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OPTIMAL INFERENCE IN REGRESSION MODELS WITH NEARLY
INTEGRATED REGRESSORS

BY MICHAEL JANSSON AND MARCELO J. MOREIRA1

This paper considers the problem of conducting inference on the regression coef-
ficient in a bivariate regression model with a highly persistent regressor. Gaussian as-
ymptotic power envelopes are obtained for a class of testing procedures that satisfy a
conditionality restriction. In addition, the paper proposes testing procedures that at-
tain these power envelopes whether or not the innovations of the regression model are
normally distributed.
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1. INTRODUCTION

THIS PAPER CONSIDERS the problem of conducting inference on the regres-
sion coefficient in a bivariate regression model with a highly persistent regres-
sor. Several papers that studied the problem of testing regression hypotheses
in the presence of nearly integrated regressors have pointed out its nonstan-
dard nature and/or proposed asymptotically valid testing procedures.2 On the
other hand, we know of only one paper, Stock and Watson (1996), that has
obtained testing procedures with demonstrable optimality properties in a re-
gression model with nearly integrated regressors.

Stock and Watson (1996) investigated tests that maximize a weighted aver-
age (local asymptotic) power criterion among tests of a certain level. The func-
tional form of tests obtained by maximizing a weighted average power criterion
depends on the underlying weighting function, implying that no uniformly most
powerful (UMP) test exists among the class of all tests that satisfy only a level
restriction. It therefore seems natural to ask whether it is possible to find “rea-
sonable” restrictions subject to which a UMP test (of a hypothesis on the re-
gression coefficient in a bivariate regression model with a nearly integrated
regressor) can be derived.

In an attempt to provide an affirmative answer to that question, the present
paper develops attainable finite sample and asymptotic efficiency bounds

1For comments and suggestions, we are grateful to a co-editor, three referees, Laura Chioda,
Guido Imbens, Benoît Perron, Jim Powell, Tom Rothenberg, Paul Ruud, Jim Stock, George
Tauchen, Ed Vytlacil, Mark Watson, and seminar participants at Berkeley, Harvard/MIT, Iowa
State, Montréal, Princeton, Stanford, the Aarhus Econometrics Conference at Svinkløv, the 2003
NBER Summer Institute, and the 2005 SBFSIF conference. We thank Sam Thompson for pro-
viding the MATLAB code used to implement the Campbell and Yogo (2005) testing procedure.

2The problems caused by the presence of nearly integrated regressors have been pointed out by
Cavanagh, Elliott, and Stock (1995), Elliott (1998), Elliott and Stock (1994), Jeganathan (1997),
and Stock (1997). Inference procedures that are valid in the presence of nearly integrated regres-
sors have been proposed by Campbell and Dufour (1997), Campbell and Yogo (2005), Cavanagh,
Elliott, and Stock (1995), Lanne (2002), Stock and Watson (1996), and Wright (1999, 2000).
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(power envelopes) under the assumption that the latent errors of the regres-
sion model are Gaussian white noise. In addition, it is shown that even if this
distributional assumption is dropped, it is possible to construct testing pro-
cedures whose local asymptotic power functions coincide with the Gaussian
power envelopes.3

Under the assumption of normality, the model exhibits the nonstandard fea-
ture of having a minimal sufficient statistic whose distribution belongs to a
curved exponential family (in the terminology of Efron (1975, 1978)). Quite
remarkably, it turns out that we can remove the statistical curvature from the
inference problem by conducting the analysis conditional on the values of sta-
tistics that are specific ancillary in the sense that their distribution does not
depend on the parameter of interest (but only on the nuisance parameter).
It is this insight that enables us to develop finite sample optimality theory and
motivates our asymptotic optimality theory, the development of which uses the
theory of locally asymptotically quadratic (LAQ) likelihood ratios (Jeganathan
(1995)) to show that the limiting experiment associated with our regression
model inherits the statistical properties of the finite sample model.

We study a model in which the error term of the equation of interest is a mar-
tingale difference sequence with respect to its lags and to current and lagged
values of the nearly integrated regressor. Although somewhat restrictive, this
model is of empirical relevance insofar as it captures the salient features of
the predictive regression model, a popular model in empirical finance.4 The
Gaussian version of the model enjoys the additional (expositional) advantage
that its finite sample statistical properties are in one-to-one correspondence
with the statistical properties of the associated limiting experiment, thereby
enabling us to introduce the main ideas of the paper without the use of asymp-
totics.

The paper proceeds as follows. Section 2 introduces the model. Sections
3 and 4 develop finite sample and asymptotic optimality theory under the as-
sumption that the latent errors of that model are Gaussian white noise. Sec-
tion 5 constructs testing procedures, which are asymptotically optimal under
the assumptions of Section 4, whose asymptotic validity requires less restrictive
assumptions than the efficient testing procedures derived under the assump-
tion of normality. Section 6 reports some numerical results, whereas Section 7
offers concluding remarks. Finally, all mathematical derivations have been rel-
egated to the Appendix.

3In particular, the normality assumption is shown to be least favorable in the sense that no
other distribution (of the latent independent and identically distributed errors) with mean zero
and the same covariance matrix gives rise to a smaller power envelope than does the Gaussian
distribution.

4Recent papers that studied have predictive regressions include Ang and Bekaert (2005),
Campbell and Yogo (2005), Ferson, Sarkissian, and Simin (2003), Lanne (2002), Lewellen (2004),
Polk, Thompson, and Vuolteenaho (2005), and Torus, Valkanov, and Yan (2005). See also
Stambaugh (1999) and the references therein.
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2. PREDICTIVE REGRESSION MODEL

Following Cavanagh, Elliott, and Stock (1995), we consider a bivariate
model in which the observed data {(yt� xt)′ : 1 ≤ t ≤ T } are generated by the
recursive system

yt = α+βxt−1 + εyt �(1)

xt = µx + vxt � vxt = γvxt−1 +ψ(L)εxt �(2)

where the following assumptions are made.5

ASSUMPTION A1: We have vx0 = 0.

ASSUMPTION A2: We have E(εt |εt−1� εt−2� � � �) = 0, E(εtε′
t |εt−1� εt−2� � � �) =

Σ for some positive definite matrix Σ, and supt E[‖εt‖2+	]<∞ for some 	 > 0,
where εt = (εyt � εxt )′.

ASSUMPTION A3: We have ψ(L) = 1 + ∑∞
i=1ψiL

i, where ψ(1) �= 0 and∑∞
i=1 i|ψi|<∞.

By design, this model captures the salient features of the predictive regres-
sion model, a popular model in empirical finance.6 Our goal is to construct one-
and two-sided tests of the null hypothesis β= β0, treating α, γ, and the ψ’s as
unknown nuisance parameters. Regarding the nuisance parameter γ, particu-
lar attention will be given to the (empirically relevant) case where the prede-
termined regressor xt−1 in (2) is highly persistent in the sense that γ is “close”
(but not necessarily equal) to unity.

The development of inference procedures proceeds in three steps. First,
Section 3 develops finite sample optimality theory under the assumption that
µx = 0, ψ(L) = 1, and εt is Gaussian white noise. Then, employing the same
assumptions, Section 4 develops asymptotic optimality theory under the as-
sumption that the persistence parameter γ is modeled as local-to-unity in the
sense that γ = 1 + T−1c for some fixed constant c. Finally, Section 5 proposes
testing procedures that enjoy asymptotic optimality properties under the as-
sumptions of Section 4 and are asymptotically valid under Assumptions A1–A3
and local-to-unity asymptotics.

5In Assumption A2 and elsewhere in the paper, ‖ · ‖ denotes the Euclidean norm and
(in)equalities that involve conditional expectations are assumed to hold almost surely.

6In a predictive regression, yt denotes a stock return in period t, xt−1 is a predictor observed
at time t − 1, and the hypothesis of interest is β= 0.
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3. OPTIMAL INFERENCE WITH GAUSSIAN ERRORS: FINITE SAMPLE THEORY

Consider the Gaussian model

yt = α+βxt−1 + εyt �(3)

xt = γxt−1 + εxt �(4)

where we make the following assumptions:

ASSUMPTION A1∗: We have x0 = 0.

ASSUMPTION A2∗: We have εt = (ε
y
t � ε

x
t )

′ ∼ i�i�d�N (0�Σ), where Σ is a
known, positive definite matrix.

If β is unrelated to α (as is assumed here), then testing problems that in-
volve β are invariant under location transformations of the form (yt� xt) →
(yt + a�xt), where a ∈ R. It therefore seems reasonable to consider only tests
that are invariant under location transformations of the y ’s. The statistic

MT = (y2 − y1� y3 − y1� � � � � yT − y1�x1�x2� � � � � xT )
′(5)

is a maximal invariant under this group of transformations. The log likeli-
hood L(·) associated with MT admits the quadratic expansion

L(β�γ)−L(0�0)= βSβ + γSγ − 1
2

(
β− σxy

σxx
γ

)2

Sββ − 1
2
γ2Sγγ�(6)

where L(0�0) is a constant (when interpreted as a function of β and γ) and

Sβ = σ−1
yy�x

T∑
t=1

xµt−1

(
yt − σxy

σxx
xt

)
� Sγ = σ−1

xx

T∑
t=1

xt−1xt − σxy

σxx
Sβ�

Sββ = σ−1
yy�x

T∑
t=1

xµ2
t−1� Sγγ = σ−1

xx

T∑
t=1

x2
t−1�

where xµt−1 = xt−1 − T−1
∑T

s=1 xs−1, σyy�x = σyy − σ−1
xx σ

2
xy , and Σ has been parti-

tioned conformably with εt .7
It follows from (6) and the factorization criterion that S = (Sβ�Sγ� Sββ�Sγγ)′

is a sufficient statistic for the distribution of the maximal invariant. When

7The log likelihood function L(·) is simply a profile log likelihood function obtained by max-
imizing the log likelihood function associated with the entire data vector with respect to the
location parameter α. The form of L(0�0) is of no importance for the statistical analysis of the
model, because L(0�0) drops out of all expressions that involve (log) likelihood ratios.
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studying invariant tests of H0 :β = β0, we can therefore restrict attention to
tests based on S. Any such test can be represented by means of a [0�1]-valued
function φ(·) such that H0 is rejected with probability φ(s) if S = s =
(sβ� sγ� sββ� sγγ)

′. The associated probability of rejecting H0 is Eβ�γφ(S), where
the subscript on E indicates the distribution with respect to which the expec-
tation is taken. Our aim is to explore the extent to which it is possible to maxi-
mize Eβ�γφ(S) uniformly in (β�γ) subject to “reasonable” restrictions onφ(·).

The distribution of S is a curved exponential family (in the terminology of
Efron (1975, 1978)), the minimal sufficient statistic being of dimension four,
whereas the parameter vector (β�γ) is of dimension two. (A precise statement
is provided in Lemma 1(a).) As a consequence, conventional optimality theory
for exponential families (e.g., Lehmann and Romano (2005)) does not apply.8
Nevertheless, it is possible to construct tests with interesting optimality proper-
ties because it turns out that a set of restrictions motivated by the conditionality
principle is sufficient to remove the statistical curvature from the problem.

Because the distribution of (Sββ�Sγγ) does not depend on β, the pair
(Sββ�Sγγ) is a specific ancillary for β (in the terminology of Basu (1977)).
In other words, (Sββ�Sγγ) is a statistic that would be ancillary if the value of
the nuisance parameter γ were known. A conditionality argument therefore
suggests that inference on β should be based on the conditional distribution
of (Sβ�Sγ) given (Sββ�Sγγ).9 A remarkable property of that conditional distri-
bution is given in part (b) of the following lemma.

LEMMA 1: Let {(yt� xt)′} be generated by (3) and (4) and suppose Assumptions
A1∗ and A2∗ hold.

(a) The joint distribution of S is a curved exponential family with density

fS(s;β�γ)=K(β�γ)f 0
S (s)

× exp
[
βsβ + γsγ − 1

2

(
β− σxy

σxx
γ

)2

sββ − 1
2
γ2sγγ

]
�

where f 0
S (·) is a density of S when β= γ = 0 and K(·) is defined by the require-

ment
∫

R4 fS(s;β�γ)ds= 1.
(b) The conditional distribution of (Sβ�Sγ) given (Sββ�Sγγ) is a linear expo-

nential family with density

fSβ�Sγ |Sββ�Sγγ (sβ� sγ|sββ� sγγ;β�γ)
= g(β�γ|sββ� sγγ)h(sβ� sγ|sββ� sγγ)exp(βsβ + γsγ)

8Proofs of optimality results in linear exponential families rely on the monotone likelihood
ratio property and (in testing problems with nuisance parameters) on completeness of minimal
sufficient statistics. Neither property holds in the curved exponential family studied here.

9Coincidentally, the specific ancillary (Sββ�Sγγ) turns out to equal the observed Fisher infor-
mation matrix, an object whose role in connection with conditional inference has been investi-
gated by, e.g., Efron and Hinkley (1978) and Lindsay and Li (1997) in a different context.



686 M. JANSSON AND M. J. MOREIRA

for some functions g(·) and h(·).

In view of Lemma 1(b), we can remove the curvature from the testing prob-
lem by conditioning on the specific ancillary (Sββ�Sγγ). It is this property that
enables us to use the classical results of Lehmann and Romano (2005) to find
UMP conditionally unbiased tests for one- and two-sided testing problems con-
cerning β.

First, consider the one-sided testing problem10

H0 :β= β0 vs. H1 :β>β0�

A test with test function φ(·) is conditionally η-unbiased if

Eβ0�γ[φ(S)|Sββ�Sγγ] ≤ η ∀γ ∈ R�

Eβ�γ[φ(S)|Sββ�Sγγ] ≥ η ∀β>β0�γ ∈ R�

Any conditionally η-unbiased test is conditionally η-similar in the sense that

Eβ0�γ[φ(S)|Sββ�Sγγ] = η ∀γ ∈ R�(7)

On the other hand, the properties of exponential families (e.g., Lehmann and
Romano (2005, Theorem 2.7.1)) can be used to show that a test is UMP among
conditionally η-similar tests only if it is conditionally η-unbiased. As a conse-
quence, a test is UMP conditionally η-unbiased if and only if it is UMP among
tests that satisfy (7).

Consider the test function φ∗
η(·) given by

φ∗
η(s)= 1[sβ > Cη(sγ� sββ� sγγ)]�(8)

where 1[·] is the indicator function, the conditional critical value function Cη(·)
is implicitly (and essentially uniquely) defined by the requirement11

Eβ0[φ∗
η(S)|Sγ�Sββ�Sγγ] = η�(9)

and the subscript γ on E has been omitted in recognition of the fact that the
distribution of Sβ conditional on (Sγ� Sββ�Sγγ) does not depend on γ (because
(Sγ� Sββ�Sγγ) is sufficient for γ for any fixed value of β). By construction, the
test based on φ∗

η(·) satisfies (7). In fact, it follows from Theorem 2(a) that the
test associated with φ∗

η(·) is the UMP conditionally η-unbiased test.

10Results for the one-sided testing problem H0 :β = β0 vs. H1 :β < β0 are completely analo-
gous and are omitted to conserve space.

11Cη(·) is “essentially unique” in the measure-theoretic sense. Specifically, any two conditional
critical value functions that satisfy (9) agree almost everywhere on the support of (Sγ� Sββ�Sγγ).
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Next, consider the two-sided testing problem

H0 :β= β0 vs. H2 :β �= β0�

In this case, a test is conditionally η-unbiased if its test function φ(·) satisfies

Eβ0�γ[φ(S)|Sββ�Sγγ] ≤ η ∀γ ∈ R�

Eβ�γ[φ(S)|Sββ�Sγγ] ≥ η ∀β �= β0�γ ∈ R�

It follows from Lemma 1(b) and the properties of exponential families (e.g.,
Lehmann and Romano (2005, Theorem 2.7.1)) that a level η test is condition-
ally η-unbiased only if its test function φ(·) satisfies

∂

∂β
Eβ�γ[φ(S)|Sββ�Sγγ]

∣∣∣∣
β=β0

= 0 ∀γ ∈ R�

In turn, this condition holds if and only if

Eβ0�γ[φ(S)Sβ|Sββ�Sγγ] = ηEβ0�γ[Sβ|Sββ�Sγγ] ∀γ ∈ R�(10)

As a consequence, the class of test functions that satisfy (7) and (10) contains
all test functions associated with tests that are conditionally η-unbiased. On
the other hand, it can be shown that a test is UMP among tests that satisfy
(7) and (10) only if it is conditionally η-unbiased.

Theorem 2(b) shows that a test is UMP conditionally η-unbiased if its test
function is given by

φ∗∗
η (s)= 1[sβ < Cη(sγ� sββ� sγγ)] + 1[sβ > Cη(sγ� sββ� sγγ)]�(11)

where Cη(·) and Cη(·) are implicitly (and essentially uniquely) defined by the
requirements

Eβ0[φ∗∗
η (S)|Sγ�Sββ�Sγγ] = η�(12)

Eβ0[φ∗∗
η (S)Sβ|Sγ�Sββ�Sγγ] = η ·Eβ0[Sβ|Sγ�Sββ�Sγγ]�(13)

THEOREM 2: Let {(yt� xt)′} be generated by (3) and (4), and suppose Assump-
tions A1∗ and A2∗ hold.

(a) If φ(·) satisfies (7), then

Eβ�γφ(S)≤Eβ�γφ∗
η(S) ∀β≥ β0�γ ∈ R�

(b) If φ(·) satisfies (7) and (10), then

Eβ�γφ(S)≤Eβ�γφ∗∗
η (S) ∀β ∈ R�γ ∈ R�
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REMARKS: (i) In most applications, the autoregressive parameter γ can be
assumed to lie in some subset Γ of R. In such cases, the condition (7) might
appear excessively strong, a more reasonable condition being

Eβ0�γ[φ(S)|Sββ�Sγγ] = η ∀γ ∈ Γ�(14)

Provided Γ contains an open interval, the properties of exponential families
(e.g., Lemma 1(b) and Lehmann and Romano (2005, Theorem 4.3.1)) can be
used to show that (14) implies that Eβ0[φ(S)|Sγ�Sββ�Sγγ] = η. It is the latter
property of conditionally similar tests that is used in the proof of Theorem 2.
A similar remark applies to (10). Therefore, although the optimality results of
Theorem 2 obviously reflect the fact that γ is assumed to be unknown, the (im-
plicit) assumption that γ can take on any real value is not crucial. On the other
hand, although our proofs go through for any open nonempty interval Γ , our
results will be more important empirically when there is substantial uncertainty
about the parameter γ.

(ii) Any conditionally η-similar test is η-similar in the sense that
Eβ0�γφ(S) = η for every γ ∈ R. It can be shown that the converse does not
hold. As a consequence, the class of η-similar tests is strictly greater than the
class of conditionally η-similar tests. It is an open question whether the test
based on φ∗

η(·) is UMP within the class of η-unbiased tests.
(iii) Studying a more general (but closely related) model, Stock and Watson

(1996) investigated tests that maximize a weighted average (local asymptotic)
power criterion. When adapted to the model under consideration here, the
approach of Stock and Watson (1996) involves maximization of∫

Eβ�γφ(S)dG(β�γ)(15)

among test functions φ(·) that satisfy

Eβ0�γφ(S)≤ η ∀γ ∈ Γ�(16)

where Γ is some subset of R and G(·) is a weighting function defined on
[β0�∞)×Γ (in the one-sided case) or R×Γ (in the two-sided case). The class
of tests that satisfies (16) depends on Γ , but is strictly larger than the class
of conditionally similar tests. On the other hand, the test that maximizes (15)
subject to (16) generally depends on (Γ and) the weighting function G(·), im-
plying that no UMP test exists among tests that satisfy (16). Our approach to
optimality theory therefore complements the approach of Stock and Watson
(1996) in the sense that we are able to arrive at a stronger conclusion (ex-
istence of a UMP test) by confining attention to a strict subset of the set of
testing procedures considered in the Stock and Watson (1996) approach.

(iv) Starting from the maximal invariant MT , we employed two dimension
reduction techniques to arrive at Theorem 2. First, sufficiency reduced the
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problem to one involving the vector S. Then, conditioning on specific ancil-
laries led to a further reduction of the dimension of the data, effectively re-
moving the variation in (Sββ�Sγγ) from the problem. Reducing by sufficiency
before conditioning on (specific) ancillaries is consistent with the recommen-
dations of Lehmann and Romano (2005, Chapter 10). Nevertheless, it might
be tempting to attempt to condition on specific ancillaries before reducing by
sufficiency. However, it can be shown that β is not identified from the dis-
tribution of the maximal invariantMT given the specific ancillary (x1� � � � � xT )

′.
As a consequence, our model provides an illustration of the point that “it is de-
sirable to reduce the data as far as possible through sufficiency, before attempt-
ing further reduction by means of (specific) ancillary statistics” (Lehmann and
Romano (2005, Example 10.2.1)).

(v) The methodology developed herein can also be employed to develop
a point estimator (of β) with explicit optimality properties. For details, see
Eliasz (2004), who uses Lemma 1(b) and a result of Pfanzagl (1979) to obtain
an optimal conditionally median unbiased estimator of β.

(vi) The results of this section extend readily to models with multiple re-
gressors. This is so because the property that the statistical curvature can be
removed from testing problems concerning β by conditioning on specific an-
cillaries is shared by models with multiple regressors. To be specific, suppose

yt = α+β′xt−1 + εyt �
xt = γxt−1 + εxt �

where the x’s are multivariate, vx0 = 0, and εt = (ε
y
t � ε

x′
t )

′ ∼ i�i�d�N (0�Σ),
where Σ is a known, positive definite matrix. As in the scalar case, testing
problems that involve β are invariant under location transformations of y ’s
and the log likelihood L(·) associated with the maximal invariant (y2 − y1�
y3 − y1� � � � � yT − y1�x

′
1�x

′
2� � � � � x

′
T )

′ admits a quadratic expansion

L(β�γ)−L(0�0)

= β′Sβ + vec(γ′Σ−1
xx )

′Sγ + δββ(β�γ)′Sββ + δγγ(β�γ)′Sγγ�
where L(0�0) is a constant, δββ(·) and δγγ(·) are some functions, and

Sβ = σ−1
yy�x

T∑
t=1

xµt−1(yt − σ ′
xyΣ

−1
xxxt)�

Sγ = vec

(
T∑
t=1

xt−1x
′
t

)
− vec(Sβσ ′

xy)�

Sββ = vech

(
T∑
t=1

xµt−1x
µ′
t−1

)
� Sγγ = vech

(
T∑
t=1

xt−1x
′
t−1

)
�
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The quadratic terms in the expansion depend on the data only through the spe-
cific ancillaries Sββ and Sγγ . The curvature therefore disappears, thereby mak-
ing the model amenable to analysis along the lines of Lehmann and Romano
(2005, Chapter 4), once we condition on the specific ancillaries of the model.
This feature is extremely attractive in the multivariate case, because it makes it
straightforward to conduct inference on subsets of β. For specificity, consider
the problem of testing

H0 :β1 = β1�0 vs. H0 :β1 >β1�0�

where β1 is the first element of β. Among tests that are η-unbiased conditional
on (Sββ�Sγγ), it follows exactly as in Theorem 2(a) that the UMP test has test
function φ∗

η(·) given by

φ∗
η(s)= 1[sβ�1 >Cη(sβ�2� sγ� sββ� sγγ)]�

where Cη(·) is implicitly (and essentially uniquely) defined by the requirement

Eβ1�0[φ∗
η(S)|Sβ�2� Sγ� Sββ�Sγγ] = η�

the statistic Sβ = (Sβ�1� S
′
β�2)

′ has been partitioned after the first row, and
notation recognizes the fact that the distribution of Sβ�1 conditional on
(Sβ�2� Sγ� Sββ�Sγγ) depends only on β1.

4. OPTIMAL INFERENCE WITH GAUSSIAN ERRORS: ASYMPTOTIC THEORY

This section develops an asymptotic counterpart to Theorem 2. Whereas
the finite sample results of the previous section require only mild assump-
tions about the range of possible values of the persistence parameter γ (cf.
remark (i) following Theorem 2), the asymptotic properties of our model de-
pend crucially on the assumptions made with respect to γ. When γ is bounded
away from unity in absolute value, the curvature of the model vanishes as-
ymptotically and standard large-sample optimality theory based on the theory
of locally asymptotically normal (LAN) likelihood ratios (e.g., Choi, Hall, and
Schick (1996)) is applicable. In particular, one-sided testing problems admit as-
ymptotically UMP tests and two-sided testing problems admit asymptotically
UMP unbiased tests. In contrast, Jeganathan (1997) has shown that the statis-
tical curvature persists asymptotically when γ is modeled as local-to-unity in
the sense that γ = γT(c)= 1 + T−1c for some fixed, unknown constant c.12

Because the statistical curvature does not vanish when γ = γT(c), testing
problems concerning β exhibit nonstandard large-sample properties under

12When γ = γT (c)= 1 + T−1c for some known constant c (e.g., when the unit root hypothesis
γ = 1 is known to hold), the curvature also persists, but the situation is much simpler because the
likelihood ratios are locally asymptotically mixed normal (LAMN) and the conditional optimality
results of Feigin (1986) are applicable.
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local-to-unity asymptotics. For instance, the t-test testing β = β0 in (1) is not
asymptotically pivotal under local-to-unity asymptotics (e.g., Cavanagh, Elliott,
and Stock (1995), Elliott and Stock (1994)). Moreover, testing procedures de-
veloped under the assumption that γ = 1 are not robust to local departures
from that assumption (e.g., Stock (1997)).13 Procedures that are asymptotically
valid when γ is local-to-unity have been proposed by Campbell and Dufour
(1997), Campbell and Yogo (2005), Cavanagh, Elliott, and Stock (1995), and
Lanne (2002), but all of these existing testing procedures are asymptotically
biased.14 In particular, these procedures are known to have power less than
size for certain values of β close to its null value. By developing an asymptotic
counterpart to Theorem 2, this section demonstrates by example that (nontriv-
ial) asymptotically unbiased testing procedures can be constructed even when
γ is local-to-unity.

Under the local-to-unity parameterization of γ, an appropriate parameter-
ization of β is β = βT(b) = β0 + T−1σ−1/2

xx σ1/2
yy�xb, where b is a fixed constant.

In other words, βT(b)−β0 = T−1σ−1/2
xx σ1/2

yy�xb, where the rate T−1 ensures con-
tiguity of the associated probability measures (e.g., Jeganathan (1997)) and the
scaling by σ−1/2

xx σ1/2
yy�x gives rise to expressions that depend on the parameter b

in a simple way. Expressed in terms of b, the null hypothesis is b= 0, while the
one- and two-sided alternatives are b > 0 and b �= 0, respectively.

Expanding L(·) around (β�γ)= (β0�1)= [βT(0)�γT (0)], we have

LT (b� c)−LT (0�0)(17)

= bRβ + cRγ − 1
2

(
b− ρ√

1 − ρ2
c

)2

Rββ − 1
2
c2Rγγ�

where LT (b� c)=L[βT(b)�γT (c)] and

Rβ = σ−1/2
xx σ−1/2

yy�x T
−1

T∑
t=1

xµt−1(yt −β0xt−1 − σ−1
xx σxy�xt)�

Rγ = σ−1
xx T

−1
T∑
t=1

xt−1�xt − ρ√
1 − ρ2

Rβ� ρ= σxyσ−1/2
xx σ−1/2

yy �

13Because tests of the unit root hypothesis γ = 1 are inconsistent against local-to-unity alter-
natives (e.g., Elliott, Rothenberg, and Stock (1996), Stock (1994)), this nonrobustness result can
also be used to establish the invalidity of two-step procedures based on unit root pretests (e.g.,
Stock and Watson (1996)).

14The tests proposed by Campbell and Dufour (1997), Campbell and Yogo (2005), and
Cavanagh, Elliott, and Stock (1995), respectively, are asymptotically biased because they are not
asymptotically similar. In spite of being asymptotically similar, Lanne’s (2002) test is also asymp-
totically biased (Wright (2000)).
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Rββ = σ−1
xx T

−2
T∑
t=1

xµ2
t−1� Rγγ = σ−1

xx T
−2

T∑
t=1

x2
t−1�

As is S, the statistic R = (Rβ�Rγ�Rββ�Rγγ)
′ is minimal sufficient. When de-

veloping asymptotic counterparts of the results in Section 3, it turns out to be
convenient to work with R. The following lemmas give some useful properties
of its limiting distribution.

LEMMA 3: Let {(yt� xt)′} be generated by (3) and (4), and suppose Assumptions
A1∗ and A2∗ hold. If b = T(β − β0)σ

1/2
xx σ

−1/2
yy�x and c = T(γ − 1) are fixed as

T increases without bound, then

R→d Rρ(b� c)= (
Rρ
β(b� c)�Rρ

γ(b� c)�Rββ(c)�Rγγ(c)
)′

as T → ∞, where

Rρ
β(b� c)=

∫ 1

0
W µ
x�c(r)dWy(r)+

(
b− ρ√

1 − ρ2
c

)∫ 1

0
W µ
x�c(r)

2 dr�

Rρ
γ(b� c)=

∫ 1

0
Wx�c(r)dWx�c(r)− ρ√

1 − ρ2
Rρ
β(b� c)�

Rββ(c)=
∫ 1

0
W µ
x�c(r)

2 dr� Rγγ(c)=
∫ 1

0
Wx�c(r)

2 dr�

Wx and Wy are independent Wiener processes, W µ
x�c(r)=Wx�c(r)− ∫ 1

0 Wx�c(s)ds,
andWx�c is an Ornstein–Uhlenbeck process that satisfies the stochastic differential
equation dWx�c(r)= cWx�c(r)dr + dWx(r) with initial condition Wx�c(0)= 0.15

LEMMA 4: Let Rρ(b� c) be defined as in Lemma 3.
(a) The joint distribution of Rρ(b� c) is a curved exponential family with density

f ρR(r;b� c)=Kρ(b� c)f ρ�0R (r)

× exp
[
brβ + crγ − 1

2

(
b− ρ√

1 − ρ2
c

)2

rββ − 1
2
c2rγγ

]
�

where r = (rβ� rγ� rββ� rγγ)
′, f ρ�0R (·) is a density of Rρ(0�0), and Kρ(·) is defined

by the requirement
∫

R4 f
ρ
R(r;b� c)dr = 1.

15The Wiener processes Wx(·) and Wy(·) are the weak limits of σ−1/2
xx T−1/2 ∑�T ·

t=1 ε
x
t and

σ−1/2
yy�x T

−1/2 ∑�T ·
t=1 (ε

y
t − σxyσ−1

xx ε
x
t ), respectively.
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(b) The conditional distribution of (Rρ
β(b� c)�Rρ

γ(b� c)) given (Rββ(c)�
Rγγ(c)) is a linear exponential family with density

f ρRρ
β�R

ρ
γ |Rββ�Rγγ

(rβ� rγ|rββ� rγγ;b� c)
= gρ(b� c|rββ� rγγ)hρ(rβ� rγ|rββ� rγγ)exp(brβ + crγ)

for some functions gρ(·) and hρ(·).
The characterizations of the limiting distribution of R given in Lemmas

3 and 4 serve complementary purposes. Lemma 4, which is based on the the-
ory of LAQ likelihood ratios (Jeganathan (1995), Le Cam and Yang (2000)),
forms the basis of the development of asymptotic counterparts of the results
of the previous section. In particular, Lemma 4 (an asymptotic counterpart
of Lemma 1) enables us to characterize one- and two-sided tests with asymp-
totic optimality properties. These characterizations, given in Theorem 5, are
abstract in the sense that they involve the density f ρ�0R (·) for which no closed
form expression appears to be known. To help make the asymptotically opti-
mal tests operational, Theorem 7 of Section 5 uses Lemma 3 and a result from
Abadir and Larsson (2001) to obtain an integral representation of f ρ�0R (·) that
is useful for computational purposes.

In view of Lemma 4, the functional Rρ(b� c) inherits those distributional
properties of S that were exploited in the development of the finite sample
optimality results of Section 3. By implication, the limiting experiment associ-
ated with the sequence of models under study here has the same basic struc-
ture as the finite sample experiments studied in Section 3. Specifically, the log
likelihood ratios associated with the limiting experiment are quadratic; that is,
the log likelihood ratios are LAQ in the sense of Jeganathan (1995). More-
over, the quadratic terms Rββ(c) and Rγγ(c) are specific ancillaries in the lim-
iting experiment. It therefore seems plausible that appropriately constructed
asymptotic counterparts of φ∗

η(·) and φ∗∗
η (·) should enjoy asymptotic optimal-

ity properties analogous to the finite sample optimality properties enjoyed by
φ∗
η(·) and φ∗∗

η (·). Theorem 5, the main result of the paper, verifies this conjec-
ture.

Corresponding to any invariant test of H0 :b = 0 based on R, there is a
[0�1]-valued function π(·) such that the probability of rejectingH0 equals π(r)
whenever R = r. This test function satisfies φ = π ◦ ζ, where φ(·) is the test
function associated with S and ζ(·) is any mapping such that ζ(S) = R (with
probability 1).

Asymptotic optimality results for the one-sided testing problem

H0 :b= 0 vs. H1 :b > 0

can be obtained by restricting attention to test functions that satisfy an asymp-
totic conditional similarity condition. Our formulation of an asymptotic coun-
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terpart of the conditional η-similarity condition (7) is motivated by the fact
that π ◦ ζ satisfies (7) if and only if

EβT (0)�γT (c)
[
(π(R)−η)g(Rββ�Rγγ)

] = 0 ∀ c ∈ R� g ∈ Cb(R2)�(18)

where Cb(R2) denotes the set of bounded, continuous, real-valued functions
on R

2. The advantage of this characterization of conditional η-similarity is that
it does not involve conditional distributions, implying that difficulties associ-
ated with conditional weak convergence (e.g., Sweeting (1989)) can be avoided
by basing the formulation of an asymptotic conditional η-similarity condition
on an asymptotic version of (18). Following Feigin (1986), who attributes the
approach to Le Cam, we say that a sequence of tests with associated test func-
tions {πT(·)} is locally asymptotically conditionally η-similar if

lim
T→∞

EβT (0)�γT (c)
[
(πT (R)−η)g(Rββ�Rγγ)

] = 0 ∀ c ∈ R� g ∈Cb(R2)�(19)

In perfect analogy with Theorem 2(a), Theorem 5(a) shows that a one-sided
test of b= 0 has maximal local asymptotic power among locally asymptotically
conditionally similar tests if its testing function is given by

π∗
η(r;ρ)= 1[rβ > Cη(rγ� rββ� rγγ;ρ)]�(20)

where Cη(·) is the (unique) continuous function that satisfies16,17

E[π∗
η(Rρ;ρ)|Rρ

γ�Rββ�Rγγ] = η(21)

and Rρ = (Rβ�Rρ
γ�Rββ�Rγγ)

′ =Rρ(0�0).
An attainable efficiency bound for the two-sided testing problem

H0 :b= 0 vs. H2 :b �= 0�

is available for the class of testing functions {πT(·)} that satisfies (19) and the
following asymptotic counterpart of (10):

lim
T→∞

EβT (0)�γT (c)
[
(πT (R)−η)Rβ · g(Rββ�Rγγ)

]
(22)

= 0 ∀ c ∈ R� g ∈ Cb(R2)�

Indeed, it is shown in Theorem 5(b) that

π∗∗
η (r;ρ)= 1[rβ < Cη(rγ� rββ� rγγ;ρ)] + 1[rβ > Cη(rγ� rββ� rγγ;ρ)](23)

16The existence of the continuous function Cη(·) (and the continuous functions Cη(·) and Cη(·)
appearing in the definition of π∗∗

η (·)) is established in Lemma 8 of the Appendix. The domain of
Cη(·) is a set S ⊆ R

4 that satisfies Pr[(Rρ
γ�Rββ�Rγγ;ρ) ∈ S] = 1.

17We have omitted the superscript ρ from the first element of Rρ in recognition of the fact that
Rρ
β(b� c) does not depend on ρ when c = 0.
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is optimal among test functions that satisfy (19) and (22), where Cη(·) and Cη(·)
are the (unique) continuous functions that satisfy

E[π∗∗
η (Rρ;ρ)|Rρ

γ�Rββ�Rγγ] = η�(24)

E[π∗∗
η (Rρ;ρ) ·Rβ|Rρ

γ�Rββ�Rγγ] = η ·E[Rβ|Rρ
γ�Rββ�Rγγ]�(25)

THEOREM 5: Let {(yt� xt)′} be generated by (3) and (4), and suppose Assump-
tions A1∗ and A2∗ hold.

(a) If {πT(·)} satisfies (19), then

lim
T→∞

EβT (b)�γT (c)πT (R) ≤ lim
T→∞

EβT (b)�γT (c)π
∗
η(R;ρ)

= E
[
π∗
η(Rρ(b� c);ρ)] ∀b≥ 0� c ∈ R�

(b) If {πT(·)} satisfies (19) and (22), then

lim
T→∞

EβT (b)�γT (c)πT (R) ≤ lim
T→∞

EβT (b)�γT (c)π
∗∗
η (R;ρ)

= E
[
π∗∗
η (Rρ(b� c);ρ)] ∀b ∈ R� c ∈ R�

In view of Theorem 5, the maximal attainable (by tests that satisfy the
restrictions we impose) local asymptotic power against the local alternative
β= βT(b) depends on c and ρ, the persistence and correlation parameters.

Let ϕ∗
η(·) and ϕ∗∗

η (·) denote the asymptotic Gaussian power envelopes for
one- and two-sided size η tests characterized in Theorem 5; that is, let

ϕ∗
η(b� c;ρ)= Pr

[
Rρ
β(b� c) > Cη

(
Rρ
γ(b� c)�Rββ(c)�Rγγ(c);ρ

)]
�

ϕ∗∗
η (b� c;ρ)= Pr

[
Rρ
β(b� c) < Cη

(
Rρ
γ(b� c)�Rββ(c)�Rγγ(c);ρ

)]
+ Pr

[
Rρ
β(b� c) > Cη

(
Rρ
γ(b� c)�Rββ(c)�Rγγ(c);ρ

)]
�

The next section proposes one- and two-sided test functions that attain
ϕ∗
η(·) and ϕ∗∗

η (·), respectively, under more general assumptions than those of
Theorem 5.

REMARKS: (i) It is easy to show that Theorem 5 remains valid if Assump-
tion A1∗ is replaced by the weaker assumption that T−1/2x1 = op0(1), where
op0(1) is shorthand for “op(1) when (β�γ)= (β0�1).” On the other hand, it is
an almost immediate consequence of the results of Elliott (1999) and Müller
and Elliott (2003) that Theorem 5 can fail to hold when T−1/2x1 has a limit-
ing representation (under local-to-unity asymptotics) that depends on c in a
nontrivial way. A more interesting question is whether the methodology devel-
oped in this paper can be used to obtain results analogous to Theorem 5 even if
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Assumption A1∗ is replaced by an assumption of the Elliott (1999) and Müller
and Elliott (2003) variety. Derivations available from the authors upon request
show that this is in fact the case. Indeed, under weak assumptions on the ini-
tial condition, the limiting experiment associated with the maximal (location)
invariant statistic is a curved exponential model, which can be “linearized” by
conditioning on specific ancillaries.

(ii) It would be of interest to develop asymptotic power envelopes under
weaker assumptions on the errors than those of Theorem 5. Two complemen-
tary generalizations of Assumption A2∗ seem particularly interesting. First, it
would be of interest to accommodate serial correlation by studying the case
where the errors are generated by a stationary Gaussian process. Adapting the
methods of Jeganathan (1997, Section 3) to the present setup, it should be pos-
sible to show that the power envelopes for models with “smoothly” parameter-
ized stationary Gaussian error processes are of the form ϕ∗∗

η (·;ρ) and ϕ∗∗
η (·;ρ),

respectively, where ρ is the long-run (i.e., zero frequency) correlation of the
errors. A second interesting generalization would retain the independent and
identically distributed assumption on (εyt � εxt )

′, but treat the error distribution
as an unknown (infinite dimensional) nuisance parameter. It seems plausi-
ble that (semiparametric) power envelopes for a model of this kind can be
obtained by employing methods similar to those of Jansson (2005). Semi-
parametric power envelopes obtained in this fashion can be no lower than
ϕ∗∗
η (·;ρ) and ϕ∗∗

η (·;ρ), because it follows from Theorem 6 of the next section
that ϕ∗∗

η (·;ρ) and ϕ∗∗
η (·;ρ) are attainable (with ρ being the correlation of the

errors) even if the errors are non-Gaussian.
(iii) Theorem 5(a) remains true if the requirement (19) is replaced with the

condition

lim
T→∞

EβT (0)�γT (c)
[
(πT (R)−η)g(Rββ�Rγγ)

] = 0 ∀ c ∈C�g ∈Cb(R2)�

where C ⊆ R contains an open interval. (A similar remark applies to The-
orem 5(b).) The proof of this assertion is identical to the proof of Theo-
rem 5(a) because it follows from the properties of exponential families (e.g.,
Lemma 4(b) and Lehmann and Romano (2005, Theorem 4.3.1)) that if C ⊆ R

contains an open interval, then the class Π(η�ρ) defined in the proof of The-
orem 5(a) coincides with the class of all functions π(·) that satisfy

E
[
(π(Rρ)−η)g(Rββ�Rγγ)Λ

ρ(0� c)
] = 0 ∀ c ∈ C�g ∈ Cb(R2)�

where Λρ(·) is defined as in the proof of Theorem 5(a).
(iv) In view of remark (iii), the function ϕ∗

η(·) constitutes a suitable power
envelope also if c is treated as an unknown, nonpositive nuisance parameter—
a plausible assumption in most empirical applications. On the other hand, the
local asymptotic conditional similarity condition (19) would be unnecessarily
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restrictive if a consistent estimator of c were available. No such estimator exists
under the assumptions of our model, but consistent estimation of c is feasible
if c is treated as a known (continuous) function of β (e.g., Valkanov (1999)).
(Consistent estimators of c are also available in certain panel versions of our
model (e.g., Moon and Phillips (2000, 2004)).)

5. INFERENCE IN THE GENERAL CASE

This section considers the general case where {(yt� xt)′} is generated by
(1) and (2), Assumptions A1 and A3 hold, and local-to-unity asymptotics are
employed. Our aim is to construct test functions with desirable large-sample
properties. Specifically, we wish to develop test functions that do not re-
quire knowledge of any nuisance parameters, are asymptotically equivalent to
π∗
η(R;ρ) and π∗∗

η (R;ρ) under the assumptions of Theorem 5, and have local
asymptotic power functions of the form ϕ∗

η(·;ρ) and ϕ∗∗
η (·;ρ) more generally

(i.e., under Assumptions A1–A3 and local-to-unity asymptotics). This will be
accomplished by constructing a statistic R̂, which is asymptotically equivalent
to R under the assumptions of the previous section and has a limiting repre-
sentation of the form Rρ(b� c) more generally.

Let x0 = x1 and v̂x0 = 0, and define v̂xt = xt − x1 (for t = 1� � � � � T ). Let Ω̂ be
a consistent estimator of

Ω=
(
ωyy ωyx

ωxy ωxx

)
= lim

T→∞
T−1

T∑
t=1

T∑
s=1

E

[(
ε
y
t

ψ(L)εxt

)(
εys

ψ(L)εxs

)′ ]
�

the long-run variance of (εyt �ψ(L)εxt )
′. Finally, let

R̂β = ω̂−1/2
yy�x ω̂

−1/2
xx T−1

T∑
t=1

xµt−1(yt −β0xt−1)

− ρ̂√
1 − ρ̂2

[
1
2
(ω̂−1

xxT
−1v̂x2

T − 1)− ω̂−1
xxT

−2v̂xT

T∑
t=1

v̂xt−1

]
�

R̂γ = 1
2
(ω̂−1

xxT
−1v̂x2

T − 1)− ρ̂√
1 − ρ̂2

R̂β�

R̂ββ = ω̂−1
xxT

−2
T∑
t=1

xµ2
t−1� R̂γγ = ω̂−1

xxT
−2

T∑
t=1

v̂x2
t−1�

where ω̂yy�x = ω̂yy − ω̂−1
xx ω̂

2
xy , ρ̂= ω̂xyω̂

−1/2
xx ω̂−1/2

yy , and Ω̂ has been partitioned in
the obvious way.
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As is R, the statistic R̂ = (R̂β� R̂γ� R̂ββ� R̂γγ)
′ is invariant under transforma-

tions of the form (yt� xt)→ (yt + a�xt), where a ∈ R.18 Under the assumptions
of Section 4, R̂ is asymptotically equivalent to R. More generally, we have the
following theorem.

THEOREM 6: Let {(yt� xt)′} be generated by (1) and (2), suppose Assumptions
A1 and A3 hold, and suppose b = T(β − β0)ω

1/2
xx ω

−1/2
yy�x and c = T(γ − 1) are

fixed as T increases without bound, where ωyy�x = ωyy − ω−1
xxω

2
xy . If Ω̂ →p Ω,

then R̂ →d Rρ(b� c) as T → ∞, where ρ = ωxyω
−1/2
xx ω−1/2

yy is the coefficient of
correlation computed from Ω. Moreover,

lim
T→∞

EβT (b)�γT (c)π
∗
η(R̂; ρ̂)= ϕ∗

η(b� c;ρ) ∀b≥ 0� c ∈ R

and

lim
T→∞

EβT (b)�γT (c)π
∗∗
η (R̂; ρ̂)= ϕ∗∗

η (b� c;ρ) ∀b ∈ R� c ∈ R�

In view of Theorem 6, the Gaussian asymptotic power envelopes ϕ∗
η(·)

and ϕ∗∗
η (·) are attainable whether or not the innovations of the regression

model are normally distributed (with a known covariance matrix). Moreover,
the presence of serial correlation does not affect our ability to attain the power
envelope as long as Assumption A3 holds.19

Construction of consistent long-run variance estimators is a problem that
has received considerable attention and there is no shortage of estimators that
satisfy the high-level assumption Ω̂→p Ω of Theorem 6.20

To implement the tests based on π∗
η(R̂; ρ̂) and π∗∗

η (R̂; ρ̂), knowledge of the
critical value functions Cη(·), Cη(·), and Cη(·) is required. These critical value
functions are implicitly defined in terms of the conditional distribution of Rβ

given (Rρ
γ�Rββ�Rγγ). That distribution is nonstandard and does not appear to

be available in closed form, but can easily be obtained (numerically) with the
help of the following integral representation of the joint distribution of Rρ.

18In fact, R̂ is invariant under transformations of the form (yt� xt)→ (yt + a�xt +mx), where
a ∈ R and mx ∈ R.

19As usual, these predictions of asymptotic theory are not expected to be borne out in fi-
nite samples if the errors vxt are “nearly” I(−1) (i.e., if |ψ(1)| is “small” relative to

∑∞
i=0ψ

2
i )

or “nearly” I(1) (i.e., if |ψ(1)| is “large” relative to
∑∞

i=0ψ
2
i ).

20Important contributions to the literature on long-run variance estimation include Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), de Jong and Davidson (2000), and Newey
and West (1987, 1994). A consistent estimator is described in remark (ii) at the end of this section.
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THEOREM 7: The joint distribution of Rρ admits a density of the form

f ρ�0R (r)= 1

{
rγ + ρ√

1 − ρ2
rβ >−1

2
�0< rββ < rγγ

}

× 1√
2πrββ

exp
(

− r2
β

2rββ

)

× h
(

2rγ + 2
ρ√

1 − ρ2
rβ + 1� rγγ − rββ� rγγ

)
�

where

h(qγ�qββ�qγγ)

= 1
π2√qγ√qββ

∫ ∞

0
Re

{
κ(t;√qγ�√qββ)exp[−itqγγ]

}
dt�

κ(t;zγ� zββ)

= |A+ iB|−1/2√
cosh

√−2it
exp

[
−

(
zγ
zββ

)′
(AB−1A+B)−1AB−1

(
zγ
zββ

)]

× exp
[
+i

(
zγ
zββ

)′ (
B−1 −B−1A(AB−1A+B)−1AB−1

)(
zγ
zββ

)]

+ |A+ iB|−1/2√
cosh

√−2it

× exp
[
−

(
zγ

−zββ
)′
(AB−1A+B)−1AB−1

(
zγ

−zββ
)]

× exp
[
+i

(
zγ

−zββ
)′

× (
B−1 −B−1A(AB−1A+B)−1AB−1

)(
zγ

−zββ
)]
�

A=A(t)=
(

1√
t

sinh 2
√
t+sin 2

√
t

cosh 2
√
t+cos 2

√
t

1
t

2 sinh
√
t sin

√
t

cosh 2
√
t+cos 2

√
t

1
t

2 sinh
√
t sin

√
t

cosh 2
√
t+cos 2

√
t

1
2t3/2

sinh 2
√
t−sin 2

√
t

cosh 2
√
t+cos 2

√
t

)
�

B= B(t)=
(

1√
t

sinh 2
√
t−sin 2

√
t

cosh 2
√
t+cos 2

√
t

1
t
(1 − 2 cosh

√
t cos

√
t

cosh 2
√
t+cos 2

√
t
)

1
t
(1 − 2 cosh

√
t cos

√
t

cosh 2
√
t+cos 2

√
t
) 1

t
(1 − 1

2
√
t

sinh 2
√
t+sin 2

√
t

cosh 2
√
t+cos 2

√
t
)

)
�
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REMARKS: (i) In R̂β and R̂γ , the object 1
2(ω̂

−1
xxT

−1v̂x2
T − 1) satisfies

1
2
(ω̂−1

xxT
−1v̂x2

T − 1)→d0

1
2
[Wx(1)2 − 1]�

where →d0 is shorthand for “→d when (β�γ) = (β0�1).” This convergence
result generalizes in an obvious way to higher dimensions, but the important
equality 1

2 [Wx(1)2 − 1] = ∫ 1
0 Wx(r)dWx(r) does not generalize. As pointed out

by a referee, it may therefore seem more natural to employ a formulation that
admits an obvious multivariate generalization whose limiting representation
is of the form

∫ 1
0 W (r)dW (r)

′. Our reason for not doing so is that Ng and
Perron (2001), in their work on the finite sample size behavior of unit root
tests, found that 1

2(ω̂
−1
xxT

−1v̂x2
T − 1) tends to be better approximated by its as-

ymptotic representation than are those objects that generalize most easily to
higher dimensions.

(ii) Under the assumptions of Theorem 6 and fairly general conditions
on the kernel k(·) and the bandwidth parameter BT , it follows from Jansson
(2002) that

Ω̂= T−1
T∑
t=1

T∑
s=1

k

( |t − s|
BT

)
ût û

′
s →p Ω�

where ût = (yt − T−1
∑T

s=1 ys − β̂xµt−1� v̂
x
t − γ̂v̂xt−1)

′ and

β̂=
(

T∑
t=1

xµ2
t−1

)−1 T∑
t=1

xµt−1yt� γ̂ =
(

T∑
t=1

v̂x2
t−1

)−1 T∑
t=1

v̂xt−1v̂
x
t �

(iii) Because the function |κ(t;zγ� zββ)| can be shown to exhibit exponential
decay as t → ∞, it is straightforward to obtain accurate numerical approxima-
tions to the integral that appears in the definition of h(·).

(iv) Asymptotic p-values for the one-sided test are given by the formula

p(R̂; ρ̂)=
∫ ∞
R̂β
f 0
R(rβ� R̂γ� R̂ββ� R̂γγ; ρ̂) drβ∫ ∞

−∞ f
0
R(rβ� R̂γ� R̂ββ� R̂γγ; ρ̂) drβ

�(26)

In view of Theorem 7, numerical evaluation of p(R̂; ρ̂) involves calculating
two double integrals. In our experience, this calculation usually takes no more
than 2–3 seconds on a contemporary computer. (MATLAB code for comput-
ing p(R̂; ρ̂) is available from the authors upon request.)
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6. SIMULATIONS

This section presents some simulation evidence that sheds light on the size
and power properties of the one-sided test π∗ and some of its rivals. Following
Wright (2000), we simulate the simple model introduced in (3) and (4), and
assume that εyt and εxt have unit variance and correlation denoted by ρ.

Table I reports the small sample (T = 100) size behavior across 1,000 repli-
cations for five testing procedures with nominal size equal to 5%. The tests
considered are the one-sided t-tests based on the ordinary least squares (OLS)
and dynamic OLS (DOLS) estimators of β, the L2 test of Wright (2000), the
refined Bonferroni test of Campbell and Yogo (2005) (labeled CYRB), and
the test based on π∗

0�05.21,22 We consider two values of ρ, namely −0�5 and 0�5.
Five values of c, the local-to-unity parameter that governs the persistence of
the regressor, are considered: c = 0 (corresponding to the exactly integrated
regressors), c ∈ {−10�−20} (corresponding to nearly integrated regressors),
and c ∈ {−50�−100} = {−T/2�−T } (corresponding to stationary regressors).

The t-test based on the OLS estimator, which has correct (asymptotic) size
when the regressors are stationary, has null rejection probabilities close to 5%
when the regressors are stationary, but its behavior is erratic when the regres-
sors are nearly or exactly integrated with severe overrejections being observed
for ρ= −0�5. The t-test based on the DOLS estimator (e.g., Stock and Watson
(1993)), which has correct (asymptotic) size when the regressors are exactly
integrated, has null rejection probabilities close to 5% when the regressors
are exactly integrated, but in agreement with the theoretical results of Elliott

TABLE I

SIZE PROPERTIES

ρ c OLS DOLS L2 CYRB π∗
0�05

−0�5 0 15�1% 3�4% 4�8% 2�9% 4�3%
−10 8�7% 0�3% 4�7% 3�2% 4�9%
−20 7�8% 0�1% 4�2% 2�5% 4�1%
−50 6�1% 0�0% 5�1% 0�7% 4�9%

−100 4�7% 0�0% 5�2% 0�0% 3�9%

0�5 0 0�3% 3�9% 4�9% 0�8% 5�6%
−10 3�4% 31�7% 5�9% 0�8% 4�4%
−20 4�1% 55�3% 5�4% 0�9% 4�5%
−50 5�7% 87�2% 5�6% 3�9% 5�8%

−100 4�0% 99�3% 4�7% 60�9% 6�7%

21The CYRB test is designed to have asymptotic size equal to 5% when the persistence para-
meter c is bounded between 5 and −50. For details, see Campbell and Yogo (2005, Section 3.4).

22The π∗
0�05 test is implemented using the OLS estimator of Σ and employing high order re-

cursive adaptive quadrature to numerically evaluate the conditional p-values using the formula
in (26).
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(1998) its behavior is found to be unsatisfactory when the regressors are nearly
integrated (or stationary). Finally, of the remaining three tests, all being de-
signed for the case of nearly integrated regressors, L2 and π∗

0�05 exhibit nice
behavior across the scenarios considered, while the Campbell and Yogo (2005)
refined Bonferroni test is undersized in most cases.

In conclusion, Table I demonstrates that although t-tests based on the OLS
and DOLS estimators exhibit unsatisfactory size behavior when the (endoge-
nous) regressors are nearly integrated, at least three conceptually different
methodologies can be used to obtain tests with good size properties across
a range of values of the persistence parameter γ. We next explore the relative
merits of these three methodologies from the point of view of power in models
with nearly integrated regressors.

Table II reports the large-sample (T = 1�000) rejection rates across 500 repli-
cations (for a variety of values of the parameters ρ, c, and b) for the L2 test,
the Campbell and Yogo (2005) test, and π∗

0�05. Also reported are rejection rates
for two additional testing procedures, labeled ORA and CYB, respectively,

TABLE II

POWER PROPERTIES

ρ= −0�5 ρ= 0�5

c b ORA L2 CYRB CYB π∗
0�05 ORA L2 CYRB CYB π∗

0�05

0 0 5�2% 7�4% 3�2% 1�6% 6�0% 5�4% 6�2% 0�8% 0�4% 5�8%
5 54�0% 26�6% 43�4% 13�0% 42�8% 55�8% 26�8% 30�4% 25�2% 42�8%

10 89�2% 55�0% 86�8% 45�6% 81�2% 91�6% 52�6% 71�4% 62�4% 61�8%
15 97�6% 73�2% 97�0% 88�0% 95�6% 98�6% 71�4% 87�4% 84�4% 68�6%
20 99�6% 80�4% 99�8% 98�2% 98�4% 99�6% 84�8% 95�0% 94�6% 75�5%

−5 0 5�4% 4�6% 2�4% 0�4% 5�6% 5�2% 4�2% 0�8% 0�0% 4�2%
5 34�0% 2�8% 15�8% 1�6% 10�6% 32�4% 14�2% 30�4% 6�8% 13�2%

10 71�8% 11�4% 54�4% 5�4% 34�4% 73�6% 30�0% 71�4% 31�2% 24�2%
15 92�8% 25�0% 88�2% 23�8% 71�2% 91�8% 44�0% 87�4% 59�6% 28�6%
20 98�8% 40�2% 98�0% 66�6% 91�8% 99�0% 58�4% 95�0% 81�0% 37�6%

−10 0 5�2% 6�4% 2�4% 0�4% 6�2% 6�0% 6�2% 0�4% 0�2% 2�2%
5 22�6% 3�0% 10�2% 1�8% 9�4% 31�6% 10�4% 7�0% 3�6% 7�6%

10 58�8% 4�6% 36�0% 4�8% 18�0% 64�4% 20�0% 26�2% 17�2% 11�0%
15 84�2% 7�2% 70�2% 12�6% 40�4% 87�2% 35�4% 57�4% 39�2% 17�2%
20 95�2% 16�8% 90�8% 33�0% 67�0% 97�4% 42�6% 73�0% 70�2% 22�0%

−15 0 4�8% 4�2% 1�4% 0�2% 8�6% 4�0% 5�0% 1�2% 0�0% 1�6%
5 18�6% 2�0% 6�8% 1�0% 7�4% 19�8% 9�0% 6�4% 2�2% 4�4%

10 55�2% 1�6% 29�2% 3�0% 12�8% 48�4% 17�2% 21�4% 13�2% 6�8%
15 80�6% 1�6% 59�4% 7�8% 24�8% 79�2% 21�8% 41�4% 32�4% 12�6%
20 93�6% 5�8% 83�0% 18�6% 41�4% 93�2% 32�2% 67�2% 55�0% 16�6%

−20 0 4�8% 5�0% 2�0% 0�4% 4�6% 5�2% 5�4% 0�8% 1�2% 2�2%
5 16�6% 2�8% 6�2% 1�0% 7�6% 19�8% 8�2% 6�2% 1�6% 3�6%

10 44�6% 1�0% 21�6% 2�6% 9�6% 40�4% 11�2% 16�6% 9�4% 4�4%
15 70�8% 1�4% 43�4% 5�2% 15�2% 68�4% 17�4% 37�8% 27�6% 8�8%
20 88�4% 3�0% 70�4% 12�8% 29�2% 84�2% 22�8% 54�6% 43�0% 13�2%
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where ORA is an “oracle” t-test based on the estimator of β obtained from a
regression of yt on xt−1 and xt − γT(c)xt−1 (and therefore assumes knowledge
of the persistence parameter c), and CYB is the (unrefined) Bonferroni test of
Campbell and Yogo (2005). The latter has been included to allow comparison
of our methodology to a Bonferroni procedure that (unlike CYRB) does not
require partial knowledge of c (in the form of an upper bound on c).

The infeasible oracle t-test is seen to be strictly superior to all of its (feasible)
competitors, implying that lack of knowledge of the persistence parameter c is
associated with a nonnegligible loss of power. Being a conservative test (even
asymptotically), the Campbell and Yogo (2005) refined Bonferroni test is infe-
rior to π∗

0�05 (andL2) for all values of b that are sufficiently close to zero. On the
other hand, the CYRB test seems to dominate against alternatives that are not
close to the null. (For the configurations considered here, CYRB dominates
against alternatives for which b ≥ 10.) Of the tests that do not require partial
knowledge of c, the Campbell and Yogo (2005) (unrefined) Bonferroni test
dominates L2 in most cases, whereas the ranking of CYB and π∗

0�05 depends on
the sign of ρ, with π∗

0�05 dominating CYB when ρ= −0�5, while CYB tends to
outperform π∗

0�05 for alternatives away from the null when ρ= 0�5.
The results reported in Table II suggest three conclusions. First, the im-

pressive performance of CYRB suggests that for the model (and parameter
configurations) under consideration here, partial knowledge of the nuisance
parameter is very valuable. Second, in applications where the practitioner is
unwilling to assume partial knowledge of c, the ranking of CYB and π∗

0�05 de-
pends on a single nuisance parameter, namely (the sign of) ρ. Finally, the
fact that ρ is consistently estimable implies that in practice a simple, data-
dependent method of choosing between CYB and π∗

0�05 is available.

7. CONCLUSION

This paper has proposed novel conditionality restrictions subject to which
optimality results can be obtained for one- and two-sided testing problems
that involve the regression coefficient in a bivariate regression model with a
highly persistent regressor. We have developed finite sample and asymptotic
optimality theory under the assumption of Gaussian errors and have shown
the normality assumption to be least favorable. The derivation of finite sample
optimality results uses classical statistical theory and the theory of (curved) ex-
ponential families, whereas the large-sample optimality results were obtained
by using the finite sample optimality results and the theory of limits of experi-
ments.

Because our asymptotic results depend on the underlying model only
through the associated limiting experiment, they can be extended to models
more general than the model in which the error term of the equation of inter-
est is a martingale difference sequence with respect to its lags and to current
and lagged values of the nearly integrated regressor. Jansson and Moreira
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(2004) illustrate this point by showing that the results of this paper extend in a
straightforward way to a (cointegration-type) model that accommodates corre-
lation between the (potentially) serially correlated error term of the equation
of interest and current (and lagged) values of the nearly integrated regressor.

Our asymptotic optimality results complement those available in the existing
literature on limits of experiments. The optimality results currently available in
that literature pertain almost exclusively to models that exhibit LAN or LAMN
likelihood ratios. In contrast, our results are obtained for a model whose like-
lihood ratios are LAQ (but not LAMN) and differ from existing results in a
nontrivial way.23 In models with LAN likelihood ratios (such as (3) and (4)
in the stationary case when |ρ| < 1), the commonly used Wald statistics are
asymptotically optimal among tests with the same asymptotic level. Wald sta-
tistics also enjoy optimality properties in models with LAMN likelihood ratios
(such as (3) and (4) in the unit root case when ρ = 1), being optimal among
tests with correct asymptotic conditional size given the value of the observed
information matrix.

In the LAMN context, conditioning on the observed information matrix
seems natural because its asymptotic counterpart acts as an ancillary statistic
in the limiting experiment. The latter property characterizes LAMN models
within the class of LAQ models (Jeganathan (1995, Proposition 6)), implying
that conditioning on ancillaries does not suffice if we want to develop opti-
mality theory for LAQ models outside the class of LAMN models. This paper
provides an example of a testing problem with nuisance parameters where the
stronger requirement of conditioning on specific ancillaries (i.e., statistics that
would be ancillary if the values of nuisance parameters were known) makes it
possible to develop optimality results in a model with LAQ likelihood ratios.
(Coincidentally, the specific ancillary in our example turns out to be given by
the observed information matrix.) It would be of interest to explore whether
the conditionality restriction proposed here can be applied to develop opti-
mality results for other testing problems that involve nuisance parameters in
models without LAMN structure.

Dept. of Economics, UC Berkeley, 549 Evans Hall 3880, Berkeley, CA 94720-
3880, U.S.A.; mjansson@econ.berkeley.edu

and
Dept. of Economics, Harvard University, Littauer Center M-6, 1875 Cambridge

Street, Cambridge, MA 02138, U.S.A.; moreira@fas.harvard.edu.

Manuscript received October, 2004; final revision received January, 2006.

23Another testing problem to which the theory of LAQ likelihood ratios applies but theory of
LAMN likelihood ratios does not is the unit root testing problem. That testing problem has been
extensively studied, celebrated results include those of Dickey and Fuller (1979, 1981), Elliott,
Rothenberg, and Stock (1996), Phillips (1987a), and Phillips and Perron (1988). (For reviews, see
Haldrup and Jansson (2005) and Stock (1994).)
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APPENDIX: PROOFS

PROOF OF LEMMA 1: Lemma 1 follows from (6) and the properties of expo-
nential families (e.g., Lehmann and Romano (2005, Lemma 2.7.2)). Q.E.D.

PROOF OF THEOREM 2: It follows from Lemma 1(b) and Lehmann and
Romano (2005, Theorem 4.4.1) th at if φ(·) satisfies (7), then

Eβ�γ[φ(S)|Sββ�Sγγ] ≤ Eβ�γ[φ∗
η(S)|Sββ�Sγγ] ∀β≥ β0�γ ∈ R�

Part (a) now follows from the law of iterated expectations.
Analogous reasoning establishes part (b) (including existence and essential

uniqueness of the functions Cη(·) and Cη(·) that satisfying (12) and (13)).
Q.E.D.

PROOF OF LEMMA 3: Lemma 3 follows from standard weak convergence
arguments (e.g., Phillips (1987a, 1988a, 1988b)) and straightforward alge-
bra. Q.E.D.

PROOF OF LEMMA 4: Lemma 4 follows from (17), Lemma 3, Lehmann and
Romano (2005, Lemma 2.7.2), and Le Cam’s third lemma (e.g., Jeganathan
(1995, Proposition 1) and van der Vaart (2002, Lemma 3.1)). Le Cam’s third
lemma is applicable because the family of distributions associated with the
maximal invariant has LAQ likelihood ratios at (β�γ)= (β0�1). In particular,
LT (b� c)−LT (0�0)→d0 Λ

ρ(b� c), where

Λρ(b� c)= bRβ + cRρ
γ − 1

2

(
b− ρ√

1 − ρ2
c

)2

Rββ − 1
2
c2Rγγ�

and the convergence result follows from Lemma 3. Q.E.D.

The proof of Theorem 5 makes use of the following lemma.

LEMMA 8: Let η ∈ (0�1) be given and define

S = {(rγ� rββ� rγγ;ρ) : rγ ∈ R�0< rββ < rγγ�−1< ρ< 1}�
(a) There exists a (unique) continuous function Cη :S→ R such that π∗

η(·;ρ)
satisfies (21), where π∗

η(·) is defined as in Section 4.
(b) There exist (unique) continuous functions Cη :S→ R and Cη :S→ R such

that π∗∗
η (·;ρ) satisfies (24) and (25), where π∗∗

η (·) is defined as in Section 4.

A proof of Lemma 8 can be found in Jansson and Moreira (2004). That
proof constructs a conditional probability density function of Rβ given
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(Rρ
γ�Rββ�Rγγ) that satisfies the conditions of the following lemma, which

gives general conditions under which critical value functions for one- and two-
sided tests are continuous in their arguments.24

LEMMA 9: Let (Θ�dθ) be a metric space and let {f (·;θ) :θ ∈ Θ} be a family
of probability density functions on R. Let η ∈ (0�1) and θ0 ∈ Θ be given, and
suppose f (r; ·) is continuous at θ0 (with respect to the metric dθ) for almost every
r ∈ R.

(a) Suppose that for every θ ∈Θ there is a unique number Cη(θ) such that∫ ∞

Cη(θ)

f (r;θ)dr = η�

Then Cη :Θ→ R is continuous at θ0.
(b) Suppose that for every θ ∈Θ there are unique numbers Cη(θ) and Cη(θ)

such that ∫ Cη(θ)

Cη(θ)

f (r;θ)dr = 1 −η�
∫ Cη(θ)

Cη(θ)

rf (r;θ)dr = (1 −η)
∫ ∞

−∞
rf (r;θ)dr�

If
∫ ∞

−∞ |r|f (r;θ0)dr < ∞ and
∫ ∞

−∞ |r|f (r; ·)dr is continuous at θ0, then Cη :
Θ→ R and Cη :Θ→ R are continuous at θ0.

PROOF OF THEOREM 5: The proof of Theorem 5 is based on Lemma 4 and
the theory of LAQ likelihood ratios. Repeated use will be made of the fact that∫

R4
g(r)fR(r;b� c�ρ)dr = E[

g(Rρ)eΛ
ρ(b�c)

] ∀b ∈ R� c ∈ R�

where Λρ(·) is defined as in the proof of Lemma 4 and g : R4 → R is any func-
tion such that either side of the equality is well defined.

PROOF OF (a): LetΠ(η�ρ) denote the class of all functions π(·) that satisfy

E
[
(π(Rρ)−η)g(Rββ�Rγγ)e

Λρ(0�c)
] = 0 ∀ c ∈ R� g ∈Cb(R2)�

By construction, π∗
η(·;ρ) ∈ Π(η�ρ). Applying Lehmann and Romano (2005,

Theorem 4.4.1) and the law of iterated expectations, it can be shown that

24We are grateful to a referee for suggesting the present formulation of Lemma 9(b) and for
pointing out that Lemma 9 is (essentially) a well-known result.
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π∗
η(·;ρ) satisfies

E
[
π(Rρ)eΛ

ρ(b�c)
]

≤E[
π∗
η(Rρ;ρ)eΛρ(b�c)] ∀b≥ 0� c ∈ R�π ∈Π(η�ρ)�

Because Cη(·) is continuous (Lemma 8), it follows from Lemma 3 and the
continuous mapping theorem (CMT) that π∗

η(R;ρ)→d0 π
∗
η(Rρ;ρ). This con-

vergence result, Le Cam’s third lemma, and Billingsley (1999, Theorem 3.5)
can be used to show that {π∗

η} satisfies (19) and that

lim
T→∞

EβT (b)�γT (c)π
∗
η(R;ρ)= E[

π∗
η(Rρ;ρ)eΛρ(b�c)] ∀b≥ 0� c ∈ R�

The proof of (a) will be completed by showing that for any {πT(·)} that sat-
isfies (19), any b≥ 0, and any c ∈ R, there exists a π ∈Π(η�ρ) such that

lim
T→∞

EβT (b)�γT (c)πT (R;ρ)=E[
π(Rρ;ρ)eΛρ(b�c)]�(27)

Let {πT(·)}, b≥ 0, and c ∈ R be given, and suppose {πT(·)} satisfies (19). Let
{πT ′(·)} be any subsequence of {πT(·)} that satisfies

lim
T ′→∞

EβT ′ (b)�γT ′ (c)πT ′(R;ρ)= lim
T→∞

EβT (b)�γT (c)πT (R;ρ)�

Because πT ′ = Op(1), it follows from Prohorov’s theorem (e.g., Billingsley
(1999)) that there exists a further subsequence {πT ′′(·)} such that

(πT ′′�R)→d0 (π∞�Rρ)(28)

as T ′′ → ∞, where π∞ is some random variable (defined on the same proba-
bility space as Rρ) and the dependence of R on T ′′ has been suppressed. Now,

lim
T→∞

EβT (b)�γT (c)πT (R;ρ)= lim
T ′′→∞

EβT ′′ (b)�γT ′′ (c)πT ′′(R;ρ)
= E

[
π∞eΛ

ρ(b�c)
]

= E
[
π(Rρ)eΛ

ρ(b�c)
]
� π(Rρ)=E(π∞|Rρ)�

where the second equality uses (28), Le Cam’s third lemma, and Billingsley
(1999, Theorem 3.5), and the last equality uses the law of iterated expectations.
The result π ∈Π(η�ρ) now follows because

E
[
(π(Rρ)−η)g(Rββ�Rγγ)e

Λρ(0�c)
]

=E[
(π∞ −η)g(Rββ�Rγγ)e

Λρ(0�c)
]

= lim
T ′′→∞

EβT ′′ (0)�γT ′′ (c)
[
(πT ′′(R;ρ)−η)g(Rββ�Rγγ)

]
= 0
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for any c ∈ R and any g ∈ Cb(R2), where the first equality uses the law of
iterated expectations, the second equality uses (28), Le Cam’s third lemma,
Lemma 3, Billingsley (1999, Theorem 3.5) and CMT, and the last equality uses
the fact that {πT(·)} satisfies (19). This completes the proof of part (a).

PROOF OF (b): LetΠ0(η�ρ)⊆Π(η�ρ) denote the class of all functions π(·)
that satisfy π ∈Π(η�ρ) and

E
[
(π(Rρ)−η)Rβ · g(Rββ�Rγγ)e

Λρ(0�c)
] = 0 ∀ c ∈ R� g ∈Cb(R2)�

By construction, π∗∗
η (·;ρ) ∈Π0(η�ρ). Applying Lehmann and Romano (2005,

Theorem 4.4.1) and the law of iterated expectations, it can be shown that
π∗∗
η (·;ρ) satisfies

E
[
π(Rρ)eΛ

ρ(b�c)
]

≤E[
π∗∗
η (Rρ;ρ)eΛρ(b�c)] ∀b ∈ R� c ∈ R�π ∈Π0(η�ρ)�

Because Cη(·) and Cη(·) are continuous (Lemma 8), it follows from Lemma 3
and CMT that π∗∗

η (R;ρ)→d0 π
∗∗
η (Rρ;ρ). This convergence result, Le Cam’s

third lemma, and Billingsley (1999, Theorem 3.5) can be used to show that
{π∗∗

η } satisfies (19), (22), and

lim
T→∞

EβT (b)�γT (c)π
∗∗
η (R;ρ)= E

[
π∗∗
η (Rρ;ρ)eΛρ(b�c)] ∀b ∈ R� c ∈ R�

Finally, by proceeding as in the proof of (a) it can be shown that for any {πT(·)}
that satisfies (19) and (22), any b ∈ R, and any c ∈ R, there exists a π ∈Π0(η�ρ)
such that

lim
T→∞

EβT (b)�γT (c)πT (R;ρ)=E[
π(Rρ;ρ)eΛρ(b�c)]� Q.E.D.

PROOF OF THEOREM 6: The result R̂ →d Rρ(b� c) follows from standard
weak convergence arguments (e.g., Phillips (1987a, 1988a, 1988b) and Phillips
and Solo (1992)) and straightforward algebra. For instance,

R̂γγ = ω̂−1
xxT

−2
T∑
t=1

v̂x2
t−1 =ω−1

xxT
−2

T∑
t=1

vx2
t−1 + op(1)

=
∫ 1

0

(
ω−1/2
xx T−1/2vx�Tr

)2
dr + op(1)→d

∫ 1

0
Wx�c(r)

2 dr�

where the second equality uses ω̂xx →p ωxx and T−1/2(x1 −µx)→p 0, and the
convergence result uses ω−1/2

xx T−1/2vx�T · →d Wx�c(·) and CMT.
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For any b≥ 0 and any c ∈ R,

EβT (b)�γT (c)π
∗
η(R̂; ρ̂)

= Pr
βT (b)�γT (c)

[R̂β > Cη(R̂γ� R̂ββ� R̂γγ; ρ̂)]

→ Pr
[
Rρ
β(b� c) > Cη

(
Rρ
γ(b� c)�Rββ(c)�Rγγ(c);ρ

)]
= ϕ∗

η(b� c;ρ)�

where the convergence result uses (R̂′� ρ̂)′ →d (Rρ(b� c)′�ρ)′, continuity
of Cη(·), and CMT. An analogous argument shows that

lim
T→∞

EβT (b)�γT (c)π
∗∗
η (R̂; ρ̂)→ ϕ∗∗

η (b� c;ρ) ∀ (b� c) ∈ R
2� Q.E.D.

PROOF OF THEOREM 7: Let Zγ = Wx(1), Zββ = ∫ 1
0 Wx(r)dr, and Qγγ =

Rγγ(0). Using changes of variables, it can be shown that

f ρ�0R (r)= 1√
2πrββ

exp
(

− r2
β

2rββ

)

× 2fQ

(
2rγ + 2

ρ√
1 − ρ2

rβ + 1� rγγ − rββ� rγγ
)
�

where, with fZγ�Zββ�Qγγ (·) denoting “the” density of (Zγ�Zββ�Qγγ)
′,

2fQ(qγ�qββ�qγγ)= 1√
qγ

√
qββ

fZγ�Zββ�Qγγ (
√
qγ�

√
qββ�qγγ)

+ 1√
qγ

√
qββ

fZγ�Zββ�Qγγ (
√
qγ�−√

qββ�qγγ)�

By the inversion theorem for characteristic functions,

fZγ�Zββ�Qγγ (zγ� zββ�qγγ)

= 1
(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
κ

∗(tγ� tββ� tγγ)

× exp[−i(tγzγ + tββzββ + tγγqγγ)]dtγ dtββ dtγγ

= 1
2π

∫ ∞

−∞
κ(t;zγ� zββ)exp[−itqγγ]dt�
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where

κ(t;zγ� zββ)

= 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
κ

∗(tγ� tββ� t)exp[−i(tγzγ + tββzββ)]dtγ dtββ

and κ
∗(·) is the joint characteristic function of (Zγ�Zββ�Qγγ)

′. It follows from
Abadir and Larsson (2001) that

κ
∗(tγ� tββ� tγγ)= E exp[itγZγ + itββZββ + itγγQγγ]

= exp
[

1
4(l1(tγ� tγγ)+ l2(tγ� tββ� tγγ)+ l3(tββ� itγγ))

]
√

cosh
√−2itγγ

�

where

l1(tγ� tγγ)= −2t2γ
tanh

√−2itγγ√−2itγγ

= −t2γ
1√|tγγ|

sinh 2
√|tγγ| + sin 2

√|tγγ|
cosh 2

√|tγγ| + cos 2
√|tγγ|

− it2γ
sign(tγγ)√|tγγ|

sinh 2
√|tγγ| − sin 2

√|tγγ|
cosh 2

√|tγγ| + cos 2
√|tγγ|

�

l2(tγ� tββ� tγγ)= 2i
tγtββ

tγγ

(
1

cosh
√−2itγγ

− 1
)

= −2tγtββ
1

|tγγ|
2 sinh

√|tγγ| sin
√|tγγ|

cosh 2
√|tγγ| + cos 2

√|tγγ|

− 2itγtββ
sign(tγγ)

|tγγ|
(

1 − 2 cosh
√|tγγ| cos

√|tγγ|
cosh 2

√|tγγ| + cos 2
√|tγγ|

)
�

l3(tββ� tγγ)= i t
2
ββ

tγγ

(
tanh

√−2itγγ√−2itγγ
− 1

)

= −t2ββ
1

2|tγγ|3/2

sinh 2
√|tγγ| − sin 2

√|tγγ|
cosh 2

√|tγγ| + cos 2
√|tγγ|

− it2ββ
sign(tγγ)

|tγγ|

×
(

1 − 1
2
√|tγγ|

sinh 2
√|tγγ| + sin 2

√|tγγ|
cosh 2

√|tγγ| + cos 2
√|tγγ|

)
�
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Now,

1
4

Re[l1(tγ� tγγ)+ l2(tγ� tββ� tγγ)+ l3(tββ� tγγ)]

= −1
4

(
tγ
tββ

)′
A(|tγγ|)

(
tγ
tββ

)

and

1
4

Im[l1(tγ� tγγ)+ l2(tγ� tββ� tγγ)+ l3(tββ� tγγ)] − (tγzγ + tββzββ)

= − sign(tγγ)
1
4

(
tγ
tββ

)′
B(|tγγ|)

(
tγ
tββ

)
−

(
tγ
tββ

)′ (
zγ
zββ

)
�

where A(·) and B(·) are defined in the statement of Theorem 7. Using the
properties of noncentral quadratic forms in normal random variables, it can be
shown that

1
(2π)2

∫
R2

exp
(
ix′z− 1

4
ix′B̄x

)
exp

(
−1

4
x′Āx

)
dx

= |Ā+ iB̄|−1/2

π
exp[−z′(ĀB̄−1Ā+ B̄)−1ĀB̄−1z]

× exp
[
iz′(B̄−1 − B̄−1Ā(ĀB̄−1Ā+ B̄)−1ĀB̄−1

)
z
]

for any z ∈ R
2, any symmetric, nonsingular 2 × 2 matrix B̄, and any symmetric,

positive definite 2 × 2 matrix Ā. As a consequence,

κ(t;zγ� zββ)

= 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
κ

∗(tγ� tββ� t)exp[−i(tγzγ + tββzββ)]dtγ dtββ

= |Ā+ iB̄ · sign(t)|−1/2

π
√

cosh
√−2it

× exp
[
−

(
zγ
zββ

)′
(ĀB̄−1Ā+ B̄)−1ĀB̄−1

(
zγ
zββ

)]

× exp
[
+i

(
zγ
zββ

)′ (
B̄−1 − B̄−1Ā(ĀB̄−1Ā+ B̄)−1ĀB̄−1

)

×
(
zγ
zββ

)
· sign(t)

]
�
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where Ā=A(|t|) and B̄= B(|t|).
The stated result now follows because κ(t;zγ� zββ)= κ(−t;zγ� zββ), imply-

ing that

fZγ�Zββ�Qγγ (zγ� zββ�qγγ)= 1
2π

∫ ∞

−∞
κ(t;zγ� zββ)exp[−itqγγ]dt

= 1
π

∫ ∞

0
Re{κ(tγγ;zγ� zββ)exp[−itqγγ]}dt�

Q.E.D.
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