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1. Setup

Let x; € R and y; € R be continuously distributed random variables supported on X = [0,1]¢ and
Y = [0, 1], respectively. We are interested in estimating the conditional distribution function and its
derivatives:

O (YIX) = F(y[x),

where u € N, and v € N representing multi-indices. (In the main paper we only consider the estimation
of conditional density and derivatives thereof, thatis, we setv=0and u=39+1>1.)

To present our estimation strategy, we start from 6 ,, the conditional distribution function and its
derivatives with respect to the conditioning variable, and apply the local polynomial method:

—

- 2
=eJ7OM. PO =argmin Y. (100 <) - q(x = 0)TV) L (%),

veR%d+! 121

ox¥

where and e] is a basis vector extracting the corresponding estimate. We can write the solution in
closed form as

—

%F(ﬂx):d ( Z]l()’l <y)<1( )Lh(xux))

where

o= 1 Da( a5 s,

i=1
To estimate 6, ,,, we further smooth via local polynomials along the y-direction:

n
N A A . A 2
Oy (Y1X) =€ B(y[x), B(yIx) = argmin DU Gilx) = pOi =) Tu) Kn (i y).
ueRPH
We can write the solution in closed-form as
é,u,v (yIx) = eLS;IRy,XS;IeV’
where

/\

™=

—,—ll p( ) (iT_y)TKh(yi;y), and
i=1

Ry = 2h#+lvl221<yl<y,>p( 2K *) i),
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While in the above we considered local polynomial regressions along both the x- and y-directions, it
is also possible to employ a local smoothing technique. To be precise, let G be some function such
that the following Lebesgue-Stieltjes integration is well-defined, then an alternative estimator can be
constructed as

Oy (yI%) = el B(y1%), B(ylx) = argmin/ (F (ulx) = pu = 3)Tv)* Kp (u:3)dG (),

veRP+!

which has the solution
éy,v (y|x) = eLS;lRy,XS;IeV,

where

o= [ (2 )p(*52) Kt G, ana

X;i — X

Ry:ﬁzl( [, 105 200 ("2 K wia6 @) o) Laxix,

1.1. Notation

Limits are taken with respect to the sample size tending to infinity and the bandwidth shrinking to zero
(i.e., n — co and h — 0). For two positive sequences, a, 3 b, implies that limsup,,_, ., |an/bn| < co.
Similarly, a,, Zp b, means |a, /b,| is asymptotically bounded in probability. We also adopt the small-o
and big-O notation: a, = Op(b,,) is just a, Zp by, and a, = op(b,) means a, /b, converges to zero in
probability. Constants that do not depend on the sample size or the bandwidth will be denoted by ¢, ¢y,
¢, etc.

We introduce another notation, O1c, which not only provides an asymptotic order but also controls

the tail probability. To be specific, a, = Orc(b,,) if for any ¢; > 0, there exists some ¢, such that

limsupnIP[a, = ¢2b,] < .

n—oo

Here the subscript, TC, stands for “tail control.” Finally, let X = (XI, e ,XZ)T and Y = (y1, -, yn)T
be the data matrices.

e F(y|x) and f(y|x): the conditional distribution and density functions of y; (at y) given x; = x.
The marginal distributions and densities are denoted by Fy, Fx, fy, and fx, respectively.

y and x: the evaluation points.

X =[0,1]% and Y = [0, 1], the support of x; and y;, respectively.

h: the bandwidth sequence.

K: the kernel function, and L is the product kernel: L(x) = K(x1)K(x3) -+ K(xg).

P, q: polynomial expansions.

P and Q: defined as p(-)K(-) and q(-) L(-), respectively.

e, and e, : standard basis vectors extracting the u-th and v-th element in the expansion of p and q
for univariate and multivariate arguments, respectively.

e G(-) the weighting function used in é,,,v, with its Lebesgue density denoted by g(-).



e Some matrices

Sy=/y;yp(u)P(u)Tg(whu)du, Sfﬁgp(”;y)P(%)T,
Cyr= /yhy ’;;!)P (u) g(y + hu)du, ey o= % l:l % (Yi};y)fp(yih—Y)T’
Sx=/xhxq(V)Q(V)fo(X+hV)dv, Sx=n%gq("",;x)cz(¥)ﬂ

Cxm = s VEH:Q(V) fx(x+ hv)dv, eom = n% l:l % (Xi}:X)mQ (XI;X)
Tx=[(ﬁx QWQWT Alx+hvdv,  Tx= #Z‘Q(Xh (22T

T, = /yfy min(uy, u2)P (ur) P (u2)7 g(y + huy)g(y + huo)duydus,

T, =

n2h3
hz]l

A

Ryx= W Z Z 1(y; < )’J)P(

j—l

Z min(y;,y;) — Y) (%M%)T’

~Jol

X; —X

h

)",

_ 1 < X; —X\T
R»FWZ;(/ 10 < wP( > )dG(”)) =)
i=
e Equivalent kernels:
A (abiyx) = ——eTst | (11(a<u)—ﬁ(u|b))l ( )dG(u) b )\ T4l
R e S TG YA no\h x &
[ n
Lo . 111 ) Ao 1 _(Yj—Yy b-x 1
‘/i/y,v,h(a’b’y’x) LAY #Sy an:_l(]l(aSyj)_F(yﬂb))EP( A )] th( 7 ) SX ey,
) . -1 y 1 b-x T -1
%,V,h(a’b’y’x) Py }lsy / ]]-(a<u) F(”|b)) ( )dG(u)] h_dQ(_/’l ) Sx ey,
. 1 1 1 b-x T -1
Ay (@,b;y,%) = Wﬂsy / h )dG(u)] h—dQ( ) Scley.

e Some rates:

1
— pa+1=|v| p+l—pu —
r=h +h © VI ez
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1
= anlld

if u=0,and Gp 9 #0orl

'BE s
if u>0, Gpo=0o0r1l
— if u or6p.9=0or
1
1 log(n) log?*! (n) \ 2%
rye = h¥2 + nfd“’ rsg = ylog(n)rve, rSA:(% .

1.2. Overview

In this subsection we provide an overview of the main results. Underlying assumptions and precise
statements of the lemmas and theorems will be given in later sections. First consider 6, , (y|x), with a
conditional expectation decomposition:

n

B (31%) = Vel [% 3 (/y F(ulxz')%P(u;y)dG(u)) hidQ("‘;")Tl S¢le,

i=1

s hr TS [%an (/y (Il(yi <u)- F(u|X[))%P(”;y)dG(”)) hidQ(Xi;:X)Tl Scle,.

i=1

As we will show in Section 2, the first term above consists of the centering of the estimator (i.e., the
parameter of interest §,, ,, (y|X)) and the smoothing bias. The second term, on the other hand, gives the
asymptotic representation of the estimator. To be precise, we have

n

y 1 .
Oy V1) = Oy (YIX) == > A0 1 (i X2y, %)

i=1

1
+0p (hQH—IvI 4 pPtle Vi (3,X) og(n) ) ‘

Vnhd

As a result, we can focus on establishing properties of the the first term, which provides an equivalent
kernel expression. Denote its variance by V,, ,(y,X). Then we show that the standardized process,

g,u,v (y,x) =

l n
—— > 7, X y,X),
n\V,y (3, X) ; v,

is approximately normally distributed both pointwise and uniformly for y € ¥/ and x € X. To be even
more precise, we establish a strong approximation result, meaning that there exists a copy S, , (y,X),
and a Gaussian process G, (v, x) with the same covariance structure, such that

(10gd+1 (n) ) ﬁ

sup {8,y (5 %) = G (v,%)| = Op | =5

yelY,xeX

Together with a feasible variance-covariance estimator, the strong approximation result not only allows
us to construct confidence bands for the target parameter and test shape restrictions, but also provides
an explicit characterization of the coverage error probability for those procedures.



Inside the remainder term, A%l 4+ pP*1=# js the order of the leading smoothing bias, and

log(n) |V v (y,X)/(nh?) arises from the linearization step which replaces the random matrix Sy by
its large-sample analogue Syx. It is worth mentioning that the order of the remainder term is uniformly
valid for y € Y and x € X, which is why an extra logarithmic factor is present.

Now consider the other estimator, § v (¥[x). While it is not possible to take a conditional expectation,
we can still “center” the estimator with the conditional distribution function. That is,

A

-1
Ss ey

)

. ~ 1] 1 z 1
— TR 2 xs) —
‘gﬂ,v()’h‘)—h u=v e,uSy [ 5 F(YJ|X1)hP(

n
n =1 .

~

j=1

n

1
+hH el § [—22

n
e

(100 2= #0122 ) 2% |8 e,

~

As before, the first term captures the target parameter and the smoothing bias. The analysis of the
second term is more involved. Besides the asymptotic linear representation term, it also consists of a
leave-in bias term (since the same observation is used twice) and a second order U-statistic. We show
that the following expansion holds uniformly for y € ¥ and x € X:

o Il .
By (19 = Oy (YIX) = = > A0 (i X2y, %)
i=1

: _ log(n) __log(n)
arl=ly] 4 pp+l-p \/7 £
+0P(h +h + VH,V(y’X)W+\/m .

Here, the contribution of the U-statistic is represented by the order log(n)/Vn2hd+2u+2IvI+1 in the
remainder term. Interestingly, this term is negligible compared to the standard error, 4/V .y (,X), pro-
vided that log(n)/(nh?) — co.

The above demonstrates that important large-sample properties of the local regression based esti-
mator, v (¥X) — such as pointwise and uniform normal approximation — stem from the equivalent
kernel representation. Here we note that the representation holds by setting G = Fy. In other words,
GA,,,V( y|x) is first-order asymptotically equivalent to HV,,’V( y|x) with the (infeasible) local smoothing
using the marginal distribution Fy,.

1.3. Assumptions
We make the following assumptions on the joint distribution, the kernel function, and the weighting G.

Assumption S-DGP (Data generating process). (i) {y;,X;}1<i<n is a random sample from the ab-
solutely continuous joint distribution F supported on Y x X = [0, 1]'*¢. (ii) The joint density, £, is
continuous and is bounded away from zero. (iii) 6, ¢ exists and is continuous.

Assumption S-K (Kernel).
The kernel function K is nonnegative, symmetric, supported on [—1, 1], Lipschitz continuous, and
integrates to one.

Assumption S-W (Weighting function).
The weighting function G is continuously differentiable with a Lebesgue density denoted by g.
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2. Pointwise large-sample properties

We first present several uniform convergence results which will be used later to establish pointwise and
uniform properties of our estimators.

Lemma 2.1 (Matrix convergence). Let Assumptions S-DGP, S-K, and S-W hold with h — 0,
nh? [log(n) — oo, and G = Fy. Then

& log(n) log(n)
sup Sy —Sy|=0 ——, Sung—C[ 0] ,
yeyi y y| TC( nh ) yey | y y | TC nh

N 3 log(n) R _ log(n)
ilel{[\),|sx—sx|—0'fc W), :2{1\)’ icx,m_Cx,m|—0TC hd s

. log(n)
sup [Tx — Tx|=0 .
xef\i| X x| TC h )

If in addition that nh®*! [log(n) — o, then

log(n) ,
hd+2u+2ly| lf,u =0
sup | TS (Ryx —E[RyxIX]) ‘ Orc(ry), wherer; =4 ‘I .
yeY . xeX —log(n) ifu>0
A2y~ H
We now follow the decomposition in Section 1.2 and study the leading bias of our estimators.

Lemma 2.2 (Bias). Let Assumptions S-DGP, S-K and S-W hold with h — 0 and nh® /log(n) — co. In
addition, 0, y exists and is continuous for all p’ +|v'| =max{q+1+u, p+1+|v|}. Then

€S ;1[ nhHe 4 (/ Flulxi) 3 P( )dG(”)) (Xi;X)T]S;]"V

=0, (Y1X) + By (3.X) + 05 (hq+1—|v| N hp+1_,,) ’

where

B,y (y,x) = po+i=l| Z 9;1,m()’|x)c;(r,ms;lev +hPFIH 9p+1,v()’|x)c;’p+1s;leu .
|m|=q+1

Biiy,p+1(y,X)
B(i),q+1(y,X)

Similarly,

87 g 2 e ( e ) st

i=1 j=1

= 0,0y (Y]X) + By (7. X) +0p (hq+1—'V' + h"”"‘) .



For future reference, we define the order of the leading bias as
ry =AMl ppel-p

Remark 2.1 (Higher-order bias). Because the leading bias established in the lemma can be exactly
zero, one may need to extract higher-order terms for bandwidth selection:

B,y (v, x) = th_lV‘B(z‘),qH (y,x) + hpﬂ_uB(ii),pH()’,X)
+ hQ+2_|V|B(i),q+2(y,X) +hP2 B 2 (0, %) + hp+q+2_”_|vlB(iii),p+l,q+1 (y,x),

where

B(i),q+2(yax) = Z 9;4,m()’|x)c;(r,ms;1ev, B(ii),p+2(yax) = 0p+2,v(}’|x)c;,p+2s;lep,
|m|=q+2

B(iii),p+1,q+1(ysx)=eLS;ICy,p+1( Z 9p+1,m()’|x)c;m)s;19v~

|m|=q+1
Note that the last term, hp+q+2’”’|"|B(i,-l~),p+1’q+1 (y,x), is present only if u =p and |v| =q.

Next we study the leading variance of our estimator, defined as
l n
Vi (y,X) = V[; Z%fﬂ"vh (i, Xxi57,%) |.
i=1

Lemma 2.3 (Variance). Let Assumptions S-DGP, S-K and S-W hold with h — 0 and nh? [log(n) —
co. Then
(i) p=0and 6y, #0or1:

_ _ 1
Vou 5:9) =gz 000301 = o) (78, 138 ) + 0 ).

nhd+2v| nhd+2lvI=1
(ii) u =0 and 6y,0 =0 or 1: Vo, (y,X) has the order
(iii) u > 0:

1
nhd+2v|-1°

o i 1
Vo (3.X) = 61.0(y[x) (eLSleySyle#)(eJSX IT,S; ley) +0 (—) .

nhd+2lv|+2p-1 nha+2p+2lv|-2

For future reference, we will define

1
ryv = — .
v \/ nhd+2lv+2p—1

Remark 2.2 (Vanishing boundary variance when p = 0). In case (ii), the true conditional distribu-
tion function is O or 1, which is why the leading variance shrinks faster. We do not provide a formula
as the leading variance in this case takes a complicated form.
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Now, we propose two estimators for the variance that are valid for all three cases of Lemma 2.3, and
hence will be useful for establishing a self-normalized distributional approximation later. Define

y 1 & o . 1 < 0
Vi (0% = — D A Gixi %)%, Vi (3,%) = = DAy iz, %)
P =1

Note that \A/,u,y (y,x) is §imply the plug-in variance estimator for § v (y/x) and \V/#,V( ¥,X) is the plug-
in variance estimator for 6, , (y|x). The next lemma provides pointwise convergence results for the two
variance estimators.

Lemma 2.4 (Variance estimation). Let Assumptions S-DGP, S-K and S-W hold with h — 0 and
nh®!/log(n) — co. In addition, 0o,y exists and is continuous for all |v| < q+ 1. Then
(i) p=0and 6y, #0or 1:

Vo (3,X) = Vo, (3, 1
| O,v(y X) O,V(y X) | _ 0]1»(hq+1 n Og(j) )
VO,V(y,X) nl’l
(ii) £ >0, or 6p g =0o0r1:
|Vu,v(y,X) =V (3,X) | _ op(h‘”% o [log(n) )
Vi (y.X) nhd+!

Let G = Fy, then the same conclusions hold for \A/,,,,, (y,x).
Next, we study the large-sample distributional properties of the infeasible, standardized statistic

_ 1 N
Spy(¥,X) = —— Z Ky (VirXi3y,X) .
i=1

n\/Vﬂ,v(y,X)

Note that this is equivalent to the scaled asymptotic linear representation of the estimator.

Theorem 2.1 (Asymptotic normality). Let Assumptions S-DGP, S-K and S-W hold with h — 0. Then
1

if u=0, and 6y 9 #0or1
P[S”’V(y,X)SM] _q)(u)‘=0(rBE)’ where rpg = n;lld

Vnh‘l"’l

While the theorem focuses on asymptotic normality of the infeasible t-statistic, SZ’V(y, X), we show
in the following remark that similar conclusions can be made for the t-statistics constructed with the
estimators, 6, (y[x) and 6, , (y|x).

sup
uelR

if u>0,o0riffpp=0o0rl

Remark 2.3 (Asymptotic normality of standardized statistics). We first introduce the statistic

v é x)—-E é X)X
o (yx) = 2O “E [Our OIX]

VV/1,V (y’ X)

which is based on GVM,V (y|x). (In the main paper we directly center all statistics at the target parame-
ter 8, . For clarity, however, we will separate the discussion on distributional convergence from the
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smoothing bias in this supplementary material. This is reflected by the superscript “circle.”) By com-
bining the results of Lemmas 2.1 and 2.3, we have

log(n)
ye;ufe |S,u v (3.%) = 5, V(y,X)‘ B OTC( W)

As a result,

ig£|P (S5, (3. %) <u| - @(u)| = O(IOi(hr;) + rBE).

To present the pointwise distributional approximation result for the estimator 9ﬂ,v(y|x), we define
the following statistic

(101 <39 - PO 32 ()|

8,0,
oy (-%) = hd+p+|v|WZ [n

X, —X\T oy
Q( - ) S le,.
It is worth mentioning that SZ,V (y,x) is not exactly centered and therefore, it is not mean zero. Nev-
ertheless, by the results of Lemmas 2.1 and 2.3, and the concentration inequality for second order
U-statistics in Equation (3.5) of [4] (Lemmas 7 and 8 in the main paper), we have

(log(n) )

Sup |§Z,v()’ax)—§:4,v(y,x)‘=0Tc Naves

yelY xeX

Then we can conclude that the coverage error satisfies

( log(n) +rBE).

sup [P (S5, (%) <u] - @@)|=0 Navvr

3. Uniform large-sample properties

To conduct statistical inference on the entire function 6, ,, such as constructing confidence bands or
testing shape restrictions, we need uniform distributional approximations to our estimators. In this
section, we will consider large-sample properties of our estimator which hold uniformly on Y x X =
[0,1]9*1, In the following remark, we demonstrate that the local sample size is uniformly large on the
support Y x X.

Remark 3.1 (Local sample size). Consider an evaluation point (y,X) in Y X X. We can define the
local sample size by

n
nyx= > Ly =yl <) I(x —x| < c1h).
i=1

We employed the Euclidean norm in the definition, which is innocuous for our purposes, as all norms
are equivalent in finite dimensional spaces. For this reason, we also introduced the constant ¢;. The
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purpose of this remark is to provide a uniform control on the local sample size. In particular, we have
the following result: for some positive constant ¢, and any shrinking sequence r,

. log(n)
sl <) <o
The result above builds on the lemma:
Lemma 3.1 (Probabilistic bound on the smallest multinomial cell). Let z = (z1,22,...,27,)7 fol-

low a multinomial distribution with parameters n (number of trials), J,, (number of cells), and 1/J,
(probability for each cell), 5, € (0,1), and nt;, = n/(J, log(n)). If(S%Lnn — oo, then for any ¢ > 0,

. . n
limsupn'P| min zj < (1-6,)—| <oo.
n—oo 1<j<Jn Jn

We now establish the uniform convergence rate of our estimator.

Lemma 3.2 (Uniform rate of convergence). Let Assumptions S-DGP, S-K and S-W hold with h — 0
and nh@*! [log(n) — co. In addition, 0, v exists and is continuous for all p’ +|v'| = max{q+1+u, p+
1+ |v|}. Then

(i) p=0:

(thlfle + P log(n) );

sup |é0,v ([x) = 6o,y ()’|X)| =01c hd+a]

yel,xeX

y _ _ log(n)
_ = a+l=v| L pp+l-p oV
yeygexlﬂﬂ,v(yIX) Hﬂ,v(yIX)I—OTc(h +h +\/nhd+2#+2|vl_l).

The same conclusions hold for HA#,V (y|x).

(ii) > 0:

In the next lemma, we characterize the uniform convergence rate of the variance estimators intro-
duced in the previous section.

Lemma 3.3 (Uniform variance estimation). Let Assumptions S-DGP, S-K and S-W hold with h — 0
and nh®*' /log(n) — co. In addition, 0o,y exists and is continuous for all |v| < q + 1. Then

\v/,u,v (y,x) - Vuy (v,x)
V,u,v(y7 X)

log(n)

1
= =ht2
OTC (rVE) , where rve h + nhd‘H .

sup
yeY,xeX

Let G = Fy, then the same conclusions hold for \A/ﬂ,,, (y,x).

Now, we introduce the Studentized processes for each of the estimators, 7 v and é,,,vz

§ Vi (3,%) R Vi (9,X) o
TO L (3,X) = 4 [22280 (%), T, (0,%) = | 222280 L (0, %).
Hy Vuy(,x) 7 ey Vi (3,%) H7

In the following lemma we study the error that arises from the Studentization of our estimators.
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Lemma 3.4 (Studentization error). Let Assumptions S-DGP, S-K and S-W hold with h — 0 and
nh@*! [log(n) — co. In addition, 0o,y exists and is continuous for all |v| < q + 1. Then

sup |1VFZ’V(y,X) - SZ’V(y,x)| =0+ (rse), where rgg = /log(n)ryz.
yelY xeX

The same holds for TZ,V (y,x) — S;’” (y,x).

Our next goal is to establish a uniform normal approximation to the process S,y (,X). See Appendix
A.4 of the main paper for important properties of the equivalent kernel.

Theorem 3.1 (Strong approximation). Let Assumptions S-DGP, S-K and S-W hold with h — 0 and
nh@*! /log(n) — oo. Also assume p > 1. Define

1
~ logdH n\ 2472
Tsa= nhd+1 )

Then there exist two centered processes, S;M,(y,x) and Gy y(y,x), such that (i) S, (y,x) and
S;,,,, (y,x) have_the same distribution, (ii) G, y(y,X) is a Gaussian process and has the same covari-
ance kernel as S, (y,X), and (iii)

sup |§;1,v(y’x) = Gy (3.%)| = 01c (rsn).
yelY ,xeX

The Gaussian approximation in the above lemma is not feasible, as its covariance kernel depends on
unknowns. To be more precise, the covariance kernel takes the form

_ C}l,V(y’X9yl’Xl)
\/Vy,v(y’x)vu,v(y/»x/) ’

p/l,V(y?X’ y,,X,) = COV [g,u,V(y’ X)? SM,V(y” X,)]

where

1
Crw (3%, Y, X) = ~Cov [«%ﬁ’,y,h Vo Xi33,%), K0, (VioXis ¥ X) ]
We consider two estimators of the covariance kernel

Cy,v(y, X, ylax/)

VO (799,00 (. )

Cp,v(y, X, ylax/)

Wiy 50V, (57, X)

ﬁ,u,v(y,X,y,:X,)z ) p\/l,V(yvx’y,?X’):

and

M=

- 1 o o
Cuy(3,%,y',x) = = Koy n YisXi3y,X) 0 (vinxis Y, X)

4

1l
—_

=

A 1 2o 2o
CF,V(y’X7y”XI) = ; %,v,h (yi’xi;y’x) %,V,h (yi’xi;yl’xl) .

~
Il
—_
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Lemma 3.5 (Uniform consistency of the correlation estimator). Ler Assumptions S-DGP, S-K and
S-W hold with h — 0 and nh@*! /log(n) — . In addition, 0oy exists and is continuous for all |v| <
q+ 1. Then

sup \ﬁ,u,v(y,X,y/»X/) _P,u,v()’,x’y/,xl)| = OTC (rVE) B
v,y ey x,xeX

where ryg is defined in Lemma 3.3. Let G = Fy, then the same conclusion holds for py.y(y,X,y",x’).

Lemma 3.6 (Gaussian comparison). Let Assumptions S-DGP, S-K and S-W hold with h — 0,
nhd*! /log(n) — co. In addition, 6y, exists and is continuous for all |v| < q + 1. Then conditional
on the data there exists a centered Gaussian process, GM,V (y,X) with unit variance and correlation
function Py, and another centered Gaussian process, G#,V(y,x) with unit variance and correlation
kernel p, v, such that

sup P[ sup |Gy (v,X)| <u Y,X] —P[ sup |Gy (y,X)] < u] = Op (log(n)Vrvz),
ucR yeY,xeX yelY,xeX
sup [P sup (B, (5,00 <ulV.X| = B[ sup (G (r.%)] < | = O (log(n)vEuE)
ueR yeY xeX yelY,xeX

Theorem 3.2 (Feasible normal approximation). Let Assumptions S-DGP, S-K and S-W hold with
h — 0 and nh®*'/log(n) — co. In addition, 0o,y exists and is continuous for all |v| < q + 1. Also
assume yu > 1. Then

sup P[ sup |TZ L, (0, x)] < u] - P[ sup |G,,,V(y,x)| < u‘Y,X”
ueR yelY xeX ’ yelY xeX

= 0z Viog(n) rs» + log(n)vFug )
sup P[ sup |TZ ,(n.x)| < u] - P[ sup |G#,V(y,x)| <u Y,X”
uelR yelY,xeX ’ yeY xeX

= 0z Viog(n) rs» + log(n)yFv )

4. Applications

4.1. Confidence bands

A natural corollary of Theorem 3.2 is that one can employ critical values computed from Gﬂ’v (y,x)
and Gﬂ,y (y,x) to construct confidence bands. To be very precise, define

vy (@) =inf{u : IP’[ sup |Gﬂ,y(y,x)| <u Y,X] >1- a},

yelY xeX

cAv,u,,,(a)zinf{u:P[ sup |G#,V(y,x)|sM|Y,x]zl—a}.
yelY xeX
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Then level (1 — @) confidence bands can be constructed as
Car (1= @) = {8, 31%) = S (@) Vw (1) (130 €Y x X,
G (1= @) = {000 (513) 2 0 (@ Vo (7,90 1 (123 €Y x X,

whose coverage error is given in the following theorem.

Theorem 4.1 (Confidence band). Consider the setting of Theorem 3.2. In addition, 8, ,+ exists and
is continuous for all ¢’ + |v'| =max{q+1+u, p+1+|v|}. Then

P [0, (y1X) € Cun(1 =), V(1. X) €Y x X] 21— - 0(\/log(n) (rSA + 2) + log(n)\/r_VE),
Ty

P (0,0, (y1X) € Cun(1 =), V(1. X) €Y x X] 21— — 0(\/log(n) (rSA + E) + 1og(n)\/m).
Ly

4.2. Parametric specification testing

In applications, it is not uncommon to estimate conditional densities or higher-order derivatives by
specifying a parametric family of distributions. While such parametric restrictions may provide rea-
sonable approximations, it is still worthwhile to conduct specification testing. To be specific, assume
the researcher postulates the following class

{Hy,y(ﬂx;)’) L Y€ ry,v},

where I, is some compact parameter space. We abstract away from the specifics of the estimation
technique, and assume that the researcher also picks some estimator (maximum likelihood, minimum
distance, etc.) . Under fairly mild conditions, the estimator will converge in probability to some (possi-
bly pseudo-true) parameter ¥ in the parameter space I, ,. As before, we will denote the true parameter
as 6, y(y[x), and consider the following competing hypotheses:

Ho: Oy (IX7) =0,y (¥IX)  vs. Hi: 0, (y[X7) # 60, (yIx).

The test statistics we employ takes the following form

» Oy (V%) =0y (YIX:9)
TPS(an): i Y ) TPS(y’X)

v A

V/I,V(y’x) V,u,V(y’X)

Oy (Y1X) = 6,y (V1% )

Theorem 4.2 (Parametric specification testing). Consider the setting of Theorem 3.2. In addition,
Oy exists and is continuous for all p' + |v'| =max{q+ 1+ u, p+1+|v|}. Assume the parametric
estimate satisfies

sup igp,v(ﬂx;f’) - 9;4,v()’|X;‘}_’)| =0Ozc (rps),
yelY xeX

for some rpg. Then under the null hypothesis,

i +
Pl sup [Tes(y,x)|> cvv”,y(a)] <a+ 0(‘/10(5(”)(3?% L I+ Tes

yelY,xeX

) +log(n) vEwz).

'y
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rg+ rpg

P sup [Tos(y,%)|> cAv'u,,,(a)] <a+ 0(\/log(n)(rSA + ) + 1og(n)\/m).

yeY.,xeX Ty

4.3. Testing shape restrictions

Now consider shape restrictions on the conditional density or its derivatives. Let ¢(y,x) be a pre-
specified function, and we study the following one-sided competing hypotheses.

Ho: 6y (yIX) <c(y,x) vs. Hy:8,,(y[x)>c(y,x).

The statistic we employ takes the form

sl e g Ol -0
- ) SR s - .
w\v/,l,v(y,X) \[Vp,v(y,x)

and we will reject the null hypothesis if the test statistic exceeds a critical value.

quSR()’, X)

Theorem 4.3 (Shape restriction testing). Consider the setting of Theorem 3.2. In addition, 6,
exists and is continuous for all u’ + |v'| =max{q+ 1+ u, p+ 1+ |v|}. Then under the null hypothesis,

IP’[ sup  Tsr(y,x) > cvv,,,v(a)] <a+ O(M(r% + i—\B]) +10g(n)x/ﬁ),

yelY,xeX

P[ sup  Tsr(y,x) > cAvl“,(a)] <a+ O(\/@(rSA + E) +10g(n)\/ﬁ).
Ly

yelY xeX

5. Bandwidth selection

We assume throughout this section that u > 0. Using the bias expression derived in Lemma 2.2, and
the leading variance is as characterized in Lemma 2.3, we can derive precise expressions for bandwidth
selection.

5.1. Pointwise asymptotic MSE minimization

Following from [3], the pointwise MSE-optimal bandwidth is defined as a minimizer of the following
optimization problem

Ry g v (¥, X) = argrr(l)in Vyw (3.%) + B, (3.%)
>

The solution to this equation gives an MSE-optimal bandwidth that depends on (i) the order of the
polynomials, (ii) the order of the derivative to be estimated, and (iii) the position of the evaluation
point.
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Case l: g—|v|=p—pu, odd

In this case, both the leading bias constants, B(;) q+1(y,X) and B;;y p+1(y,X), are nonzero. Therefore,
the MSE-optimal bandwidth is

. ) e 2
hy.q. v (¥, X) = argmin Vi (3, %) + RPF20 DL (B Gy (0,%) + By pet (3,X)) ]

1
P.q.u 0 [nhd+2|v|+2,u—1

2
P+a+2—p— V) (B(i),q1 (3, %) + Bir) ps1 (3, %)) 7

[ (d+2|v|+2u - 1)V, (y,X) l]m
(

Case 2: q — |v| = p — u, even; either X or y is at or near the boundary

In this case, at least one of the leading bias constants, B(;) q+1(y,X) and B(;;) p+1(y,X), is nonzero.
Therefore, the MSE-optimal bandwidth is the same as in Case 1:

. . e 2
hp,q,,u,v(y’x) = argmin Vy,v(%x) + pPrar2mu=l] (B(i),q+1(yax) +B(ii),p+l(y,x)) ]

[ 1
>0 nhd+2lv|+2u-1

_[ (d+2[v]+ 24 = DVuy (3,%) 1]W
= 2_ .
(P+a+2—p—[v]) (Bgiy,qe1 (0, X) + B(ii) pe1 (0,%)) 7

Case 3: g —|v|=p—u #0, even; both x and y are interior

In this case, both leading bias constants are zero. Therefore, the MSE-optimal bandwidth will depend
on higher-order bias terms:

- 2
Via (X0 P (B 0120030 + B, 20 ) ]

1
. B .
gy (35 %) = ar}%f(l)m [nhd+2|v|+2,u71

_[ (d+20v]+2u = )Vuy (3,%) 1]W
= > .
(p+a+d—p—|v)) (B(i),q+2(y,x) +B(ii),p+2(y,x)) n

Case4: q—|v|=p—u=0, even; both x and y are interior

As in Case 3, both leading bias constants are zero. The difference, however, is that the leading bias will
involve an extra term:

hy.q.pv (3, X) = argmin Vi (v.X)

70 [ nhd+2lv|+2p-1

2
+ht (B(i),q+2(yax) + B(ii),p+2(y7x) + B(iii),p+l,q+l (Y»X)) ]

(d+2|v[+2u - 1)V, ,(y,X) 1]%
5 )
4 (B(i),q+2(3:X) + B(ii) p2(3:X) + B(iii) pe1,q41 (1, X)) 1

Case 5: g—|v|<p—-pu, q—1|v| odd

In this case, the leading bias will involve only one term:

h;,q,,u,v (y,x) = argmin Vi (v,x) + h2q+2_2|v|B(z’),q+l (y,X)Z]

[ 1
70 nha+2lv|+2u-1
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421420 DV (0%) 1
(2q+2_2|V|)B(i),q+1(y’x)2n

Case 6: q—|v|=p—pu—1, q—|v| even; X is interior

In this case, the leading bias will involve two terms:

. . e 2
hp,q,,u,v(y’x) = argmin Vy,v(%x) + pPrar3mu=l] (B(i),q+2(y,x) +B(ii),p+l(y,x)) ]

>0 [nhd+2|v|+2y—1

~ [ (d+2v|+2u = )V, (y,%) l]m

= 2_ .
(P+a+3=u =) (B(i).qe2(3:X) + B(isy pr1 (3, %)) "

Case7: q—|v|<p—pu—1, g—|v| even; X is interior

In this case, the leading bias will involve only one term:

1. .1y (.X) = argmin Viy (0,%) + B2 2V B o (9,%)2

"0 [nhd+2|v|+2,u—1

22 V00 1
(2q+4 =2V B(i)qs2(y,X)? 1 '
Case8: q—|v|>p—pu, p—puodd

In this case, the leading bias will involve only one term:

h;,q,ﬂ,v (y’ X) = argmin V/J,V (y’ X) + h2p+2_2'uB(ii),p+1 (ys X)z

>0 [nhd+2|v\+2;4—l

3 [(d+2|V| +2u = DVuy (3,%) 1 Frrn et
(2p+2- zﬂ)B(ii),pH (y.x)2n
Case 9: q—|v|—=1=p—u, q—|v| even; y is interior

In this case, the leading bias will involve two terms:

. . e 2
hp,q,,u,v(y’x) = argmin Vy,v(%x) + pPrardp=l] (B(i),q+1(yax) +B(ii),p+2(y,x)) ]

>0 [nhd+2|v|+2y—1

~ [ (d+20v] +2p = DV, (3,%) 1]W
- 5 .
(P+a+3—p—[v]) (Bgiy,qe1 (0. X) + B(ii) pe2 (1, %)) 7

Case 10: q—|v|—1>p—u, p— ueven; y is interior

In this case, the leading bias will involve only one term:

. . 1 _
s, a,uy (¥,X) = af}%f(‘)m [Wvu,v (3, X) + KPP B G 1o (9,%)?

: [(d+2|V| + 20 = DVyuy (3.%) 1 7w
(2p+4_2ﬂ)B(ii),p+2(y,X)2 n '
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5.2. Rule-of-thumb bandwidth selection

This section outlines the methodology that the companion R package, 1pcde, uses to construct the
rule-of-thumb bandwidth selection.

The rule-of-thumb estimation uses the following assumptions in order to compute the optimal band-
width:

o the data is jointly normal,

e X and Y are independent, and,

e p—u=qg-|vi=1.
Using these assumptions, each of the terms in the formula given in Case 1 of Section 5.1 are computed
as follows:

1. The densities and relevant derivatives are evaluated based on the joint normal distribution as-
sumption.

2. Sy, Ty, Tx and Sy matrices are computed by plugging in for the range of the data, the evaluation
point, the respective marginal densities, and the kernel used.

3. Similarly, the ¢, and ¢y vectors are computed by using the range of the data, the evaluation point,
kernel function, and the respective marginal densities.

4. Bias and variance estimates are constructed using the relevant entries of the vectors and matrices.

6. Alternative variance estimators

6.1. V-statistic variance estimator

We propose here an alternative variance estimator that is quick to implement in practice. We start by
first observing that the estimator 6, (y|x) is a V-statistic. That is,

B (¥1%) = W;n(n <ype P (22 Qr ()81 e,
1 < 1
== Zl a(yio )b (i,%) + — ; L(y; < y,)a(y;.y)b(xi.%), 6.1)
where,
a(yi.y) =~ el SR (FE ) b(xi.x) = h Ve 8{1Q (X)),

Note that a(-) and b(-) are scalar functions that are non-zero only for data points that are within A
distance of the evaluation point. The second term in (6.1) can now be symmetrized and treated as a
U-statistic. Applying the Hoeffding decomposition to the symmetrized version of the second term and
plugging it back into Equation 6.1, we get

Oy (919 = - B [0y, b6t 9] + LBl

1 < -1 -1
72 2 (@0 b0 X) ~ElaCe )b D + Ly (5:X) + = Wy (.%)

(6.2)
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where

uij= % (L(yvi < yj)a(y;, )b(x;,x) + 1(y; < yi)a(yi,y)b(xi, X)),

and

1 n
Lyy(y,X) = - Z 2(E [uijlyixi] —E [uij]),
i=1

n

-1
Wu,v(y,x)z(g) DT (i B [urjlyixi] =B ur jlyx;] +B [ui f]) .
i, j=1,i%]

Dependence on polynomial orders is suppressed for notational simplicity. Since each of the terms in
(6.1) are orthogonal, the variance of the estimator can be expressed as the sum of the variance of each
of the terms on the right hand side. Furthermore, we note that the first three terms and W, , (y,X) have
higher-order variance. Thus, we only need to look at the variance of L, ,(y,x).

S

VILuy (330 = V|

4

n
1
(i 1 vioxi] =B [ur ) | =~ V|28 [ | yioxi] = 28 ] |
-
where we know
2E [ui,j | yi.xi| = /y L(y; <u)a(u,y)dF (ulx;)b(x;,x) + F(y;|x;)a(yi, y)b(X;,X).

We can expand and simplify this to get

V[Lyuy(y.x)| =E

2
( /y 1(ys < walu, y)AF (ulx)b(x:,x) +F<yi|xi)a(yi,y>b<xi,x>) ]

[ﬂ (yl < mi { ’ }) ( ’y) (V,y) F( |X[)dF(V|X[)b (X[9 X)
Yy dF(u
+/ (yl < ) (”,y)dl (M|Xi)1 (yilxi)a(yis ) ( is )
Yy Vb X;, X

+(FOylxialy, »)b(xi, )]

Note that this expression is identical to the variance expression derived in the proof of Lemma 2.3.
This leads to a natural alternative jackknife covariance estimator,

. 1. .
Cuy(3.x,y",x) = = Z L),y (0 X) L),y (Y, X).
n i=1

where

o 2 ~
Ly py(y,X) = — Z (wij— 0,y (X)) .

J#i
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In particular, note that if the two evaluation points are equivalent, we return the variance estimator,

A N 1 v,
Chr (%30 =V (10 = — D LG, L, (02,
i=1

6.2. Asymptotic variance estimator

Another alternative variance estimator is a sample version of the asymptotic variance derived in
Lemma 2.3. That is, each of the matrices in the formula are replaced with sample analogs. That is,

D) pu=0:

Vo (3,%) =Wé0,o(Y|X)(1 - éo,o(ﬂx))(eJS;lTxS;lev)

(i) u > 0:
4 Ta-14 &-1 T&-14 &-1
61.01%) (]85 1,85 e, ) (€785 1487 ey ).

Vi (%) = e

The covariance can be estimated using similar idea.

7. Proofs

7.1. Proof of Lemma 2.1

Part (i). See the proof of Lemma 1 in the main paper (i.e., Appendix A.3).

Part (ii). Next consider e[S} (Ry x — E[Ry x|X]), which takes the form

u

1 - 1 X; —X\T
TQ-1 . _ . _ l
pyirs Z;eysy /”;," (10 <y + b F(y+hu|x,))P(u)g(y+hu)duth( - ).
= N
It is straightforward to see that
_ 1 X; —X\T ‘-
‘e},sylfh (Il(yiSy+hu)—F(y+hu|xl-))P(u)g(y+hu)duh—dQ( - ) |§Ch d

h

for some C’ that holds uniformly for y € Y and x € X. We also have the following bound on the variance

V|efsy! ﬁ (1050 =34 ) = Py ) [P -+ 5 QS )

{h‘d if 1=0

<C’ .
Y > 0.
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Consider the first case above (1 = 0). By a discretization {(y¢,x¢) : 1 <€ < M, } of Y x X, we have the
probabilistic bound due to Bernstein’s inequality

P|aH* ma |eTS_](R -E[R |X])‘>c ]<2€ {_lMHO (M, )}
1365%@ HZy ATX X - *P 2¢cr+ e gLy

provided that we set r = y/log(n)/(nh9).M,, is at most polynomial in 7, and the error from discretiza-
tion can be ignored. This concludes the proof for the y = 0 case.

For i > 0, we set r = y/log(n)/(nh4-1), and the probabilistic bound takes the form

P[h/“‘vl max |e[,s;1(Ry,X-E[Ry,X|X])|>c1r]

1<6<M,,
5 { 1 ¢tn?r? tog(M,)) =2 1 ¢} log(n) Log(M,)
<2expl{-—= +1lo } =2ex { - +1o }
P 2pCrh—d+ 4+ 1 301C"h~ dpy &M P ZC’ C1C 10g£ln) S
nhd+1

This concludes the proof for the second case, where u > 0.

7.2. Proof of Lemma 2.2

The conditional expectation of Ry x in 6, , is

s ot o
=ﬁ§Uf@lx»#(“;y>w<u>1,,%q<"7‘r.

To proceed, we employ a Taylor expansion of the conditional distribution function to order s:

Fbs)= Y OemO g (=0 =™ +o( 3 Tyl =xI™).

{+|m|<s £+|m|=s
Then, the conditional expectation can be simplified as

%i [/yF(u|x,—)%P(u;y)dG(u)]hLdQ(Xi;X)T

i=1

= % w0 [ -y g () dcw] [ Z%— % =0"Q (3|

f+|m|<s

ol 3 1 e

> h"*'m'ee,m<y|x>cy,fél,m +oz ().

f+|m|<s
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We note that
S;lcy,g =epforall0 <€ <y,
and
S:'éxm=enp forall 0 < |m| < g.
Therefore,

E[0,.,v (y10)1X]

1- A Q-1 1- -1
=0y (y[x) + pat1=Ml Z e,u,m(ylx)c;,msx e, +hP* 'ugp+l,v(ylx)c;,p+1sy Cu
|m|=q+1

+o0p (h““‘"" + h"”"‘) .

By Lemma 2.1, the second term on the right-hand side satisfies

_ AT A _ _ _ log(n)

B Gum OIS e = AT D 6 m(r1x)el Sy e+ 0p (1742500,

|m|=q+1 |m|=q+1 n
which means we can denote the leading bias as

Buy (y,x) = Al Z 0u,m()’|x)cl,ms;19v + hp+1_ﬂ9p+1,v (ylx)c;’p+1s;leﬂ'
Im|=q+1
For the second claim of this lemma, we again consider a Taylor expansion
1
FOXI= Y BemO0 7= (=) =% o( 3 Ly =yl‘lxi—x|™).
{+|m|<s {+|m|=s

Then

s 2 e [Fouop ()| (M) e

n
i,j=1

1 It A 1 yi—y X; —X\T A
_ TQ-1 N (. — J 1 -1
2 pd+ e ,Zle”sy[ 2, OemOI) 7 (0= )" (x X)mP( I )]Q( h ) Sy e
L,]=

{+|m|<s
1 A - yi—y X; —X\|]a
T&-1 - yllx: — xm(p( ! -1
+"(nzhd+1+u+|v|eﬂsy Z[ 25 iyl ‘P( I )”Q( h )”SX eV)
i,j=1 {+|m|=s
=0, (yx) + A Z Qu,m(Y|X)c;,ms;lev + hpﬂ_ﬂevﬂ"’(ylx)c;,mlS;le#
Im|=q+1

+op(hT1=M g ppriomy,
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7.3. Proof of Lemma 2.3
Letc; =S; e, and ¢y = S; e,

V[/y |10 < w) —F(u|xi)]cI%P(?)dG(u)hidQ(?)Tcz]

u

:E[V[/y[]l(yiSM)—F(u|xi)]clT%P( ;y)dG(u)hid ( = ) c2’X”

= ]E[ .//“Vhy (F(y +h(ui Aup)|X;) — F(y+ huy|x;)F(y + hus |x;) ) P(up) clTP (us)

1 (xi—xy)
g()’+h'41)g(y+huz)du1duz( 150 ")) |
We make a further expansion:
F(y+h(ur Auz)|xi) = F(y + huy %) F (y + hus |x;)
= F(yIx;) (1 = F(y[x:)) + 7wy Awa) f(y1%:) = h(uy +u2) f (%) F (y|xi) + O (h?).

Note that the remainder term, O(hz), holds uniformly for y € Y and x; € X since the conditional
distribution function is assumed to have bounded second derivative. Therefore,

= c ( ¢y, Oc cl)E[F(y|X1)(l _F(Y|Xl))( ) hd (Xi}:X))z]
+h(c.1rTyc]) [f(y|x )( ) hd (Xigx))z]
—h[clT(Cy,lc;,o+Cy,0°;,1)°1]E[f(”xi)F(y'X")[cghidQ(x—)] ] O(hdl 2)

= efeoB| FOyIxi) (1 - F(Y|Xi))(c;hidQ (*%) )2]

h

h(eLS;lTyS;ley)E[f(ﬂXi)(Cghid (Xl_ ))] O(hdlz)

To conclude the proof, we note that two scenarios can arise: u =0 and u > 0. In the second case,

(*)__910(y|x)( 5IT,8; ey ) (el8y TSy ey)+o(hd —)

The first case is more involved. If 6y o (y|x) # 0, 1, then
1
(4= 2200000 (1 = 6,01 (615 TS5 Yey) + 0 ().

If 69,0(y|x) =0 or 1, then a further expansion is needed, which is why an extra i will be present in the
leading variance.
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7.4. Proof of Lemma 2.4

Consistency of V,, , (y,x). For the purposes of this proof, let ¢ = S;ley, & =S;"e,, and ¢; =S e,.
To start, consider

iz 331 (2050 e (7)ot (%)

=m y [/y(]l(}’iSM)_F(M|Xi))%c-1rp(u;y)dG(u)ch(Xi};X)]z M
i=1
WZ[ - // ]1()’1<”1)—F(M1|Xl))(F(u2|Xl) F(uzlxl))
/P (uy) [P (uz) g(y +huy)g(y + huz)duyduy an
2h2d+2;4+2\v an[/y(ﬁ(ulx,-)—F(wxi))}ll IP( hy)dG(u)c;Q(X';X)r. (1)

First consider term (IIT). With the uniform convergence result for the estimated conditional distribu-
tion function, it is clear that

if u=0,and fpp#0or 1

log(n)
2q+2 , Moe\Y
VO,V(y’X) h + nhd

|| Zp

) .
Vi (9, %) (h2q+1 + OhgT(:il)) ifu>0, orfpp=0o0or1
n

Now we study term (I), which is clearly unbiased for V, , (y, x). Therefore, we compute its variance.

V[(I)]=mv[(/y(1(yisM)—F(u|xi))%c{P(” y)dG(u)c;Q(¥))2]

4 1 -y X; — X\ 14
3h4d+4y+4|v| [”/ (vi <uj) - F(Mflx’))ZI ( h )dG(Mj)]I:C;Q( h )]]

With iterative expectation (by conditioning on X;), the above further reduces to

. — 4
VIO = 00 (1 = 0) (1= 30001 =t [0l ‘2 | 7[R (22)]

h
+0 (n3h4d+4,u+4|v| ) :

In other words,

V0v(y,X)\/ if £=0,and 6,9 # 0 or 1
D=V (30| 32 ,
if u>0, orfgpg=0o0rl

[lV(y7X) nhd+1
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Finally, we consider (II). Using the Cauchy-Schwartz inequality, we have

|(ID|* < |(D)] - |(1Im)) .

I
Vo (y,X) hz“+2+M if u=0,and 6y ¢ #0or 1
’ hd s
|AD| Ze L )

log(n)
2g+1
h=+"+ nhd+1

As a result,

Vi (y,X) if u>0, orfpp=0o0r1l

To conclude the proof for \v/,J v(y,x), we note that replacing &, by ¢, only leads to an additional multi-
plicative factor 1 + Op(1/Vnh9). See Lemma 2.1.

Consistency of \A/,“,(y, x). For the purposes of this proof, let ¢; = S;le#, c| = S;le,u, ¢ = S;le,,, and
=Sy le,. We first consider the following decomposition

u—

1 < . 1 VY A X; — X\ 12
WH[/y(uyism—F(mxi))chP( Jafywejo (*X)|
1 1«
m [; Z (1 (yi <yj) = F(yjlx)) (1 (i < yi) = F(yxlxi)
i k=

e (e (52 ool

2 1 v .
R [; D (B(y1%) ~ Fyslx0) (L (v < y0) = F(yul:))
i k=

mel? (et (M) e ()| av
m I:n_lz_],ki:l (F(yjlxi) = F(yjIxi)) (F(yklxi) = F(yilxi))
el () et (M) e (7)) am

By the uniform convergence rate of the estimated conditional distribution function, we have

VO,V (y’ X) h2q+2 +

1
log(n) if 1 =0,and g9 %0 or 1
nhd ’

|(ID)] Ze

| :
Vi (7, %) (hzq” + OhgT(fl)) ifu>0, orfpp=0o0r1l
n

Next we consider (II). Using the Cauchy-Schwartz inequality, we have

|(ID]? < |(D)] - |(TID)] .
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Finally, consider term (I), which has the expansion

(I)_n4h2d+2ﬂ+2lvl+2 zn: [ = F(y;lx0) (L (yi <yi) = F(yklxi))
dstnc
TP (7 y)cIP(y"h_ )] e ()] a
W Z | (1 (v =3j) = Foj1x0) (1 = Fyilxo) ] P (22
dlstmct
cfp(yi/;y)] [CJQ(XIX)F (12)
s 3 =)o [ (22 e (5] 0o
(=1
distinct
+m2(1—ﬂydxi))2 [ClTP(le_y)]z[c; (Xi}jx)]z. (L4)
Then,

Sl () s Slee 5 o)

dlstmct
1 1 1 1
<o = N <
~B vy (1 V5 ) (1 + nhd+l) N R pdrzadly]

2 2
(1212 s 2 KR e (5 [ ()
1 n
S ] n2hd+2y+2|v| [_hZ|c P(
Vo,y(y,x)% if u=0,and g9 #0orl

1 .
V,u,v(y,X)—h ifu>0, orfpp=0o0r1l
n

Using similar techniques, one can show that

1
Vo,y (y,x)— if u =0, and 9()’0 #0orl
[(L3)] Zp n '
Vp,v(y’x)ﬁ if u>0, orfpg=0o0rl
1 .
Vo, (¥, %) —— ifu=0,and fpg#0orl
(L] Zp n*h

1 . :
V”,V(y,x)m ifu>0, orfpp=0o0r1l
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To streamline the remaining derivation, define

1 B i |
bji= n (L(yi<yj) - F(yj|xi))clTP(¥), ¢i =Eld;ilyi,xi], ¥i= [c; (¥)] '
Then
1
(Il)_m Z]¢J l¢kl(!/l
dlstmct
1 1 l n
= Z G100 =001+ |2+ 0 (L)) ey D, (1= 000
dlstlnct dli’sjti;ct
(L.1.1) (1.1.2)
(“0( ))WZ¢ v
(I.1.3)

We have studied the term (I.1.3) in the proof for \7/” (y,x). In particular,

[1
Vo (y,X) — if u=0,and 6y #0or 1
|(1.1.3) - v,l,y(y,X)| 3p i '

Vi (y,X) T ifu>0, orfpp=0o0r1l

Term (I.1.1) is a mean zero third order U-statistic. Consider its variance

2 n n
1 1
(nhd+2ﬂ+2|"| ) E[néhw Z Z (97, = 9i) (ki — i) (Djr.ir = bir) (Pwr ir — irWithir
i k=li k=1
distinct  distinct

The above expectation is non-zero only in three scenarios: (j = j',k=k",i #i’), (j=j',k=k",i=1i")
or (j=i',k=k",i=j"). Therefore,

1 1 1 1 1
LD Ze (nhd+2y+2|v| ) (ﬁ Ty n3hd+2) = (nhd+2ﬂ+2|vl) nh

1
Vo (3,X) o if u=0,and 8p 9 #0or1
n

1 . )
V,J,V(y,x)m if u>0, orfpg=0o0rl

Finally consider (I.1.2), which has a mean of zero. Its variance is

V[(I']'z)]:(nhd+21}l+2|"|) [ LAn2d i i (¢]l ¢)(¢]’ ir — it )¢¢¢l Wi

1s inc tdls 1nct
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- (nhd+21/1+2|v| )2E[n4;,zd Zn: (¢j.i —¢i)(dj.ir — ¢i')¢ilﬁi¢i'lﬁi']

ii,j=1

distinct
1 2 1 TR
distinet
1 n
+E[W 2 1(¢j,i—¢i)(¢i,j—¢j)¢i¢i¢j¢j]
i,j=

distinct

(] (o]
) [—+—].
~ \ nhd+2p+2lv| nh n2hd+l

In addition, an extra & factor emerges if u > 0, or if 69 9 =0 or 1. As a result,

[1
Vo (0. %) — if u=0,and 6y # 0 or 1
(11.2)] Zp nh .

Vi (3,%) ifu>0, orfpg=0o0rl

nh?

To conclude the proof for \A/,u,y (y,x), we note that replacing ¢; by ¢; and ¢, by ¢, only leads to an
additional multiplicative factor 1 + Op(1/Vnh9). See Lemma 2.1.

7.5. Proof of Theorem 2.1

We will write

SM,V(y’X) ==
ni

1 & hd+ﬂ+|V|‘)£/po,V,h (Vi Xi3 ¥, X)
- \/V [hd+”+'y'=%jf,y,h (VisXi3,X)

Define ¢; =S;'e, and ¢; = S; e,
To apply the Berry-Esseen theorem, we first compute the third moment

3
B “deHVl«%ﬁy,h (y,-,x,-;y,x)|

:E[(E“/yh (]l(yi <y+huj) - F(y+huj|xi))c]TP(uj)dc(uj)]) |ch (Xl}:x)r]

The leading term in the above is simply

(1] ., (00 =9~ Pl )T g a6t e (22
j=1 TR

=|c-1rcy’0|3EH(]l(yi <y)- F(}’|Xi))|3)ch (Xi}:X) ‘3]
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=[e] ey of B[ (6000 (1~ 005, %0) 280 0 (5192 ~ 280.0v1) + 1) [e] @ (XX)| | = 0.

Note that the above will be exactly zero in cases (ii) and (iii) of Lemma 2.3.

7.6. Omitted details of Remark 2.3

Approximation and coverage error of §;’” (y,x). To start,

B 0030 =S (%) = Wge;sy[ [, [0 50 = P | 12(“52 G w]

Lol (e

By allowing the constant ¢; to take possibly different values in each term, we have

P[yeiuge ‘S'u"(y’x) S# v(y,x)‘ > (] ‘/i(Tnd)]

log(n) ‘eLS;l (Ryx —E[RyxIX]) | .
tE > ¢/l <¢ 3,
nhd ] [y&?/lfge)( m 1 Og(”)] on

where the conclusions follow from the uniform rates established in Lemma 2.1 and the variance calcu-
lations in Lemma 2.3. Next, we consider the normal approximation error. Note that

<IE»[sup|SX Sx| > ¢
xeX

Q log(”) —c S Q log(”) -
PIS x)<u-— —on B <P|S® X)<ul <P|S x)<u n= %
/,l,V(y7 ) = 9] ] (%] = [ 'u,v(y’ ) = ] = y,V(y’ ) = 9] \/T (%) 5

which means

log(n)
\/_

sup ‘]P’ [gz’v(y,x) < u] D(u )| =
uekR
where rgr is defined in Theorem 2.1.

Approximation and coverage error of S;’” (y,x). To begin with, we decompose the double sum into

i 3 w52 ()
ij=1

2hd+lz [ F(yzl’h] (?)_[y[]l(J’i5”)—F(M|Xi)]P(%)dG(u)

o(*5)

@

*mﬁ Z ([Myl-sy,-)—F(yﬂx»]P(%)—/y[n(yl-s@—F(Mx»]P(%)dG(@

i,j=1
distinct

X; —X)T

W ey

Q
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nhd+1 Z/ Li<u) - F(“|Xz)]P( )dG(u)Q( )T, (I

where we set G = F,. Term (I) represents the leave-in bias, and it is straightforward to show that

log(n) )] < ono,

I
P[ sup |(I)|>c1;(1+ i

yelY xeX

for some constants ¢y, ¢, and ¢3. See Lemma 2.1 for the proof strategy.
Term (II) is a degenerate U-statistic. Define

i :cf([ﬂ(yi <3 = POy [P(22) = [ (100200 - Praio [p(*52ac

o e

where ¢ and ¢, are arbitrary (fixed) vectors of conformable dimensions. Then we apply Equation (3.5)
of [4] (Lemmas 7 and 8 in the main paper), which gives (the value of C” may change for each line)

z , 1 t 1213 172
Lamd, 2, = o~ min| e G 7| o)
= C’ exp {- [log(n), ((1og(n))2nhd)§, ((1og(n))2n?hd+1)Z +log(n)}.

As a result,

g( ) e
P[ sup (D] > ¢ <en O,
yelY xeX Vn2

for some constants ¢y, ¢, and c3.
We now collect the pieces. The difference between Sy, , (, x) and Spy (y,x) is

So v()”X)—SZV()’,X)

eTss [(I) + (II)]S;leV RS S, (S;l - S;l) [Ry,x —E[RyA[X] ]S;lev,

h’“'”‘\/ yv(y, o Wi %) X

and the conclusion follows from Lemmas 2.1 and 2.3.

7.7. Omitted details of Remark 3.1

To show this result, we first partition the support Y X X into cubes with edge length ¢3/, where the
constant ¢3 is chosen so that, for any (y,x) in Y X X, at least one of the cubes will be contained in the
ball {y" : |y’ —y| < ¢1h} x {x" : |X' —x| < ¢; h}. The number of cubes in this partition is [1/(c3h)?*1].
Then the conclusion follows from Lemma 3.1.



Supplementary material 31

Proof of Lemma 3.1. For simplicity let ¢,, = (1 — 6,,) % We first employ the union bound

P| min zj<cn]<Jn P[z]<cn].
1<j<Jn

Note that z; ~ Binomial(n; JL), and therefore

2
n n 1 (Ln_c”
]P[Zj<Cn]:P[Zj_J—<Cn—J—]<6Xp(—§ 1 . )
Rl )
< " ?
ool -3z -
Jn

Then we have

P < ]<J 30, n ! 3520 1)1
min exp|-—2% — exp|—|= —1]logn|.
1<j<Jn A P 8 Ju ﬂnlogn P g n’tn gn

Therefore, the above will vanish faster than any polynomial of n provided that 5fl7rn — 00,

7.8. Proof of Lemma 3.2

Part (i) Convergence of éﬂ,v — 6,y Recall that we have the following decomposition of our estimator

Oy = Oy
_ - | T T &—1
= nhltd+utlv| Z yF(ulxi)e S P( dG(u) Sx eV—e#,V ey
=1L
! o | TQ-1 T -1
+W; /y (l(yiSu)—F(uIXi)) Sy P( dG( )] ) S;'e, (ID)
! > | . _ 3eTg! - T &-1_g-1
+W; /y(l(ylﬁu) F(MIX:)) Sy P( dG(u)] (SX Sy )ey.
(11T

(I) is simply the conditional bias, whose order is given in Lemma 2.2. The convergence rate of (II) can
be easily deduced from that of e;S7! (Ry x —E [Ry x[X]) in Lemma 2.1. Finally, it should be clear
that (IIT) is negligible relative to (II).

Part (ii) Convergence of éﬂ,y — 04,y This part follows from Remark 2.3.
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7.9. Proof of Lemma 3.3

Uniform consistency of V,,, (y,x). For the purposes of this proof, let ¢; = S;le#, ¢ =8;"e,, and
¢ =S; le,. To start, consider

1 z . 1 o (u—y T (Xi —X 2
T 2 [/y(ﬂ(yisu)—F<u|x,»>)zc1P(T)dG(u)czQ( - )]

_ 1 N 1 T T -x\|°
T [/ (1Gi<u) - F(u|xl)) (2 - 2)dG(ue] Q( )} I

- m Zn]//y_y (1 (yi <uy) - F(M1|Xi))(F(M2|Xi) - F(lexi))clTP(ul)CIP(uz)
i1 T
X)]Z an

)dG(u)cTQ( X)r (I10)

X« —_—
gy + hun)g (y -+ huz)duyduz [e]Q (¥

1 I . 1
—_ ) — . T
t R pdvapa] Z. [/y (F(ulxz) F(ulxz)) P(

First consider term (I). Clearly this term is unbiased for V,, ,(y,X). In the proof of Lemma 2.4, we
showed that

( /y (10 <0 - Flaxp) e (*

Also note that

v ) acee (%))

he ifu=0
<C d+1 : : .
h ifu>0

(/y(]l()’iﬁu) F(u|x,)) cTP( - )dG(u)cTQ( X))zscz.

In the above, the constants, C; and C;, can be chosen to be independent of the evaluation point, the
sample size, and the bandwidth. Then by a proper discretization of Y x X, and applying the union
bound and Bernstein’s inequality, one has

log(n) ¢ —0
D-V ,X M=
P[ o |() (¥ )‘ . clrl] com s, v =N and ’
yelY xeX Vi (y,%) log(n) .
if u>0
nhd+1

for some constants ¢, ¢3, and ¢3. In addition, ¢3 can be made arbitrarily large by appropriate choices
of ¢. See the proof of Lemma 2.1 for an example of this proof strategy.

Next consider term (III). With the uniform convergence result for the estimated conditional distribu-
tion function, it is clear that

(I1D)

P[ ‘ ’ log(n)
yey xeX V,u v()’,X)

< -3 — p20+1
>c1r3]_c2n s ry3=h +nhd+1'

Finally, we consider (II). Using the Cauchy-Schwartz inequality, we have

|(ID]? < |(D)] - |(TID)] .
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As a result,

IP’[ sup >c1r2] < cn” 3, ry =41 +riyrs.

yeJ/,xeX|V;4 v(y,x)‘

To conclude the proof for \V/#,V (y,x), we note that replacing ¢, by ¢, only leads to an additional multi-

plicative factor 1+ Op(4/log(n)/(nh9)). See Lemma 2.1.

Ejniform consistency of \A/,,,V(y,x). For the purposes of this proof, let ¢ = S;leﬂ, = S;ley, ¢ =
S;'ey., and ¢; = S;'e,. We consider the same decomposition used in the proof of Lemma 2.4

1 & . 1 U—Y\ . A X; — X\ 12
n2h2d+2ﬂ+2|"| < [L (IL (yi < u) _F(M|Xi)) ZCIP(T) dFy(u)C.er( h )]
1 1 <
W [; Z (L (vi <yj) = FQjlx) (1 (yi <yi) - F(yelxi))
k=

e () (52 oo )]

2 1 & .
m [ﬁ Z (F(yjlxi) = F(yjlxi) (1 (yi < yi) = F(yxlxi))
k=

1 Yi—Y Yk =Y Xi —X\]?
T J T T
ﬁclp( ) (257 [de(*5)] b
1 1 . .
W [; ;1 (F(yjlxi) = F(yjlxi) (F (yilxi) = F(yklxi))
jok=
1 Vi — X; —Xx\12
()2 e ()
w2 h h Q (b
By the uniform convergence rate for the estimated conditional distribution function, we have
111 1
P[ ‘ {1 ’ > c1r3] <n™ 9, ry =Ry %(nl).
yey xeX Vy, v(y,X) nha+

Employing the Cauchy-Schwartz inequality gives

|(ID|* < (D] - |(TIm)] .

As aresult, a probabilistic order for term (IT) follows that of terms (I) and (III).
Finally, consider term (I), which has the expansion

1
(D_W Z [ (vi <yj) = F(yjlx)) (1 (yi < yi) — F(yxlxi))

i,j,k=1
distinct

<P (25) e (25 [[efo (F5=

)]2 L)
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S Z (1054 = 3) = FOoylx0) (1 = FOyubso)
crpﬁfg;)tw( !l ()
s 3, (0o (e (22 [ () o
¢ 3,0 ro e () [ (52
Then,
021 s 35 WP (e () [ ()

() 2 [ Sk (52| Shere 5 e (57|

which means

P[ sup d2)

> 1—] <cn s,
yEM,xEX)Vu V(y’x)|

Using similar techniques, one can show that

d.3)

P[ | | (1.4)
yey xeX Vi, v (¥, X)

o e
yey xeX \M v (¥,X) n?h?

] con” %3, ] < cn B,

To streamline the remaining derivation, define

1 ~ i—X\|
¢N:Z( (vi<yj) - F(yj|xl))cIP(¥), ¢i =El¢;ilyi.xi], ¢i=[C;Q(X h X)] :
Then
L) = 4h2d+2#+2|vl D bibriti
ldlstmc
n 1 1
4h2d+2,u+2|v| Z (¢j,i_¢i)(¢k,i_¢i)¢’i+(2+0(;)) 3 A Z (.0 = $0)divsi
i,j,k L,j=1
distinct distinct

LL1) (11.2)
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1
(1+0( )) 2h2d+2y+2|vlz¢‘wl'

1.1.3)

By employing the same techniques in the proof for \v/,u,,, (y,x), we have that

113)-V ,X ifu=0
IP’[ sup )( )= Vi (y ))>C1r1] <cn 9, r) = nhd .
yeY xeX Vi (,X) log(n) . 0
nhd+1 >
Term (I.1.2) admits the following decomposition:
1 n-1<a_11
(L1.2)= P v Z}E[h—d(%',i = ¢i)diYi yj,Xj]
j:
1.1.2.1)
1 1
anhd Zl (@j,i = Pi)dithi - [ d(¢j,i_¢i)¢i¢i’)’j,xj] :
dllsimct
1.1.2.2)
Using the same techniques of Lemmas 2.1 and 2.4, we have
I1.21 1
u=0 P[ @121 > ) og(n)] <en9,
yeY . xeX Vi (3,X) nh

40 P[ wp |20 /1og( ]<c2 o
yelY,xeX VM V(y’x)

Term (I.1.2.2) is a degenerate second order U-statistic. We adopt Equation (3.5) of [4] (Lemmas 7 and
8 in the main paper), which implies (see Remark 2.3 and its proof for an example)

1.1.2.2 1
P[ sup (A122) R A et 0g(n) ]_ con” 3.
yed xex ' Vp, v(y X) n2hd+3

To handle term (I.1.1), first consider the quantity ¢; ; — ¢;, which takes the form

n

mal L) 0= s [0 20 =Pyl (52)

anl yeyYxeXx'n J=1

—_

—/(]l(y'ﬁu)—F(MIX'))clTP(u 2G|
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Then it is straightforward to show that
1\ I
P[max sup )— (¢j,i—¢i)|ZC1 M] < n s,
! yEy,XEX n j=1 nh
As aresult,

111 1
P[ sup | (€11 |>c1 Og(f)
yeY ,xeX V,u,v(y,x) nh

<on™ S,

To conclude the proof for \7/1,,,( y,X), we note that replacing &; by ¢; and ¢, by ¢; only leads to an
additional multiplicative factor 1+ Op(y/log(n)/nh9). See Lemma 2.1.

7.10. Proof of Lemma 3.4

First consider TVI‘Z’V (y,x). The difference between TVI‘Z’V (y,x) and SZ’V (y,Xx) is

V/J,V (ya X)

- — 1|85, (.%).
VH»V(y’X) ) Y

TZ,)/(.V? X) - SZ,V (y’ X) = (
From Lemma 3.3, we have

V[I,V ()’, X) _

sup ‘ . e,
yeY xeX V,,,,v(y,x)

1| > C]IVE] <con
To close the proof, it is straightforward to verify that
P[ sup |§;’1’V(y,x)\ > cn/log(n)] <on™S,
yeY xeX

which follows from the uniform convergence rate in Lemma 3.2. The same technique applies to the
analysis of TZ’V (v,x) =57, (3,%).

7.11. Proof of Theorem 3.1

See the proof of Theorem 2 in the main paper (i.e., Appendix A.6).

7.12. Proof of Lemma 3.5

Consider p, y(y,X,y’,x). Note that we can decompose the difference into

éﬂ,v(y,xay,’xl) _ CM,V(yvx’y,vx,)
Wi 0230V (7, %7) - VVior XV (0X)

ﬁ[l,V(y’Xayl7x/) _py,V(y7X’y/7X,) =
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¢ ,X,9,x')-C X, 9, x \% ,X)V /. x’
_ ”’V(yv Y. X)) : pr XY X) ) ( \/vﬂ,m )v,,,xy’ 0,
N Y por XV (77, )

M 1))

The probabilistic order of the second term is given in Lemma 3.3.
Using similar techniques as in the proof of Lemma 2.1 or 3.3, it is also straightforward to verify that
term (I) has the same order. That is,

P sup (D] > ¢irve| < ©n™ .
v,y ey xxeX

7.13. Proof of Lemma 3.6

Consider an ¢ discretization of Y x X, which is denoted by A, = {(yg,x;)T : 1 <¢< L} Then one
can define two Gaussian vectors, z,Z € RL, such that

Covlze,zer] = p(ye,Xe, yer,Xer),  Cov[Ze,Ze|Data] = p(ye, Xe, yer, Xer).

Then we apply the Gaussian comparison result in Corollary 5.1 of [2] (Lemma 11 in the main paper)
and the error rate in Lemma 3.5, which lead to

sup ]P’[ sup IZ,[|SMY,X]—P[ sup |zg|§u]
ueR! Li<e<r 1<t<L
= sup B[ sup [Gyy (e, x0) < UV X| = B| sup Gy (x| < |
ueR! Li<e<r 1<e<L
a  (log(n)\1 1
e |nt+ () e,

Since & only enters the above error bound logarithmically, one can choose & = n~¢ for some ¢ large
enough, so that the error that arises from discretization becomes negligible. The same applies to

Gy (ye,xe).

7.14. Proof of Theorem 3.2
First consider TZ’V (y,x). Since

sup S, (0= sup [T, (0,%) =Sy ()< sup [T, (0,%)]
yely.xeX yelY.xeX yeY xeX

< sup [Suy(nx)l+ sup [T, (0,%) = Sy (3,01,
yelY xeX yelY xeX

then with Lemma 3.4,

P[ sup |§,,,,,(y,x)| <u-Crsg|—n 8 < IP’[ sup |TZ,V()”X)| < u]
yeY,xeX yeY xeX

<P sup I8 (a0l Sutcrrss|+ene.
yelY ,xeX
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In the above, we also used the fact that the difference SZV (y,x) - S uy (¥,X) is negligible compared to
rse (see Remark 2.3).
By applying Lemma 3.1,

P[ sup  |Guy(y,X)| <u—ci(rsg+ rSA)] —0n %< P[ sup |TZ,V(}1,X)| <u
yelY xeX yelY ,xeX

SP[ sup |G,,,,,(y,x)|£u+c1(r5E+rSA)]+c2n“3.
yelY,xeX

Finally, we apply the Gaussian comparison result in Lemma 3.6, which implies that

sup
ucelk

P[ sup |1VFZ,,,(y,x)| < u] —P[ sup |G,,,Vy,x| < u’Y,X”
yelY ,xeX yelY ,xeX

< can ™ +log(n) VEvs +SupP| sup |Gy ()| € [+ (xsn + ren) .
ueR ‘yelY xeX

Finally, due to Theorem 2.1 of [1] (Lemma 12 in the main paper), we have

supP|  sup (G (v x| € [+ €1 (o + rn)] | 3 Viog(n) (ras + rsn).
ueR ‘yelY xeX

7.15. Proof of Theorem 4.1

Note that 6,, , (y|x) falls into the confidence band Cv‘,u,,,( 1 — @) if and only if

¢ X)—6 X
sup v (YIX) = 0y (¥[X)

yeyxeX| o Vv (3.%)

A sufficient condition would then be

< vy (a@).

E[fuy (y1%)|X] = 0y (y%)

sup |1VI‘Z’V(y,x)| + sup
yelY ,xeX yelY ,xeX /\v/#,,,(y,x)

The conclusion then follows from Theorem 3.2 and the bias calculation in Lemma 2.2. The same
analysis applies to C (1 — @).

< cvpy(a).

7.16. Proof of Theorem 4.2
To start, we decompose the test statistic into

E[f1 (Y1%)] = 6 (y1%) L Oy O1%) = Oy (1x:7)

1[\7/,,,,(y,x) \/vp,v()”x)

TPS(y5X) :TZ,V()}’X) +
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Then by the leading bias order in Lemma 2.2 and the leading variance order in Lemma 2.3, we have
that

E[§ x)| -6 X
]P’[ sup | [ ”’V(y| )l ”’V(yl ) >c12(1+rvE)] < 6n” 9,
yelY ,xeX

Wi (3,%) v

Similarly, under the null hypothesis,

(7] X)—6 X; ¥
P[ sup ‘ #’V(yl 3 #’V(yl y)‘>c1%(1+rv};)] SC2H7C3.
yey,xeX \[Vu,v()’a X) v

Then we have the following error bound

sup
uelk

Pl sup [Tesi0l<u]=P[ sup (G0 (0] <uY.X]|
yelY xeX yelY xeX

rpe+r
= log(n) (rSE +rga+ r—s) + (log(n))Vrvs.
v

As a result,

P| sup |‘Tps(y,x)| > cv#,v(a)] <a+t¢ (\llog(n) (rSE +rga+ w) + (log(n))\/E) .
Iy

yelY xeX

The same strategy can be employed to establish results for Tp5(y, x).

7.17. Proof of Theorem 4.3

The conclusion follows directly from Theorem 4.1.

Funding

Cattaneo gratefully acknowledges financial support from the National Science Foundation through
grants SES-1947805 and DMS-2210561, and from the National Institute of Health (RO1 GM072611-
16).

Jansson gratefully acknowledges financial support from the National Science Foundation through
grant SES-1947662 and the research support of CREATES.

References

[1] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2014). Gaussian approximation of suprema of
empirical processes. Ann. Stat. 42 1564-1597.

[2] CHERNOZHUKOV, V., CHETVERIKOV, D., KATO, K. and KOIKE, Y. (2022). Improved central limit theorem
and bootstrap approximations in high dimensions. Ann. Stat. 50 2562-2586.

[3] FAN, J. and GUBELS, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall/CRC.

[4] GINE, E., LATALA, R. and ZINN, J. (2000). Exponential and moment inequalities for U-statistics. In High
Dimensional Probability I Springer.



	Setup
	Notation
	Overview
	Assumptions

	Pointwise large-sample properties
	Uniform large-sample properties
	Applications
	Confidence bands
	Parametric specification testing
	Testing shape restrictions

	Bandwidth selection
	Pointwise asymptotic MSE minimization
	Rule-of-thumb bandwidth selection

	Alternative variance estimators
	V-statistic variance estimator
	Asymptotic variance estimator

	Proofs
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Lemma 2.4
	Proof of Theorem 2.1
	Omitted details of Remark 2.3
	Omitted details of Remark 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.1
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Funding
	References

