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NEARLY EFFICIENT LIKELIHOOD RATIO TESTS OF THE UNIT
ROOT HYPOTHESIS

BY MICHAEL JANSSON AND MORTEN ØRREGAARD NIELSEN1

Seemingly absent from the arsenal of currently available “nearly efficient” testing
procedures for the unit root hypothesis, that is, tests whose asymptotic local power
functions are virtually indistinguishable from the Gaussian power envelope, is a test
admitting a (quasi-)likelihood ratio interpretation. We study the large sample proper-
ties of a quasi-likelihood ratio unit root test based on a Gaussian likelihood and show
that this test is nearly efficient.
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1. INTRODUCTION

THE UNIT ROOT TESTING PROBLEM has been and continues to be a testing
problem of great theoretical interest in time series econometrics.2 In a seminal
paper, Elliott, Rothenberg, and Stock (1996; henceforth ERS) derived Gaus-
sian power envelopes for unit root tests and demonstrated by example that
these envelopes are sharp in the sense that “nearly efficient” tests, that is, tests
whose asymptotic local power functions are virtually indistinguishable from
the Gaussian power envelope, can be constructed. Subsequent research (e.g.,
Ng and Perron (2001)) has enlarged the class of tests whose asymptotic local
power functions are indistinguishable from the Gaussian power envelope, but
seemingly absent from the arsenal of currently available nearly efficient test-
ing procedures is a test admitting a (quasi-)likelihood ratio interpretation. The
purpose of this note is to propose and analyze such a test.

In models with an unknown mean and/or a linear trend, the class of nearly
efficient unit root tests does not contain the Dickey and Fuller (1979, 1981;
henceforth DF) tests. Therefore, although the DF tests can be given a likeli-
hood ratio interpretation, it is perhaps not ex ante obvious that nearly efficient
likelihood ratio tests even exist. In other words, it would appear to be an open
question whether the unit root testing problem can be added to the list of test-

1We are grateful to Jim Stock, the referees, Peter Boswijk, Niels Haldrup, Søren Johansen,
Tom Rothenberg, and seminar participants at the University of Aarhus, Cornell University, the
Econometric Society World Congress in Shanghai, the HEC Montréal-CIRPÉE Applied Finan-
cial Time Series Workshop, the CREATES conference on Periodicity, Non-stationarity, and Fore-
casting of Economic and Financial Time Series, the 2011 NBER-NSF Time Series Conference,
the 2011 Canadian Econometric Study Group conference, and the 2011 CIREQ Time Series
Conference for comments and discussion, and to the Danish Social Sciences Research Coun-
cil (FSE Grant 275-05-0220), the Social Sciences and Humanities Research Council of Canada
(SSHRC Grant 410-2009-0183), and the Center for Research in Econometric Analysis of Time
Series (CREATES, funded by the Danish National Research Foundation) for financial support.

2For reviews, see Stock (1994) and Haldrup and Jansson (2006).
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ing problems for which likelihood ratio tests perform poorly (e.g., Lehmann
(2006) and the references therein).

The DF tests can be derived from a conditional likelihood, conditioning be-
ing with respect to the initial observation. In the model considered by ERS,
the initial observation is very informative about the parameters governing the
deterministic component, so it seems plausible that a likelihood ratio test de-
rived from the full likelihood implied by an ERS-type model would have su-
perior power properties to those of the DF tests in models with deterministic
components, and this is exactly what we find. Indeed, we find that a likelihood
ratio test constructed in this way does belong to the class of nearly efficient
tests. Moreover, we show that the new tests are related to, but distinct from,
the point optimal and DF-GLS tests of ERS, even asymptotically.

Section 2 contains our results on the likelihood ratio test for a unit root, with
additional discussion in Section 3. The proof of our main result is provided in
Section 4.

2. THE LIKELIHOOD RATIO TEST FOR A UNIT ROOT

We initially consider unit root testing in a model devoid of nuisance param-
eters, namely, the zero-mean Gaussian AR(1) model where {yt : 1 ≤ t ≤ T } is
generated as

yt = ρyt−1 + εt�(1)

where y0 = 0 and εt ∼ i.i.d. N (0�1).
In this model, the likelihood ratio test associated with the unit root test-

ing problem H0 :ρ = 1 versus H1 :ρ < 1 rejects for large values of LRT =
maxρ̄≤1 LT(ρ̄) − LT(1), where LT(ρ) = − 1

2

∑T

t=1(yt − ρyt−1)
2 is, up to a con-

stant, the log likelihood function. In terms of the sufficient statistics ST =
T−1

∑T

t=2 yt−1�yt and HT = T−2
∑T

t=2 y
2
t−1, the log likelihood function can be ex-

pressed as LT(ρ)=LT(1)+T(ρ− 1)ST − 1
2 [T(ρ− 1)]2HT . As a consequence,

defining c̄ = T(ρ̄ − 1) to obtain nondegenerate asymptotic behavior, LRT ad-
mits the representation

LRT = max
c̄≤0

[
c̄ST − 1

2
c̄2HT

]
�(2)

The large sample behavior of (ST �HT) is well understood (e.g., Chan and
Wei (1987), Phillips (1987)): Under local-to-unity asymptotics, with c = T(ρ−
1) held fixed as T → ∞,

(ST �HT)→d (Sc� Hc)=
(∫ 1

0
Wc(r)dWc(r)�

∫ 1

0
Wc(r)

2 dr

)
�(3)

where Wc(r)= ∫ r

0 exp(c(r − s))dW (s) and W (·) is a standard Wiener process.
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The corresponding result about the local-to-unity asymptotic behavior of the
likelihood ratio statistic LRT follows from (2), (3), and the continuous mapping
theorem (CMT) applied to the functional f (s�h) = min(0� s)2/h. Specifically,
using simple facts about quadratic functions and defining Λc(c̄) = c̄Sc − 1

2 c̄
2 Hc ,

LRT = max
c̄≤0

[
c̄ST − 1

2
c̄2HT

]
= min(ST �0)2

2HT

→d

min(Sc�0)2

2Hc

= max
c̄≤0

Λc(c̄)�

The implicit characterization of the weak limit of LRT as maxc̄≤0 Λc(c̄) is em-
ployed in anticipation of Theorem 1(b) below, which covers a case where no
closed form expression for the limiting random variable seems to be available.

In addition to facilitating the verification of the continuity property required
to invoke the CMT, the closed form expression for maxc̄≤0 Λc(c̄) enables us
to address the asymptotic optimality properties of the likelihood ratio test. For
any α less than Pr[S0 ≤ 0] ≈ 0�6827, the (asymptotic) size α likelihood ratio test
rejects when LRT exceeds kLR(α), where kLR(α) satisfies Pr[maxc̄≤0 Λ0(c̄) >
kLR(α)] = α. For any such α, the asymptotic local power function associated
with the size α likelihood ratio test coincides with that of the size α test based
on the DF t-statistic τ̂DF

T , the reason being that τ̂DF
T →d Sc/

√
Hc under the

above assumptions. It therefore follows from ERS’s results about the DF t-test
that the likelihood ratio test is nearly efficient in the sense that its asymptotic
local power function is virtually indistinguishable from the Gaussian power
envelope.

The near-efficiency result for the test based on the DF t-statistic does not
extend to models with a constant mean or a linear trend (e.g., ERS). Moreover,
the assumptions that the quasi-differences {yt − ρyt−1} are independent and
identically distributed (i.i.d.) with a known distribution are implausible in many
applications. It is therefore of theoretical and practical interest to explore the
asymptotic local power properties of quasi-likelihood ratio tests in models with
nuisance parameters governing deterministics and/or serial correlation. To that
end, suppose {yt : 1 ≤ t ≤ T } is generated by the model

yt = β′dt + ut� (1 − ρL)γ(L)ut = εt�(4)

where dt = 1 or dt = (1� t)′, β is an unknown parameter, γ(L) = 1 −
γ1L − · · · − γpL

p is a lag polynomial of (known, finite3) order p satisfying

3If p is allowed to diverge slowly to infinity, it seems plausible that results analogous to Theo-
rem 1 can be obtained when (1−ρL)ut is generated by a linear process satisfying mild summabil-
ity conditions (e.g., Chang and Park (2002)). Monte Carlo results reported in the Supplemental
Material, see Jansson and Nielsen (2012), are consistent with this conjecture, but for simplicity,
our theoretical developments proceed under the assumption that p is fixed.
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min|z|≤1 |γ(z)|> 0, the initial condition is max(|u0|� � � � � |u−p|) = op(
√
T), and

the εt form a conditionally homoskedastic martingale difference sequence with
(unknown) variance σ2 and supt E|εt|r < ∞ for some r > 2.

The Gaussian quasi-log likelihood function corresponding to the model with
u0 = · · · = u−p = 0 can be expressed, up to a constant, as

Ld
T

(
ρ�β;σ2�γ

) = −T

2
logσ2 − 1

2σ2
(Yρ�γ −Dρ�γβ)

′(Yρ�γ −Dρ�γβ)�

where, setting y0 = · · · = y−p = 0 and d0 = · · · = d−p = 0, Yρ�γ and Dρ�γ are
matrices with row t = 1� � � � �T given by (1 − ρL)γ(L)yt and (1 − ρL)γ(L)d′

t ,
respectively.

Consider a quasi-likelihood ratio-type test statistic of the form

L̂R
d

T = max
ρ̄≤1�β

Ld
T

(
ρ̄�β; σ̂2

T � γ̂T

) − max
β

Ld
T

(
1�β; σ̂2

T � γ̂T

)
= max

ρ̄≤1
Ld

T

(
ρ̄; σ̂2

T � γ̂T

) − Ld
T

(
1; σ̂2

T � γ̂T

)
�

where σ̂2
T and γ̂T are estimators of σ2 and γ = (γ1� � � � � γp)

′, respectively, and

Ld
T

(
ρ;σ2�γ

) = −T

2
logσ2 − 1

2σ2
Y ′

ρ�γYρ�γ

+ 1
2σ2

(
Y ′

ρ�γDρ�γ

)(
D′

ρ�γDρ�γ

)−1(
D′

ρ�γYρ�γ

)
is the profile log likelihood function obtained by maximizing Ld

T (ρ�β;σ2�γ)
with respect to the nuisance parameter β governing the deterministic com-
ponent. Being based on a plug-in version of Ld

T (ρ;σ2�γ), the statistic L̂R
d

T is
straightforward to compute, requiring only maximization of Ld

T (ρ; σ̂2
T � γ̂T ) with

respect to the scalar parameter ρ. Unlike LT(ρ), however, the profile log likeli-
hood function Ld

T (ρ;σ2�γ) depends on ρ in a complicated way, and no closed
form expression for L̂R

d

T will be available in general, a feature which com-
plicates, but does not prohibit, the derivation of its local-to-unity asymptotic
distribution.

The proof of the following result proceeds by showing that the likelihood
ratio statistic can be written as L̂R

d

T = maxc̄≤0 F(c̄� X̂T ) for some function F(·)
and some random vector X̂T , where the latter enjoys a convergence property
of the form X̂T →d Xc and the functional maxc̄≤0 F(c̄� ·) is continuous on a set
X satisfying Pr[Xc ∈ X] = 1 (for every c ≤ 0).4

4An alternative method of proof, more heavily reliant on empirical process methods, has been
outlined for a closely related test statistic by Boswijk (1998). We are grateful to Peter Boswijk for
bringing that manuscript to our attention.
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THEOREM 1: Suppose {yt} is generated by (4), c = T(ρ − 1) is held fixed as
T → ∞, and (σ̂2

T � γ̂T )→p (σ
2�γ). Then:

(a) If dt = 1, then L̂R
d

T →d maxc̄≤0 Λc(c̄).
(b) If dt = (1� t)′, then L̂R

d

T →d maxc̄≤0 Λ
τ
c(c̄), where

Λτ
c(c̄) = Λc(c̄)+ 1

2

(
(1 − c̄)Wc(1)+ c̄2

∫ 1

0
rWc(r)dr

)2

1 − c̄ + c̄2/3
− 1

2
Wc(1)2�

The consistency requirement on the estimators σ̂2
T and γ̂T in Theorem 1

is mild. For instance, it is met by σ̂2
T = (T − p − 1)−1

∑T

t=p+2(�yt − κ̂′
TZt)

2

and γ̂T = (0� Ip)κ̂T , where κ̂T = (
∑T

t=p+2 ZtZ
′
t)

−1(
∑T

t=p+2 Zt�yt) and Zt =
(�d′

t ��yt−1� � � � ��yt−p)
′. In Monte Carlo simulations reported in the Supple-

mental Material (Jansson and Nielsen (2012)) this choice of estimators was
found to deliver tests with good small sample properties. Critical values asso-
ciated with L̂R

d

T are reported in Table I.
Because the profile log likelihood function Ld

T (·;σ2�γ) is invariant under
transformations of the form yt → yt +b′dt , so is L̂R

d

T (and any other test statis-
tic that can expressed as a functional of Ld

T (·; σ̂2
T � γ̂T )) provided (σ̂2

T � γ̂T ) is

TABLE I

QUANTILES OF THE DISTRIBUTION OF L̂R
d

T
a

T 80% 85% 90% 95% 97�5% 99% 99�5% 99�9%

Panel A: constant mean case
100 0�81 1�07 1�45 2�14 2�84 3�74 4�42 5�93
250 0�78 1�02 1�36 1�99 2�65 3�56 4�25 5�86
500 0�77 1�00 1�33 1�93 2�56 3�44 4�11 5�70

1000 0�77 0�99 1�32 1�91 2�52 3�36 4�01 5�57
∞ 0�76 0�98 1�31 1�88 2�48 3�29 3�92 5�40

Panel B: linear trend case
100 2�50 2�86 3�34 4�14 4�91 5�89 6�60 8�17
250 2�47 2�82 3�29 4�09 4�88 5�89 6�65 8�38
500 2�46 2�80 3�28 4�07 4�85 5�86 6�63 8�36

1000 2�46 2�80 3�27 4�05 4�83 5�84 6�59 8�31
∞ 2�45 2�79 3�26 4�05 4�82 5�82 6�57 8�29

aEntries for finite T are simulated quantiles of L̂Rd
T with (σ̂2

T � γ̂T ) = (σ2�γ) and εt ∼ i.i.d. N (0�1). Entries for
T = ∞ are simulated quantiles of maxc̄≤0 Λ0(c̄) and maxc̄≤0 Λ

τ
0(c̄), respectively, where Wiener processes are approxi-

mated by 104 discrete steps with standard Gaussian innovations. All entries are based on 107 Monte Carlo replications.
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invariant.5 It therefore makes sense to compare the asymptotic local power
properties of the tests based on L̂R

d

T with ERS’s Gaussian power envelopes
for invariant tests. In the constant mean case, the envelope for invariant tests
coincides with the envelope for the model (1) without deterministics. Simi-
larly, it follows from Theorem 1(a) that the asymptotic local power of the con-
stant mean likelihood ratio test coincides with the asymptotic local power of
the no deterministics likelihood ratio test. The constant mean likelihood ra-
tio test therefore inherits the near-optimality property of its no deterministics
counterpart. Figure 1 plots the asymptotic local power function (with argu-
ment c ≤ 0) of the size α = 0�05 linear trend likelihood ratio test along with
the Gaussian power envelope. As in the no deterministics and constant mean
cases, the asymptotic local power function of the likelihood ratio test is indis-
tinguishable from the Gaussian power envelope, so near-optimality claims can
be made on the part of the likelihood ratio test also in the linear trend case.

FIGURE 1.—Power envelope and asymptotic local power function of LR test with a linear
trend. Simulated based on 106 Monte Carlo replications, where Wiener processes were approxi-
mated by 104 discrete steps with standard Gaussian innovations.

5The latter invariance property is enjoyed by the estimators of σ2 and γ described in the pre-
ceding paragraph.
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3. DISCUSSION

The near-optimality properties of the likelihood ratio test are shared by two
related, but distinct, classes of tests proposed by ERS, namely, the point op-
timal tests and DF-GLS tests. To clarify the differences between the three
classes of tests, consider the model (4) with p = 0 (so that γ(L) = 1) and
σ2 = 1, in which case the log likelihood and profile log likelihood functions are
L∗

T (ρ�β)= Ld
T (ρ�β;1�0) and L∗

T (ρ)= Ld
T (ρ;1�0), respectively, and a version

of the likelihood ratio test statistic is given by LRd
T = maxρ̄≤1 L∗

T (ρ̄)− L∗
T (1).

The point optimal test statistics are of the form PT(c̄ERS)= L∗
T (1+T−1c̄ERS)−

L∗
T (1), where c̄ERS is a negative constant. By construction, these tests are

tangent to the Gaussian power envelope at c = c̄ERS. It was found by ERS
that the choices c̄ERS = −7 and c̄ERS = −13�5 produce nearly efficient tests
in the constant mean and linear trend cases, respectively. Defining ĉLR =
arg maxc̄≤0 L∗

T (1 + T−1c̄), the likelihood ratio test statistic can be expressed
as LRd

T = PT(ĉLR). Because ĉLR is random even in the limit, the likeli-
hood ratio test cannot be interpreted as an (asymptotically) point optimal
test.

The DF-GLS test is asymptotically equivalent to the test based on the test
statistic τ̂DF-GLS

T (c̄ERS)= maxρ̄≤1 L
∗
T (ρ̄� β̂T (c̄ERS))−L∗

T (1� β̂T (c̄ERS)), where c̄ERS

is a negative constant and β̂T (c̄ERS) is a plug-in estimator of β given by

β̂T (c̄ERS) = arg max
b

Ld
T

(
1 + T−1c̄ERS� b

)
= (

D′
ρ̄�0Dρ̄�0

)−1
(Dρ̄�0Yρ̄�0)|ρ̄=1+T−1 c̄ERS

�

As with the point optimal tests, ERS recommend setting c̄ERS equal to −7 and
−13�5 in the constant mean and linear trend cases, respectively. Under the as-
sumptions of Theorem 1(a), the likelihood ratio test is asymptotically equiva-
lent to the DF-GLS test since, for any c̄ERS ≤ 0, τ̂DF-GLS

T (c̄ERS)→d maxc̄≤0 Λc(c̄).
In contrast, under the assumptions of Theorem 1(b), the asymptotic properties
of τ̂DF-GLS

T (c̄ERS) depend on c̄ERS and the likelihood ratio test cannot be inter-
preted as being asymptotically equivalent to a DF-GLS test in the linear trend
case.

Thus, although the tests based on L̂R
d

T are virtually identical to the DF-GLS
tests of ERS in terms of asymptotic local power properties, the LR-type tests
introduced herein are conceptually distinct from the DF-GLS tests. Specifi-
cally, while both tests achieve nuisance parameter elimination by first plugging
in estimators of one subset of the nuisance parameters and then profiling out
the remaining nuisance parameters, the tests differ markedly with respect to
the choice of nuisance parameters that are being eliminated by plug-in and
profiling, respectively. In the case of the DF-GLS tests, the parameter β gov-



2328 M. JANSSON AND M. Ø. NIELSEN

erning the deterministic component is eliminated using a plug-in approach,
whereas the parameters (σ2�γ) governing the scale and serial correlation of
the errors are eliminated by profiling. The statistic L̂R

d

T , in contrast, is ob-
tained by plugging in estimators of σ2 and γ and then profiling out β. Remov-
ing (σ2�γ) by plug-in is computationally convenient and can be motivated by
statistical considerations, as σ2 and γ are nuisance parameters that (unlike β)
can be treated “as if” they are known when deriving asymptotic local power
envelopes. In other words, L̂R

d

T is obtained by plugging in those nuisance pa-
rameters that do not affect asymptotic local power, σ2 and γ, and maximizing
the likelihood fully over the parameter that does influence asymptotic local
power, namely, β.

In addition to characterizing the asymptotic behavior of the likelihood ratio
statistics, the functionals maxc̄≤0 Λc(c̄) and maxc̄≤0 Λ

τ
c(c̄) can be interpreted as

likelihood ratio test statistics in the limiting experiments (in the sense of Le
Cam; see, e.g., van der Vaart (1998)) associated with maximal invariants for
the model (4) when the errors are i.i.d. Gaussian. As a consequence, our re-
sults shed light on the properties of these limiting experiments by demonstrat-
ing that likelihood ratio tests (of H0 : c = 0 vs. H1 : c < 0) are nearly efficient
in these experiments, a result that may seem surprising in view of Ploberger
(2004, 2008).

In the constant mean case, our model admits locally asymptotically quadratic
(LAQ) log likelihood ratios, so the asymptotic optimality of the likelihood ra-
tio tests can be viewed as a testing analog of the efficiency results for maxi-
mum likelihood estimators established by Gushchin (1995) and Ploberger and
Phillips (2012). We are not aware of any optimality results for estimators in
non-LAQ models, such as (4) in the linear trend case, but our results suggest
that also in some of these situations, it may be possible to establish efficiency
results on the part of maximum likelihood estimators.

As is well understood from the work of Elliott (1999) and Müller and Elliott
(2003), the validity of Theorem 1 (for c < 0) and the near-efficiency claims
made about L̂R

d

T depend crucially on the assumption that the initial conditions
are asymptotically negligible in the sense that max(|u0|� � � � � |u−p|) = op(

√
T).

Employing a model similar to that of Elliott (1999), Chen and Deo (2009)
developed a likelihood ratio test statistic and derived its asymptotic null distri-
bution. It would be of interest to investigate whether that likelihood ratio test
enjoys near-efficiency properties similar to those obtained herein. We are not
aware of any likelihood ratio statistics developed for the more general model
of Müller and Elliott (2003). In that model, the unit root testing problem is
further complicated by the presence of an unidentified nuisance parameter
under the null hypothesis, and it would be of interest to explore the possibil-
ity of constructing likelihood ratio tests with optimality properties such as an
“admissibility at ∞” property reminiscent of Andrews and Ploberger (1995).
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A limitation of Theorem 1 is the fact that optimality claims cannot necessar-
ily be made without the assumption of normality, the reason being that relax-
ing the assumption of normality of the error distribution affects the shape of
the power envelope when the errors εt are i.i.d. (e.g., Rothenberg and Stock
(1997), Jansson (2008)).6 By basing inference on a Gaussian quasi-likelihood
we have made no attempt to achieve full efficiency also under departures from
Gaussianity, but it seems plausible that likelihood ratio-type tests with more
global optimality properties can be constructed by proceeding as in Jansson
(2008). On the other hand, by enlarging the class of models under consid-
eration to contain all error processes for which the weak convergence result
X̂T →d Xc , exploited in the proof of Theorem 1, is valid, it should be possible to
use the methods of Müller (2011) to establish a semiparametric near-efficiency
result for the tests developed herein.

Left for future work is an extension of our theoretical results to tests of
cointegration.7 Like the DF tests for unit roots, the cointegration tests due
to Johansen (1991) are derived from a conditional likelihood, and it would be
of interest to know if our qualitative finding about the relative merits of likeli-
hood ratio tests derived from conditional and full likelihoods extends to tests
of cointegration.

4. PROOF OF THEOREM 1

Because Ld
T (·;σ2�γ) is invariant under transformations of the form yt →

yt + b′dt , we can assume without loss of generality that β = 0. The proofs of
parts (a) and (b) are very similar, the latter being slightly more involved, so we
omit the details for part (a).

Defining d̂T t = γ̂T (1)−1 diag(1�1/
√
T)γ̂T (L)dt and ŷT t = σ̂−1

T γ̂T (L)yt , the
test statistic can be written as L̂R

d

T = maxc̄≤0 F(c̄� X̂T ), where X̂T = (ŜT � ĤT �

ÂT � B̂T ), ŜT = σ̂−2
T T−1

∑T

t=2 ŷT�t−1�ŷTt , ĤT = σ̂−2
T T−2

∑T

t=2 ŷ
2
T�t−1,

ÂT = (
ÂT (0)� ÂT (1)� ÂT (2)

)
� B̂T = (

B̂T (0)� B̂T (1)� B̂T (2)
)
�

ÂT (0)=
T∑
t=1

�d̂Tt�ŷT t� ÂT (1)= 1
T

T∑
t=1

(�d̂TtyT�t−1 + d̂T�t−1�ŷTt)�

ÂT (2)= 1
T 2

T∑
t=1

d̂T�t−1ŷT�t−1�

6In addition to investigating the effects of nonnormality, Rothenberg and Stock (1997, Sec-
tion 4) obtained large sample representations of (signed and unsigned) likelihood ratio test statis-
tics in a model without deterministics.

7An extension to seasonal unit roots is considered in Jansson and Nielsen (2011).
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B̂T (0)=
T∑
t=1

�d̂Tt�d̂
′
Tt� B̂T (1)= 1

T

T∑
t=1

(
�d̂Ttd̂

′
T�t−1 + d̂T�t−1�d̂

′
T�t

)
�

B̂T (2)= 1
T 2

T∑
t=1

d̂T�t−1d̂
′
T�t−1�

and, with x = (s�h�a�b),

F(c̄�x)= c̄s − 1
2
c̄2h+ 1

2
N(c̄�a)′D(c̄�b)−1N(c̄�a)

− 1
2
N(0� a)′D(0� b)−1N(0� a)�

N(c̄� a)= a(0)− c̄a(1)+ c̄2a(2)� D(c̄� b) = b(0)− c̄b(1)+ c̄2b(2)�

Under the assumptions of Theorem 1, it follows from standard results (e.g.,
Chan and Wei (1987), Phillips (1987)) that X̂T →d Xc = (Sc� Hc� Ac� B), where
(Sc� Hc) is given in (3),

Ac =
((

Y
Wc(1)

)
�

(
0

Wc(1)

)
�

( 0∫ 1

0
rWc(r)dr

))
�

B =
((

K 0
0 1

)
�

(
0 0
0 1

)
�

(
0 0
0 1/3

))
�

Y is a linear combination of ε1� � � � � εp+1 (with coefficients depending on γ)
independent of Wc(·), and K = (1 +∑p

i=1 γ
2
i )/(1 +∑p

i=1 γi)
2. This convergence

result implies, in particular, that F(c̄� X̂T ) →d F(c̄� Xc)=Λτ
c(c̄) for every c̄ ≤ 0

(under the assumptions of Theorem 1). Moreover, Pr(Xc ∈ X) = 1 for every
c ≤ 0, where X is the set of all quadruplets (s�h�a�b) satisfying s > −1/2,
h> 0, b = B, and

a=
((

r1

r2
√

2(s + 1)

)
�

(
0

r2
√

2(s + 1)

)
�

(
0

r3

√
h/3

))
�

for some (r1� r2� r3) ∈ R × {−1�1} × (0�1). The result L̂R
d

T →d maxc̄≤0 F(c̄� Xc)
therefore follows from the CMT if maxc̄≤0 F(c̄� ·) is continuous at every x0 ∈ X.

There exists an open set X̃ ⊇ X and continuous functions {pi(·)} and {qi(·)}
defined on X̃ such that, if x ∈ X̃, then F(c̄�x) is a rational polynomial function
of c̄ of the form F(c̄�x) = ∑6

i=1 pi(x)c̄
i/

∑4
i=0 qi(x)c̄

i, where p6(x) < 0 and∑4
i=0 qi(x)c̄

i = det[D(c̄�b)] is positive for every c̄ ≤ 0.
Using these facts, it follows that, for every x0 ∈ X, there is a finite constant M

and an open set X̃0 ⊆ X̃ containing x0 such that F(c̄�x) is negative whenever
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(c̄� x) ∈ (−∞�−M)× X̃0. Because F(0�x) = 0, this fact implies that if x ∈ X̃0,
then

max
c̄≤0

F(c̄�x)= max
−M≤c̄≤0

F(c̄�x)�(5)

Because F(·) is continuous on [−M�0] × X̃0 and [−M�0] is compact, it fol-
lows from the theorem of the maximum (e.g., Stokey and Lucas (1989), The-
orem 3.6) that max−M≤c̄≤0 F(c̄� ·) is continuous on X̃0. The desired continuity
property of maxc̄≤0 F(c̄� ·) follows from this result and the representation (5).
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A.1. MONTE CARLO SIMULATIONS

TO ASSESS THE FINITE SAMPLE PROPERTIES of the likelihood ratio test, we con-
duct a small Monte Carlo experiment. For specificity, and because the presence
of a negative moving average component is known to be problematic in unit
root testing, we consider a data generating process (DGP) of the form

yt = ρyt−1 + ut� ut = εt + θεt−1�(A1)

where y0 = 0, εt ∼ i.i.d. N (0�1), and θ ∈ {0�00�−0�25�−0�50�−0�75}. For each
of 106 replications, we simulate the model with sample sizes T ∈ {100�250}.
The parameter ρ is set so that ρ = 1 + c/T , with c ∈ {0�−5� � � � �−30} in the
constant mean case and c ∈ {0�−7�5� � � � �−45} in the linear trend case.

In the simulations, the likelihood ratio test L̂R
d

T is compared with the DF-
GLS test of Elliott, Rothenberg, and Stock (1996) and with the modified point
optimal MP-GLS test of Ng and Perron (2001). All three tests use the lag
length chosen by the Modified Akaike Information Criterion of Perron and
Qu (2007) applied to the DF-GLS regression. The results of the simulations
are presented in Tables A.I–A.IV. Tables A.I and A.II report rejection rates
and size-corrected power, respectively, for the constant mean case. The corre-
sponding results for the linear trend case are reported in Tables A.III and A.IV.

In both the constant mean and linear trend cases, the relative performance
of the three tests can be summarized as follows. The MP-GLS test has excel-
lent size properties, but it is very conservative and inferior to the other tests in
terms of (raw and size-adjusted) power. The DF-GLS and likelihood ratio tests
are both somewhat oversized when θ = −0�75� but exhibit only very slight size
distortions for |θ| ≤ 0�5. In the latter range, the likelihood ratio test is superior
in terms of power, and in some cases the difference is quite substantial, for ex-
ample, for T = 250 and θ = −0�50. On the basis of these results, our tentative
conclusion is that when size control in the presence of a large negative moving
average component is the only concern, the MP-GLS test remains attractive.
On the other hand, the likelihood ratio test is attractive when at most a mod-
erate negative moving average component is suspected, in which case it offers
substantial power gains over both the MP-GLS and DF-GLS tests without sac-
rificing size control.
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TABLE A.I

SIMULATED REJECTION FREQUENCIES OF UNIT ROOT TESTS, CONSTANT MEAN CASEa

T = 100 T = 250

θ ρ L̂Rd
T DF-GLS MP-GLS ρ L̂Rd

T DF-GLS MP-GLS

0.00 1.00 0.0433 0.0538 0.0389 1.00 0.0521 0.0500 0.0424
0.95 0.2136 0.2976 0.2295 0.98 0.2563 0.2941 0.2576
0.90 0.5006 0.6044 0.5151 0.96 0.6138 0.6638 0.6138
0.85 0.6967 0.7604 0.6970 0.94 0.8368 0.8618 0.8317
0.80 0.7736 0.8049 0.7577 0.92 0.9110 0.9213 0.9035
0.75 0.8004 0.8138 0.7708 0.90 0.9359 0.9381 0.9240
0.70 0.8118 0.8102 0.7647 0.88 0.9471 0.9438 0.9290

−0.25 1.00 0.0515 0.0658 0.0497 1.00 0.0564 0.0561 0.0482
0.95 0.2366 0.3068 0.2463 0.98 0.2814 0.3080 0.2748
0.90 0.4750 0.5431 0.4629 0.96 0.6066 0.6316 0.5857
0.85 0.6351 0.6605 0.5816 0.94 0.8041 0.8046 0.7667
0.80 0.7127 0.6996 0.6219 0.92 0.8842 0.8659 0.8354
0.75 0.7493 0.7083 0.6274 0.90 0.9181 0.8875 0.8568
0.70 0.7703 0.7072 0.6212 0.88 0.9355 0.8932 0.8609

−0.50 1.00 0.0645 0.0744 0.0500 1.00 0.0658 0.0605 0.0486
0.95 0.2612 0.2901 0.2004 0.98 0.3104 0.3037 0.2491
0.90 0.4638 0.4571 0.3325 0.96 0.6079 0.5629 0.4805
0.85 0.5991 0.5369 0.4012 0.94 0.7808 0.6962 0.6108
0.80 0.6763 0.5730 0.4324 0.92 0.8615 0.7487 0.6613
0.75 0.7250 0.5929 0.4506 0.90 0.9029 0.7663 0.6774
0.70 0.7603 0.6093 0.4682 0.88 0.9269 0.7709 0.6760

−0.75 1.00 0.1118 0.0984 0.0457 1.00 0.0954 0.0737 0.0298
0.95 0.3297 0.2661 0.1325 0.98 0.3695 0.2625 0.1145
0.90 0.5231 0.3899 0.2275 0.96 0.6195 0.4063 0.1937
0.85 0.6704 0.4952 0.3334 0.94 0.7829 0.4815 0.2465
0.80 0.7735 0.5935 0.4491 0.92 0.8737 0.5216 0.2831
0.75 0.8447 0.6874 0.5719 0.90 0.9253 0.5449 0.3112
0.70 0.8941 0.7746 0.6895 0.88 0.9556 0.5634 0.3365

aThe table presents simulated rejection frequencies for the likelihood ratio test L̂Rd
T , DF-GLS test of ERS, and

MP-GLS test of Ng and Perron (2001) using 106 replications of the model (A1) allowing only for a constant mean.
The entries for ρ = 1�00 are the simulated sizes of the tests. All three tests use the MAIC of Perron and Qu (2007) to
select lag length.
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TABLE A.II

SIZE-CORRECTED REJECTION FREQUENCIES OF UNIT ROOT TESTS, CONSTANT MEAN CASEa

T = 100 T = 250

θ ρ L̂Rd
T DF-GLS MP-GLS ρ L̂Rd

T DF-GLS MP-GLS

0.00 1.00 0.0500 0.0500 0.0500 1.00 0.0500 0.0500 0.0500
0.95 0.2380 0.2812 0.2812 0.98 0.2488 0.2942 0.2942
0.90 0.5357 0.5843 0.5830 0.96 0.6026 0.6639 0.6634
0.85 0.7230 0.7481 0.7441 0.94 0.8301 0.8618 0.8602
0.80 0.7918 0.7963 0.7899 0.92 0.9074 0.9213 0.9196
0.75 0.8153 0.8065 0.7948 0.90 0.9333 0.9381 0.9351
0.70 0.8255 0.8039 0.7859 0.88 0.9452 0.9438 0.9375

−0.25 1.00 0.0515 0.0658 0.0497 1.00 0.0564 0.0561 0.0482
0.95 0.2298 0.2478 0.2475 0.98 0.2568 0.2821 0.2827
0.90 0.4651 0.4725 0.4642 0.96 0.5725 0.5987 0.5962
0.85 0.6276 0.6042 0.5827 0.94 0.7795 0.7820 0.7745
0.80 0.7069 0.6550 0.6229 0.92 0.8692 0.8513 0.8408
0.75 0.7444 0.6706 0.6281 0.90 0.9073 0.8757 0.8612
0.70 0.7656 0.6728 0.6220 0.88 0.9269 0.8827 0.8644

−0.50 1.00 0.0645 0.0744 0.0500 1.00 0.0658 0.0605 0.0486
0.95 0.2109 0.2080 0.2005 0.98 0.2507 0.2579 0.2547
0.90 0.3975 0.3639 0.3326 0.96 0.5288 0.5064 0.4877
0.85 0.5393 0.4562 0.4013 0.94 0.7184 0.6507 0.6178
0.80 0.6260 0.5035 0.4324 0.92 0.8178 0.7111 0.6664
0.75 0.6804 0.5330 0.4506 0.90 0.8692 0.7358 0.6820
0.70 0.7191 0.5569 0.4682 0.88 0.9000 0.7426 0.6803

−0.75 1.00 0.1118 0.0984 0.0457 1.00 0.0954 0.0737 0.0298
0.95 0.1702 0.1556 0.1425 0.98 0.2137 0.1942 0.1735
0.90 0.3299 0.2730 0.2389 0.96 0.4256 0.3261 0.2658
0.85 0.4924 0.3911 0.3443 0.94 0.6070 0.4118 0.3175
0.80 0.6289 0.5078 0.4579 0.92 0.7410 0.4608 0.3471
0.75 0.7360 0.6233 0.5789 0.90 0.8311 0.4915 0.3702
0.70 0.8197 0.7300 0.6944 0.88 0.8902 0.5150 0.3906

aThe table presents size-corrected rejection frequencies for the likelihood ratio test L̂Rd
T , DF-GLS test of ERS,

and MP-GLS test of Ng and Perron (2001) using 106 replications of the model (A1) allowing only for a constant mean.
All three tests use the MAIC of Perron and Qu (2007) to select lag length.
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TABLE A.III

SIMULATED REJECTION FREQUENCIES OF UNIT ROOT TESTS, LINEAR TREND CASEa

T = 100 T = 250

θ ρ L̂Rd
T DF-GLS MP-GLS ρ L̂Rd

T DF-GLS MP-GLS

0.00 1.000 0.0328 0.0249 0.0172 1.00 0.0350 0.0272 0.0254
0.925 0.1248 0.0995 0.0721 0.97 0.1372 0.1114 0.1034
0.850 0.3869 0.3311 0.2667 0.94 0.4409 0.3846 0.3665
0.775 0.6208 0.5722 0.5135 0.91 0.7155 0.6686 0.6553
0.700 0.7100 0.6820 0.6497 0.88 0.8238 0.8021 0.8012
0.625 0.7403 0.7178 0.6982 0.85 0.8564 0.8447 0.8487
0.550 0.7556 0.7294 0.7102 0.82 0.8692 0.8583 0.8623

−0.25 1.000 0.0446 0.0370 0.0313 1.00 0.0412 0.0336 0.0334
0.925 0.1405 0.1220 0.1067 0.97 0.1470 0.1254 0.1254
0.850 0.3484 0.3146 0.2847 0.94 0.4146 0.3701 0.3686
0.775 0.5292 0.4838 0.4443 0.91 0.6503 0.6045 0.5987
0.700 0.6302 0.5775 0.5339 0.88 0.7642 0.7251 0.7188
0.625 0.6843 0.6263 0.5743 0.85 0.8122 0.7753 0.7650
0.550 0.7158 0.6510 0.5925 0.82 0.8351 0.7963 0.7788

−0.50 1.000 0.0632 0.0499 0.0376 1.00 0.0480 0.0378 0.0316
0.925 0.1687 0.1401 0.1069 0.97 0.1575 0.1275 0.1068
0.850 0.3612 0.3037 0.2393 0.94 0.3933 0.3307 0.2802
0.775 0.5196 0.4407 0.3549 0.91 0.5934 0.5079 0.4337
0.700 0.6259 0.5332 0.4417 0.88 0.7051 0.6092 0.5239
0.625 0.6960 0.6045 0.5133 0.85 0.7662 0.6595 0.5658
0.550 0.7508 0.6660 0.5818 0.82 0.8052 0.6856 0.5835

−0.75 1.000 0.1436 0.1088 0.0733 1.00 0.0733 0.0477 0.0176
0.925 0.3025 0.2387 0.1694 0.97 0.1950 0.1288 0.0503
0.850 0.5435 0.4482 0.3542 0.94 0.4076 0.2695 0.1189
0.775 0.7356 0.6480 0.5627 0.91 0.5941 0.3913 0.1987
0.700 0.8626 0.8048 0.7468 0.88 0.7285 0.4830 0.2758
0.625 0.9350 0.9054 0.8738 0.85 0.8165 0.5539 0.3512
0.550 0.9715 0.9585 0.9437 0.82 0.8773 0.6175 0.4301

aThe table presents simulated rejection frequencies for the likelihood ratio test L̂Rd
T , DF-GLS test of ERS, and

MP-GLS test of Ng and Perron (2001) using 106 replications of the model (A1) allowing for a linear trend. The entries
for ρ = 1�00 are the simulated sizes of the tests. All three tests use the MAIC of Perron and Qu (2007) to select lag
length.
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TABLE A.IV

SIZE-CORRECTED REJECTION FREQUENCIES OF UNIT ROOT TESTS, LINEAR TREND CASEa

T = 100 T = 250

θ ρ L̂Rd
T DF-GLS MP-GLS ρ L̂Rd

T DF-GLS MP-GLS

0.00 1.000 0.0500 0.0500 0.0500 1.00 0.0500 0.0500 0.0500
0.925 0.1787 0.1809 0.1810 0.97 0.1854 0.1874 0.1875
0.850 0.4809 0.4785 0.4821 0.94 0.5288 0.5271 0.5293
0.775 0.6881 0.6849 0.6935 0.91 0.7788 0.7777 0.7837
0.700 0.7543 0.7543 0.7640 0.88 0.8599 0.8637 0.8711
0.625 0.7780 0.7732 0.7766 0.85 0.8831 0.8879 0.8936
0.550 0.7882 0.7762 0.7722 0.82 0.8938 0.8957 0.8983

−0.25 1.000 0.0446 0.0370 0.0313 1.00 0.0412 0.0336 0.0334
0.925 0.1541 0.1587 0.1600 0.97 0.1747 0.1769 0.1770
0.850 0.3715 0.3741 0.3728 0.94 0.4646 0.4629 0.4620
0.775 0.5509 0.5384 0.5266 0.91 0.6926 0.6854 0.6819
0.700 0.6472 0.6210 0.5961 0.88 0.7930 0.7812 0.7747
0.625 0.6977 0.6595 0.6227 0.85 0.8345 0.8189 0.8069
0.550 0.7264 0.6798 0.6319 0.82 0.8550 0.8332 0.8143

−0.50 1.000 0.0632 0.0499 0.0376 1.00 0.0480 0.0378 0.0316
0.925 0.1368 0.1402 0.1352 0.97 0.1631 0.1612 0.1584
0.850 0.3137 0.3040 0.2804 0.94 0.4025 0.3879 0.3688
0.775 0.4761 0.4409 0.3931 0.91 0.6021 0.5644 0.5216
0.700 0.5898 0.5335 0.4716 0.88 0.7120 0.6549 0.5960
0.625 0.6680 0.6046 0.5368 0.85 0.7718 0.6982 0.6261
0.550 0.7284 0.6661 0.5986 0.82 0.8104 0.7194 0.6362

−0.75 1.000 0.1436 0.1088 0.0733 1.00 0.0733 0.0477 0.0176
0.925 0.1306 0.1297 0.1266 0.97 0.1388 0.1339 0.1227
0.850 0.3279 0.3148 0.2989 0.94 0.3192 0.2770 0.2288
0.775 0.5723 0.5436 0.5161 0.91 0.5016 0.3991 0.3151
0.700 0.7740 0.7437 0.7165 0.88 0.6418 0.4905 0.3834
0.625 0.8974 0.8765 0.8571 0.85 0.7431 0.5600 0.4440
0.550 0.9576 0.9470 0.9349 0.82 0.8119 0.6225 0.5074

aThe table presents size-corrected rejection frequencies for the likelihood ratio test L̂Rd
T , DF-GLS test of ERS,

and MP-GLS test of Ng and Perron (2001) using 106 replications of the model (A1) allowing for a linear trend. All
three tests use the MAIC of Perron and Qu (2007) to select lag length.
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