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We investigate the properties of several bootstrap-based inference procedures
for semiparametric density-weighted average derivatives. The key innovation in
this paper is to employ an alternative asymptotic framework to assess the prop-
erties of these inference procedures. This theoretical approach is conceptually
distinct from the traditional approach (based on asymptotic linearity of the esti-
mator and Edgeworth expansions), and leads to different theoretical prescriptions
for bootstrap-based semiparametric inference. First, we show that the conventional
bootstrap-based approximations to the distribution of the estimator and its classical
studentized version are both invalid in general. This result shows a fundamental lack
of “robustness” of the associated, classical bootstrap-based inference procedures
with respect to the bandwidth choice. Second, we present a new bootstrap-based
inference procedure for density-weighted average derivatives that is more “robust”
to perturbations of the bandwidth choice, and hence exhibits demonstrable supe-
rior theoretical statistical properties over the traditional bootstrap-based inference
procedures. Finally, we also examine the validity and invalidity of related bootstrap-
based inference procedures and discuss additional results that may be of independent
interest. Some simulation evidence is also presented.

1. INTRODUCTION

The bootstrap has gained great popularity in modern econometrics and statistics.1

In semiparametric problems, where estimators of a finite-dimensional parame-
ter of interest involve a nonparametric estimator of an unknown function, the
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bootstrap is attractive, because of its ability to approximate the distribution of
the semiparametric estimator in cases where variance estimation is difficult (e.g.,
Chen, Linton, and van Keilegom, 2003; Cheng and Huang, 2010). Even when
variance estimation is relatively straightforward, the bootstrap is potentially useful
in semiparametrics, because it may provide more accurate approximations to the
distributions of (asymptotically) pivotal quantities such as studentized estimators,
whenever it achieves asymptotic refinements similar to those well-established in
parametric problems (e.g., Hall, 1992).

The kernel-based density-weighted average derivative estimator of Powell,
Stock, and Stoker (1989) is one of the few semiparametric estimators for which
the bootstrap has been shown to offer asymptotic refinements. Nishiyama and
Robinson (2005) recently showed that a suitably implemented version of the non-
parametric bootstrap provides a distributional approximation for the classical stu-
dentized test statistic that is superior to the standard Gaussian approximation. In
this paper we revisit this problem and obtain new results that can be viewed as a
cautionary tale regarding “the potential for bootstrap-based inference to (. . . ) pro-
vide improvements in moderate-sized samples” (Nishiyama and Robinson, 2005,
p. 927). We present simulation evidence that appears hard to reconcile with the
theoretical results establishing asymptotic refinements of the bootstrap in this
semiparametric context and develop an alternative theory-based explanation of
this evidence. In addition, we use our theoretical framework to derive results for
alternative bootstrap-based inference procedures and to show, among other things,
that there exists a valid bootstrap-based inference procedure that dominates the
one proposed by Nishiyama and Robinson (2005), a theory-based prediction also
borne out in our simulations.

The traditional approach to evaluating the accuracy of bootstrap-based infer-
ence procedures (in parametric and semiparametric problems) relies on asymp-
totic linearity of estimators and employs Edgeworth expansions to elucidate the
role of “higher-order” terms in the distributional approximation of the associated
test statistics. For the density-weighted average derivative estimator, Nishiyama
and Robinson (2005) used this traditional approach to demonstrate the ability
of a bootstrap-based inference procedure to deliver asymptotic refinements. In
contrast, we propose in this paper to employ an alternative (first-order) distri-
butional approach to examine the properties of bootstrap-based inference pro-
cedures, which retains some terms that are asymptotically negligible when the
estimator is asymptotically linear but can be first-order otherwise. This alternative
approach accommodates, but does not require, certain departures from asymptotic
linearity, namely those that occur when the bandwidth of the nonparametric esti-
mator vanishes too rapidly for asymptotic linearity to hold. Thus, we refer to this
approach as a “small bandwidth” approach (Cattaneo, Crump and Jansson 2010;
2014).

Although similar in spirit to the Edgeworth expansion approach to im-
prove asymptotic approximations, our small bandwidth approach is conceptu-
ally distinct and leads to different theoretical prescriptions for bootstrap-based
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semiparametric inference. In particular, Theorem 1 finds that the conventional
bootstrap-based approximations to the distribution of the kernel-based semipara-
metric estimator and the associated studentized version of this estimator employ-
ing the traditional (jackknife) variance estimator are both invalid in general. On
the other hand, Theorem 2 establishes consistency of the bootstrap approxima-
tion to the distribution of the semiparametric estimator when studentized by a
different, bias-corrected variance estimator. This alternative variance estimator is
one for which the resulting studentized statistic is asymptotically standard nor-
mal even when asymptotic linearity fails. However, and perhaps surprisingly,
Theorem 3 shows that pivotality of the studentized estimator is not sufficient for
bootstrap validity: a variance estimator is exhibited which renders the associated
studentized statistic asymptotically standard normal even when asymptotic lin-
earity fails, but nonetheless the standard bootstrap provides a valid distributional
approximation for this asymptotically pivotal statistic only when asymptotic
linearity holds.

These results have some interesting theoretical implications. First, our find-
ings shed new light on the properties of the bootstrap and some of its variants
in the context of semiparametric inference, documenting and highlighting, in par-
ticular, a fragility of traditional bootstrap-based distributional approximations for
kernel-based semiparametric statistics with respect to perturbations of the band-
width choice (see Section 4.4 for further discussion on this point). Second, our
results also include a new bootstrap-based inference procedure for density-
weighted average derivatives which is more “robust” to perturbations of the band-
width choice, and hence exhibiting theoretically demonstrable superior statistical
properties over the traditional bootstrap-based inference procedures.

The remainder of the paper is organized as follows. Section 2 introduces the
model, summarizes some theoretical results available in the literature, and pro-
vides a motivation for our work using a small-scale simulation study. Section 3
reviews our alternative approach based on the small bandwidth framework and
develops the main theoretical tools needed to study the bootstrap. Section 4 in-
cludes the main results of the paper, while Section 5 concludes and discusses
other contexts where our results could be applied. The Appendix contains brief
mathematical proofs, but the supplemental appendix includes a detailed develop-
ment of our results.

2. SETUP AND MOTIVATION

We assume throughout that zi = (yi , x ′
i )

′, i = 1, . . . ,n, is a random sample of
z = (y, x ′)′, where y ∈ R is a dependent variable and x ∈ Rd is a continuous ex-
planatory variable with density f (·). The density-weighted average derivative of
the regression function g(x) = E[y|x] is θ = E[ f (x)∂g(x)/∂x]; see, e.g., Stoker
(1986). (Detailed regularity conditions are given in the following section, but
omitted here to ease the discussion.) Models where this estimand is of inter-
est include single-index limited dependent variable models, generalized partially
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linear models, and other related semilinear single-index generalized additive and
nonadditive models. For example, suppose g(·) is of the form g(x) = G

(
x ′

1β, x2
)

with G(·) unknown and x partitioned as x = (
x ′

1, x ′
2

)′. Then, partitioning θ con-

formably with x as θ = (
θ ′

1,θ
′
2

)′, the index parameter β is proportional to θ1 with
proportionality factor E

[
f (x)Ġ1(x ′

1β, x2)
]

where Ġ1(u, x2) = ∂G(u, x2)/∂u.
Powell, Stock, and Stoker (1989, henceforth PSS) noted that θ =

−2E [y∂ f (x)/∂x], and hence proposed the kernel-based estimator

θ̂n = −2
1

n

n∑
i=1

yi
∂

∂x
f̂n,i (xi ), f̂n,i (x) = 1

n −1

n∑
j=1, j �=i

1

hd
n

K

(
xj − x

hn

)
,

where K :Rd →R is a kernel function and hn is a vanishing (positive) bandwidth
sequence. Having subsequently been studied by Härdle and Tsybakov (1993),
Robinson (1995), Powell and Stoker (1996), Nishiyama and Robinson (2000,
2001, 2005), and many others, this estimator is one of the most widely investi-
gated estimators in the semiparametrics literature.

Under conditions similar to those discussed below, PSS showed that θ̂n

is asymptotically linear with influence function L(z) = 2(∂[ f (x)g(x)]/∂x −
y∂ f (x)/∂x − θ); that is,

√
n(θ̂n − θ) = 1√

n

n∑
i=1

L(zi )+op(1)�N (0,�), � = E[L(z)L(z)′
]

, (1)

where � denotes weak convergence. (Throughout the paper limits are taken as
n → ∞ unless otherwise noted.) PSS also exhibited a consistent estimator �̂n

of �. Defining V̂0,n = n−1�̂n , these results imply, in particular, that V̂
−1/2

0,n (θ̂n −
θ)� N (0, Id), a result that can be used to construct asymptotically valid and
easily implemented confidence intervals for θ .

Although asymptotically valid, the distributional approximation

V̂
−1/2

0,n

(
θ̂n − θ

) a∼ N (0, Id) might be suspected to be somewhat inaccurate
in samples of moderate size due to the presence of the nonparametric es-
timator of (the derivative of) the density f (·). In particular, folklore and
simulation evidence suggests that the distributional properties of kernel-based
estimators such as θ̂n , and studentized versions thereof, can be rather sen-
sitive to the choice of bandwidth hn . Motivated by concerns of this nature,
Nishiyama and Robinson (2000, 2001) developed valid Edgeworth expan-

sions for statistics of the form λ′(θ̂n − θ
)
/

√
λ′V̂0,nλ with λ ∈ Rd and found

that in general the magnitude of the error in the distributional approximation

V̂
−1/2

0,n (θ̂n − θ)
a∼ N (0, Id) depends on both the sample size and the band-

width, this error vanishing at a conventional parametric rate n−1/2 only in
exceptional circumstances. Subsequently, Nishiyama and Robinson (2005,
henceforth NR) developed more detailed expansions and showed that the
nonparametric bootstrap provides approximations to the sampling distribution of
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(a possibly bias-corrected version of) λ′(θ̂n − θ)/

√
λ′V̂0,nλ that are not merely

asymptotically valid, but actually capable of achieving asymptotic refinements.
It is tempting to interpret the latter result as evidence that even in samples of

moderate size, highly accurate confidence intervals for θ can be constructed using
the bootstrap. To investigate the extent to which this interpretation is warranted,
we conducted a Monte Carlo experiment to evaluate the performance of the stan-
dard normal and bootstrap approximations to the distribution of V̂

−1/2

0,n (θ̂n − θ).
Following NR, the simulation study uses a Tobit model yi = ỹi 1(ỹi > 0) with
ỹi = x ′

iβ + εi , εi ∼N (0,1) independent of the bivariate vector xi , and 1(·) rep-
resenting the indicator function. We set β = (1,1)′ and consider two models:
Model 1, also used by NR, employs (x1i , x2i )

′
∼N (0, I2) , while Model 2 intro-

duces asymmetry in the regressor distribution by employing x1i ∼ (χ4 − 4)/
√

8,
x2i ∼ N (0,1), and x1i ⊥⊥ x2i , where χ4 denotes a chi-squared random variable
with 4 degrees of freedom. The estimator θ̂n is implemented using a fourth-order
Gaussian product kernel (i.e., P = 4 in Assumption K below). We set λ = (1,0)′
and consider three 95% confidence intervals:

CI0 =
[

λ′θ̂n −1.96
√

λ′V̂0,nλ, λ′θ̂n +1.96
√

λ′V̂0,nλ

]
,

CI∗0 =
[

λ′θ̂n − c∗
0,97.5

√
λ′V̂0,nλ, λ′θ̂n − c∗

0,2.5

√
λ′V̂0,nλ

]
,

CI∗0,BC =
[

λ′(θ̂n − B̂n)− c∗
0,97.5

√
λ′V̂0,nλ, λ′(θ̂n − B̂n)− c∗

0,2.5

√
λ′V̂0,nλ

]
,

where c∗
0,α denotes the αth percentile of the bootstrap approximation and B̂n de-

notes a bias-correction estimate, both implemented as in NR. We conducted 3,000
simulations, each with a sample size n = 1,000 and 2,000 bootstrap replications.

Figure 1 presents a summary of the Monte Carlo results. To investigate the sen-
sitivity of the empirical coverage probabilities with respect to the bandwidth, these
results are presented for a grid of possible bandwidth choices. This figure includes
two horizontal lines at 0.90 and at the nominal coverage rate 0.95 for reference,
and also plots as vertical lines two (infeasible) bandwidth choices available in the
literature proposed by Powell and Stoker (1996) and NR, respectively, denoted
h P S and hN R .

In perfect agreement with the theoretical findings of NR, the results for Model 1
indicate that the bootstrap-based confidence intervals without bias-correction
(CI∗0) are more accurate than those based on a standard normal approximation
(CI0) and, in particular, that these bootstrap-based confidence intervals are highly
accurate across a nontrivial range of bandwidths. (CI∗0,BC do not perform well
when the bias-correction is estimated.) On the other hand, the results for Model 2
are much less encouraging, indicating, in particular, that the impressive findings
about the bootstrap in Model 1 are to some extent an artifact of the particular dis-
tributional assumption made on the part of the regressors in that model. Specifi-
cally, in the case of Model 2 both approximations are inaccurate outside a narrow
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FIGURE 1. Empirical coverage of traditional 95% confidence intervals.

range of bandwidths, although the bootstrap approximation tends to outperform
the standard normal approximation.

Particularly noteworthy in the case of Model 2 and, albeit to a somewhat lesser
extent in Model 1, are the results for bandwidths that are “small” in the sense that
they fall below the optimal bandwidths. Across a wide range of such bandwidths,
both confidence intervals are conservative with the degree of conservatism being
noticeably larger for the intervals based on the standard normal approximation
than for the bootstrap-based intervals. These features appear hard to reconcile
with the Edgeworth expansion-based theory of NR and suggest that in the case
of the density-weighted average derivative estimator of PSS there is room for
improvement when it comes to a theoretical understanding of the properties of
the bootstrap in samples of moderate size.

One important objective of this paper is to propose a theory-based explanation
of the “small bandwidth” results reported in Figure 1 for the bootstrap, which will
be based on the framework of Cattaneo, Crump, and Jansson (2014, henceforth
CCJ). (This alternative asymptotic framework was found to deliver predictions
consistent with Figure 1’s results for the case of the standard normal approxima-
tion.) Another goal of the paper is to use this framework to analyze the proper-
ties of alternative bootstrap-based procedures. In addition to providing additional
novel implications, whose finite-sample relevance will also be present in our sim-
ulations, at least one of the theoretical results obtained in pursuit of our goals may
be of independent theoretical interest (e.g., Thm. 3).

Remark. For the model and estimator used in the simulations, h P S ∝ n−1/6

and hN R ∝ n−1/6, with factors of proportionality that are functionals of the un-
known distribution of z. Implementing these selectors with estimated factors of
proportionality will likely introduce additional estimation error that will seriously
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affect the empirical coverage of the resulting data-driven confidence intervals.
Cattaneo, Crump, and Jansson (2010) reports results corroborating this conjec-
ture for CI0 (standard normal approximation). In Section 4.5 we further discuss
these implementation issues.

3. PRELIMINARY RESULTS

3.1. Assumptions and Bandwidth Conditions

Throughout the development of our theoretical results we maintain the following
standard assumptions.

Assumption M (Model). (a) E[y4] < ∞, E
[
σ 2(x) f (x)

]
> 0 and

V [∂e(x)/∂x − y∂ f (x)/∂x] is positive definite, where σ 2(x) = V[y|x]
and e(x) = f (x)g(x).

(b) f is (Q + 1) times differentiable, and f and its first (Q + 1) derivatives
are bounded, for some Q ≥ 2.

(c) g is twice differentiable, and e and its first two derivatives are bounded.

(d) v is differentiable, and v f and its first derivative are bounded, where
v(x) = E[y2|x].

(e) lim‖x‖→∞ [ f (x)+|e(x)|] = 0, where ‖·‖ is the Euclidean norm.

Assumption K (Kernel). (a) K is even and differentiable, and K and its
first derivative are bounded.

(b)
∫
Rd K̇ (u)K̇ (u)′du is positive definite, where K̇ (u) = ∂K (u)/∂u.

(c) For some P ≥ 2,
∫
Rd |K (u)|(1 + ‖u‖P

)
du + ∫

Rd ‖K̇ (u)‖(1 + ‖u‖2)
du < ∞, and∫
Rd

ul1
1 · · ·uld

d K (u)du =
{

1, if l1 = ·· · = ld = 0,

0, if (l1, . . . , ld)′ ∈ Zd+ and l1 +·· ·+ ld < P
.

The purpose of the following assumption is to ensure that the smoothing bias of
the estimator θ̂n is asymptotically negligible (relative to its standard deviation).

Assumption B. (Bias). min
(
nhd+2

n ,1
)
nh2s

n → 0, where s = min(P, Q).

Finally, the following conditions will play a crucial role in our theoretical
developments.

Condition AL. (Asymptotic Linearity) nhd+2
n → ∞.

Condition AN. (Asymptotic Normality) nhd/2
n → ∞.

Conditions AL and AN are nested, the latter being significantly weaker than
the former by accommodating bandwidths that are “small” in the sense that
the sequence hn is allowed to converge more rapidly to zero than is permitted
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by Condition AL. While the traditional Gaussian and bootstrap distributional
approximations employ Condition AL, our alternative approximation framework
relaxes this condition, employing instead Condition AN.

3.2. Gaussian Approximation

To further appreciate the distinction between Conditions AL and AN, observe that
θ̂n = θ̂n(hn) admits the (n-varying) U -statistic representation:

θ̂n(h) =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

U
(
zi , zj ; h

)
,

U (zi , zj ; h) = −h−(d+1) K̇

(
xi − xj

h

)(
yi − yj

)
,

which leads to the Hoeffding decomposition θ̂n −θ = Bn + L̄n + W̄n , where Bn =
θ(hn)−θ with θ(h) =E[U(

zi , zj ; h
)]

, L̄n = n−1∑n
i=1 L

(
zi ; hn

)
with L(zi ; h) =

2
[
E[U (zi , zj ; h)|zi ] − θ(h)

]
, and W̄n = (n

2

)−1∑n−1
i=1

∑n
j=i+1 W

(
zi , zj ; hn

)
with

W
(
zi , zj ; h

)= U
(
zi , zj ; h

)− (
L(zi ; h)+ L(zj ; h)

)
/2−θ(h). It can be shown that

if Assumptions M and K hold, then

√
n(θ̂n − θ) = √

nBn︸ ︷︷ ︸
O(

√
nhs

n)

+ 1√
n

n∑
i=1

L(zi ; hn)+ √
nW̄n︸ ︷︷ ︸

Op

(
1/

√
nhd+2

n

)
and L̄n = n−1/2∑n

i=1 L(zi ) + op (1) whenever hn → 0. As a consequence, As-
sumption B and Condition AL are sufficient for the asymptotic linearity result (1),
as shown by PSS.

Condition AL helps ensure asymptotic linearity of θ̂n by rendering the “remain-
der” term W̄n asymptotically negligible. In contrast, CCJ showed that if Assump-
tions M, K, and B hold and if Condition AN is satisfied, then Condition AL can
be removed, and obtained the alternative Gaussian approximation

V −1/2
n (θ̂n − θ)�N (0, Id) , Vn = n−1� +

(
n

2

)−1

h−(d+2)
n �, (2)

where � = 2E
[
σ 2(x) f (x)

]∫
Rd K̇ (u)K̇ (u)′du. This result shows that while fail-

ure of Condition AL leads to a failure of asymptotic linearity, asymptotic nor-
mality of θ̂n holds under the significantly weaker Condition AN, which permits
failure not only of asymptotic linearity, but also of

√
n-consistency when

nhd+2
n → 0 (and even of consistency when limn→∞nhd/2+1

n < ∞).
A key result exploited in the derivation of the asymptotic normality result (2) is

that the degenerate U -statistic W̄n is itself asymptotically normal under the stated

conditions:
√

n2hd+2
n W̄n�N (0,2�). Therefore, and in sharp contrast to the dis-

tributional approximation θ̂n
a∼ N (θ,n−1�) suggested by (1), the distributional
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approximation θ̂n
a∼N (θ,Vn) suggested by (2) does not ignore the variability in

the “remainder” term W̄n . This latter feature seems desirable when finite sample
accuracy of conventional distributional approximations is a concern, as is the case
here.

Because the distributional approximation suggested by (2) is normal, asymp-
totic standard normality of studentized estimators can be achieved also when Con-
dition AL is replaced by Condition AN, provided that the variance estimator V̂n

(say) used for studentization purposes satisfies V −1
n V̂n →p Id under Condition

AN. PSS’s estimator �̂n of � mentioned in Section 2 is (proportional to) the
jackknife variance estimator of θ̂n(h), being of the form

�̂n = �̂n(hn) = 1

n

n∑
i=1

L̂n,i (hn)L̂n,i (hn)
′,

L̂n,i (h) = 2

⎛
⎝ 1

n −1

n∑
j=1, j �=i

U (zi , zj ; h)− θ̂n(h)

⎞
⎠ .

It was shown by CCJ that

V̂0,n = n−1�̂n(hn) = n−1 [� +op (1)
]+2

(
n

2

)−1

h−(d+2)
n

[
�+op (1)

]
.

This expansion, which will play an important role in the present study of the
bootstrap, implies, in particular, that validity of V̂0,n requires Condition AL. The
lack of “robustness” of V̂0,n with respect to hn can be avoided by employing either
of the variance estimators

V̂1,n = V̂0,n −
(

n

2

)−1

h−(d+2)
n �̂n(hn) and V̂2,n = n−1�̂n

(
21/(d+2)hn

)
,

where �̂n(h) = hd+2
(n

2

)−1∑n−1
i=1

∑n
j=i+1 Ŵn,i j (h)Ŵn,i j (h)′ with Ŵn,i j (h) =

U
(
zi , zj ; h

)− (
L̂n,i (h)+ L̂n, j (h)

)
/2− θ̂n(h).

Remark. It can be shown that the adjustment employed in the construction of
V̂1,n is asymptotically equivalent to the bias-correction proposed by Efron and
Stein (1981). The multiplicative factor 21/(d+2) involved in the construction of
V̂2,n is designed to yield equality between the terms premultiplying � in the
expansions of Vn and V̂2,n .

The following result is adapted from CCJ and formulated in a manner that
facilitates comparison with the main theorems given below.

LEMMA 1. Suppose Assumptions M, K, and B hold and suppose Condition
AN is satisfied.
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(a) The following are equivalent:

i. Condition AL is satisfied.

ii. V −1
n V̂0,n →p Id .

iii. V̂
−1/2

0,n (θ̂n − θ)�N (0, Id).

(b) If nhd+2
n is convergent in R̄+ = [0,∞], then V̂

−1/2

0,n

(
θ̂n − θ

)
�N (0,�0),

where

�0 = lim
n→∞

(
nhd+2

n � +4�
)−1/2(

nhd+2
n � +2�

)(
nhd+2

n � +4�
)−1/2

.

(c) For k ∈ {1,2}, V −1
n V̂k,n →p Id and V̂

−1/2

k,n

(
θ̂n − θ

)
�N (0, Id).

Part (a) is a qualitative result highlighting the crucial role played by Condition
AL in connection with asymptotic validity of inference procedures based on V̂0,n .
The equivalence between (i) and (iii) shows that Condition AL is necessary and
sufficient for the test statistic V̂

−1/2

0,n

(
θ̂n −θ

)
proposed by PSS to be asymptotically

pivotal. In turn, this equivalence is a special case of part (b), which is a quan-
titative result that can furthermore be used to characterize the consequences of
relaxing Condition AL. Specifically, part (b) shows that also under departures
from Condition AL the statistic V̂

−1/2

0,n

(
θ̂n − θ

)
can be asymptotically normal with

mean zero, but with a variance matrix �0 whose value depends on the limiting
value of nhd+2

n . This matrix satisfies Id/2 ≤ �0 ≤ Id (in a positive semidefinite
sense) and takes on the limiting values Id/2 and Id when limn→∞ nhd+2

n equals 0
and ∞, respectively. By implication, part (b) indicates that inference procedures
based on the test statistic proposed by PSS will be conservative across a nontrivial
range of bandwidths. In contrast, part (c) shows that studentization by means of
V̂1,n and V̂2,n achieves asymptotic pivotality across the full range of bandwidth
sequences allowed by Condition AN, suggesting, in particular, that coverage prob-
abilities of confidence intervals constructed using these variance estimators will
be close to their nominal level across a nontrivial range of bandwidths.

3.3. Bootstrap Approximation

We study two variants of the m-out-of-n replacement bootstrap with m = m(n) →
∞: the standard nonparametric bootstrap (m = n) and the variant where m is a
vanishing fraction of n (i.e., m/n → 0), calling the latter “m-out-of-n bootstrap”
for short. (Here, and elsewhere in the sequel, the dependence of m(n) on n will
often be suppressed to achieve notational economy.) Specifically, to describe the
bootstrap procedure(s), let z∗

i , i = 1, . . . ,m, be a random sample with replacement
from the observed sample Zn = {z1, . . . , zn}. The bootstrap analog of θ̂n is

θ̂∗
n = θ̂∗

n (hm) =
(

m

2

)−1 m−1∑
i=1

m∑
j=i+1

U
(

z∗
i , z∗

j ; hm

)
,
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while the bootstrap analogs of �̂n and �̂n are �̂∗
n = �̂∗

n (hm) and �̂∗
n = �̂∗

n(hm),
respectively, where

�̂∗
n (h) = 1

m

m∑
i=1

L̂∗
n,i (h)L̂∗

n,i (h)′,

L̂∗
n,i (h) = 2

⎛
⎝ 1

m −1

m∑
j=1, j �=i

U
(

z∗
i , z∗

j ; h
)

− θ̂∗
n (h)

⎞
⎠ ,

and, defining Ŵ ∗
n,i j (h) = U

(
z∗

i , z∗
j ; h

)
−
(

L̂∗
n,i (h)+ L̂∗

n, j (h)
)
/2− θ̂∗

n (h),

�̂∗
n(h) =

(
m

2

)−1

hd+2
m−1∑
i=1

m∑
j=i+1

Ŵ ∗
n,i j (h)Ŵ ∗

n,i j (h)′.

Finally, the bootstrap analogs of V̂0,n , V̂1,n , and V̂2,n are V̂ ∗
0,n = m−1�̂∗

n (hm),

V̂ ∗
1,n = V̂ ∗

0,n −
(

m

2

)−1

h−(d+2)
m �̂∗

n(hm), and V̂ ∗
2,n = m−1�̂∗

n

(
21/(d+2)hm

)
.

Remark. The m-out-of-n bootstrap is closely related to subsampling (i.e., the
m-out-of-n nonreplacement bootstrap). The properties of subsampling are imme-
diate consequences of Lemma 1(b) and (c) and Politis and Romano (1994). In
particular, for k ∈ {1,2} consistency of the subsampling approximation to the
distribution of V̂

−1/2

k,n (θ̂n − θ) is automatic (under the assumptions of Lemma 1)
whenever m/n → 0 and the following (mild) additional assumption holds: If
nhd+2

n → 0, then (m/n)2 (hm/hn)d+2 → 0. Also, under the same assumptions

the subsampling approximation to the distribution of V̂
−1/2

0,n

(
θ̂n − θ

)
is consistent

whenever nhd+2
n is convergent in R̄+. As will be shown in Theorem 1(c), Theorem

2, and Theorem 3(b) below, these properties are shared by m-out-of-n bootstrap
studied in this paper.

Let P∗, E∗, or V∗ denote a probability or moment computed under the boot-
strap distribution conditional on Zn , and let �p denote weak convergence in
probability (e.g., Gine and Zinn, 1990). Also, define θ∗

n = θ∗(hm), where θ∗(h) =
E

∗[U (z∗
i , z∗

j ; h)
] = (n − 1)θ̂n(h)/n. The main results of this paper follow from

Lemma 1 and the following lemma.

LEMMA 2. Suppose Assumptions M and K hold, suppose Condition AN is
satisfied, and suppose hn → 0, m → ∞, and limn→∞m/n < ∞.

(a) V ∗−1

n V
∗[θ̂∗

n

] →p Id , where

V ∗
n = m−1� +

(
1+2

m

n

)(m

2

)−1

h−(d+2)
m �.
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(b) �∗−1

n �̂∗
n →p Id and �−1�̂∗

n →p Id , where

�∗
n = � +2m

(
1+ m

n

)(m

2

)−1

h−(d+2)
m �.

(c) V ∗−1/2

n

(
θ̂∗

n − θ∗
n

)
�p N (0, Id).

The (conditional on Zn) Hoeffding decomposition gives θ̂∗
n = θ∗(hm)+ L̄∗

n +
W̄ ∗

n , where

L̄∗
n = m−1

m∑
i=1

L∗ (z∗
i ; hm

)
, W̄ ∗

n =
(

m

2

)−1 m−1∑
i=1

m∑
j=i+1

W ∗(z∗
i , z∗

j ; hm

)
,

with L∗(z∗
i ; h

) = 2
(
E

∗[U(
z∗

i , z∗
j ; h

)|z∗
i

] − θ∗(h)
)

and W ∗(z∗
i , z∗

j ; h
) =

U
(
z∗

i , z∗
j ; h

) − (
L∗(z∗

i ; h
) + L∗(z∗

j ; h
))

/2 − θ∗(h). Lemma 2 (a) is obtained
from this decomposition by noting that

V
∗ [θ̂∗

n

]
= m−1

V
∗ [L∗ (z∗

i ; hm
)]+(

m

2

)−1

V
∗ [W ∗(z∗

i , z∗
j ; hm

)]
,

where, with “An ≈ Bn” being shorthand for A−1
n Bn →p Id ,

V
∗ [L∗(z∗

i ; hm)
] ≈ �̂n(hm) ≈ � +2

m2

n

(
m

2

)−1

h−(d+2)
m �

and V∗[W ∗(z∗
i , z∗

j ; hm)
] ≈ h−(d+2)

m �̂n(hm) ≈ h−(d+2)
m �.

The bootstrap estimator of the variance of θ̂n is V∗[θ̂∗
n

]
with m = n. In view of

the foregoing, this estimator exceeds n−1
V

∗[L∗(z∗
i ; hn)] ≈ n−1�̂n(hn) = V̂0,n,

implying that the bootstrap variance estimator exhibits an upward bias even
greater than that of V̂0,n . In particular, the bootstrap variance estimator is incon-
sistent whenever PSS’s variance estimator is, a result also contained in Theorem 1
below. This failure of the bootstrap is attributable solely to its inability to consis-
tently estimate the variability of the term L̄n in the Hoeffding decomposition of
θ̂n, since V∗[W ∗(z∗

i , z∗
j ; hn)

] ≈ h−(d+2)
n � implies that the variability of W̄n is

estimated consistently.
The proof of Lemma 2(b) shows that

�̂∗
n ≈ �̂n(hm)+2m

(
m

2

)−1

h−(d+2)
m �̂n(hm),

implying that the asymptotic behavior of �̂∗
n differs from that of �̂n(hm) when-

ever Condition AL fails. Finally, Lemma 2(c) is a bootstrap counterpart of (2),
giving a weak convergence in probability result for θ̂∗

n without requiring asymp-
totic linearity.
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Remark. By continuity of the d-variate standard normal cdf d(·) and Polya’s
theorem for weak convergence in probability (e.g., Xiong and Li, 2008, Thm. 3.5),
Lemma 2(c) is equivalent to the statement that

sup
t∈Rd

∣∣∣P∗ [V ∗−1/2

n (θ̂∗
n − θ∗

n ) ≤ t
]
−d(t)

∣∣∣ →p 0. (3)

By arguing along subsequences, it can be shown that a sufficient condition for (3)
is the following (uniform) Cramér-Wold-type condition:

sup
λ∈�d

sup
t∈Rd

∣∣∣P∗ [λ′(θ̂∗
n − θ∗

n )/
√

λ′V ∗
n λ ≤ t

]
−1(t)

∣∣∣ →p 0, (4)

where �d = {
λ ∈ Rd : λ′λ = 1

}
denotes the unit sphere in Rd . The proof of

Lemma 2(c) uses the theorem of Heyde and Brown (1970) to verify (4). In con-
trast to the case of unconditional joint weak convergence, it would appear to be
an open question whether a pointwise Cramér-Wold condition such as

sup
t∈Rd

∣∣∣P∗ [λ′(θ̂∗
n − θ∗

n )/
√

λ′V ∗
n λ ≤ t

]
−1(t)

∣∣∣ →p 0, ∀λ ∈ �d ,

implies weak convergence in probability of V ∗−1/2

n

(
θ̂∗

n − θ∗
n

)
, and for this reason

we establish the stronger result (4) in the Appendix.

4. MAIN RESULTS

4.1. Bootstrapping PSS’s Estimator and Test Statistic

To anticipate our findings, notice that Lemma 1 gives

V[θ̂n] ≈ n−1� +
(

n

2

)−1

h−(d+2)
n � and V̂0,n ≈ n−1� +2

(
n

2

)−1

h−(d+2)
n �,

whereas in the case of the nonparametric bootstrap (when m = n) Lemma 2 gives

V
∗[θ̂∗

n

]≈ n−1� +3

(
n

2

)−1

h−(d+2)
n � and V̂ ∗

0,n ≈ n−1� +4

(
n

2

)−1

h−(d+2)
n �,

strongly indicating that Condition AL is crucial for consistency of the bootstrap.
On the other hand, in the case of the m-out-of-n bootstrap (when m/n → 0),
Lemma 2 gives

V
∗[θ̂∗

n ] ≈ m−1�+
(

m

2

)−1

h−(d+2)
m � and V̂ ∗

0,n ≈ m−1�+2

(
m

2

)−1

h−(d+2)
m �,

suggesting that consistency of the m-out-of-n bootstrap might hold even if Condi-
tion AL fails, at least in those cases where V̂

−1/2

0,n (θ̂n −θ) converges in distribution.
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(By Lemma 1(b), convergence in distribution of V̂
−1/2

0,n (θ̂n −θ) occurs when nhd+2
n

is convergent in R̄+.)
The following result, which follows from Lemmas 1 and 2 and the continuous

mapping theorem for weak convergence in probability (e.g., Xiong and Li, 2008,
Thm. 3.1), makes the preceding heuristics precise.

THEOREM 1. Suppose the assumptions of Lemma 1 hold.

(a) If m = n, then the following are equivalent:

i. Condition AL is satisfied.

ii. V −1
n V

∗[θ̂∗
n

] →p Id .

iii. supt∈Rd

∣∣∣P∗[θ̂∗
n − θ∗

n ≤ t
]−P[θ̂n − θ ≤ t

]∣∣∣ →p 0.

iv. supt∈Rd

∣∣∣P∗[V̂ ∗−1/2

0,n (θ̂∗
n − θ∗

n ) ≤ t
]−P[V̂ −1/2

0,n (θ̂n − θ) ≤ t
]∣∣∣ →p 0.

(b) If m = n and if nhd+2
n is convergent in R̄+, then V̂ ∗−1/2

0,n

(
θ̂∗

n − θ∗
n

)
�p

N (
0,�∗

0

)
, where

�∗
0 = lim

n→∞
(

nhd+2
n � +8�

)−1/2(
nhd+2

n � +6�
)(

nhd+2
n � +8�

)−1/2
.

(c) If m−1 + m/n → 0 and if nhd+2
n is convergent in R̄+, then V̂ ∗−1/2

0,n

(
θ̂∗

n −
θ∗

n

)
�p N (0,�0).

In an obvious way, Theorem 1(a) and (b) can be viewed as a bootstrap analog of
Lemma 1(a) and (b). In particular, Theorem 1(a) shows that Condition AL is nec-
essary and sufficient for consistency of the nonparametric bootstrap and therefore
implies that the nonparametric bootstrap is inconsistent whenever the estimator
is not asymptotically linear (when limn→∞nhd+2

n < ∞), including, in particular,
the knife-edge case nhd+2

n → κ ∈ (0,∞) where the estimator is
√

n-consistent
and asymptotically normal (we discuss this issue further in Section 4.4). The im-
plication (i) ⇒ (iv) in Theorem 1(a) is essentially due to NR. (Their results are
obtained under slightly stronger assumptions than those of Lemma 1 and require
nhd+3

n /(logn)9 → ∞.) On the other hand, the result that Condition AL is neces-
sary for bootstrap consistency would appear to be new.

Theorem 1(b) can be used to quantify the severity of the bootstrap inconsis-
tency under departures from Condition AL. The extent of the failure of the boot-
strap to approximate the asymptotic distribution of the test statistic is captured
by the variance matrix �∗

0, which satisfies 3Id/4 ≤ �∗
0 ≤ Id and takes on the

limiting values 3Id/4 and Id when limn→∞ nhd+2
n equals 0 and ∞, respectively.

Interestingly, comparing Theorem 1(b) with Lemma 1(b), the nonparametric boot-
strap approximation to the distribution of V̂

−1/2

0,n

(
θ̂n − θ

)
is seen to be superior

to the standard normal approximation, because �0 ≤ �∗
0 ≤ Id , both inequalities

being strict when Condition AL fails. In other words, replacing Condition AL by
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Condition AN yields the prediction that bootstrap-based confidence intervals
“should” be conservative (albeit less so than confidence intervals based on stan-
dard normal approximations) when bandwidths are “small”. In combination,
Theorem 1(b) with Lemma 1(b), therefore, provide a theory-based explanation
of the simulation evidence in Figure 1.

Theorem 1(c) shows that a sufficient condition for consistency of m-out-of-n
bootstrap is convergence of nhd+2

n in R̄+. To illustrate what can happen when the
latter condition fails, suppose nhd+2

n is “large” when n is even and “small” when
n is odd. Specifically, suppose that nhd+2

2n → ∞ and nhd+2
2n+1 → 0. Then, if m is

even for every n, it follows from Theorem 1(c) that V̂ ∗−1/2

0,n

(
θ̂∗

n −θ∗
n

)
�p N (0, Id),

whereas, by Lemma 1(b), V̂
−1/2

0,2n+1(θ̂2n+1 − θ)�N (0, Id/2).

Remark. (i) The example just given is intentionally extreme, but the qual-
itative message that consistency of m-out-of-n bootstrap can fail when
limn→∞ nhd+2

n does not exist is valid more generally. Indeed, Theorem
1(c) admits the following partial converse: if nhd+2

n is not convergent in
R̄+, then there exists a sequence m = m(n) such that (m → ∞, m/n → 0,
and)

sup
t∈Rd

∣∣∣P∗[V̂ ∗−1/2

0,n (θ̂∗
n − θ∗

n ) ≤ t
]−P[V̂ −1/2

0,n (θ̂n − θ) ≤ t
]∣∣∣�p 0.

In other words, employing critical values obtained by means of the m-out-
of-n bootstrap does not automatically “robustify” an inference procedure
based on PSS’s statistic.

(ii) Applying Lemma 1(b) and Politis and Romano (1994), it can be shown
that the previous remark also applies to subsampling. In other words, the
subsampling approximation to the distribution of V̂

−1/2

0,n

(
θ̂n − θ

)
can be in-

consistent whenever nhd+2
n is not convergent in R̄+.

4.2. Bootstrapping “Robust” Test Statistics

Because V̂ −1/2
1,n (θ̂n − θ) and V̂ −1/2

2,n (θ̂n − θ) are both asymptotically standard nor-
mal under the assumptions of Lemma 1, folklore suggests that the bootstrap
should be capable of consistently estimating their distributions. In the case of
the statistic studentized by means of V̂1,n , this conjecture turns out to be correct,
essentially because it follows from Lemma 2 that

V̂ ∗
1,n ≈ m−1� +

(
1+2

m

n

)(m

2

)−1

h−(d+2)
m � ≈ V∗[θ̂∗

n ].

More precisely, an application of Lemma 2 and the continuous mapping theorem
for weak convergence in probability yields the following result.
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THEOREM 2. If the assumptions of Lemma 1 hold, m → ∞, and if
limn→∞m/n < ∞, then V̂ ∗−1/2

1,n

(
θ̂∗

n − θ∗
n

)
�p N (0, Id).

Theorem 2 demonstrates by example that even if Condition AL fails it is pos-
sible, by proper choice of variance estimator, to achieve consistency of the non-
parametric bootstrap estimator of the distribution of a studentized version of PSS’s
estimator.

In the case of the m-out-of-n bootstrap, consistency of the approximation to the
distribution of V̂ −1/2

1,n (θ̂n − θ) is unsurprising in light of its asymptotic pivotality,

and it is natural to expect an analogous result holds for V̂ −1/2
2,n

(
θ̂n − θ

)
. On the

other hand, in the case of the nonparametric bootstrap it follows from Lemma 2
that

V̂ ∗
2,n ≈ n−1� +2

(
n

2

)−1

h−(d+2)
n � ≈ V∗[θ̂∗

n

]−(
n

2

)−1

h−(d+2)
n �,

suggesting that Condition AL will be required for consistency in the case of
V̂ −1/2

2,n

(
θ̂n − θ

)
.

THEOREM 3. Suppose the assumptions of Lemma 1 hold.

(a) If m = n and if nhd+2
n is convergent in R̄+, then V̂ ∗−1/2

2,n

(
θ̂∗

n − θ∗
n

)
�p

N (
0,�∗

2

)
, where

�∗
2 = lim

n→∞
(
nhd+2

n � +4�
)−1/2(

nhd+2
n � +6�

)(
nhd+2

n � +4�
)−1/2

.

In particular, V̂ ∗−1/2

2,n (θ̂∗
n − θ∗

n )�p N (0, Id) if and only if Condition AL is
satisfied.

(b) If m−1 +m/n → 0, then V̂ ∗−1/2

2,n (θ̂∗
n − θ∗

n )�p N (0, Id).

While there is no shortage of examples of bootstrap failure in the literature, it
seems surprising that the nonparametric bootstrap fails to approximate the dis-
tribution of the asymptotically pivotal statistic V̂ −1/2

2,n

(
θ̂n − θ

)
whenever Condi-

tion AL is violated. (Counter-example 1 of Bickel and Freedman (1981) is also
concerned with U -statistics, but the bootstrap failure reported there is due to a
violation of their (von Mises) condition (6.5) whose natural counterpart is auto-
matically satisfied here.) Intuitively, the failure of the nonparametric bootstrap for
this statistic follows naturally from the results of Theorem 1. The logic under-
pinning the form of V̂2,n is that we can scale hn up by the appropriate constant,
21/(d+2), to offset the bias of the untransformed estimator V̂0,n . However, by The-
orem 1, �0 < �∗

0 < Id when Condition AL fails and so the closer approximation
of the bootstrap-based statistic to the standard normal distribution implies that
the factor 21/(d+2) overcompensates. This leads directly to the invalidity result in
Theorem 3(a). The degree of this overcompensation is measured by the variance
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matrix �∗
2, which satisfies Id ≤ �∗

2 ≤ 3Id/2, implying that inference based on the

bootstrap approximation to the distribution of V̂ −1/2
2,n

(
θ̂n − θ

)
will be asymptoti-

cally conservative.

Remark. In light of the above discussion, a variation on the idea underlying
the construction of V̂2,n can be used to construct a test statistic whose boot-
strap distribution validly approximates the distribution of PSS’s statistic under the
assumptions of Lemma 1. Specifically, because it follows from Lemmas 1 and 2
that V∗[θ̂∗

n (31/(d+2)hn)
] ≈ V[θ̂n] and V̂ ∗

2,n ≈ V̂0,n , it can be shown that if the
assumptions of Lemma 1 hold, then

sup
t∈Rd

∣∣∣P∗ [V̂ ∗−1/2

2,n

(
θ̂∗

n

(
31/(d+2)hn

)− θ∗
n

(
31/(d+2)hn

)) ≤ t
]

−P
[
V̂

−1/2

0,n (θ̂n − θ) ≤ t
]∣∣∣ →p 0,

even if nhd+2
n does not converge. Admittedly, this construction is mainly of theo-

retical interest, but it does seem noteworthy that this resampling procedure works
even in the case where the m-out-of-n bootstrap might fail.

4.3. Summary of Theoretical Results

The main results of this paper are summarized in Table 1, which describe the limit-
ing distributions of the three test statistics V̂

−1/2

k,n (θ̂n −θ) (k = 1,2,3) as well as the
limiting distributions (in probability) of their bootstrap analogs. Each panel corre-
sponds to one test statistic and includes three rows corresponding to each approx-
imation used (large sample distribution, nonparametric bootstrap, and m-out-of-n
bootstrap, respectively). Each column analyzes a subset of possible bandwidth
sequences, which leads to different approximations in general. The only statistic
that remains valid in all cases is V̂

−1/2

1,n (θ̂n − θ). For PSS’s statistic V̂
−1/2

0,n (θ̂n − θ)
both the nonparametric bootstrap and the m-out-of-n bootstrap (and subsampling)
are invalid in general, while for V̂

−1/2

2,n (θ̂n − θ) only the m-out-of-n bootstrap (and
subsampling) is valid in general. As discussed above, the direction and “worst
case” magnitude of the “bias” of the bootstrap can be extracted from the κ = 0
column of Table 1. Finally, the “ −” entries in the last column of Table 1 serve as
remainders that that when nhd+2

n is not convergent in R̄+, weak convergence (in
probability) of bootstrap distribution estimators is not guaranteed in general.

4.4. Implications and Further Discussion

To further describe the key implications of our theoretical work, we consider two
of the most common approaches to conduct bootstrap-based inference in empiri-
cal work: (i) Efron-type confidence intervals and (ii) bootstrap-based variance-
covariance estimators.2 For simplicity, we focus on conducting inference on
λ′θ , with λ ∈ Rd . Let {θ̂∗

n,b(hn) : b = 1,2, · · · , B} be a nonparametric (m = n)

bootstrap sample of size B of the semiparametric estimator θ̂n(hn), and set
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TABLE 1. Summary of main results

Test Distributional limn→∞ nhd+2
n = κ ∈ R̄+ limn→∞nhd+2

n

statistic approximation κ = ∞ κ ∈ (0,∞) κ = 0 �= limn→∞nhd+2
n

V̂
−1/2

0,n (θ̂n − θ) Large-sample N (0, Id ) N (0,�0) N (0, Id/2) –
distribution

Nonparametric N (0, Id ) N (0,�∗
0) N (0,3Id/4) –

bootstrap
m-out-of-n N (0, Id ) N (0,�0) N (0, Id/2) –

bootstrap

V̂
−1/2

1,n (θ̂n − θ) Large-sample N (0, Id ) N (0, Id ) N (0, Id ) N (0, Id )

distribution
Nonparametric N (0, Id ) N (0, Id ) N (0, Id ) N (0, Id )

bootstrap
m-out-of-n N (0, Id ) N (0, Id ) N (0, Id ) N (0, Id )

bootstrap

V̂
−1/2

2,n (θ̂n − θ) Large-sample N (0, Id ) N (0, Id ) N (0, Id ) N (0, Id )

distribution
Nonparametric N (0, Id ) N (0,�∗

2) N (0,3Id/2) –
bootstrap

m-out-of-n N (0, Id ) N (0, Id ) N (0, Id ) N (0, Id )
bootstrap

Notes:
(i) �0, �∗

0, and �∗
2 are defined in Lemma 1(b), Theorem 1(b), and Theorem 3(a), respectively.

(ii) Lemmas 1 and 2 specify other assumptions and conditions imposed.

F̂∗
n (t) = B−1∑B

b=1 1
(
λ′θ̂∗

n,b(hn) ≤ t
)
. To simplify the exposition we assume

throughout this section that nhd+2
n → κ ∈ (0,∞], but our discussion also applies

to the case κ = 0 (albeit the scaling factor must be changed). Note that κ = ∞
corresponds to the conventional, asymptotically linear case.

The popular, easy-to-implement Efron-type 100α% confidence intervals are

CI =
[

q∗
α/2, q∗

1−α/2

]
, q∗

α = inf
{

t ∈ R : F̂∗
n (t) ≥ α

}
,

where B is chosen large enough, so that the bootstrap distribution is well
approximated. Our theoretical results have important implications for this pop-
ular approach, showing, in particular, that asymptotic linearity is a fundamen-
tal feature for (at least) this semiparametric estimator. Specifically, whenever
nhd+2

n → κ ∈ (0,∞],

√
n(θ̂n(hn)− θ) = 1√

n

n∑
i=1

⎧⎨
⎩L(zi )+ 1√

κ

√
hd+2

n

n −1

n∑
j=1, j �=i

W (zi , zj ; hn)

⎫⎬
⎭+op(1)

�N
(

0,� + 2

κ
�

)
,
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but, in contrast,

√
n
(
θ̂∗

n (hn)− θ̂n(hn)
)
�p N

(
0,� + 6

κ
�

)
.

Consequently, our results show that even the “vanilla” nonparametric Efron-
type confidence intervals are valid if and only if the semiparametric estimator is
asymptotically linear (i.e., κ = ∞). This result shows that the nonparametric boot-
strap fails in a fundamental way, as this result holds separately from any results
involving standard-error estimators.

The previous result shows that even the simplest of the bootstrap approaches
fails in one of the simplest semiparametric inference contexts, in the sense that
perturbations in the choice of hn may lead to invalid confidence intervals. An
alternative approach also many times employed in empirical work is to estimate
the variance-covariance matrix using the bootstrap, as an alternative to employing
an analytic standard-errors estimator. In cases where the analytic standard-errors
are believed to be difficult to estimate (e.g., quantile regression), this approach
may offer a useful empirical alternative. In our semiparametric context, this ap-
proach leads to the following 100α% confidence intervals:

CI =
[

λ′θ̂n −q1−α/2

√
λ′V̂ ∗

n λ, λ′θ̂n +q1−α/2

√
λ′V̂ ∗

n λ

]
, qα = −1

1 (α),

with

V̂ ∗
n = 1

B −1

B∑
b=1

(
θ̂∗

n,b − 1

B

B∑
b=1

θ̂∗
n,b

)(
θ̂∗

n,b − 1

B

B∑
b=1

θ̂∗
n,b

)′
,

where here again B is chosen large enough, so that V̂ ∗
n approximates V∗[θ̂∗

n ]
well. Our results also show that this approach leads to biased confidence intervals,
because

V̂ ∗
n ≈ 1

n

(
� + 6

κ
�

)
�= 1

n

(
� + 2

κ
�

)
≈ V[θ̂n],

whenever κ �= ∞, that is, when asymptotic linearity fails.

4.5. Further Simulation Evidence

To evaluate the small sample relevance of our theoretical results, we re-
visit the Monte Carlo experiment from Section 2. For brevity we focus
on the “robustness” of the nonparametric bootstrap with respect to the
choice of bandwidth. We employ exactly the same simulation setup as de-
scribed above and compare the performance of the confidence intervals CI∗k =[

λ′θ̂n − c∗
k,97.5

√
λ′V̂k,nλ, λ′θ̂n − c∗

k,2.5

√
λ′V̂k,nλ

]
across a range of bandwidths
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FIGURE 2. Empirical coverage of 95% bootstrap confidence intervals.

and for intervals constructed using estimated bandwidths (further discussed
below), where c∗

k,α denotes the αth percentile of the distribution of λ′(θ̂∗
n −

nθ̂n/(n −1))/
√

λ′V̂ ∗
k,nλ for k ∈ {0,1,2}.

The main results from the simulation study are reported in Figure 2 and Table 2.
As before, the figure includes the infeasible bandwidth choices h P S and hN R , but
now we also include a third infeasible bandwidth choice, denoted hSB , which
is compatible with the small bandwidth asymptotic framework. These are the
main “optimal” bandwidth choices available in the literature for θ̂n(hn) and take
the form

h P S = CP S n− 2
2s+d+2 , hN R = CN R n− 2

2s+d+2 , hSB = CSB n− 2
2s+d ,

where CP S , CN R , and CSB are fixed constants depending on the population
parameter of interest and the underlying data generating process. The exact form
of these constants, as well as a detailed discussion and comparison of these
bandwidth selectors, is available in Cattaneo, Crump, and Jansson (2010). The



B
O
O
T
S
T
R
A
P
P
IN
G
D
E
N
S
IT
Y
-W
E
IG
H
T
E
D
A
V
E
R
A
G
E
D
E
R
IV
A
T
IV
E
S

1155

TABLE 2. Empirical coverage and interval length of 95% confidence intervals

Empirical coverage Empirical coverage Interval length Interval length
Bandwidth (bootstrap approx.) (Gaussian approx.) (bootstrap approx.) (Gaussian approx.)

hn CI∗0 CI∗0,BC CI∗1 CI0 CI0,BC CI1 CI∗0 CI∗0,BC CI∗1 CI0 CI0,BC CI1

Model 1
P = 2 h P S 0.205 0.930 0.809 0.917 0.942 0.825 0.902 0.013 0.013 0.013 0.014 0.014 0.013

hN R 0.205 0.930 0.809 0.917 0.942 0.825 0.902 0.013 0.013 0.013 0.014 0.014 0.013
hSB 0.092 0.976 0.843 0.944 0.994 0.897 0.942 0.041 0.041 0.034 0.047 0.047 0.034

ĥ P S 0.209 0.874 0.764 0.855 0.890 0.786 0.845 0.014 0.014 0.014 0.016 0.016 0.014
ĥN R 0.209 0.874 0.764 0.855 0.890 0.786 0.845 0.014 0.014 0.014 0.016 0.016 0.014
ĥSB 0.088 0.973 0.837 0.942 0.987 0.890 0.948 0.071 0.071 0.058 0.083 0.083 0.059

Model 1
P = 4 h P S 0.417 0.951 0.952 0.949 0.956 0.951 0.944 0.012 0.012 0.012 0.012 0.012 0.012

hN R 0.442 0.950 0.943 0.949 0.952 0.935 0.941 0.012 0.012 0.012 0.012 0.012 0.012
hSB 0.284 0.956 0.983 0.953 0.975 0.991 0.947 0.015 0.015 0.014 0.016 0.016 0.014

ĥ P S 0.242 0.961 0.987 0.917 0.975 0.993 0.926 0.019 0.019 0.017 0.021 0.021 0.017
ĥN R 0.257 0.956 0.986 0.918 0.970 0.991 0.926 0.018 0.018 0.016 0.020 0.020 0.016
ĥSB 0.148 0.983 0.999 0.946 0.996 1.000 0.954 0.045 0.045 0.037 0.052 0.052 0.038

Table continues on overleaf
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TABLE 2. continued

Empirical coverage Empirical coverage Interval length Interval length
Bandwidth (bootstrap approx.) (Gaussian approx.) (bootstrap approx.) (Gaussian approx.)

hn CI∗0 CI∗0,BC CI∗1 CI0 CI0,BC CI1 CI∗0 CI∗0,BC CI∗1 CI0 CI0,BC CI1

Model 2
P = 2 h P S 0.157 0.948 0.845 0.930 0.965 0.878 0.928 0.017 0.017 0.016 0.019 0.019 0.016

hN R 0.157 0.948 0.845 0.930 0.965 0.878 0.928 0.017 0.017 0.016 0.019 0.019 0.016
hSB 0.055 0.981 0.826 0.947 0.995 0.881 0.957 0.105 0.105 0.086 0.123 0.123 0.087

ĥ P S 0.172 0.902 0.796 0.875 0.921 0.822 0.875 0.018 0.018 0.017 0.020 0.020 0.017
ĥN R 0.172 0.902 0.796 0.875 0.921 0.822 0.875 0.018 0.018 0.017 0.020 0.020 0.017
ĥSB 0.075 0.983 0.839 0.955 0.992 0.887 0.961 0.093 0.093 0.077 0.109 0.109 0.078

Model 2
P = 4 h P S 0.314 0.946 0.954 0.938 0.958 0.963 0.940 0.015 0.015 0.014 0.016 0.016 0.014

hN R 0.333 0.943 0.945 0.938 0.955 0.954 0.937 0.014 0.014 0.014 0.015 0.015 0.014
hSB 0.183 0.971 0.997 0.952 0.987 1.000 0.947 0.026 0.026 0.023 0.030 0.030 0.023

ĥ P S 0.197 0.965 0.986 0.920 0.979 0.991 0.928 0.025 0.025 0.022 0.029 0.029 0.023
ĥN R 0.209 0.962 0.984 0.918 0.976 0.989 0.923 0.023 0.023 0.021 0.027 0.027 0.021
ĥSB 0.124 0.976 0.996 0.945 0.992 0.998 0.951 0.061 0.061 0.051 0.071 0.071 0.051

Notes:
(i) “Empirical Coverage” columns report average coverage rate for each confidence interval.
(ii) “Interval Length” columns report average interval length for each confidence interval.
(iii) “Bandwidth” columns report either population “optimal” bandwidth or average of estimated bandwidths.
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Monte Carlo experiment considers both the infeasible choices h P S , hN R , hSB ,
as well as their feasible fully data-driven versions, which are denoted by ĥ P S ,
ĥN R , ĥSB . The latter estimators for the bandwidth hn are constructed as described
in Cattaneo, Crump, and Jansson (2010), but we do not provide the details
here to avoid unnecessary repetition. Table 2 reports results for confidence in-
tervals constructed employing the infeasible bandwidths and their estimators,
thus providing simulation evidence for fully data-driven inference procedures.
This table also reports results for the Gaussian-based confidence intervals for
completeness.

Figure 2 shows the following results. As predicted by Theorem 1, the inter-
val CI∗0 is conservative for small bandwidths, having a coverage probability ex-
ceeding 0.95. In contrast, and in (almost perfect) agreement with Theorem 2,
one of the new bootstrap-based confidence intervals introduced in this paper,
CI∗1, provides close-to-correct empirical coverage for a substantial range of small
bandwidth choices. More precisely, in this simulation study, the confidence in-
tervals CI∗1 exhibit slight undercoverage, which we conjecture is due to sam-
pling (n = 1,000), bootstrap replication (B = 2,000), and simulation (S = 3,000)
errors.3 In terms of bandwidth selection, the Monte Carlo experiment shows that
hSB falls clearly inside the “robust” range of bandwidths in all cases. Interestingly,
and because of the large “robust” range of bandwidths for CI∗1, the bandwidth
selectors h P S and hN R also appear to be “valid” when used to construct CI∗1.
Finally, as predicted by Theorem 3, the interval CI∗2 is also conservative for small
bandwidths.

Remark. Unlike Condition AL, Condition AN can be satisfied (under Condi-
tion B) even when s = 2. Consistent with our theory, the bottom half of Figure 2
shows that the bootstrap-based interval CI∗1 is reasonably accurate also when a
second-order kernel is used (i.e., when P = 2).

The results reported in Table 2 are in general consistent with the findings
reported above, showing also how the estimation of the bandwidths translate into
the performance of the different confidence intervals. The bootstrapped confi-
dence intervals CI∗1 perform well across all designs considered, and on par with
the confidence intervals based on the Gaussian approximation CI1. The compet-
ing (classical) confidence intervals do not exhibit correct empirical coverage when
P = 2 (Table 1), especially in the empirically important case when the bandwidth
is estimated. When P = 4, however, the performance of these confidence intervals
improves (as theoretically expected), especially when the bandwidth is estimated.
Nonetheless, they never outperform the confidence intervals based on the boot-
strap and Gaussian approximations in terms of empirical coverage. As for the
(average) interval length of these intervals, we find that bootstrapping does not
improve their performance in any case. Specifically, the nonparametric bootstrap
leads to confidence intervals with essentially the same interval length as those
constructed using the Gaussian approximation for all the inference procedures
considered here.
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5. CONCLUSION

Using an alternative asymptotic framework that removes the bandwidth condi-
tions implying asymptotic linearity, we obtained new theory-based predictions
about the finite-sample behavior of a variety of bootstrap-based inference proce-
dures associated with the density-weighted averaged derivative estimator of PSS.
In important respects, the predictions and methodological prescriptions emerging
from the analysis presented here differ from those obtained by NR, who employed
traditional bandwidth conditions and Edgeworth expansions.

The main qualitative findings obtained herein for the density-weighted aver-
age derivative estimator of PSS should extend to other kernel-based statistics
that are asymptotically equivalent to n-varying second-order U -statistics when
“small” bandwidths are also employed. Examples of statistics having the lat-
ter property include density-weighted averages (see Newey, Hsieh, and Robins,
2004, Section 2, and references therein), certain functionals of U-processes (see
Aradillas-Lopéz, Honoré, and Powell, 2007 and references therein), and kernel-
based specification test statistics (see Li and Racine, 2007, Ch. 12 and references
therein). However, and perhaps surprisingly, in recent work (Cattaneo, Crump,
and Jansson, 2013) we found that our results are not applicable to kernel-based
(nondensity-)weighted average derivative estimators, as these estimators are not
asymptotically equivalent to n-varying second-order U-statistics when smaller-
than-usual bandwidths are employed.

NOTES

1. For reviews, see, e.g., Politis, Romano, and Wolf (1999) and Horowitz (2001).
2. The discussion below also applies immediately to the centered version of Efron-type confidence

intervals, usually known as the “percentile method”.
3. We did not explore further this point because of computational limitations.
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Härdle, W. & A. Tsybakov (1993) How sensitive are average derivatives? Journal of Econometrics

58, 31–48.
Heyde, C.C. & B.M. Brown (1970) On the departure from normality of a certain class of martingales.

Annals of Mathematical Statistics 41(6), 2161–2165.
Horowitz, J. (2001) The bootstrap. In J. Heckman & E. Leamer (eds.), Handbook of Econometrics,

vol. V, pp. 3159–3228. Elsevier Science B.V.
Li, Q. & S. Racine (2007) Nonparametric Econometrics. Princeton University Press.
Newey, W.K., F. Hsieh, & J.M. Robins (2004) Twicing kernels and a small bias property of semipara-

metric estimators. Econometrica 72, 947–962.
Nishiyama, Y. & P.M. Robinson (2000) Edgeworth expansions for semiparametric averaged deriva-

tives. Econometrica 68(4), 931–979.
Nishiyama, Y. & P.M. Robinson (2001) Studentization in Edgeworth expansions for estimates of semi-

parametric index models. In C. Hsiao, K. Morimune, & J.L. Powell (eds.), Nonlinear Statistical
Modeling: Essays in Honor of Takeshi Amemiya, pp. 197–240. Cambridge University Press.

Nishiyama, Y. & P.M. Robinson (2005) The bootstrap and the Edgeworth correction for semiparamet-
ric averaged derivatives. Econometrica 73(3), 197–240.

Politis, D. & J. Romano (1994) Large sample confidence regions based on subsamples under minimal
assumptions. Annals of Statistics 22(4), 2031–2050.

Politis, D., J. Romano, & M. Wolf (1999) Subsampling. Springer.
Powell, J.L., J.H. Stock, & T.M. Stoker (1989) Semiparametric estimation of index coefficients.

Econometrica 57(6), 1403–1430.
Powell, J.L. & T.M. Stoker (1996) Optimal bandwidth choice for density-weighted averages. Journal

of Econometrics 75(2), 291–316.
Robinson, P.M. (1995) The normal approximation for semiparametric averaged derivatives. Econo-

metrica 63, 667–680.
Stoker, T.M. (1986) Consistent estimation of scaled coefficients. Econometrica 54(6), 1461–1481.
Xiong, S. & G. Li (2008) Some results on the convergence of conditional distributions. Statistics and

Probability Letters 78(18), 3249–3253.

APPENDIX

Auxiliary Lemmas. For λ ∈ Rd , let Ũi j,n (λ) = λ′[U (zi , zj ; hn)− θ(hn)
]

and define

T1,n(λ) =
(

n

2

)−1 ∑
1≤i< j≤n

Ũi j,n(λ), T2,n(λ) =
(

n

2

)−1 ∑
1≤i< j≤n

Ũi j,n(λ)2,

T3,n(λ) =
(

n

3

)−1 ∑
1≤i< j<k≤n

Ũi j,n(λ)Ũik,n(λ)+ Ũi j,n(λ)Ũjk,n(λ)+ Ũik,n(λ)Ũjk,n(λ)

3
,

T4,n(λ) =
(

n

4

)−1 ∑
1≤i< j<k<l≤n

Ũi j,n(λ)Ũkl,n(λ)+ Ũik,n(λ)Ũjl,n(λ)+ Ũil,n(λ)Ũjk,n(λ)

3
,
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as well as their bootstrap analogs

T ∗
1,n(λ) =

(
m

2

)−1 ∑
1≤i< j≤m

Ũ∗
i j,n(λ), T ∗

2,n(λ) =
(

m

2

)−1 ∑
1≤i< j≤m

Ũ∗
i j,n(λ)2,

T ∗
3,n(λ) =

(
m

3

)−1 ∑
1≤i< j<k≤m

Ũ∗
i j,n(λ)Ũ∗

ik,n(λ)+ Ũ∗
i j,n(λ)Ũ∗

jk,n(λ)+ Ũ∗
ik,n(λ)Ũ∗

jk,n(λ)

3
,

T ∗
4,n(λ) =

(
m

4

)−1 ∑
1≤i< j<k<l≤m

Ũ∗
i j,n(λ)Ũ∗

kl,n(λ)+ Ũ∗
ik,n(λ)Ũ∗

jl,n(λ)+ Ũ∗
il,n(λ)Ũ∗

jk,n(λ)

3
,

where Ũ∗
i j,n(λ) = λ′[U (z∗

i , z∗
j ; hm)− θ∗ (hm)

]
.

The proof of Lemma 2 uses four technical lemmas, proofs of which are provided in the
supplemental appendix. Lemma A.1 relates �̂n and �̂n (and their bootstrap analogs) to
T1,n, T2,n, T3,n, and T4,n (and their bootstrap analogs), Lemma A.2 gives some asymp-
totic properties of T1,n, T2,n, T3,n, and T4,n (and their bootstrap analogs), while Lemmas
A.3 and A.4 are used to establish a pointwise version of (4) and to deduce (4) from its

pointwise counterpart, respectively. Let ηn = 1/min
(

1,nhd+2
n

)
.

LEMMA A.1. If the assumptions of Lemma 2 hold and if λ ∈ Rd , then

(a) λ′�̂n(hn)λ = 4[1+o(1)]n−1T2,n(λ)+4[1+o(1)]T3,n(λ)−4T1,n(λ)2,

(b) h−(d+2)
n λ′�̂n(hn)λ = [1 + o(1)]T2,n(λ)− T1,n(λ)2 − 2[1 + o(1)]T3,n(λ)+ 2[1 +

o(1)]T4,n(λ),

(c) λ′�̂∗
n (hm)λ = 4[1+o(1)]m−1T ∗

2,n(λ)+4[1+o(1)]T ∗
3,n(λ)−4T ∗

1,n(λ)2,

(d) h−(d+2)
m λ′�̂∗

n(hm)λ = [1+o(1)]T ∗
2,n(λ)− T ∗

1,n(λ)2 −2[1+o (1)]T ∗
3,n(λ)+2[1+

o(1)]T ∗
4,n(λ).

LEMMA A.2. If the assumptions of Lemma 2 hold and if λ ∈ Rd , then

(a) T1,n(λ) = op
(√

ηn
)
,

(b) T2,n(λ) = E[Ũi j,n(λ)2]+op
(
h−(d+2)

n
)
,

(c) T3,n(λ) = E[(E[Ũi j,n(λ)|zi ])2]+op(ηn),

(d) T4,n(λ) = op (ηn),

(e) hd+2
n E

[
Ũi j,n(λ)2] → λ′�λ and E

[
(E[Ũ i j,n(λ)|zi ])2] → λ′�λ/4,

(f ) T ∗
1,n(λ) = op

(√
ηm

)
,

(g) T ∗
2,n(λ) = E∗[Ũ∗

i j,n(λ)2]+op
(
h−(d+2)

m
)
,

(h) T ∗
3,n(λ) = E∗[(E∗[Ũ∗

i j,n(λ)|z∗
i ])2]+op(ηm),

(i) T ∗
4,n(λ) = op(ηm),

(j) hd+2
m E

∗[Ũ∗
i j,n(λ)2] →p λ′�λ and

E
∗[(E∗[Ũ∗

i j,n (λ) |z∗
i ])2]−λ′�̂n(hm)λ/4 →p 0.
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LEMMA A.3. If the assumptions of Lemma 2 hold and if λ ∈ Rd , then

(a) E
[
(E∗[Ũ∗

i j,n(λ)|z∗
i ])4] = O

(
η2

m +h2
mη3

m
)
,

(b) E
[
Ũ∗

i j,n(λ)4] = O
(
h−(3d+4)

m
)
,

(c) E
[
(E∗[Ũ∗

i j,n(λ)2|z∗
i ])2] = O

(
m−1h−(3d+4)

m +h−(2d+4)
m

)
,

(d) E
[
(E∗[Ũ∗

i j,n(λ)Ũ∗
ik,n(λ)|z∗

j , z∗
k ])2] = O

(
h−(d+4)

m +m−2h−(3d+4)
m

)
,

(e) E
[
(E∗[E∗[Ũ∗

i j,n(λ)|z∗
i ]Ũ∗

i j,n(λ)|z∗
j ])2] = O

(
1+m−1h−(d+4)

m +m−3h−(3d+4)
m

)
.

LEMMA A.4. There exist constants C and J (only depending on d) and a collection

l1, . . . , l J ∈ �d such that for every d ×d matrix M, supλ∈�d

(
λ′Mλ

)2 ≤ C
∑J

j=1
(
l ′j Mlj

)2.

Proof of Lemma 2. As noted in the discussion of Lemma 2,

V
∗ [θ̂∗

n

]
= m−1

V
∗ [L∗(z∗

i ; hm)
]+(

m

2

)−1
V

∗ [W∗(z∗
i , z∗

j ; hm)
]

,

where, using Lemmas A.1 and A.2,

V
∗[L∗(z∗

i ; hm)] =
(

n −1

n

)2
�̂n(hm) = � +2

m2

n

(
m

2

)−1
h−(d+2)

m �+op (ηm) .

The proof of part (a) can be completed by using Lemmas A.1 and A.2 to show that

λ′
V

∗[W∗(z∗
i , z∗

j ; hm)]λ = h−(d+2)
m

(
n −1

n

)[
λ′�̂n(hm)λ+op (1)

]

− 3

2

(
n −1

n

)2
λ′�̂n(hm)λ

= h−(d+2)
m λ′�λ+op (mηm)

(
∀λ ∈ Rd

)
.

Next, part (b) can be established by using Lemmas A.1 and A.2 to show that

λ′�̂∗
n (hm)λ = 4[1+o (1)]m−1T ∗

2,n(λ)+4[1+o (1)]T ∗
3,n(λ)−4T ∗

1,n(λ)2

= λ′�̂n(hm)λ+4m−1h−(d+2)
m λ′�λ+op(ηm)

= λ′�∗
nλ+op (ηm)

(
∀λ ∈ Rd

)
.

Finally, to establish part (c), the theorem of Heyde and Brown (1970) is employed to
prove the following condition, which is equivalent to (4) in view of part (a):

sup
λ∈�d

sup
t∈Rd

∣∣∣∣P∗
[
λ′(θ̂∗

n − θ∗
n )/

√
λ′V∗[θ̂∗

n ]λ ≤ t

]
−1 (t)

∣∣∣∣ →p 0.

For any λ ∈ �d ,

λ′ (θ̂∗
n − θ∗

n

)
/

√
λ′V∗[θ̂∗

n ]λ =
∑

1≤i≤m

Y ∗
i,m (λ) ,
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where, defining L∗
i,m(λ) = λ′L∗(z∗

i ; hm
)

and W∗
i j,m(λ) = λ′W∗(z∗

j , z∗
i ; hm

)
,

Y ∗
i,m(λ) =

⎡
⎣m−1L∗

i,m(λ)+
∑

1≤ j<i

(
m

2

)−1
W∗

i j,m(λ)

⎤
⎦/

√
λ′V∗[θ̂∗

n ]λ.

For any n,
(
Y ∗

i,m(λ),F∗
i,n

)
is a martingale difference sequence, where F∗

i,n =
σ
(Zn, z∗

1, . . . , z∗
i

)
. Therefore, by the theorem of Heyde and Brown (1970), there exists

a constant C such that

sup
λ∈�d

sup
t∈Rd

∣∣∣∣P∗
[
λ′(θ̂∗

n − θ∗
n )/

√
λ′V∗[θ̂∗

n ]λ ≤ t

]
−1 (t)

∣∣∣∣
≤ C sup

λ∈�d

⎧⎪⎨
⎪⎩

∑
1≤i≤m

E
∗ [Y ∗

i,m(λ)4
]
+E∗

⎡
⎢⎣
⎛
⎝ ∑

1≤i≤m

E

[
Y ∗

i,m(λ)2
∣∣∣F∗

i−1,n

]
−1

⎞
⎠2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1/5

.

Moreover, by Lemma A.4,

sup
λ∈�d

⎧⎪⎨
⎪⎩

∑
1≤i≤m

E
∗ [Y ∗

i,m(λ)4
]
+E∗

⎡
⎢⎣
⎛
⎝ ∑

1≤i≤m

E

[
Y ∗

i,m(λ)2
∣∣∣F∗

i−1,n

]
−1

⎞
⎠2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ →p 0

if (and only if) (A.1)–(A.2) hold for every λ ∈ �d , where∑
1≤i≤m

E
∗ [Y ∗

i,m(λ)4
]

→p 0, (A.1)

E
∗
⎡
⎢⎣
⎛
⎝ ∑

1≤i≤m

E

[
Y ∗

i,m(λ)2
∣∣∣F∗

i−1,n

]
−1

⎞
⎠2

⎤
⎥⎦ →p 0. (A.2)

The proof of part (c) will be completed by fixing λ ∈ �d and verifying (A.1)–(A.2) .

First, using
(
λ′V ∗[θ̂∗

n ]λ
)−1 = Op

(
mη−1

m
)

and basic inequalities, it can be shown that (A.1)
holds if

R1,m = m−2η−2
m

∑
1≤i≤m

E

[
L∗

i,m(λ)4
]

→ 0,

R2,m = m−6η−2
m

∑
1≤i≤m

E

⎡
⎢⎣
⎛
⎝ ∑

1≤ j<i

W∗
i j,m(λ)

⎞
⎠4

⎤
⎥⎦ → 0.

Both conditions are satisfied because, using Lemma A.3,

R1,m = O
(

m−1η−2
m E[(E∗[Ũ∗

i j,n (λ) |z∗
i ])4]

)
= O

(
m−1 +m−1h2

mηm

)
= O

(
m−1 +m−2h−d

m

)
→ 0
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and

R2,m = O
(

m−4η−2
m E[Ũ∗

i j,n(λ)4]+m−3η−2
m E[(E∗[Ũ∗

i j,n(λ)2|z∗
i ])2]

)
= O

(
m−4η−2

m h−(3d+4)
m +m−3η−2

m h−(2d+4)
m

)
= O

(
m−2h−d

m +m−1
)

→ 0.

Next, consider (A.2). Because

(λ′
V

∗[θ̂∗
n ]λ)

⎡
⎣ ∑

1≤i≤m

E

[
Y ∗

i,m(λ)2
∣∣∣F∗

i−1,n

]
−1

⎤
⎦ =

(
m

2

)−2

×
∑

1≤i≤m

⎛
⎜⎝E

⎡
⎢⎣
⎛
⎝ ∑

1≤ j<i

W∗
i j,m(λ)

⎞
⎠2

∣∣∣∣∣∣∣F
∗
i−1,n

⎤
⎥⎦−

∑
1≤ j<i

E
∗ [W∗

i j,m(λ)2
]⎞⎟⎠

+2m−1
(

m

2

)−1 ∑
1≤ j<i≤m

E

[
L∗

i,m(λ)W∗
i j,m(λ)|F∗

i−1,n

]
,

it suffices to show that

R3,m = m−6η−2
m E

⎡
⎢⎣
⎛
⎝ ∑

1≤ j<i≤m

{
E

[
W∗

i j,m(λ)2
∣∣∣F∗

i−1,n

]
E

∗ [W∗
i j,m(λ)2

]}⎞⎠2
⎤
⎥⎦ → 0,

R4,m = m−6η−2
m E

⎡
⎢⎣
⎛
⎝ ∑

1≤k< j<i≤m

E

[
W∗

i j,m(λ)W∗
ik,m(λ)

∣∣∣F∗
i−1,n

]⎞⎠2
⎤
⎥⎦ → 0,

R5,m = m−4η−2
m E

⎡
⎢⎣
⎛
⎝ ∑

1≤ j<i≤m

E

[
L∗

i,m(λ)W∗
i j,m(λ)|Zn, z∗

j

]⎞⎠2
⎤
⎥⎦ → 0.

By simple calculations and Lemma A.3,

R3,m = O
(

m−4η−2
m E[W∗

i j,m(λ)4]
)

= O
(

m−4η−2
m E[Ũ∗

i j,n(λ)4]
)

= O
(

m−4η−2
m h−(3d+4)

m

)
= O

(
m−2h−d

m

)
→ 0,

R4,m = O

(
m−2η−2

m E

[(
E

∗[W∗
i j,m(λ)W∗

ik,m(λ)|z∗
j , z∗

k ]
)2
])

= O

(
m−2η−2

m E

[(
E

∗[Ũ∗
i j,n(λ)Ũ∗

ik,n(λ)|z∗
j , z∗

k ]
)2
])

= O
(

m−2η−2
m h−(d+4)

m +m−4η−2
m h−(3d+4)

m

)
= O

(
hd

m +m−2h−d
m

)
→ 0,
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R5,m = O

(
m−1η−2

m E

[(
E

∗ [L∗
i,m(λ)W∗

i j,m(λ)|z∗
j

])2
])

= O

(
m−1η−2

m E

[(
E

∗ [
E

∗[Ũ∗
i j,n(λ)|z∗

i ]Ũ∗
i j,n(λ)|z∗

j

])2
])

= O
(

m−1η−2
m +m−2η−2

m h−(d+4)
m +m−4η−2

m h−(3d+4)
m

)
= O

(
m−1 +hd

m +m−2hd
m

)
→ 0,

as was to be shown. n


