) if no Bartlett correction

is employed.
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where B(·) is a Brownian bridge and Z ∼ N (0�1) is independent of B(·)� It seems plau-
sible that a testing procedure associated with a suitably chosen weight function κ(·) will
match the KVB procedure in terms of ERP and dominate it in terms of local asymptotic
power. Research on this question is currently under way.

4. PROOF OF THEOREM 1

The result is obvious when c ≤ 0� so suppose c > 0� Let XN = ψ(1)−1T 1/2(β̂ − β)

and XD = ψ(1)−1T−1(
√
κ(1/T )Ŝ1� � � � �

√
κ((T − 1)/T )ŜT−1)

′� By assumption, X =
(XN�X

′
D)

′ d=Σ1/2ZT � where “ d=” signifies equality in distribution,

Σ=
(
σNN σ ′

DN

σDN ΣDD

)

is the covariance matrix of X (partitioned in the obvious way), and ZT ∼ N (0� IT )�
Now, Pr[T(β̂−β)2/ω̂2

κ ≤ c] = Pr[X2
N − cX ′

DXD ≤ 0] = Pr[Z ′
TΥ

c
TZT ≤ 0]� where

Υc
T =

(
σNN − cσ−1

NNσ
′
DNσDN −cσ−1/2

NN σ
′
DNΣ

1/2
DD�N

−cσ−1/2
NN Σ

1/2′
DD�NσDN −cΣDD�N

)
�

and ΣDD�N = ΣDD − σ−1
NNσDNσ

′
DN� Let

Υ̇ c
T =

(
1 0
0 −cΣ̇DD�T

)
�

where Σ̇DD�T is the (T − 1)× (T − 1) matrix whose (i� j)th element is given by

Σ̇DD�T (i� j)= T−2
√
κ(i/T )

√
κ(j/T )(min(i� j)− ij/T )�

Because Pr(Z2 − c ∫ 1
0 κ(r)B(r)

2dr ≤ 0)= limi→∞ Pr(Z ′
2iT Υ̇

c
2iTZ2iT ≤ 0)� it follows from

the triangle inequality that

∣∣∣∣Pr
(
T(β̂−β)2

ω̂2
κ

≤ c
)

− Pr
(

Z2∫ 1
0 κ(r)B(r)

2dr
≤ c

)∣∣∣∣ ≤ ∆c1�T +∆c2�T � where

∆c1�T = |Pr(Z ′
TΥ

c
TZT ≤ 0)− Pr(Z ′

T Υ̇
c
TZT ≤ 0)| and

∆c2�T =
∞∑
i=1

∣∣Pr
(
Z ′

2iT Υ̇
c
2iTZ2iT ≤ 0

) − Pr
(
Z ′

2i−1T
Υ̇ c

2i−1T
Z2i−1T ≤ 0

)∣∣�
The proof will be completed by using inequalities (3) and (4), developed next, to

show that supc>0∆
c
1�T =O(T−1 logT) and supc>0∆

c
2�T =O(T−1 logT)�

Now, Z ′
T Υ̇

c
TZT =d χ

2
0(1) − c

∑T−1
j=1 λT�jχ

2
j (1)� where χ2

j (1) ∼ i�i�d�χ2(1) and λT�1 ≥
· · · ≥ λT�T−1 ≥ 0 are the eigenvalues of Σ̇DD�T � It follows from the convolution formula
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that supr>0 r
−1 Pr(|Z ′

T Υ̇
c
TZT | < r) < 2c−1λ−1

T�2� By Mercer’s theorem (e.g., Shorack and
Wellner (1986)),

lim
T→∞

T Σ̇DD�T

(
r

T
�
s

T

)
= √

κ(r)
√
κ(s)(min(r� s)− rs)

can be represented as
∑∞

j=1µjfj(r)fj(s)� where the functions {fj} are orthonormal and
continuous, and µ1 ≥ µ2 ≥ · · · ≥ 0� Because the right-hand side in the preceding display
cannot be represented as µ1f1(r)f1(s)� it must be the case that µ2 > 0� Therefore,
limT→∞λT�2 ≥ µ2 > 0 and no generality is lost by assuming that

Pr(|Z ′
T Υ̇

c
TZT |< r)≤ c−1Mκr� r > 0�(3)

for all T and some finite constant Mκ (depending on κ(·))�
Let QT be any symmetric matrix. Because the characteristic function of Z ′

TQTZT is
given by ϕT (t)= |I − 2itQT |−1/2� it can be shown that

E|Z ′
TQTZT |k= (−1)k/2

dk

dtk
ϕT (t)

∣∣∣∣
t=0

≤ ‖QT‖k (2k)!2kk! ≤ 2‖QT‖k(2k)k exp(−k)

for any even number k� where ‖QT‖ = max(| tr(QT)|�
√

tr(Q2
T ) ) and the second in-

equality follows from Stirling’s formula. (The first inequality is sharp in the sense that
equality holds whenever QT = diag(‖QT‖�0� � � � �0)�) For any r ∈ [1�∞)�

E|Z ′
TQTZT |r ≤ (E|Z ′

TQTZT |kr )r/kr ≤ 2‖QT‖r[2(r + 1)]r exp(−r)�

where kr denotes the smallest even number exceeding r� the first inequality follows
from the Hölder inequality, and the second inequality uses 2kr ≤ 2(r+1)� By Markov’s
inequality,

Pr[|Z ′
TQTZT |> 2‖QT ‖(r + 1)] ≤ 2 exp(−r)� r ∈ [1�∞)�(4)

Elementary manipulations can be used to show that ‖Υc
T − Υ̇ c

T‖ ≤ cMκ�ψT
−1 for some

finite constant Mκ�ψ (depending on κ(·) and {ψj}). As a consequence,

∆c1�T ≤ Pr
[|Z ′

T (Υ
c
T − Υ̇ c

T )ZT |> 2‖Υc
T − Υ̇ c

T ‖(logT + 1)
]

+ Pr
[|Z ′

T Υ̇
c
TZT |< 2‖Υc

T − Υ̇ c
T‖(logT + 1)

]
≤ 2T−1 + 2c−1Mκ‖Υc

T − Υ̇ c
T ‖(logT + 1)

≤ 2T−1 + 2MκMκ�ψT
−1(logT + 1)

= O(T−1 logT)�

where the first inequality uses Sargan and Mikhail (1971, Theorem 1) and the second
inequality uses (3) and (4).
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For any i� T ≥ 1� it can be shown that Z ′
2i−1T

Υ̇ c
2i−1T

Z2i−1T =dZ ′
2iT Ϋ

c
2iTZ2iT and

Z ′
2iT Υ̇

c
2iTZ2iT =dZ ′

2iT

���

Υ
c
2iTZ2iT � where

Ϋ c
2iT =




1 0 0 0

0 0 0 0

0 0 −c 1
2 Σ̇DD�2i−1T −c 1

2 Σ̇DD�2i−1T

0 0 −c 1
2 Σ̇DD�2i−1T −c 1

2 Σ̇DD�2i−1T


 �

���

Υ
c
2iT =




1 0 0 0

0 −c ���
σ00�2iT −c ���

σ ′
10�2iT −c ���

σ ′
20�2iT

0 −c ���
σ10�2iT −c ���

Σ11�2iT −c ���

Σ
′
12�2iT

0 −c ���
σ20�2iT −c ���

Σ21�2iT −c ���

Σ22�2iT


 �

���
σ00�2iT = Σ̇2iT (1�1)�

���
σ10�2iT and

���
σ20�2iT are (2i−1T − 1)-vectors whose jth elements

are Σ̇2iT (2j + 1�1) and Σ̇2iT (2j�1)� respectively, while
���

Σ11�2iT �
���

Σ21�2iT , and
���

Σ22�2iT are
(2i−1T − 1)× (2i−1T − 1) matrices whose (j�k)th elements are Σ̇DD�2iT (2j+ 1�2k+ 1)�
Σ̇DD�2iT (2j�2k+ 1), and Σ̇DD�2iT (2j�2k)� respectively.

Using the relation Σ̇DD�2iT (2j�2k)= 1
2 Σ̇DD�2i−1T (j�k)� it can be shown that each ele-

ment of
���

Υ
c
2iT − Ϋ c

2iT is bounded in absolute value by cM∗
κ(2

iT )−2 for some finite constant
M∗

κ (depending on κ(·))� In particular, ‖ ���

Υ
c
2iT − Ϋ c

2iT‖< cM∗
κ2−iT−1� As a consequence,

∆c2�T =
∞∑
i=1

∣∣Pr
(
Z ′

2iT

���

Υ
c
2iTZ2iT ≤ 0

) − Pr
(
Z ′

2iT Ϋ
c
2iTZ2iT ≤ 0

)∣∣

≤
∞∑
i=1

Pr
[∣∣Z ′

2iT

( ���

Υ
c
2iT − Ϋ c

2iT

)
Z2iT

∣∣> 2
∥∥ ���

Υ
c
2iT − Ϋ c

2iT

∥∥(log(2iT )+ 1)
]

+
∞∑
i=1

Pr
[∣∣Z ′

2iT Υ̇
c
2iTZ2iT

∣∣< 2
∥∥ ���

Υ
c
2iT − Ϋ c

2iT

∥∥(log(2iT )+ 1)
]

≤ 2
∞∑
i=1

2−iT−1 +
∞∑
i=1

c−1Mκ2
∥∥ ���

Υ
c
2iT − Ϋ c

2iT

∥∥(i log 2 + logT + 1)

≤ 2T−1 + 2MκM
∗
κT

−1(2 log 2 + logT + 1)

= O(T−1 logT)�

where the first inequality uses Sargan and Mikhail (1971, Theorem 1) and the second
inequality uses (3) and (4).
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