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SEMIPARAMETRIC POWER ENVELOPES FOR TESTS OF
THE UNIT ROOT HYPOTHESIS

BY MICHAEL JANSSON1

This paper derives asymptotic power envelopes for tests of the unit root hypothe-
sis in a zero-mean AR(1) model. The power envelopes are derived using the limits of
experiments approach and are semiparametric in the sense that the underlying error
distribution is treated as an unknown infinite-dimensional nuisance parameter. Adap-
tation is shown to be possible when the error distribution is known to be symmetric
and to be impossible when the error distribution is unrestricted. In the latter case, two
conceptually distinct approaches to nuisance parameter elimination are employed in
the derivation of the semiparametric power bounds. One of these bounds, derived un-
der an invariance restriction, is shown by example to be sharp, while the other, derived
under a similarity restriction, is conjectured not to be globally attainable.

KEYWORDS: Unit root testing, semiparametric efficiency.

1. INTRODUCTION

THE UNIT ROOT TESTING PROBLEM is one of the most intensively studied
testing problems in econometrics.2 During the past decade or so, consider-
able effort has been devoted to the construction of unit root tests enjoying
good power properties.3 Asymptotic power envelopes for unit root tests in
the Gaussian AR(1) model were obtained by Elliott, Rothenberg, and Stock
(1996; henceforth ERS) and Rothenberg (2000), while Rothenberg and Stock
(1997) derived asymptotic power envelopes under rather general distributional
assumptions. Rothenberg and Stock (1997) found that significant power gains
(relative to the Gaussian case) are available in cases where the underlying dis-
tribution is non-Gaussian and known, and pointed out that this finding is in
perfect analogy with well known properties of the location model and the sta-
ble AR(1) model. The purpose of this paper is to investigate the extent to
which departures from normality can be exploited for power purposes also in
the (arguably) more realistic case where the error distribution is unknown. To

1The author thanks Marcelo Moreira, Whitney Newey, Jack Porter, Jim Powell, Jim Stock, two
anonymous referees, and seminar participants at Aarhus, Berkeley, Boston University, Brown,
the 2005 CEME conference, Harvard/MIT, Michigan, Penn, UC Davis, UCLA, UCSD, Wiscon-
sin, and the 2005 World Congress of the Econometric Society for helpful comments. Financial
support from CREATES (funded by the Danish National Research Foundation) is gratefully ac-
knowledged.

2Important early contributions include Dickey and Fuller (1979, 1981), Phillips (1987), and
Phillips and Perron (1988). For reviews, see Stock (1994), Phillips and Xiao (1998), and Haldrup
and Jansson (2006).

3In parallel with the literature exploring power issues, a different branch of the unit root liter-
ature has focused on improving the size properties of unit root tests. Noteworthy contributions in
that direction include Ng and Perron (1995, 2001), Perron and Ng (1996), Paparoditis and Politis
(2003), and Park (2003).
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do so, the paper develops asymptotic power envelopes that are semiparametric
in the sense that they explicitly account for the fact that the underlying error
distribution is known only to belong to some “big” set of error distributions.

An interesting methodological conclusion emerging from the existing litera-
ture on optimality theory for unit root testing is that although there is a funda-
mental sense in which the unit root testing problem is nonstandard, the prob-
lem is still amenable to analysis using existing tools (such as those developed
for exponential families and elegantly summarized in Lehmann and Romano
(2005)). An important methodological motivation for the present work is the
general question of whether semiparametric power envelopes for nonstandard
testing problems can be obtained by a conceptually straightforward adaptation
of semiparametric methods developed for standard problems. For a variety of
reasons, the unit root testing problem seems like a natural starting point for
such an investigation and although some of the results obtained in this paper
are likely to be somewhat specific to unit root testing, it is hoped that interest-
ing general methodological lessons can be learned from studying that particu-
lar problem.

Semiparametric testing theory has been developed for models admitting
locally asymptotically normal (LAN) likelihood ratios (e.g., Choi, Hall, and
Schick (1996)). In those models, testing theory “has little more to offer than
the comforting conclusion that tests based on efficient estimators are efficient”
(van der Vaart (1998)). On the other hand, little (if any) work has been done
for models outside the LAN class, such as the AR(1) model with a root close
to, and possibly equal to, unity. The latter model, which is the model under
study here, admits likelihood ratios which are locally asymptotically quadratic
(LAQ) in the sense of Jeganathan (1995). No universally accepted definition
of estimator efficiency exists for LAQ models.4 Moreover, the duality between
point estimation and hypothesis testing typically breaks down in models whose
likelihood ratios are LAQ but not LAN.5 For these reasons, it appears nec-
essary to develop semiparametric envelopes for the unit root testing problem
from first principles.

As is the approach to semiparametric efficiency in standard estimation prob-
lems (e.g., Begun, Hall, Huang, and Wellner (1983), Bickel, Klaassen, Ritov,
and Wellner (1998), Newey (1990)), the approach to optimality theory taken
in this paper is based on Stein’s (1956) insight that a testing problem is no eas-
ier in a semiparametric model than in any parametric submodel of the semi-

4Gushchin (1995) established an optimality property of maximum likelihood estimators. See
also Jeganathan (1995) and Ling and McAleer (2003).

5An exception occurs in models where the limiting experiment becomes a member of a lin-
ear exponential family upon conditioning on statistics with certain ancillarity properties. A well
known example is models with locally asymptotically mixed normal (LAMN) likelihood ratios,
which arise in cointegration analysis (e.g., Phillips (1991), Stock and Watson (1993)). For an
example that does not belong to the LAMN class, see Eliasz (2004) and Jansson and Moreira
(2006).
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parametric model. Consequently, the semiparametric power envelope will be
defined as the infimum of the power envelopes associated with smooth para-
metric submodels embedding the true error density. Although the unit root
testing problem differs from standard testing problems in important respects,
it turns out that some of the qualitative findings obtained from the least favor-
able submodel approach bear a noticeable resemblance to the well known re-
sults for the location model, a possibly surprising result in light of the fact that
the semiparametric properties of the stable AR(1)model are substantially dif-
ferent from those of the location model. Specifically, it is shown in this paper
that although the unit root testing problem admits adaptive procedures when
the error distribution is known to be symmetric, adaptation is impossible when
the error distribution is (essentially) unrestricted. Nevertheless, and in sharp
contrast to the location model, the unit root model with an unrestricted error
distribution has the property that although adaptation is impossible, depar-
tures from normality can be exploited for efficiency purposes. (The magnitude
of the available power gains depends on the shape of the error distribution
through its Fisher information for location and can be quite substantial when
the error distribution has fat tails.)

The paper proceeds as follows. To set the stage, Section 2 introduces the
model and the testing problem under consideration, while Section 3 studies
unit root testing under the assumption that the error distribution is known.
Section 4 extends the results of Section 3 to parametric submodels. Employing
those results, Sections 5 and 6 obtain semiparametric power envelopes for the
cases of symmetric and (essentially) unrestricted error distributions, respec-
tively. The consequences of accommodating deterministic components and/or
serial correlation in the error are briefly explored in Section 7, while Section 8
offers concluding remarks. Proofs of the main results are provided in the Ap-
pendix.

2. PRELIMINARIES

Suppose the observed data y1� � � � � yT are generated by the zero-mean AR(1)
model

yt = ρyt−1 + εt�(1)

where y0 = 0 and the εt are unobserved independent and identically distrib-
uted (i.i.d.) errors from an unknown continuous distribution with full support,
zero mean, and finite variance. Let f denote the unknown error density. Fur-
thermore, and without loss of generality, let the (unknown) error variance be
normalized to 1.

The objective of this paper is to develop asymptotic power envelopes for
the unit root testing problem in the zero-mean AR(1) model, treating f as



1106 MICHAEL JANSSON

an unknown nuisance parameter. In other words, the testing problem under
consideration is

H0 :ρ= 1 vs. H1 :ρ < 1�

and it is assumed to be known that f lies in some set F of densities. The main
goal of the paper is to develop sharp upper bounds on the asymptotic perfor-
mance of unit root testing procedures in models of this type, with special atten-
tion being devoted to semiparametric cases in which F is infinite-dimensional.

By Donsker’s theorem (e.g., Billingsley (1999)), the assumptions y0 = 0 and
εt ∼ i.i.d.(0�1) ensure that if ρ = 1, then yt is I(1) in the sense that the weak
limit of T−1/2y�T ·� is a Brownian motion, where �·� denotes the integer part
of the argument. While Donsker’s theorem is valid without the additional as-
sumption that the error distribution is continuous and has full support, most
of the statistical analysis conducted in this paper would be invalid without an
assumption of this kind.6 Specifically, the additional assumption on the error
distribution implies that the distributions of {y1� � � � � yT } induced by different
values of ρ are mutually absolutely continuous. Mutual absolute continuity is a
finite sample counterpart of the property of (mutual) contiguity, which plays a
prominent role in Le Cam’s (1972) theory of limits of experiments and will be
utilized throughout this paper.7

Because the purpose of this paper is to elucidate the role of F in optimal-
ity theory for unit root tests, Sections 3–6 study the zero-mean AR(1) model,
which deliberately assumes away deterministic components and serial correla-
tion in the error.8 Section 7 explores the consequences of relaxing these (im-
plausible) assumptions and finds, in perfect analogy with ERS’s results for the
Gaussian case, that the results obtained for the zero-mean AR(1) model ex-
tend readily to a model with an unknown mean and serial correlation in the
error, whereas the presence of a time trend affects the asymptotic power enve-
lope(s).

6If the innovation distribution has bounded support, then the conditional distribution of yt
given yt−1 has parameter-dependent support, a property which introduces nontrivial complica-
tions even in models with i.i.d. data (e.g., Hirano and Porter (2003), Chernozhukov and Hong
(2004)).

7The property of mutual contiguity is useful in part because it makes it possible to derive
conclusions about local asymptotic power functions from assumptions concerning the behavior
of certain statistics “under the null,” an attractive feature because assumptions of the latter kind
tend to be relatively easy to verify. Examples of readily verifiable assumptions required to hold
“under the null” are provided by Assumptions LAQ and LAQ* in Sections 3 and 4, respectively,
and the condition (15) that underlies the definition of adaptation employed in Section 5.

8The model (1) furthermore sets the initial condition y0 equal to zero and assumes away con-
ditional heteroskedasticity. Proceeding along the lines of Müller and Elliott (2003) and Boswijk
(2005), respectively, it may be possible to relax these assumptions, but no attempts to do so will
be made in this paper.



SEMIPARAMETRIC POWER ENVELOPES 1107

3. KNOWN ERROR DISTRIBUTION

In an attempt to further motivate the question addressed by this paper and
to facilitate the interpretation of the main results, this section discusses asymp-
totic optimality theory for the unit root testing problem under the counterfac-
tual assumption that the underlying error distribution is known (i.e., that F is
a singleton). Even if f is known, the unit root testing problem is nonstandard.
A well known manifestation of the nonstandard nature of the unit root testing
problem is that contiguous alternatives to the unit root null are of the form
ρ= 1 +O(1/T). Accordingly, the parameter of interest is henceforth taken to
be c = T(ρ− 1), the associated formulation of the unit root testing problem
being H0 : c = 0 vs. H1 : c < 0.

Any (possibly randomized) unit root test can be represented by means of a
test function φT : RT → [0�1] such that H0 is rejected with probability φT(Y)
whenever YT := (y1� � � � � yT )

′ = Y . The power function (with argument c) as-
sociated with φT is given by EρT (c)φT (YT ), where ρT(c) := 1 + c/T and the
subscript on E indicates the distribution with respect to which the expectation
is taken.

Define the log likelihood ratio function

L
f
T (c) :=

T∑
t=2

log f
(
�yt − c

T
yt−1

)
−

T∑
t=2

log f (�yt)�

For any α ∈ (0�1) and any sample size T , it follows from the Neyman–Pearson
lemma that the optimal size α unit root test against the point alternative c =
c̄ < 0 rejects for large values of LfT (c̄). The power (against the alternative c =
c̄) of this point optimal test gives the value of the size α power envelope at
c = c̄.

Under mild assumptions on f , the finite sample power envelope has an as-
ymptotic counterpart which depends on f only through a scalar functional.
A sequence of unit root tests φT is said to have asymptotic size α if

lim
T→∞

EρT (0)φT (YT )= α�

The asymptotic power envelope for unit root tests of asymptotic size α will be
derived under the following high-level assumption on f , in which op0�f (1) is
shorthand for “op(1) when H0 holds and ε has density f ” and Lf denotes the
set of functions 	f for which E[	f (ε)] = 0, E[ε	f (ε)] = 1, and 1 ≤ E[	f (ε)2]<
∞.

ASSUMPTION LAQ: If cT is a bounded sequence, then

L
f
T (cT )= cTSfT − 1

2
c2
TH

ff
T + op0�f (1)�
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where, for some 	f ∈Lf ,

S
f
T := 1

T

T∑
t=2

yt−1	f (�yt)� H
ff
T := Iff

T 2

T∑
t=2

y2
t−1� Iff :=E[	f (ε)2]�

Assumption LAQ is in the spirit of Jeganathan (1995) and implies that the
likelihood ratios are LAQ at ρ= 1 in the sense of that paper. In particular, it
follows from Donsker’s theorem and Chan and Wei (1988, Theorem 2.4) that

L
f
T (c)→d0�f Λf (c) := cSf − 1

2
c2Hff ∀c�(2)

where

Sf :=
∫ 1

0
W (r)dBf (r)� Hff := Iff

∫ 1

0
W (r)2 dr�

(W �Bf ) is a bivariate Brownian motion with

Var
(
W (1)
Bf (1)

)
=

(
1 1
1 Iff

)
�

and →d0�f is shorthand for “→d whenH0 holds and ε has density f .” Additional
discussion of Assumption LAQ, including sufficient conditions for its validity,
will be given at the end of this section.

Prohorov’s theorem (e.g., Billingsley (1999)) and Le Cam’s third lemma
(e.g., van der Vaart (2002)) can be used to show that if (2) holds, then every
subsequenceφT ′ admits a further subsequenceφT ′′ and a [0�1]-valued function
ψ for which

lim
T ′′→∞

EρT ′′ (c)φT ′′(YT ′′)=E[
ψ(Sf �Hff )exp(Λf (c))

] ∀c�(3)

If φT has asymptotic size α, then ψ in (3) satisfies E[ψ(Sf �Hff )] = α and it
follows from the Neyman–Pearson lemma that E[ψ(Sf �Hff )exp(Λf (c))] is
bounded from above by

Ψf(c�α) :=E[
ψf(Sf �Hff |c�α)exp(Λf (c))

]
�

where

ψf(Sf �Hff |c�α) := 1[Λf(c) >Kα(c;Iff )]�
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1[·] is the indicator function, and Kα(c;Iff ) is the 1 − α quantile of Λf(c).
These facts yield the following theorem, which generalizes a result of ERS to
non-Gaussian error distributions.9

THEOREM 1: If Assumption LAQ holds and φT has asymptotic size α, then

lim
T→∞

EρT (c)φT (YT )≤Ψf(c�α) ∀c < 0�(4)

The proof of Theorem 1 given above is based on Le Cam’s (1972) theory of
limits of experiments. Because f is assumed to be known, a Neyman–Pearson
test exists for every T and the use of the theory of limits of experiments can
be avoided (e.g., Rothenberg and Stock (1997)). On the other hand, the use of
the limits of experiments approach seems unavoidable when studying the mod-
els under consideration in the following sections. Specifically, the presence of
a nuisance parameter governing distributional shape makes it very difficult (if
not impossible) to derive a Neyman–Pearson-type test for any given T . In con-
trast, the limits of experiments approach is applicable also when f depends on
a nuisance parameter, because the limiting experiments associated with such
models do admit Neyman–Pearson-type tests.

The asymptotic power boundΨf(c�α) is attainable pointwise (in c) when f is
known, limT→∞ on the left-hand side of (4) equaling limT→∞ and the inequality
being sharp when φT(YT ) equals

φf�T (YT |c�α) := 1
[
cS

f
T − 1

2
c2H

ff
T > Kα(c;Iff )

]
�

the natural finite sample counterpart of ψf(Sf �Hff |c�α). Moreover, it was
found by Rothenberg and Stock (1997) that the local asymptotic power func-
tion associated with φf�T (·|c̄� α) is uniformly (in c) “close” to Ψf(c�α) if c̄ is
chosen appropriately. By implication, Ψf is a relevant benchmark.

The envelope Ψf depends on f only through Iff . It can be shown that Ψf

is strictly increasing in Iff and that Iff ≥ 1 with equality if and only if f is
the standard normal density. Moreover, ERS’s unit root tests, based on the
Gaussian (quasi-) likelihood, have local asymptotic power functions that are
invariant with respect to f . As a consequence, the Gaussian power envelopes
derived by ERS provide a lower bound on maximal attainable local asymptotic
power in models with non-Gaussian errors.

Figure 1 plots Ψf(·�0�05) for various values of Iff , thereby quantifying the
magnitude of the potential power gains, relative to procedures based on a

9Theorem 1 is essentially due to Rothenberg and Stock (1997), who obtained a result equiva-
lent to (4) under the (somewhat stronger) assumptions that (i) E[|ε|k + |	f (ε)|k]<∞ for some
k > 2, where 	f (ε) := ∂ log f (ε − θ)/∂θ|θ=0, and (ii) 	ff satisfies a linear Lipschitz condition,
where 	ff (ε) := ∂2 log f (ε− θ)/∂θ2|θ=0.
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FIGURE 1.—Power envelopes, known error distribution.

Gaussian quasi-likelihood, available in applications with nonnormal errors.10

Evidently, substantial power gains will be available (for models with Iff well
above unity) if it is possible to construct a unit root test which is computable
without knowledge of f and attains Ψf for every f ∈ F . Section 5 shows that
this situation occurs when F consists only of symmetric error densities. More
generally, Figure 1 suggests that nontrivial power gains will be available in sit-
uations where (attainable) semiparametric power envelopes are qualitatively
similar to Ψf in the sense that they lie well above the envelope corresponding
to the Gaussian distribution. Section 6 shows that this occurs even when F is
unrestricted.

10Consider the density given by fλ(ε) := C0
λ exp(−C1

λ|ε|λ), where λ > 1/2 and the constants C0
λ

and C1
λ are determined by the requirement∫ ∞

−∞
fλ(ε)dε=

∫ ∞

−∞
ε2fλ(ε)dε= 1�

The values λ = 2 and λ = 1 correspond to the standard normal and rescaled double exponen-
tial distributions, respectively, and the associated values of Iff are 1 and 2, respectively. More
generally, it can be shown that the value of Iff associated with fλ is given by

Iff (λ) := λ2 [∫ ∞
0 r2 exp(−rλ)dr][∫ ∞

0 r2(λ−1) exp(−rλ)dr]
[∫ ∞

0 exp(−rλ)dr]2
�

Because limλ↓1/2 Iff (λ) = ∞ and Iff (·) is continuous, the range of Iff (·) is [1�∞). Numerical
evaluation shows that Iff (0�7709)≈ 5 and Iff (0�6818)≈ 10, respectively.
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Assumption LAQ holds for a wide range of error distributions. For instance,
Jeganathan (1995) showed that Assumption LAQ is satisfied (with 	f = −ḟ /f )
under the following absolute continuity condition on f .

ASSUMPTION AC: The density f admits a function ḟ such that f (ε) =∫ ε

−∞ ḟ (r)dr for every ε ∈ R and
∫ ∞

−∞[ḟ (ε)2/f (ε)]dε <∞.

Under Assumption AC, 	f is the score function, evaluated at θ= 0, for θ in
the location model

Xi = θ+ εi�(5)

where the εi are i.i.d. with density f . Similarly, Iff is the Fisher information
for location associated with f . As a consequence, both 	f and Iff are readily
interpretable. In the location model (5), Assumption AC serves dual purposes:
it delivers the LAN property (i.e., a quadratic expansion of the log likelihood
ratio function) and enables nonparametric estimation of 	f . Assumption AC
will serve similar purposes in Theorems 4 and 6 of this paper.

The following Le Cam (1970) type of assumption is implied by Assump-
tion AC.11

ASSUMPTION DQM: The density f admits a function 	f such that, as |θ| → 0,

∫ ∞

−∞

(√
f (ε− θ)
f (ε)

− 1 − 1
2
θ	f (ε)

)2

f (ε)dε= o(θ2)�

For the purposes of establishing just the LAN property (in the location
model), it is well known that differentiability in quadratic mean (Assump-
tion DQM) suffices.12 It seems natural to ask if the model studied in this paper
exhibits a similar feature. An affirmative answer to that question is provided
by the following lemma, which therefore shows that the usefulness of Assump-
tion DQM extends beyond the class of models whose likelihood ratios enjoy
the LAN property.13

LEMMA 2: Assumption LAQ is implied by Assumption DQM.

11Additional discussion of the relationship between assumptions of the absolute continu-
ity (AC) and differentiability in quadratic mean (DQM) variety can be found in Le Cam (1986,
Section 17.3) and Le Cam and Yang (2000, Section 7.3).

12Indeed, van der Vaart (2002, p. 676) argued that Assumption DQM is “exactly right for
getting the LAN expansion (in the location model).” For an appreciation of differentiability in
quadratic mean, see Pollard (1997).

13A proof of Lemma 2 can be found in Jansson (2007).
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4. PARAMETRIC SUBMODELS

Relaxing the assumption that the error density is known, this section studies
unit root testing in parametric submodels. In the present context, a parametric
submodel is a model of the form (1) with f embedded in a parametric family
F := {f (·|η) :η ∈ R} of density functions satisfying∫ ∞

−∞
εf (ε|η)dε= 0 and

∫ ∞

−∞
ε2f (ε|η)dε <∞

for each value of the (nuisance) parameter η.
It is assumed that f (·)= f (·|0); that is, it is assumed that the true (but un-

known) value of η is zero. Moreover, the family F is assumed to be “smooth”
at η= 0. Among other things, “smoothness” will imply that the contiguous al-
ternatives to η = 0 are of the form η = O(1/

√
T). In recognition of this fact,

all subsequent formulations will employ a local reparameterization of the form
η= ηT(h) := h/√T , where the true (but unknown) value of the local parame-
ter h is zero.

Let the log likelihood ratio function associated with F be denoted by

LFT (c�h) :=
T∑
t=2

log f
[
�yt − c

T
yt−1

∣∣∣ηT(h)
]

−
T∑
t=2

log f [�yt|ηT(0)]�

and let Lη denote the class of functions 	η for which E[	η(ε)] = 0, E[ε	η(ε)] =
0, and E[	η(ε)2]<∞. The degree of smoothness assumed on the part of F is
made precise by the following high-level assumption, which generalizes As-
sumption LAQ to parametric submodels.

ASSUMPTION LAQ*: If (cT �hT ) is a bounded sequence, then

LFT (cT �hT )= (cT �hT )SFT − 1
2
(cT �hT )H

F
T (cT �hT )

′ + op0�f (1)�

where, for some 	F := (	f � 	η)′ ∈Lf ×Lη,

SFT :=
(
S
f
T

SηT

)
:=

( 1
T

∑T

t=2 yt−1	f (�yt)
1√
T

∑T

t=2 	η(�yt)

)
�

HF
T :=

(
H

ff
T H

fη
T

H
fη
T Hηη

T

)
:=

( Iff
T 2

∑T

t=2 y
2
t−1

Ifη
T 3/2

∑T

t=2 yt−1
Ifη
T 3/2

∑T

t=2 yt−1 Iηη

)
�

IF :=
( Iff Ifη
Ifη Iηη

)
:=E[	F(ε)	F(ε)′]�
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The requirement E[	F(ε)] = (0�0)′ of Assumption LAQ* is the familiar
zero-mean property of scores, while E[ε	F(ε)] = e1 := (1�0)′ will be a con-
sequence of the requirement

∫ ∞
−∞ εf (ε|η)dε= 0 under mild smoothness con-

ditions. As is true of Assumption LAQ, Assumption LAQ* is in the spirit of
Jeganathan (1995) and implies that the likelihood ratios are LAQ in the sense
of that paper. Moreover, proceeding as in the proof of Lemma 2 it can be
shown that Assumption LAQ* is implied by the following generalization of
Assumption DQM.

ASSUMPTION DQM*: The family F admits functions 	f and 	η such that, as
|θ| + |η| → 0,

∫ ∞

−∞

(√
f (ε− θ|η)
f (ε)

− 1 − 1
2
[θ	f (ε)+η	η(ε)]

)2

f (ε)dε

= o(θ2 +η2)�

The LAQ property delivered by Assumption LAQ* makes it possible to use
the limits of experiments approach to derive asymptotic power envelopes for
the unit root testing problem in a model where it is assumed to be known only
that f ∈ F . To describe the salient properties of the limiting experiment, let
(W �B′

F) := (W �Bf �Bη) be a trivariate Brownian motion with

Var
(
W (1)
BF(1)

)
=

(
1 e′

1

e1 IF

)
�(6)

It follows from standard weak convergence results that

(SFT �H
F
T )→d0�f (SF�HF)�

where

SF :=
(Sf
Sη

)
:=

(∫ 1
0 W (r)dBf (r)

Bη(1)

)
�

HF :=
( Hff Hfη

Hfη Hηη

)
:=

(Iff
∫ 1

0 W (r)
2 dr Ifη

∫ 1
0 W (r)dr

Ifη
∫ 1

0 W (r)dr Iηη

)
�

Using Prohorov’s theorem, Le Cam’s third lemma, and the result

LFT (c�h)→d0�f ΛF(c�h) := (c�h)SF − 1
2
(c�h)HF(c�h)

′ ∀(c�h)�

it can be shown that every subsequence φT ′ admits a further subsequence φT ′′
and a [0�1]-valued function ψ for which

lim
T ′′→∞

EρT ′′ (c)�ηT ′′ (h)φT ′′(YT ′′)=E[
ψ(SF�HF)exp(ΛF(c�h))

] ∀(c�h)�(7)
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Because the true, but unknown, value of h has been normalized to zero, as-
ymptotic power envelopes provide sharp upper bounds on limT→∞EρT (c)�ηT (0) ×
φT(YT ). In view of (7), these bounds can be obtained by maximizing

E
[
ψ(SF�HF)exp(ΛF(c�0))

] =E[
ψ(SF�HF)exp(Λf (c))

]
with respect toψ. As in Section 3, the tests under consideration will be assumed
to be such that the limiting test functions ψ satisfy

E[ψ(SF�HF)] = α�(8)

In an attempt to further ensure that the power envelopes account for the pres-
ence of the unknown nuisance parameter h, some additional restrictions will
be placed on ψ.

Two classes of test functions, motivated by two conceptually distinct ap-
proaches to nuisance parameter elimination in the limiting experiment, will
be considered. The first class is motivated by the fact that ψ is α-similar in the
limiting experiment if and only if

E
[
ψ(SF�HF)exp(ΛF(0�h))

] = α ∀h�(9)

Accordingly, a sequence φT is said to be locally asymptotically α-similar (in F)
if any ψ satisfying (7) also satisfies (9). The second class is motivated by a loca-
tion invariance property enjoyed by testing problems involving c in the limiting
experiment. As explained in a remark following the proof of Theorem 3, any
(location) invariant test in the limiting experiment admits a representation in
which ψ(SF�HF) depends on (SF�HF) only through (Sf�η�HF), where

Sf�η := Sf − Hfη

Hηη

Sη�

Accordingly, a sequence φT is said to be locally asymptotically α-invariant (in
F) if any ψ satisfying (7) also satisfies (8) and can be chosen such that

ψ(SF�HF)=E[ψ(SF�HF)|Sf�η�HF ]�(10)

It is shown in the proof of Theorem 3 that if (10) holds, then

E
[
ψ(SF�HF)exp(ΛF(c�h))

] =E[
ψ(SF�HF)exp(Λf�η(c))

]
�(11)

where

Λf�η(c) := cSf�η − 1
2
c2Hff�η� Hff�η :=Hff − H2

fη

Hηη

�

Because the right-hand side of (11) does not depend on h, the class of locally
asymptotically α-invariant tests is contained in the class of locally asymptoti-
cally α-similar tests. Both classes of tests contain most (if not all) existing unit
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root tests. In particular, it can be shown that both classes of tests contain the
point optimal tests of ERS as well as the “robust” unit root tests based on
M-estimators and/or ranks proposed by Herce (1996), Hasan and Koenker
(1997), Thompson (2004), and Koenker and Xiao (2004). On the other hand,
the restrictions imposed are not entirely vacuous, as it follows from Theorem 3
that they are violated by the “oracle” test based on φf�T unless the submodel
satisfies Ifη �= 0.

The next result generalizes Theorem 1 to parametric submodels. It is shown
in part (a) that

ΨS
F (c�α) :=E[

ψSF(SF�HF |c�α)exp(Λf (c))
]

provides an upper bound on local asymptotic power for locally asymptotically
α-similar tests, where

ψSF(SF�HF |c�α) := 1[Λf(c) >K
S
α(Sη� c;IF)]

and KS
α is the continuous function satisfying E[ψSF(SF�HF |c�α)|Sη] = α.14 The

envelope for locally asymptotically α-invariant tests is shown in part (b) to be
given by

ΨI
F(c�α) := E[

ψIF(SF�HF |c�α)exp(Λf (c))
]
�

where

ψIF(SF�HF |c�α) := 1[Λf�η(c) > K
I
α(c;IF)]

and KI
α(c;IF) is the 1 − α quantile of Λf�η(c).

THEOREM 3: (a) If Assumption LAQ* holds and φT is locally asymptotically
α-similar, then

lim
T→∞

EρT (c)�ηT (0)φT (YT )≤ΨS
F (c�α) ∀c < 0�(12)

(b) If, moreover, φT is locally asymptotically α-invariant, then

lim
T→∞

EρT (c)�ηT (0)φT (YT )≤ΨI
F(c�α) ∀c < 0�(13)

14A more explicit characterization of KS
α is given in the proof of Lemma 7 provided in Jansson

(2007).
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The bounds derived in Theorem 3 are attainable pointwise if F is known,
limT→∞ on the left-hand sides of (12) and (13) equaling limT→∞ and the in-
equalities becoming equalities when φT(YT ) is given by15

φSF�T (YT |c�α) := 1
[
cS

f
T − 1

2
c2H

ff
T > K

S
α(S

η
T � c;IF)

]

and

φIF�T (YT |c�α) := 1
[
cS

f�η
T − 1

2
c2H

ff�η
T > KI

α(c;IF)
]
�

respectively, where

S
f�η
T := SfT − H

fη
T

Iηη
SηT � H

ff�η
T :=Hff

T − H
fη2
T

Iηη
�

Because the class of locally asymptotically α-invariant tests is contained in
the class of locally asymptotically α-similar tests, the power envelopes satisfy
ΨI
F ≤ΨS

F by construction. Moreover, the inequality is strict whenever Ifη �= 0,
implying that the present model differs in an interesting way from models with
LAN likelihood ratios. In a Gaussian shift experiment (the limiting experiment
in a model with LAN likelihood ratios) with one element of the mean vector
being the parameter of interest and the others being unknown nuisance para-
meters, the class of α-similar tests contains the class of size α location invariant
tests. In other words, the natural counterparts of the restrictions (9) and (10)
are nested in the same way as they are here. Unlike the limiting experiment
of the model studied here, however, the two classes of restrictions give rise
to identical power envelopes in a Gaussian shift experiment (because the best
α-similar test is location invariant) and there is no ambiguity about what the
“correct” power envelope is.16 In contrast, because ΨI

F and ΨS
F differ whenever

Ifη �= 0, it is unclear which (if any) of these envelopes is the “correct” envelope
in the present context.

A potential problem with the power envelope ΨS
F is that it is perhaps “too

local” in the sense that it fails to adequately reflect the fact that the nui-
sance parameter h is unknown in the limiting experiment. Specifically, whereas
E[ψ(SF�HF)exp(ΛF(c�h))] will depend on h in general even if ψ satisfies (9),
the object being maximized, E[ψ(SF�HF)exp(Λf (c))], does not depend on h.

15The functions φSF�T and φIF�T are the natural finite sample counterparts of ψSF and ψIF , re-
spectively.

16This observation combined with the fact that (the counterpart of) local asymptotic α-
similarity is a weaker restriction than (the counterpart of) local asymptotic α-invariance in models
with LAN likelihood ratios would appear to explain why the latter restriction has received little
(if any) attention in the existing literature on semiparametric testing theory.
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One way to avoid this potential problem, which further helps clarify the rela-
tionship between (9) and (10), is to consider a minimax criterion. Using the
Hunt–Stein theorem (e.g., Lehmann and Romano (2005, Theorem 8.5.1)), it
can be shown that if ψ satisfies (9), then

inf
h∈R

E
[
ψ(SF�HF)exp(ΛF(c�h))

] ≤ΨI
F(c�α)�(14)

where the inequality becomes an equality when ψ=ψIF(·|c�α). By implication,
ΨI
F can be interpreted as a minimax power envelope for locally asymptotically

α-similar tests. Indeed, if φT is locally asymptotically α-similar, then

inf
H

lim
T→∞

min
h∈H

EρT (c)�ηT (h)φT (YT )≤ΨI
F(c�α) ∀c < 0�

where the inf is taken over all finite subsets H of R. (Moreover, the in-
equality becomes an equality and limT→∞ can be replaced by limT→∞ when
φT(·)=φIF�T (·|c�α).) This fact, a proof of which can be based on (14) and the
methods of van der Vaart (1991), would appear to support the conjecture that
ΨI
F is the correct power envelope. Additional substantiation of that conjecture

is provided by a remark at the end of this section.
Because profile likelihood procedures “work” in conventional (parametric

or even semiparametric) problems (e.g., Murphy and van der Vaart (1997,
2000)), it may be worth noting that ΨI

F has a profile likelihood interpretation.
Specifically, the function Λf�η appearing in the definition of ΨI

F satisfies

Λf�η(c)= max
h
ΛF(c�h)− max

h
ΛF(0�h)�

This is not merely a coincidence, as it follows from Lehmann and Romano
(2005, Problem 6.9) that the best location invariant tests are of the profile like-
lihood variety whenever the log likelihood is quadratic in the location parame-
ter.

Comparing the power envelopes of Theorems 1 and 3, it is seen that ΨS
F ≤

Ψf � the inequality being strict unless Ifη = 0. Therefore, the asymptotic power
bound(s) for unit root tests in a parametric submodel will be strictly lower than
the power bound in the model with a known error density unless the submodel
satisfies Ifη = 0. Because the assumption 	η ∈ Lη implies E[	f (ε)	η(ε)] = 0
only when 	f (ε) = ε, the only distribution (with full support and unit vari-
ance) for which the condition Ifη = 0 is satisfied for every smooth submodel
is the Gaussian distribution. Therefore, the point optimal tests of ERS are lo-
cally asymptotically α-similar/α-invariant in any smooth parametric submodel
for which f (·|0) is the Gaussian distribution. Conversely, if f is not Gaussian,
then the test φf�T (·|c�α) of the previous section violates (9) for some smooth
parametric submodel F with f (·|0) equal to the (true) density f� By implica-
tion, the concept of point optimality, which has proven successful when dealing
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with the curvature in the unit root model with a known density, cannot be used
to handle the nuisance parameter f . Specifically, a test of the form φf̄�T (·|c�α)
will not be “nearly efficient” even if f̄ is chosen carefully.

The results mentioned in the preceding paragraph bear a noticeable re-
semblance to the point estimation results for the location model, but dif-
fer in one important respect from the results for the stable AR(1) model.
In the location model, the Cramér–Rao bound is given by I−1

ff when f is
known and by (Iff − I2

fη/Iηη)−1 in parametric submodels, implying that the
bounds coincide if and only if Ifη = 0. Moreover, the sample mean, the quasi-
maximum likelihood estimator of θ based on the Gaussian distribution, is
regular in any submodel, whereas the quasi-maximum likelihood estimator
θ̂f := arg maxθ

∑
i log f (Xi − θ) based on the true density f is regular in a sub-

model F with f (·|0) = f if and only if the submodel has Ifη = 0, a condition
which is violated by some smooth submodels unless the true distribution hap-
pens to be Gaussian.

In the location model, the condition that Ifη = 0 in all smooth submodels
permitted by the set F of densities to which f is assumed to belong is simply
Stein’s (1956) necessary condition for adaptation. As is well known, this con-
dition is satisfied when f is assumed to be symmetric, but is violated when f is
unrestricted. In fact, adaptive estimation is possible in the symmetric location
model under Assumption AC (e.g., Beran (1974, 1978), Stone (1975)), whereas
the sample average attains the semiparametric efficiency bound in the location
model with an (essentially) unrestricted f (e.g., Levit (1975), Newey (1990)),
implying in particular that departures from normality cannot be exploited for
efficiency purposes in that model. The latter property is not shared by the sta-
ble AR(1) model, which admits adaptive estimators even when f is required
only to satisfy Assumption AC (e.g., Kreiss (1987a, 1987b), Drost, Klaassen,
and Werker (1997)). Therefore, although the stable AR(1) model and the lo-
cation model exhibit qualitatively identical behavior when the density is known
and/or symmetric, they exhibit drastically different behavior in the semipara-
metric case where f is treated as an unrestricted nuisance parameter.

Utilizing the results of this section, the following two sections develop power
envelopes in the semiparametric cases where f is either assumed to be sym-
metric or is left unrestricted. It will be shown in Section 5 that the unit root
model admits adaptive testing procedures when the errors are assumed to be
symmetric and satisfy Assumption AC. Consequently, the analogies pointed
out by Rothenberg and Stock (1997, p. 278) extend in a predictable way to
the semiparametric model in which only symmetry is assumed on the part of
the error distributions. In contrast, it is obvious from the results cited in the
previous paragraph that these analogies will not extend to the model in which
the error distribution is unrestricted. Studying the unit root model with an (es-
sentially) unrestricted f , Section 6 finds that the semiparametric properties of
the unit root model are related to the semiparametric properties of both the
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location model and the stable AR(1) model. On the one hand, a numerical
evaluation of the semiparametric power envelopes will show that these can be
well above the power envelope corresponding to the Gaussian distribution. By
implication, the unit root model shares some of the semiparametric properties
of the stable AR(1) model. On the other hand, the analytical characterization
of the semiparametric power envelope for the unit root model turns out to
be intimately related to the corresponding characterization of the semipara-
metric power envelope for the location model (and seemingly unrelated to the
characterization of the semiparametric power envelope for the stable AR(1)
model).

REMARK: A simple heuristic argument (which can easily be made rigorous)
shows that “plug-in” versions of φSF�T (YT |c�α) will typically fail to attain ΨS

F .
Indeed, consider

φ̃SF�T (YT |c�α) := 1
[
cS̃T − 1

2
c2H

ff
T > K

S
α(S̃

η
T � c;IF)

]
�

where, for some estimator η̃T of η (and assuming the derivatives exist),

S̃T := 1
T

T∑
t=2

yt−1	f (�yt |η̃T )� 	f (�yt|η) := ∂

∂θ
log f (�yt − θ|η)

∣∣∣∣
θ=0

�

S̃ηT := 1√
T

T∑
t=2

	η(�yt|η̃T )� 	η(�yt|η) := ∂

∂η
log f (�yt|η)�

If η̃T is asymptotically efficient (i.e., best regular), then T 1/2η̃T = I−1
ηηS

η
T +

op0�f (1) and 	f (·|η̃T ) should be asymptotically equivalent to

	f (·)+ 	fη(·)η̃T � 	fη(·) := ∂

∂η
	f (·|η)

∣∣∣∣
η=0

�

in the sense that

S̃T = 1
T

T∑
t=2

yt−1[	f (�yt)+ 	fη(�yt)η̃T ] + op0�f (1)= Sf�ηT + op0�f (1)�

Moreover, S̃ηT should be op0�f (1), so it should be the case that

φ̃SF�T (YT |c�α)= 1
[
cS

f�η
T − 1

2
c2H

ff
T > K

S
α(0� c;IF)

]
+ op0�f (1)�

Replacing η = 0 by an asymptotically efficient estimator is seen to have
a nonnegligible impact on the properties of the test. Indeed, the statistics
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φ̃SF�T (YT |c�α) and φSF�T (YT |c�α) are asymptotically equivalent if and only if
Ifη = 0. By implication, plug-in versions of φSF�T (YT |c�α) generally fail to at-
tain ΨS

F . In fact, it follows from the preceding display that φ̃SF�T (·|c�α) is locally
asymptotically α-invariant in F and therefore satisfies

lim
T→∞

EρT (c)�ηT (0)φ̃
S
T (YT |c�α;F)≤ΨI

F(c�α)�

The failure of the plug-in approach in this example casts serious doubt on the
relevance of the power envelope ΨS

F . In contrast, ΨI
F is easily shown to be at-

tained by plug-in versions of φIF�T (YT |c�α). It will be shown in Section 6 that
this property extends to semiparametric models.

5. SYMMETRIC ERROR DISTRIBUTIONS

This section studies unit root testing in the case where f is assumed to belong
to F S

AC, the set of symmetric densities satisfying Assumption AC. As discussed
in the previous section, Stein’s (1956) necessary condition for adaptation in
the location model is also necessary and sufficient for the power envelopes
Ψf �Ψ

S
F , and ΨI

F to coincide for every smooth submodel F permitted by the set
F of densities to which f is assumed to belong. This necessary condition is
satisfied when f is assumed to belong to F S

AC. Theorem 4, the main result of
this section, shows that the assumption f ∈ F S

AC is also sufficient for adaptive
unit root testing to be possible.

In models with LAN likelihood ratios, the duality between point estima-
tion and hypothesis testing in Gaussian shift experiments (e.g., Choi, Hall,
and Schick (1996)) implies that associated with any “reasonable” definition
of adaptation for point estimators (e.g., Bickel (1982), Begun et al. (1983))
there is a “reasonable” definition of adaptation for hypothesis tests. On the
other hand, because the duality between point estimation and hypothesis test-
ing breaks down in models with LAQ (but not LAN/LAMN) likelihood ratios,
some care must be exercised when defining adaptation in the context of the
model studied in this paper. In particular, although Ling and McAleer’s (2003)
definition of adaptation for point estimators generalizes Bickel’s (1982) def-
inition to models of the form considered in this paper, it is unclear whether
that definition can be translated into a reasonable definition of adaptation for
hypothesis tests.

It is by no means difficult to give a reasonable definition of adaptation for
tests of the unit root hypothesis. Nevertheless, it seems more attractive to work
with a notion of adaptation that depends only on the model under considera-
tion and makes no reference to any particular type of inference (e.g., point
estimation or hypothesis testing). Accordingly, the collection F S

AC is said to
permit adaptive inference if there exists a pair (ŜT � ĤT ) of statistics such that

(ŜT � ĤT )= (SfT �Hf
T )+ op0�f (1) ∀f ∈F S

AC�(15)
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Because (SfT �H
f
T ) is asymptotically sufficient when f is known and satisfies As-

sumption LAQ, the present definition is a natural formalization of the require-
ment that no information is lost (asymptotically) when the density is treated as
an unknown nuisance parameter belonging to the set F S

AC.17

Theorem 4 shows that F S

AC permits adaptive inference and uses that result
to derive an adaptation result for unit root tests. To describe the latter result,
suppose (ŜT � ĤT ) satisfies (15) and let

φ̂T (YT |c�α) := 1
[
cŜT − 1

2
c2ĤT > Kα(c; ÎT )

]
� ÎT := ĤT

1
T 2

∑T

t=2 y
2
t−1

�(16)

If (15) holds, then a test based on φ̂T (·|c�α) will be asymptotically equivalent
to the oracle test based on φf�T (·|c�α), an adaptation property in view of the
fact that φf�T (·|c�α) attains Ψf(·) and is locally asymptotically α-invariant in
F ⊆F S

AC whenever F satisfies Assumption DQM*.
As candidate “estimators” of SfT and Hf

T , consider

ŜT := 1
T

T∑
t=2

yt−1	̂
S

Tt(�yt)(17)

and

ĤT := ÎT
T 2

T∑
t=2

y2
t−1� ÎT := 1

T

T∑
t=1

	̂S

Tt(�yt)
2�(18)

where {	̂S

Tt : 2 ≤ t ≤ T } are estimators of 	f . Evidently, (ŜT � ĤT ) satisfies (15)
provided the 	̂S

Tt are such that (ŜT � ÎT )= (SfT �Iff )+op0�f (1) for every f ∈F S

AC.
This requirement is met by sample splitting estimators of the form

	̂S

Tt(�yt) :=
{
	̃S

T−τT (�yt|�yτT+1� � � � ��yT )� t = 1� � � � � τT ,

	̃S

τT
(�yt|�y1� � � � ��yτT )� t = τT + 1� � � � � T ,

(19)

where τT are integers with

0< lim
T→∞

τT/T ≤ lim
T→∞

τT/T < 1(20)

17Moreover, the definition generalizes in an obvious way to (other classes of densities and)
other models with a finite-dimensional asymptotically sufficient statistic and the resulting defini-
tion agrees with standard definitions in models where the likelihood ratios happen to be LAN.
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and 	̃S

T is a sequence of estimators such that, as T → ∞,∫ ∞

−∞

[
	̃S

T (ε|ε1� � � � � εT )− 	f (ε)
]2
f (ε)dε= op(1)(21)

and
√
T

∫ ∞

−∞
	̃S

T (ε|ε1� � � � � εT )f (ε)dε= op(1)�(22)

whenever ε1� � � � � εT are i.i.d. with density f ∈F S

AC.

THEOREM 4: (a) If (ŜT � ĤT ) is defined as in (17)–(22), then (15) holds.
(b) In particular, if f ∈F S

AC and φ̂T is defined as in (16)–(22), then

lim
T→∞

EρT (c)φ̂T (YT |c̄� α)= lim
T→∞

EρT (c)φf�T (YT |c̄� α) ∀c ≤ 0� c̄ < 0�

REMARK: (i) The main purpose of Theorem 4 is to demonstrate by exam-
ple that the bound Ψf is sharp when the errors are known to be symmetric.
Sample splitting estimators of 	f (with the null hypothesis imposed) are em-
ployed because such estimators make it possible to give a relatively elementary
proof of adaptation under fairly minimal conditions on f . In practice, it may
be desirable to use the full sample (along with some estimator of ρ) when esti-
mating 	f . It seems plausible that the methods of Koul and Schick (1997) can
be used to justify the use of such an estimator, but an investigation along these
lines will not be pursued in this paper. Also left for future work is a numerical
investigation of the extent to which the asymptotic power gains documented
here are available in small samples when 	f needs to be estimated. A similar
remark applies to Theorem 6 of the next section.

(ii) Estimators 	̃S

T that satisfy (21) and (22) can be found in Bickel (1982) and
Bickel et al. (1998). For further discussion of these high-level assumptions, see
Schick (1986) and Klaassen (1987).

6. UNRESTRICTED ERROR DISTRIBUTIONS

This section obtains semiparametric power envelopes for tests of the unit
root hypothesis in the case where f is (essentially) unrestricted in the sense
that is assumed to be known only that f belongs to FDQM, the class of densities
satisfying Assumption DQM. In the spirit of Stein (1956), the semiparametric
power envelopes will be defined as the infimum of the power envelopes asso-
ciated with parametric submodels embedding the true error density. In light
of the striking similarities between the results derived so far and the corre-
sponding results for the location model, it seems plausible that these asymp-
totic power envelopes should admit an interpretation analogous to the inter-
pretation of the semiparametric power envelope for tests in the location model.
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That conjecture turns out to be correct. Specifically, it turns out that the least
favorable submodels in the unit root model coincide with the least favorable
submodels in the location model.

In the location model, a least favorable submodel is any submodel for which
the associated 	η maximizes the squared correlation I2

fηI−1
ff I−1

ηη of 	f (ε) and
	η(ε) subject to the restriction 	η ∈Lη. As was seen in Section 4, this property
is shared by the unit root model in the Gaussian case, where Iff = 1 and any
submodel has Ifη = 0 (and is least favorable). Presuming that the property is
shared by the unit root model also if Iff > 1, it follows that the semiparametric
power envelopes for tests of the unit hypothesis should be given by the en-
velopes ΨS

F and ΨI
F associated with a submodel F for which 	η(ε)= 	f (ε)− ε.

Theorem 5 makes the preceding heuristics precise. Let (W �Bf ) and (Λf �Sf �
Hff ) be as in Section 3 and define

ΨS
f (c�α) :=E[

ψSf (Sf �Hff �SS
f |c�α)exp(Λf (c))

]
�

Ψ I
f (c�α) :=E[

ψIf (SI
f �HI

ff |c�α)exp(Λf (c))
]
�

where18

ψSf (Sf �Hff �SS
f |c�α) := 1[Λf(c) >K

S
α(SS

f � c;J LF
f )]�

ψIf (SI
f �HI

ff |c�α) := 1[ΛI
f (c) > K

I
α(c;J LF

f )]�

ΛI
f (c) := cSI

f − 1
2
c2HI

ff �

SS
f := Bf(1)−W (1)� J LF

f :=
( Iff Iff − 1
Iff − 1 Iff − 1

)
�

SI
f := Sf −

(∫ 1

0
W (r)dr

)
SS
f �

HI
ff :=Hff − (Iff − 1)

(∫ 1

0
W (r)dr

)2

�

Finally, for any f ∈ FDQM, let Jf denote the set of matrices IF associated with
submodels F satisfying Assumption DQM*.

THEOREM 5: If f ∈FDQM, then

inf
F : IF∈Jf

Ψ S
F (c�α)=ΨS

f (c�α) ∀c < 0�(23)

inf
F : IF∈Jf

Ψ I
F(c�α)=ΨI

f (c�α) ∀c < 0�(24)

18As defined, ψSf and ψIf are the test functions ψSF and ψIF of Section 4 that correspond to a
submodel with 	η(ε)= 	f (ε)− ε.
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The proof of (23) first shows that

inf
F : IF∈Jf

Ψ S
F (c�α)≥ΨS

f (c�α) ∀c < 0�(25)

The proof of (25) is constructive in the sense that it shows that the test based
on

φSf�T (YT |c�α) := 1
[
cS

f
T − 1

2
c2H

ff
T > K

S
α(S

f�S
T � c;J LF

f )

]

attains ΨS
f and is locally asymptotically α-similar in any smooth submodel,

where

S
f�S
T := T−1/2

T∑
t=2

[	f (�yt)−�yt]�

Then, using the fact that ΨS
F is continuous in IF , an inequality in the oppo-

site direction is obtained by showing that J LF
f belongs to the closure of Jf .

A similar strategy is used to obtain (24).
Figures 2 and 3 plot ΨS

f (·�0�05) and ΨI
f (·�0�05) for various values of Iff .

Comparing Figures 2 and 3 to Figure 1, the semiparametric power envelopes
are seen to lie well above the power envelope corresponding to the Gaussian

FIGURE 2.—Semiparametric power envelopes, similar tests.
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FIGURE 3.—Semiparametric power envelopes, invariant tests.

distribution.19 In spite of the fact that there is no obvious connection between
the analytical semiparametric efficiency results for the unit root model and
those for the stable AR(1) model, the numerical results displayed in Figures 2
and 3 are therefore qualitatively similar to the well known results for the sta-
ble AR(1) model insofar as Figures 2 and 3 suggest that nonnormality can be
a source of potentially substantial power gains in unit root tests even in the
absence of knowledge of the error distribution.

It is therefore of significant interest to investigate whether the power bounds
reported in Figures 2 and 3 are sharp. The fact that completely consistent (in
the terminology of Andrews (1986)) goodness of fit tests exist can be used to
show that for any f̄ ∈FDQM it is possible to construct tests that are locally effi-
cient at f̄ in the sense that they are locally asymptotically α-similar/α-invariant
in any smooth submodel F with f (·|0) ∈ FDQM and attain ΨS

f /Ψ
I
f when f = f̄ .

For instance, consider

φ∗
f̄ �T
(YT |c�α)

:= ϕT(YT |f̄ )φSf̄ �T (YT |c�α)+ [1 −ϕT(YT |f̄ )]φERS
T (YT |c�α)�

19The difference between the oracle bounds Ψf (·�0�05), ΨS
f (·�0�05), and ΨI

f (·�0�05) is no-
ticeable in most of the cases considered. Numerical evaluation shows that supc |Ψf (c�0�05) −
ΨS
f (c�0�05)| ≈ 0�02, 0�05, 0�07 and supc |Ψf (c�0�05)−ΨI

f (c�0�05)| ≈ 0�09, 0�15, 0�16 for Iff = 2,
5, 10.
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where φERS
T (YT |c�α) is the test function of ERS’s point optimal test and

ϕT(·|f̄ ) is a (goodness of fit) test function for which

ϕT(YT |f̄ )= 1(f = f̄ )+ op0�f (1) ∀f ∈FDQM�

This “shrinkage” test is asymptotically equivalent to φS
f̄ �T
(YT |c�α) when f = f̄

and asymptotically equivalent to ERS’s test otherwise. In particular, the test is
locally asymptotically α-similar in any smooth submodel F with f (·|0) ∈ FDQM

and attains ΨS
f when f = f̄ . A similar construction can be used to show that

ΨI
f provides a (pointwise) sharp upper bound on the local asymptotic power

attainable by means of tests that are locally asymptotically α-invariant in any
smooth submodel F with f (·|0) ∈FDQM.

The preceding construction is of theoretical interest because it demonstrates
by example that the bounds ΨS

f and ΨI
f are pointwise sharp. (In light of this it

seems reasonable to refer to ΨS
f and ΨI

f as semiparametric power envelopes.)
Nevertheless, the shrinkage test based on φS�∗

f̄ �T
(YT |c�α) is obviously not rec-

ommended for actual use and a more interesting question is therefore whether
globally (in f ) efficient testing procedures exist. On the one hand, reasoning
similar to that of the remark at the end of Section 4 shows that plug-in versions
of φSf�T (YT |c�α) generally fail to attain ΨS

f even if a valid parametric submodel
is postulated. In contrast, Theorem 6 will show that the assumption f ∈FAC is
sufficient for the envelope ΨI

f to be globally attainable.
Global attainability of ΨI

f follows from arguments analogous to those used
by Bickel (1982) to show feasibility of adaptive estimation of the slope coeffi-
cients in a standard regression model. The proof of (24) uses a finite sample
counterpart of SI

f given by

S
f�I
T := SfT −

(
1
T 3/2

T∑
t=2

yt−1

)
1√
T

T∑
t=2

[	f (�yt)−�yt]�(26)

Because

S
f�I
T = 1

T

T∑
t=2

yμt−1	f (�yt)+
(

1
T 3/2

T∑
t=2

yt−1

)
1√
T
(yT − y1)�

yμt−1 := yt−1 −
∑T

s=2 ys−1

T − 1
�

consistent estimation of Sf�IT turns out to be feasible even though 	f cannot
be estimated with small bias. Specifically, the fact that

∑T

t=2 y
μ
t−1 = 0 implies
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that (the natural counterpart of) the assumption (22) can be avoided when
constructing a consistent estimator of Sf�IT .20

To demonstrate by example that the bound ΨI
f is globally (in f ) sharp, let

φ̂IT (YT |c�α) := 1
[
cŜIT − 1

2
c2ĤI

T > K
I
α(c; Ĵ LF

T )

]
�(27)

where, for some integers τT with

lim
T→∞

τT = ∞ and lim
T→∞

τT/T = 0�(28)

and for some estimator 	̂T of 	f ,

ŜIT := 1
T

T∑
t=τT+1

yt−1	̂T (�yt)(29)

−
(

1
T 3/2

T∑
t=τT+1

yt−1

)(
1√
T

T∑
t=τT+1

[	̂T (�yt)−�yt]
)
�

ĤI
T := ÎT

T 2

T∑
t=τT+1

y2
t−1 − (ÎT − 1)

(
1
T 3/2

T∑
t=τT+1

yt−1

)2

�(30)

Ĵ LF
T :=

( ÎT ÎT − 1
ÎT − 1 ÎT − 1

)
� ÎT := 1

T

T∑
t=τT+1

	̂T (�yt)
2�(31)

As defined, φ̂IT (YT |c�α) is a plug-in version of the test φIf�T (YT |c�α) used in
the proof of Theorem 5(b). In the spirit of Bickel (1982), suppose

	̂T (�yt) := 	̃τT (�yt|�y1� � � � ��yτT )�(32)

where 	̃T is a sequence of estimators such that, as T → ∞,∫ ∞

−∞
[	̃T (ε|ε1� � � � � εT )− 	f (ε)]2f (ε)dε= op(1)(33)

whenever ε1� � � � � εT are i.i.d. with density f ∈FAC.

20Because adaptive estimation is impossible in the location model with an (essentially) unre-
stricted f , it follows from Klaassen (1987) that there exists no

√
T -unbiased estimator of 	f when

f is (essentially) unrestricted; that is, the natural counterpart of (22) cannot hold when f is (es-
sentially) unrestricted. In contrast, it follows from Bickel (1982) that the natural counterpart of
(21) is compatible with the assumption f ∈ FAC, so (33) is not void.
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THEOREM 6: If f ∈FAC and φ̂IT is defined as in (27)–(33), then

lim
T→∞

EρT (c)φ̂
I
T (YT |c̄� α)=E[

ψIf (SI
f �HI

ff |c̄� α)exp(Λf (c))
]

∀c ≤ 0� c̄ < 0�

By showing that ΨI
f is sharp, Theorem 6 demonstrates in particular that

there is a sense in which the tests of ERS are asymptotically inadmissible if
the assumption of Gaussian errors is relaxed. This result and the analogous
inadmissibility result deducible from Theorem 4 can be viewed as unit root
counterparts to the inadmissibility of the least squares estimator of β in the
model

Yi = βXi + εi�

where the εi are i.i.d. with density f and independent of the i.i.d. regressor Xi

whose mean is assumed to be different from zero. Specifically, Bickel (1982,
Example 2) showed that adaptive estimation of β is possible when f is symmet-
ric, while Schick (1987, Example 2) presented the efficient influence function
forβ without assuming symmetry of f and showed in particular that departures
from normality can be exploited for efficiency purposes also in that case.

7. EXTENSIONS

Sections 3–6 study a model which assumes away the presence of determinis-
tic components and/or serial correlation in the error. In the Gaussian case, the
consequences of relaxing these assumptions are well understood from the work
of ERS: parameters governing serial correlation in the error can be treated
“as if” they are known, as can the value of a constant mean in the observed
process, whereas the presence of a time trend affects the asymptotic power
envelope. This section briefly explores whether these qualitative conclusions
remain valid in models with non-Gaussian errors and finds that they do. In ad-
dition, and in perfect analogy with Section 4, it is found that also in models
with a time trend, the properties of parametric submodels depend on whether
or not Stein’s (1956) necessary condition for adaptation in the location model
is satisfied.

The consequences of accommodating deterministic components and/or ser-
ial correlation in the error will be explored by studying a model in which the
observed data y1� � � � � yT are generated as

yt = μ+ δt + ut� (1 − ρL)γ(L)ut = εt�(34)
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where μ and δ are the parameters governing the deterministic component, the
lag polynomial γ(L) = 1 − γ1L − · · · − γpL

p is of (known, finite) order p,21

the initial conditions are u0 = u−1 = · · · = u1−p = 0, and the εt are unobserved
i.i.d. errors from a continuous distribution with full support, zero mean, unit
variance, and density f . It is assumed that min|z|≤1 |γ(z)| > 0 so that the unit
root testing problem is that of testing H0 :ρ= 1 vs. H1 :ρ < 1. As in Section 4,
the density f is embedded in a smooth family of densities.

As before, local reparameterizations will be employed in the asymptotic
analysis. The appropriate reparameterizations of μ, δ, and γ(L) are of the
form

μ= μT(m) := μ0 +m� δ= δT (d) := δ0 + γ0(1)√
T
d�

γ(L)= γT(L;g) := γ0(L)+ g(L)√
T
�

where μ0 and δ0 are known constants, γ0(L) := 1 − γ1�0L − · · · − γp�0L
p is

a known lag polynomial with min|z|≤1 |γ0(z)| > 0, whereas the unknown para-
meters are m, d, and the coefficients g := (g1� � � � � gp)

′ of the lag polynomial
g(L) := −g1L− · · · − gpLp.22 Without loss of generality, it is assumed that μ0

and δ0 are equal to zero.
The log likelihood ratio function associated with the chosen reparameteri-

zation is of the form

LF
T (c�m�d�g�h)

:=L0
T (c�m�d�g�h)+

T∑
t=p+2

log f [εt(c�m�d�g)|ηT(h)]

−
T∑

t=p+2

log f [εt(0�0�0�0)|ηT(0)]�

where L0
T (c�h�m�d�g) represents the contribution of y1� � � � � yp+1 and

εt(c�m�d�g) := [1 − ρT(c)L]γT(L;g)
[
yt −m− d√

T
t

]

(t ≥ p+ 2)�

21Adapting the methods of Jeganathan (1997), it should be possible to allow γ(L) to be a
smoothly parameterized lag polynomial of infinite order. The qualitative conclusions of this sec-
tion will not be affected by such an extension, so to conserve space it will not be pursued here.

22The term γ0(1) appears in the definition of δT (d) because the resulting definition gives rise
to a limiting experiment which depends on d in a particularly simple way.
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If yt is generated by (34), (cT �hT �mT �dT �gT ) is a bounded sequence, and mild
smoothness conditions on F hold, then LF

T admits an expansion of the form

LF
T (cT �mT �dT �gT �hT )(35)

=LfδηT (cT �dT �hT )+Lμ(mT)+LγT (gT )+ op0�f (1)�

where op0�f (1) is shorthand for “op(1) whenH0 holds, (m�d�g)= (0�0�0), and
ε has density f ” and the functions LfδηT , Lμ, and LγT are given by

L
fδη
T (c�d�h) := cSfT − 1

2
c2H

ff
T + d[SδT (c)− cHfδ

T (c)] − 1
2
d2Hδδ(c)

+ h[SηT − cHfη
T − dHδη(c)] − 1

2
h2Hηη�

Lμ(m) :=
p∑
j=0

log f (�x1+j + γj�0m)−
p∑
j=0

log f (�x1+j) (γ0�0 := −1)�

LγT (g) := g′SγT − 1
2
g′Hγγg�

where

S
f
T := 1

T

T∑
t=p+2

xt−1	f (�xt)� H
ff
T := Iff

T 2

T∑
t=p+2

x2
t−1�

SδT (c) := 1√
T

T∑
t=p+2

ξc

(
t − 1
T

)
	f (�xt)�

H
fδ
T (c) := Iff

T 3/2

T∑
t=p+2

xt−1ξc

(
t − 1
T

)
�

SηT := 1√
T

T∑
t=p+2

	η(�xt)� H
fη
T := Ifη

T 3/2

T∑
t=p+2

xt−1�

SγT := 1√
T

T∑
t=p+2

(�yt−1� � � � ��yt−p)′	f (�xt)�
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(	f � 	η) and (Iff �Ifη�Hηη) are as in Section 4, xt := γ0(L)yt ,23 ξc(r) := 1 − cr,
Hδδ(c) := Iff (1 − c + c2/3), Hδη(c) := Ifη(1 − c/2), Hγγ := ΣγγIff , and Σγγ is
a p×p matrix with element (i� j) given by E[γ0(L)

−1εt−iγ0(L)
−1εt−j].

Because neither Lμ(·) nor LfδηT (·) is quadratic, the model with a deter-
ministic component does not admit LAQ likelihood ratios. Nevertheless, the
model is well suited for analysis using the limits of experiments approach, as
the interesting part of the limiting experiment belongs to a curved exponen-
tial family and is amenable to analysis using existing tools. Indeed, for every
(c�h�m�d�g),

[LfδηT (c�d�h)�Lμ(m)�LγT (g)] →d0�f [Λfδη(c�d�h)�Λμ(m)�Λγ(g)]�
where →d0�f is shorthand for “→d when H0 holds, (m�d�g)= (0�0�0), and ε
has density f ” and Λfδη(c�d�h), Λμ(m), and Λγ(g) are mutually independent
with

Λγ(g) := g′Sγ − 1
2
g′Hγγg� Sγ ∼N (0�Hγγ)�

Λμ(m)∼
p∑
j=0

log f (ε1+j + γj�0m)−
p∑
j=0

log f (ε1+j)�

and

Λfδη(c�d�h) := cSf − 1
2
c2Hff + d[Sδ(c)− cHfδ(c)] − 1

2
d2Hδδ(c)

+ h[Sη − cHfη − dHδη(c)] − 1
2
h2Hηη�

where (Sf �Hff �Sη�Hfη) and (W �Bf �Bη) are as in Section 4 and

Sδ(c) :=
∫ 1

0
ξc(r)dBf (r)� Hfδ(c) := Iff

∫ 1

0
W (r)ξc(r)dr�

The mutual independence of Λfδη(c�d�h) and [Λμ(m)�Λγ(g)] and the ad-
ditively separable structure of the right-hand side of (35) imply that the deriva-
tion of asymptotic power envelopes for tests of the unit root hypothesis can
proceed under the “as if” assumption that μ and the coefficients of γ(L) are
known. Moreover, the distribution of Λfδη(c�d�h) does not depend on the co-
efficients of γ0(L), so the power bounds developed in the previous sections

23The (presample) values of y0� � � � � y1−p are set equal to zero in the definition of x1� � � � � xp.
Because xt = yt when p= 0, the present definitions of SfT , Hff

T , SηT , and Hfη
T are consistent with

those of the previous sections.
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(under the assumption that d is known to equal zero) are valid also in the pres-
ence of a constant mean and/or serial correlation in the error. Furthermore,
the presence of a constant mean and/or serial correlation in the error does not
weaken the sense in which the bounds are sharp because

1
T

T∑
t=p+2

x̂t−1	f (�x̂t)= SfT + op0�f (1)�
Iff
T 2

T∑
t=p+2

x̂2
t−1 =Hff

T + op0�f (1)�

and so on, where x̂t := γ̂(L)(yt − μ̂), μ̂ := y1, and γ̂(L) is a discretized,
√
T -

consistent estimator of γ(L). These qualitative conclusions, which are in per-
fect agreement with those obtained by ERS in the Gaussian case, show in par-
ticular that the inability to do adaptive unit root testing when f is (essentially)
unrestricted is not an artifact of the assumption that the deterministic compo-
nent is known. Nevertheless, it is of some interest to investigate whether the
condition Ifη = 0 continues to play an important role also in models with a
time trend.

In the case where a time trend is accommodated, the relevant limiting exper-
iment is an extended version of that studied in Section 4. The extended limiting
experiment involves the three-dimensional parameter (c�d�h) and is charac-
terized by log likelihood ratios of the form Λfδη(c�d�h). As in Section 4, a
location invariance restriction can be used to remove the nuisance parameter
h, the associated log likelihood ratio being given by

Λfδ�η(c�d) := max
h
Λfδη(c�d�h)− max

h
Λfδη(0�0�h)

= cSf�η − 1
2
c2Hff�η + d[Sδ�η(c)− cHfδ�η(c)]

− 1
2
d2Hδδ�η(c)�

where (Sf�η�Hff�η) is as in Section 4 and

Sδ�η(c) := Sδ(c)− Hδη(c)

Hηη

Sη� Hfδ�η(c) :=Hfδ(c)− Hfη

Hηη

Hδη(c)�

Hδδ�η(c) :=Hδδ(c)− Hδη(c)
2

Hηη

�

Similarly, the remaining nuisance parameter d can be removed using the
principle of invariance.24 Indeed, in perfect analogy with ERS’s analysis of the

24The invariance condition in question is an asymptotic counterpart of the restriction that
inference should be invariant under transformations of the form

yt → yt + bδt� bδ ∈ R�



SEMIPARAMETRIC POWER ENVELOPES 1133

Gaussian case, Lehmann and Romano (2005, Problem 6.9) and the fact that
Λfδ�η(c�d) is quadratic in d for any fixed c can be used to show that the power
envelope associated with α-invariant tests in the extended limiting experiment
is given by

Ψδ
F (c�α) :=E[

1(Λf�δη(c) > K
δ
α(c;IF))exp(Λf (c))

]
�

where Kδ
α(c;IF) is the 1 − α quantile of

Λf�δη(c) := max
d
Λfδ�η(c�d)− max

d
Λfδ�η(0� d)

= cSf�η − 1
2
c2Hff�η + 1

2
[Sδ�η(c)− cHfδ�η(c)]2

Hδδ�η(c)
− 1

2
Sδ�η(0)2

Hδδ�η(0)
�

Analogous reasoning shows that if h is assumed to be known to equal zero,
then the power envelope associated with α-invariant tests in the relevant lim-
iting experiment is given by

Ψ̄ δ
F (c�α) :=E[

1(Λ̄f�δ(c) > K̄
δ
α(c;Iff ))exp(Λf (c))

]
�

where K̄δ
α(c;Iff ) is the 1 − α quantile of

Λ̄f�δ(c) := max
d
Λfδη(c�d�0)− max

d
Λfδη(0� d�0)

= cSf − 1
2
c2Hff + 1

2
[Sδ(c)− cHfδ(c)]2

Hδδ(c)
− 1

2
Sδ(0)2

Hδδ(0)
�

By inspection, it is seen that Λ̄f�δ(·) and Λf�δη(·) coincide if and only if Ifη = 0.
In other words, Stein’s (1956) necessary condition for adaptation in the loca-
tion model remains a necessary condition for adaptive unit root testing even
when a time trend is included in the deterministic component.

REMARK: Proceeding as in Section 6, it should be possible to give an
explicit characterization of the semiparametric power envelope Ψδ

f (c�α) :=
infF : IF∈Jf Ψ

δ
F (c�α) obtained by minimizing Ψδ

F (c�α) with respect to the sub-
model F and to demonstrate by example that the envelope is sharp. To con-
serve space, the details of these extensions are left for future work.

8. CONCLUSION

This paper has derived asymptotic power envelopes for tests of the unit root
hypothesis in a zero-mean AR(1) model. The power envelopes have been de-
rived using the limits of experiments approach and are semiparametric in the

(This transformation induces a transformation on the parameter δ of the form δ→ δ+ bδ, but
leaves all other parameters unchanged.)
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sense that the underlying error distribution is treated as an unknown infinite-
dimensional nuisance parameter. Adaptation has been shown to be possible
when the error distribution is known to be symmetric and to be impossible
when the error distribution is (essentially) unrestricted. In the latter case, two
conceptually distinct approaches to nuisance parameter elimination were em-
ployed in the derivation of the semiparametric power envelopes. One of these
power bounds, derived under an invariance restriction, was shown by example
to be sharp, while the other, derived under a similarity restriction, was conjec-
tured not to be globally attainable.

Both sets of restrictions imposed when deriving the semiparametric power
envelopes have natural counterparts in models with LAN likelihood ratios and
give rise to identical power envelopes in such models. The fact that the two
sets of restrictions give rise to distinct power envelopes in the present context
is perhaps surprising and clearly shows that not all methodological conclusions
from the existing literature on semiparametrics will generalize to models not
admitting LAN likelihood ratios. On the other hand, it is interesting that one
approach to nuisance parameter elimination (albeit one that has not received
much attention in the existing literature) “works” both in conventional models
and in the model studied herein. It would be of interest to investigate whether
this approach to nuisance parameter elimination also “works” in other non-
standard hypothesis testing problems involving infinite-dimensional nuisance
parameters.

APPENDIX: PROOFS

PROOF OF THEOREM 3: Let c < 0 be given.
(a) Because ΛF(0�h) = hSη − 1

2h
2Iηη, it follows from the completeness

properties of linear exponential families (e.g., Lehmann and Romano (2005,
Theorem 4.3.1)) that ψ satisfies (9) if and only if E[ψ(SF�HF)|Sη] = α.
Using this characterization of (9) and the properties of curved exponential
families (e.g., Lehmann and Romano (2005, Lemma 2.7.2)), the Neyman–
Pearson lemma can be used to show that if ψ satisfies (9), then E[ψ(SF�HF)×
exp(Λf (c))] ≤ΨS

F (c�α).
(b) By the Neyman–Pearson lemma, the right-hand side in (11) is no greater

than ΨI
F(c�α) if (8) holds. To complete the proof, it therefore suffices to show

that (11) holds whenever (10) does. Now, Sη ∼ N (0�Iηη) is independent of
(Sf�η�HF). Furthermore,

ΛF(c�h)=Λf�η(c)+
(
c
Hfη

Hηη

+h
)
Sη − 1

2

(
c
Hfη

Hηη

+h
)2

Iηη ∀(c�h)�(36)

These facts imply that E[exp(ΛF(c�h))|Sf�η�HF ] = exp(Λf�η(c)) for any (c�h),
from which the desired conclusion follows. Q.E.D.
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REMARK: Using (36) and the fact that Sη ∼ N (0�Iηη) is independent of
(Sf�η�HF), it can be shown that, for any c�h�bη and for any bounded, measur-
able function κ,

E[κ(Sf�η�Sη + bη�HF)ΛF(c�h)]

=E
[
κ(Sf�η�Sη�HF)ΛF

(
c�h+ bη

Iηη

)]
�

Let (Sf�η∞ � S
η
∞�H

F
∞) denote the weak limit of (Sf�ηT � S

η
T �H

F
T ) (under a sequence of

parameterizations of the form (ρ�η)= (ρT (c)�ηT (h)) for some fixed (c�h)).25

In view of the preceding display, any transformation of the form

(Sf�η∞ � S
η
∞�H

F
∞)→ (Sf�η∞ � S

η
∞ + bη�HF

∞)� bη ∈ R�(37)

induces a transformation of the parameter (c�h) given by (c�h) → (c�h +
bη/Iηη). Because h is a nuisance parameter, the testing problem under con-
sideration is invariant with respect to (location) transformations of the form
(37). The associated maximal invariant is (Sf�η∞ �H

F
∞). Condition (10) on the

test function ψ asserts that the test depends on (Sf�η∞ � S
η
∞�H

F
∞) only through

this maximal invariant.

The following simple lemma, a proof of which can be found in Jansson
(2007), is used in the proofs of Theorems 4 and 5.

LEMMA 7: There exists a (unique) continuous function KS
α such that ψSF satis-

fies E[ψSF(SF�HF |c�α)|Sη] = α.

PROOF OF THEOREM 4: If (a) holds, then (b) holds because it follows from
(a) and the continuity theorem (for convergence in probability) that if f ∈F S

AC,
then

φ̂T (YT |c̄� α)=φf�T (YT |c̄� α)+ op0�f (1)�

(The continuity theorem is applicable because it follows from Lemma 7 that
Kα is continuous.)

To prove (a) it suffices to show that

(ŜT � ÎT )= (SfT �Iff )+ op0�f (1) ∀f ∈F S

AC�

Throughout the proof, suppose H0 holds and let f ∈F S

AC be given.
The result ÎT = Iff + op(1) is (essentially) a special case of Drost, Klaassen,

and Werker (1997, Lemma 3.1) and can be proved in exactly the same way.

25When (c�h)= (0�0), (Sf�η∞ � Sη∞�H
F
∞)∼ (Sf�η�Sη�HF).
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The result ŜT = SfT + op(1) will be established by showing that

(ŜT�τ� ŜT − ŜT�τ)= (SfT�τ� SfT − SfT�τ)+ op(1)�

where ŜT�τ := T−1
∑τT

t=2 yt−1	̂
S

Tt(�yt) and SfT�τ := T−1
∑τT

t=2 yt−1	f (�yt). LetEτt−1[·]
denote conditional expectation given {ε1� � � � � εt−1} and {ετT+1� � � � � εT }. By con-
struction,

√
TEτt−1[	̂S

Tt(�yt)] is the same for every t ≤ τT , namely

√
TEτt−1[	̂S

Tt(�yt)] = √
T

∫ ∞

−∞
	̃S

T−τT (ε|ετT+1� � � � � εT )f (ε)dε= op(1)�

where the last equality uses (22). Furthermore, Eτt−1[	f (�yt)] = E[	f (ε)] = 0
and

∑τT
t=2 yt−1 =Op(T 3/2), so

1
T

τT∑
t=2

Eτt−1

[
yt−1(	̂

S

Tt(�yt)− 	f (�yt))
]

=
(

1
T 3/2

τT∑
t=2

yt−1

)(√
T

∫ ∞

−∞
	̃S

T−τT (ε|ετT+1� � � � � εT )f (ε)dε

)

= op(1)�
It now follows from Drost, Klaassen, and Werker (1997, Lemma 2.2) that
ŜT�τ = SfT�τ + op(1) because

1
T 2

τT∑
t=2

Eτt−1

[
y2
t−1(	̂

S

Tt(�yt)− 	f (�yt))2
] =

(
1
T 2

τT∑
t=2

y2
t−1

)
op(1)

= op(1)�

where the first equality uses the fact that, for every t ≤ τT ,

Eτt−1

[
(	̂S

Tt(�yt)− 	f (�yt))2
]

=
∫ ∞

−∞
[	̃S

T−τT (ε|ετT+1� � � � � εT )− 	f (ε)]2f (ε)dε

= op(1)�
the last equality being a consequence of (21).

Analogous reasoning can be used to show that ŜT − ŜT�τ = S
f
T − S

f
T�τ +

op(1). Q.E.D.

PROOF OF THEOREM 5: Let f ∈FDQM be given.
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Equation (23). The inequality (25) follows from the fact that if F satisfies
Assumption DQM*, then φSf�T (·|c�α) is locally asymptotically α-similar in F
and satisfies limT→∞EρT (c)�ηT (0)φ

S
T (YT |c�α; f )=ΨS

f (c�α) (for every c < 0); see
Jansson (2007) for details.

Next, because f ∈ FDQM, it can be embedded in a family F satisfying As-
sumption DQM* and it follows from standard spanning arguments (e.g.,
Newey (1990, Appendix B)) that the collection of functions 	η (defined as in
Assumption DQM*) associated with such families F is dense in Lη. As a con-
sequence, the set Jf is dense in the set of symmetric 2 × 2 matrices IF for
which the first diagonal element equals Iff and (6) is positive semidefinite. In
particular, the fact that f ∈ FDQM implies that J LF

f belongs to the closure of
Jf .

To complete the proof of the inequality

inf
F : IF∈Jf

Ψ S
F (c�α)≤ΨS

f (c�α) ∀c < 0�(38)

it therefore suffices to show that ΨS
F (c�α) is a continuous function of IF . Be-

cause KS
α is continuous, the continuous mapping theorem can be used to show

that if the sequence IF�n is convergent, then ψSF�n(SF�n�HF�n|c�α) (defined from
IF�n in the natural way) converges in distribution. Using this fact and the dom-
inated convergence theorem, it can be shown that ΨS

F (c�α) is a continuous
function of IF .

Equation (24). The proof is similar to that of (23) and proceeds by showing
that

inf
F : IF∈Jf

Ψ I
F(c�α)≥ΨI

f (c�α) ∀c < 0(39)

and

inf
F : IF∈Jf

Ψ I
F(c�α)≤ΨI

f (c�α) ∀c < 0�(40)

Inequality (40) follows from arguments analogous to those used to prove (38).
To establish (39), let c < 0 be given and let F be any submodel satisfying

assumption LAQ*. Also, let (SFT �H
F
T ), (W �Bf �Bη) etcetera be as in Section 4

and define

φIf�T (YT |c�α) := 1
[
cS

f�I
T − 1

2
c2H

ff�I
T > KI

α(c;J LF
f )

]
�

where Sf�IT is defined in (26) and

H
ff�I
T :=Hff

T − (Iff − 1)

(
T−3/2

T∑
t=2

yt−1

)2

�
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The statistic φIf�T (YT |c�α) satisfies

lim
T→∞

EρT (c′)�ηT (h)φ
I
T (YT |c�α; f )=E[

ψIf (SI
f �HI

ff |c�α)exp(ΛF(c
′�h))

]
for every (c′�h). In particular, limT→∞EρT (c)�ηT (0)φ

I
T (YT |c�α; f )=ΨI

f (c�α), so
the proof of (39) can be completed by showing that φIf�T (·|c�α) is locally as-
ymptotically α-invariant in F .

To do so, it suffices to show that

E[ψIf (SI
f �HI

ff |c�α)|SF�HF ] =E[ψIf (SI
f �HI

ff |c�α)|Sf�η�HF ]�
A sufficient condition for this to hold is that (SI

f �HI
ff ) is independent of Sη

conditional on (Sf�η�HF). In turn, this conditional independence property fol-
lows from simple algebra and the fact that the conditional distribution of
(Sf �SS

f �Sη)′ givenW is normal with mean (
∫ 1

0 W (r)dW (r)�0�0)′ and variance⎛
⎜⎝
(Iff − 1)

∫ 1
0 W (r)

2 dr (Iff − 1)
∫ 1

0 W (r)dr Ifη
∫ 1

0 W (r)dr

(Iff − 1)
∫ 1

0 W (r)dr Iff − 1 Ifη
Ifη

∫ 1
0 W (r)dr Ifη Iηη

⎞
⎟⎠ �

Q.E.D.

PROOF OF THEOREM 6: Suppose H0 holds and let f ∈ FAC and c̄ < 0 be
given.

It suffices to show that

φ̂IT (YT |c̄� α)=φIf�T (YT |c̄� α)+ op(1)�
where φIf�T (·|c̄� α) was defined in the proof of Theorem 5. The displayed result
will follow from the convergence theorem (for convergence in probability) if it
can be shown that

ŜIT = Sf�IT�τ + op(1)= Sf�IT + op(1)�(41)

ĤI
T =Hff�I

T�τ + op(1)=Hff�I
T + op(1)�(42)

ÎT = Iff + op(1)�(43)

where Sf�IT and Hff�I
T are as in the proof of Theorem 5 and

S
f�I
T�τ := 1

T

T∑
t=τT+1

yt−1	f (�yt)

−
(

1
T 3/2

T∑
t=τT+1

yt−1

)(
1√
T

T∑
t=τT+1

[	f (�yt)−�yt]
)
�
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H
ff�I
T�τ := Iff

T 2

T∑
t=τT+1

y2
t−1 − (Iff − 1)

(
1
T 3/2

T∑
t=τT+1

yt−1

)2

�

The result (43) follows from Bickel (1982, Section 6.2(i)), while (42) follows
from (43), limT→∞ τT/T = 0, and simple algebra. The second equality in (41)
follows from limT→∞ τT/T = 0 and simple algebra. Finally, to establish the first
equality in (41), let 	̌T be a “bias-corrected” version of 	̂T given by

	̌T (�yt) := 	̃τT (�yt|�y1� � � � ��yτT )−
∫ ∞

−∞
	̃τT (ε|�y1� � � � ��yτT )f (ε)dε�

Reasoning analogous to that of the proof of Theorem 4 can be used to show
that

1
T

T∑
t=τT+1

yt−1[	̌T (�yt)− 	f (�yt)] = op(1)�

1√
T

T∑
t=τT+1

[	̌T (�yt)− 	f (�yt)] = op(1)�

The first equality in (41) can be established using these results and the fact that

ŜIT = 1
T

T∑
t=τT+1

yt−1	̌T (�yt)

−
(

1
T 3/2

T∑
t=τT+1

yt−1

)(
1√
T

T∑
t=τT+1

[	̌T (�yt)−�yt]
)
�

Q.E.D.
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PROOF OF LEMMA 2: Suppose f satisfies Assumption DQM.
The result �f ∈Lf follows from standard arguments. Specifically, E[�f (ε)] =

0 and E[�f (ε)2]<∞ by van der Vaart (2002, Lemma 1.8). Furthermore, using
van der Vaart (2002, Example 1.15), the property E[ε�f (ε)] = 1 can be de-
duced from the fact that the functional

∫ ∞
−∞ f (ε − θ)dε = θ is differentiable

in the ordinary sense and the sense of van der Vaart (2002, Definition 1.14).
Finally, by the Cauchy–Schwarz inequality, E[�f (ε)2] ≥E[ε2]/E[ε�f (ε)]2 = 1.

To establish the locally asymptotically quadratic (LAQ) property, let cT be a
bounded sequence. The log likelihood ratio LfT (cT ) admits the expansion

L
f
T (cT )= cT

T

T∑
t=2

yt−1�f (�yt)+
T∑
t=2

RTt

− 1
4

T∑
t=2

[
cT

T
yt−1�f (�yt)+RTt

]2

(1 +βTt)�

where RTt := Rf(�yt� cT yt−1/T)� βTt := β[cT yt−1�f (�yt)/T + RTt]� and the
defining properties of Rf(·) and β(·) are

√
f (ε− θ)
f (ε)

= 1 + 1
2
θ�f (ε)+ 1

2
Rf(ε�θ)�

log(1 + r)= r − 1
2
r2[1 +β(2r)]�

The proof of Lemma 2 will be completed by showing that

T∑
t=2

RTt = −1
4
c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op0�f (1)�(S1)

T∑
t=2

[
cT

T
yt−1�f (�yt)+RTt

]2

(1 +βTt)= c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op0�f (1)�(S2)

In the rest of the proof, suppose H0 holds and let ϑT be any positive sequence
for which ϑT → 0 and

√
TϑT → ∞ (as T → ∞).
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Equation (S1). Let R̃T t := 1(|cT yt−1/T | ≤ ϑT)RTt denote a truncated ver-
sion of RTt� Because max2≤t≤T |cT yt−1/

√
T | = Op(1) and

√
TϑT → ∞� the se-

quences R̃T t andRTt are asymptotically equivalent in the sense that
∑T

t=2RTt =∑T

t=2 R̃T t + op(1).
Now

Et−1(R̃
2
Tt)= 1

(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
Et−1

[
Rf

(
εt�
cT

T
yt−1

)2]

≤ Vf (ϑT)
c2
T

T 2
y2
t−1�

where Vf (ϑ) := sup|θ|≤ϑ�θ �=0 θ
−2E[Rf(ε�θ)2] and Et−1[·] denotes conditional ex-

pectation given {ε1� � � � � εt−1}. By Assumption DQM, limϑ↓0 Vf (ϑ) = 0. As a
consequence, using ϑT = o(1) and E(y2

t−1)= t − 1,

T∑
t=2

Et−1(R̃
2
Tt)≤ Vf (ϑT)E

(
c2
T

T 2

T∑
t=2

y2
t−1

)
= Vf (ϑT)O(1)= o(1)�

implying that
∑T

t=2 R̃T t =
∑T

t=2Et−1(R̃Tt)+ op(1). Moreover,

T∑
t=2

Et−1(R̃Tt)= −1
4
Iff
c2
T

T 2

T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
y2
t−1

+
T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
rf

(
cT

T
yt−1

)
�

where rf (θ) := 1
4Iff θ2 +E[Rf(ε�θ)] and

1
T 2

T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
y2
t−1 = 1

T 2

T∑
t=2

y2
t−1 + op(1)

because max2≤t≤T |cT yt−1/
√
T | =Op(1) and

√
TϑT → ∞. The proof of (S1) can

therefore be completed by showing that

T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
rf

(
cT

T
yt−1

)
= op(1)�

The relationship in the preceding display follows from ϑT = o(1) and the fact
that ∣∣∣∣∣

T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
rf

(
cT

T
yt−1

)∣∣∣∣∣ ≤ vf (ϑT)
c2
T

T 2

T∑
t=2

y2
t−1
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= vf (ϑT)Op(1)�

where vf (ϑ) := sup|θ|≤ϑ�θ �=0 θ
−2|rf (θ)| = o(1) as ϑ ↓ 0 (Pollard (1997,

Lemma 1)).
Equation (S2). To prove (S2), it suffices to show that

T∑
t=2

[
cT

T
yt−1�f (εt)+RTt

]2

= c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op(1)

and

max
2≤t≤T

∣∣β[cTT−1yt−1�f (εt)+RTt]
∣∣ = op(1)�

By Taylor’s theorem, β(r)→ 0 as |r| → 0. Moreover,

max
2≤t≤T

∣∣∣∣yt−1

T
�f (εt)

∣∣∣∣ ≤ max
2≤t≤T

∣∣∣∣ yt−1√
T

∣∣∣∣ max
2≤t≤T

∣∣∣∣�f (εt)√
T

∣∣∣∣ =Op(1)op(1)= op(1)

and max2≤t≤T |RTt | ≤
√∑T

t=2R
2
Tt . Therefore, the desired result will follow from

1
T 2

T∑
t=2

y2
t−1�f (εt)

2 = Iff
T 2

T∑
t=2

y2
t−1 + op(1)(S3)

and
T∑
t=2

R2
Tt = op(1)�(S4)

As noted by Jeganathan (1995, Lemma 24), (S3) can be deduced with the
help of the proof of Hall and Heyde (1980, Theorem 2.23) if it can be shown
that

1
T 2

T∑
t=2

Et−1

[
y2
t−1�f (εt)

21
(∣∣∣∣yt−1

T
�f (εt)

∣∣∣∣>

)]

= op(1) ∀
> 0�

To do so, let 
 > 0 be given and define Qf(r) := E[�f (ε)21(|�f (ε)| > r)]. Be-
cause Qf is nonincreasing and limr→∞Qf(r)= 0,

1
T 2

T∑
t=2

Et−1

[
y2
t−1�f (εt)

21
(∣∣∣∣yt−1

T
�f (εt)

∣∣∣∣>

)]

= 1
T 2

T∑
t=2

y2
t−1Qf

( √
T


|yt−1/
√
T |

)
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≤
(

1
T 2

T∑
t=2

y2
t−1

)
max
2≤t≤T

Qf

( √
T


|yt−1/
√
T |

)

=Op(1)op(1)= op(1)�

where the penultimate equality uses max2≤t≤T |yt−1/
√
T | =Op(1).

It can be shown that
∑T

t=2R
2
Tt =

∑T

t=2 R̃
2
Tt + op(1)� Moreover,

T∑
t=2

Et−1

[
R̃2
Tt1(|R̃T t |>
)

] ≤
T∑
t=2

Et−1(R̃
2
Tt)= op(1) ∀
> 0�

where the equality was established in the proof of (S1). A second applica-
tion of the proof of Hall and Heyde (1980, Theorem 2.23) therefore estab-
lishes (S4). Q.E.D.

PROOF OF LEMMA 7: For any b, any c < 0, any α ∈ (0�1)� and any symmetric
2 × 2 matrix IF for which

Var
(
W (1)
BF(1)

)
=

(
1 e′

1

e1 IF

)

is positive semidefinite, let KS
α(b� c;IF) be the 1 − α quantile of

G(W �Z�b� c;IF)

:= c
[∫ 1

0
W (r)dW (r)+ Hfη

Hηη

b+
√
Hff�η −

∫ 1

0
W (r)2 dr Z

]

− 1
2
c2Hff �

where Z ∼N (0�1) is independent ofW and Hfη�Hηη, etc. are as in Section 4.
The functionKS

α satisfies E[ψSF(SF�HF |c�α)|Sη] = α because it follows from
elementary facts about Brownian motions that

Sf�η − ∫ 1
0 W (r)dW (r)√

Hff�η − ∫ 1
0 W (r)

2 dr
∼N (0�1)

independent of W and Sη� where Sf�η and Sη are as in Section 4.
Continuity of KS

α follows from the fact that G(W �Z�bn� cn;IF�n) con-
verges in distribution to a continuous random variable whenever the se-
quence (bn� cn�IF�n) is convergent (and G(W �Z�bn� cn;IF�n) is well defined
for each n). Q.E.D.
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PROOF OF (27): Let f ∈ FDQM and c < 0 be given, suppose F satisfies As-
sumption DQM*, and let (SFT �H

F
T )� (W �Bf �Bη), etc. be as in Section 4. Be-

cause KS
α is continuous (Lemma 7) and

(S
f
T �H

ff
T � S

f�S
T � S

η
T )→d0�f (Sf �Hff �SS

f �Sη)�

the sequence φSf�T (·|c�α) satisfies

φSf�T (YT |c�α)→d0�f ψ
S
f (Sf �Hff �SS

f |c�α)�

It follows from these convergence results, Le Cam’s third lemma, and the result

LFT (c�h)→d0�f ΛF(c�h) := (c�h)SF − 1
2
(c�h)HF(c�h)

′ ∀(c�h)

that

lim
T→∞

EρT (c′)�ηT (h)φ
S
T (YT |c�α; f )

=E[
ψSf (Sf �Hff �SS

f |c�α)exp(ΛF(c
′�h))

]
for every (c′�h)� In particular, limT→∞EρT (c)�ηT (0)φ

S
T (YT |c�α; f ) = ΨS

f (c�α)�

implying that the proof of (27) can be completed by showing that φSf�T (·|c�α)
is locally asymptotically α-similar in F�

To do so, it suffices to show that E[ψSf (Sf �Hff �SS
f |c�α)|Sη] = α� Let

S⊥
η := Sη − Ifη

Iff − 1
SS
f �

Because Bη − Ifη(Iff − 1)−1(Bf −W ) and (W �Bf ) are independent, S⊥
η is

independent of (Sf �Hff �SS
f ) and

E[ψSf (Sf �Hff �SS
f |c�α)|SS

f �S⊥
η ] = E[ψSf (Sf �Hff �SS

f |c�α)|SS
f ] = α�

where the second equality is the defining property of KS
α� Because Sη is a func-

tion of (SS
f �S⊥

η )� it therefore follows from the law of iterated expectations that

E[ψSf (Sf �Hff �SS
f |c�α)|Sη] = E

(
E[ψSf (Sf �Hff �SS

f |c�α)|SS
f �S⊥

η ]∣∣Sη)
= α�

as was to be shown. Q.E.D.
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