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1 Setup

Suppose x1,x2,--- ,%y, is a random sample from a univariate distribution with cumulative dis-
tribution function F(-). Also assume the distribution function admits a (sufficiently accurate)

linear-in-parameters local approximation near an evaluation point x:

o(h,x) := sup ‘F(:c) — R(z —x)'0(x)| is small for h small,
lz—x|<h

where R(-) is a known basis function. The parameter 6(x) can be estimated by the following local
L? method:

dc: = argmin /X ((u) ~ Ru - x)'9)2 %K <“ - X) AGw),  Fu) =

Z]l(xi < u)7 (1)
=1

where K (-) is a kernel function, X is the support of F(-), and G(-) is a known weighting function
to be specified later. The local L? estimator (1) is closely related to another estimator, which is

constructed by local regression:

0= arggninzn: (ﬁ’(ml) — R(z; — x)'¢9>2 %K (xlh_ X> . (2)
i=1

The local regression estimator can be equivalently expressed as 0 >, meaning that it can be viewed
as a special case of the local L? estimator, with G(-) in (1) replaced by the empirical distribution
function F'(.).

For future reference, we first discuss some of the notation we use in the main paper and this
Supplemental Appendix (SA). For a function g(-), we denote its j-th derivative as gU)(-). For
simplicity, we also use the “dot” notation to denote the first derivative: ¢(-) = ¢(')(-). Assume
g(+) is suitably smooth on [x — §,x) U (x,x + ] for some § > 0, but not necessarily continuous or
differentiable at x. If g(-) and its one-sided derivatives can be continuously extended to x from the

two sides, we adopt the following special notation:
g7 =1(u < 0)g" (x=) + 1w > 0)g7 (x+).

With j = 0, the above is simply g, = 1(u < 0)g(x—) + L(u > 0)g(x+). Also for j = 1, we use
gy = gq(}). Convergence in probability and in distribution are denoted by L and ~>, respectively,
and limits are taken with respect to the sample size n going to infinity unless otherwise specified.
We use | - | to denote the Euclidean norm.

The following matrices will feature in asymptotic expansions of our estimators:

Iy = /X_X R(u)R(u)' K (u) g(x + hv)du = R(u)R(u)'K (u) gydu + O(h) = Ty, x + O(h),

X —x
h



and

Yhx = / . R(u)R(v)’ [F(x + h(uAv)) — F(x+ hu)F(x + hv)} K (u) K (v) g(x + hu)g(x + hv)dudv

= F(x)(1 - F(x)) ( . R(u)K(u)gudu> ( /.. R(u)K(u)gudu>
h [ RORO K@K Q)| = FO b+ 0f)gug, + FO)( = P0)(uguge + vog.) | dude

b [ RORO K @K@ fugugidude + 00

h

= Elh,x + hEQh,x + O(hz)

Now we list the main assumptions.

Assumption 1. zi,...,z, is a random sample from a distribution F'(-) supported on X C R, and
xe X.
(i) For some 6 > 0, F(-) is absolutely continuous on [x — J,x + 6] with a density f(-) admitting
constants f(x—), f(x+), f(x—), and f(x+), such that
Flx+u) = f(x=) —uf(x-) Fx+u) = fOxt) — uf (x+)

sup 5 + sup 5 < 00.
u€[—6,0) u u€(0,6] u

(ii) K(-) is nonnegative, symmetric, and continuous on its support [—1, 1], and integrates to 1.

(iii) R(-) is locally bounded, and there exists a positive-definite diagonal matrix Y}, for each
h > 0, such that Y}, R(u) = R(u/h)

(iv) For all h sufficiently small, the minimum eigenvalues of I', x and hflEh,X are bounded

away from zero. |

Assumption 2. For some § > 0, G(-) is absolutely continuous on [x — §,x + d] with a derivative
g(+) > 0 admitting constants g(x—), g(x+), g(x—), and g(x+), such that

sup g(x+u) — 9(><2—) — ug(x—) + sup g(x+u) — g(x;r) — ug(x+) < 0.

u€[—6,0) u u€(0,6] u [

Example 1 (Local Polynomial Estimator). Before closing this section, we briefly introduce
the local polynomial estimator of Cattaneo, Jansson, and Ma (2020), which is a special case of
our local regression distribution estimator. The local polynomial estimator employs the following
polynomial basis:

1 1 !
R(U) = <17 Uu, 5“25 Ty ﬁup) )
D

for some p € N. As a result, it estimates the distribution function, the density function, and



derivatives thereof. To be precise,

069 = (FGx), £60, D060, -, f0 D)

With R(-) being a polynomial basis, it is straightforward to characterize the approximation bias
o(h,x). Assuming the distribution function F'(-) is at least p+ 1 times continuously differentiable in
a neighborhood of x, one can employ a Taylor expansion argument and show that o(h,x) = O(hP*1).
We will revisit this local polynomial estimator below as a leading example when we discuss pointwise

and uniform asymptotic properties of our local distribution estimator. |

2 Pointwise Distribution Theory

We discuss pointwise (i.e., for a fixed evaluation point x € X) large-sample properties of the local
L? estimator (1), and that of the local regression estimator (2). For ease of exposition, we suppress

the dependence on the evaluation point x whenever possible.

2.1 Local L? Distribution Estimation

With simple algebra, the local L? estimator in (1) takes the following form

b = (/X R(u —x)R(u — x)’%K <“ - X> dG(u))_l (/X Ru— X)F(u)%K <“ - X) dG(u)) |

We can further simplify the above. First note that the “denominator” can be rewritten as

/X R(u — x)R(u — x)’%K (“ - X> dG(u)

1 _
=1t ([ rareme T (M) stoan) vyt = v
X

The same technique can be applied to the “numerator”, which leads to

0 —0 = Tt (/ R(u)F(x + hu) K (u) g(x + hu)du) -0

=T,I;" /XX R(u) [F(x + hu) — e’R(u)r,;l} K (u) g(x + hu)du 3)
+ Th% Z r,! /X_X R(u) []l(:m <x+ hu) — F(x+ hu)} K (u) g(x + hu)du. (4)
=1 R

The above provides a further expansion of the local L? estimator into a term that contributes as
bias, and another term that contributes asymptotically to the variance.

The large-sample properties of the local L? estimator (1) are as follows.



Theorem 1 (Local L? Distribution Estimation: Asymptotic Normality). Assume As-
sumptions 1 and 2 hold, and that h — 0, nh — oo and ng(h)?/h — 0. Then
(i) (3) satisfies

= O(o(h)).

/X_X R(u) [F(x + hu) — O’R(u)Tgl} K (u) du

h

(ii) (4) satisfies

\% R(u) []1(3:Z <x+hu) — F(x+ hu)} K (u) g(x + hu)du| = Xy,

X —x
h

and
/ 1
2h1 2 (\/ﬁ ;_1 /X}:x R(u) []l(l‘z <X+ hu) —F (x + hu)} K (u) g(x + hu)du) ~ N((),Z).

(iii) The local L? estimator is asymptotically normally distributed

Vi (T ) T2 Y (b — 0) ~ N (0, D). .

For valid inference, one needs to construct standard errors. To start, note that I'y, is known,

and hence we only need to estimate >,. Consider the following;:

Sh = % Z/  R(u)R(v) [n(g;i < x4 hu) — F(x + hu)} []l(xi < x4+ hv) — B(x + hv)
=1 h
K(u)K(v)g(x + hu)g(x + hv)dudv, (5)

where F (+) is the empirical distribution function. The following theorem shows that standard errors

constructed using ¥; are consistent.

Theorem 2 (Local L? Distribution Estimation: Standard Errors). Assume Assumptions

1 and 2 hold, and that h — 0 and nh — oco. Let ¢ be a nonzero vector of suitable dimension, then

I3 1
=0y~ ].
d¥pe F < nh)
If, in addition that no(h)?/h — 0, then
(0 — 0
b —9) - N(0,1).
VT S The/n .



2.2 Local Regression Distribution Estimation

The local regression distribution estimator (2) can be understood as a special case of the local
L? estimator by setting G = F (i.e., using the empirical distribution as the design). However,
the empirical measure F is not smooth, so that large-sample properties of the local regression
estimator cannot be deduced directly from Theorem 1. In this subsection, we will show that
estimates obtained by the two approaches, (1) and (2), are asymptotically equivalent under suitable
regularity conditions. To be precise, we establish the equivalence of the local regression distribution
estimator, é, and the (infeasible) local L? distribution estimator, O (i.e., using F' as the design
weighting in (1)). As before, we suppress the dependence on the evaluation point x.

First, the local regression estimator can be written as

-0 (13 nte o ke (752))

=1
(i i R(z; — %) [F(a:i) — R(z; — x)’e] %K (xh_ )
=1
= 1,00, 0! < Z} ThR(z; — x) [F(;pi) — R(z; — x)’@} %K (x’h X)) ,
where
1 & o 1 T; — X
Iy =— ; YThR(z; — x)R(x; — x) ThﬁK < . > )

and I';, is defined as before with G = F.

To proceed, we further expand as follows

_ % Z ThR(zj —x) [ﬂ(mz < zj) —F(l’j):| %K (xjh—x>

The last two terms correspond to the leave-in bias and the approximation bias, respectively. We



further decompose the first term with conditional expectation:

ij=1,i#j
5 5 el o=l (352
+ % zn: ThR(zj —x) []1(332 <zj) — F(x])} %K <$gh x>
i,j=1,i#j
i o) [ThR(xj —x) []1(331» <uz;)— F(xj)} %K <x]h— ><> :m}
:”;1§;AﬁRwﬂmm§x+hw—F@+hwpﬂwf@+hwmt (8)
=1 h
T, S TuR( %) (1 < )~ Flap)] K (mjh_x>
i,j=1,i#j
- [, B []l(xi < x+ hu) — F(x+ hu)] K (u) f(x+ hu)du. )

The following theorem studies the large-sample properties of each term in the above decom-
position, and shows that the local regression distribution estimator is asymptotically equivalent to

the local L? estimator by setting G = F, and hence it is asymptotically normally distributed.

Theorem 3 (Local Regression Distribution Estimation: Asymptotic Normality). As-
sume Assumption 1 holds, and that h — 0, nh?> — co and no(h)?/h — 0. Then

(i) [Ah satisfies
’f‘ -I ‘ =0 —
h h P nh .

(ii) (6) and (7) satisfy

(iii) (9) satisfies

@:%(7%>

(iv) The local regression distribution estimator (2) satisfies

Vi () T 0 - 0) = Vi (0 ) T e - 0) + 0p(1) > N(OT). m

We now discuss how to construct standard errors in the local regression framework. Note



that I';, can be estimated by I, whose properties have already been studied in Theorem 3(i). To

estimate Xp, we propose the following

2h=i§: :LG:ThR(xj—X)[]l(fEiij)_p(-rj)};lK (fvjh—x>
1| "=

1=

where F'(-) is the empirical distribution function. The following theorem shows that standard errors

constructed using ¥; are consistent.

Theorem 4 (Local Regression Distribution Estimation: Standard Errors). Assume As-

sumption 1 holds. In addition, assume h — 0 and nh? — co. Let ¢ be a nonzero vector of suitable

4 S it 1
S hhf = 0p [\ s |-
T, ST, e nh

If, in addition that no(h)%/h — 0, one has

dimension. Then

'0-0
c6-9) - N(0,1).
VT ST e/ -
3 Efficiency
For ease of presentation, we focus on the (infeasible) local L? distribution estimator Op,
A . - 21 U — X
Op = argmin (F(u) — R(u —x) 0) —-K dF(u), (10)
0 X h h

but all the results in this section are applicable to the local regression distribution estimator é, as
we showed earlier that it is asymptotically equivalent to éF In addition, we consider a specific

basis:

R(u) = (1, P(v), Q(u)), (11)



and Q(u) is a scalar function, and hence is a “redundant regressor.” Without Q(-), the above
reduces to the local polynomial estimator of Cattaneo, Jansson, and Ma (2020). See Section 1 and
Example 1 for an introduction.

We consider additional regressors because they may help improve efficiency (i.e., reduce the
asymptotic variance). Following Assumption 1, we assume there exists a scalar vy, (depending on h)
such that v,Q(u) = Q(u/h). Therefore, T}, is a diagonal matrix containing 1, A=, h=2 - AP, vy.
As we consider a (local) polynomial basis, it is natural to impose smoothness assumptions on F(+).

In particular,

Assumption 3. For some § > 0, F(-) is (p+1)-times continuously differentiable in X' N[x—d,x+J]
for some p > 1, and G(+) is twice continuously differentiable in X N [x — §,x + 4]. |

Under the above assumption, the approximation error satisfies o(h) = O(h?*1!), and the pa-

rameter 6 can be partitioned into the following:

0= (01, 0. 60) = (FO). (9, -, fO 000, 0).

We first state a corollary, which specializes Theorem 1 to the polynomial basis (11).

Corollary 5 (Local Polynomial L? Distribution Estimation: Asymptotic Normality).
Assume Assumptions 1 and 3 hold, and that h — 0, nh — oo, and ng(h)?/h — 0. Then the local

polynomial L? distribution estimator in (10) satisfies

Vi (O Y) T2 Y (0 — 0) ~ N(0, ).

|
3.1 Effect of Orthogonalization
To start, consider the following (sequentially) orthogonalized basis:
1 1 TN
R-(w) = (1, PH(w), @*(w)) (12)
where
PY(u) = PH(u) — K (u)P(u)du,

!/

-1
Ot (u) = Q(u) — (l,P(v)’) < . K(v)(1,P(v)’>l(1,P(v)’>dv> ( . K(v)(l,P(v)’) Q(v)dv) :

The above transformation can be represented by the following;:
R (u) = Aj,R(u),

where Ay, is a nonsingular upper triangular matrix. (Note that the matrix Aj, depends on the

bandwidth only because we would like to handle both interior and boundary evaluation points. If,

10



for example, we fix the evaluation point to be in the interior of the support of the data, then Ay, is
a fixed matrix and no longer depends on h. Alternatively, one could also use the notation “Ay” to

denote such dependence.) Now consider the following orthogonalized local polynomial L? estimator

0f = arg;nin/x <F(u) — AL R(u — x)’H)2 %K (u ; X> dF(u). (13)

To discuss its properties, we partition the estimator and the target parameter as
0 = (Btp, OFs), Obr).
where 9} 7 is the first element of 9% and 9}2 r is the last element of é# Similarly, we can partition
the target parameter,
b= 0= ok, @b, 03),

so that 67 is the first element of A;IH and 95 is the last element of A,ZIH. As 0 = 0, simple least

squares algebra implies
/ /
QL = <6f_7 337 O) = (9%7 f(X)a f(l)(x)7 T f(p_l)(x)7 0) .

Note that, in general, #i- # 61, meaning that after orthogonalization, the intercept of the local
polynomial estimator no longer estimates the distribution function F(x).
The following corollary gives the large-sample properties of the orthogonalized local polynomial

estimator, excluding the intercept.

Corollary 6 (Orthogonalized Local Polynomial L? Distribution Estimation: Asymptotic
Normality). Assume Assumptions 1 and 3 hold, and that h — 0, nh — oo, and no(h)?/h — 0.

Then the orthogonalized local polynomial L? distribution estimator in (13) satisfies

B - B _7-1/2 A

[<r1%,h> ShpaCE) ™ (TR ST ) ] w FEFGP] ~ N(0.1)
J_ h ) b
P,h

Nyt 7P
(Fé,h)flzép,h(lﬂ ) (Fé,h)flzécg,h(ré,h)fl flx)~7h eé,F
where
Fﬁ,h: . P(uw)PH(u) K (u)du, Févh:/x_ Q' (u)?K (u)du,
h “h

2Jﬁp,h = //Xx K (u)K (v)P*(u) P (v) (u A v)dudo,

Shon= [[,  K@E©Q @Q*0)(wAv)dud,

Shon = (Sgra) = [ [, K@KE)PH@Q @) A v)duds,

11



and T_y j, is a diagonal matrix containing h=1 h=2 ... h7P vy, [

3.2 Optimal @

Now we discuss the optimal choice of (), which minimizes the asymptotic variance of the minimum
distance estimator. Recall from the main paper that, with orthogonalized basis, the minimum

distance estimator of f() (x), for 0 < ¢ < p— 1, has an asymptotic variance

f(x) ele(FJLD,h)flEfp,h(rf,h)fleé - eZ(F#,h)ilzfﬁQ,h(ZéQ,h)ilzéRh(IﬂP_,h)ile@ )

where ¢ is the (¢4 1)-th standard basis vector. In subsequent analysis, we drop the multiplicative
factor f(x).
Let pe(u) be defined as

pe(u) = ¢y(Tpp) " P (w),

then the objective is to maximize

2
(/ ¥XK xw<>QL<XuAvdwm> (/szr (0 ()Qi<quvme)

Alternatively, we would like to solve (recall that Q(u) is a scaler function)

(e & >pe<u>q<v><m>dudv)2
ff% K(v)q(u)q(v)(u A v)dudv

maximize

, subject to /XX K (u)q(u)(1, P(u))du = 0.

To proceed, define the following transformation for a function g(-):

) = [ 10> )K@)ge)d.

This transformation satisfies two important properties, which are summarized in the following

lemma.

Lemma 7 (H-transformation).
(i) If g1(-) and g2(-) are bounded, and that either [x— K(u)gi(u)du or [x— K(u)ge(u)du is
h h

zero, then
Jo.

h m[_lvl}

H(g1)(u)H(g2)(u)du = / v K@) K (0)g1(u)g1(v)(u A v)dudv.

(ii) If g1 () and ga(+) are bounded, g2(-) is continuously differentiable with a bounded derivative,

12



and that either [+ K(u)gi(u)du or [x—x K(u)gs(u)du is zero, then
h h

[ Ao = [ K@
X=xn[-1,1) X=x [ |

h

With the previous lemma, we can rewrite the maximization problem as

(f%m[,m H(pf)(U)H(q)(u)du)Q
f%ﬂ[—l,l] H(q)(u)?du

subject to /X_Xm P(u)H(q)(u)du = 0, H(q) <me_X v (—1)) =0. (14)

N[=1,1]

maximize

Theorem 8 (Variance Bound of the Minimum Distance Estimator). An upper bound of

the maximization problem (14) is

-1
b)) et — ) ( [ P<u>P<u>'du)
h L

Therefore, the asymptotic variance of the minimum distance estimator is bounded below by

-1
f(x)ep (/’”m[—l,l} P(u)P(u)'du) er,

h
where P(u) = (1, u, u?/2, u®/3!, -, w»~'/(p — 1))". [ |

Example 2 (Local Linear/Quadratic Minimum Distance Density Estimation). Consider
a simple example where ¢ = 0 and P(u) = u, which means we focus on the asymptotic variance

of the estimated density in a local linear regression. Also assume we employ a uniform kernel:

K(u) = 31(|u| < 1), and that the integration region is X};X = R (i.e., x is an interior evaluation
point). Note that this example also applies to local quadratic regressions, as u and u? are orthogonal
for interior evaluation points.

Taking P(u) = u, the variance bound in Theorem 8 is easily found to be

1 -1

. . 1

100 ([ Ploptayan) - = ;.
-1

We now calculate the asymptotic variance of the minimum distance estimator. To be specific,

we choose Q(u) = u?*1, which is a higher-order polynomial function. With tedious calculation,

one can show that the minimum distance estimator has the following asymptotic variance

11 + 45

AsyV[fu(x)] = f(x) 2048

which asymptotes to f(x)/2 as j — oco. As a result, it is possible to achieve the maximum amount of

13



Figure 1. Equivalent Kernel of the Local Linear Minimum Distance Density Estimator.

Notes: The basis function R(u) consists of an intercept, a linear term u (i.e., local linear regression), and an odd
higher-order polynomial term u?** for j = 1,2,---,30. Without the higher-order polynomial regressor, the local
linear density estimator using the uniform kernel is equivalent to the kernel density estimator using the
Epanechnikov kernel (black line). Including a higher-order redundant regressor leads to an equivalent kernel that
approaches the uniform kernel as j tends to infinity (red).

efficiency gain by including one higher-order polynomial and using our minimum distance estimator.

In Figure 1, we plot the equivalent kernel of the local linear minimum distance density estimator
using a uniform kernel. Without the redundant regressor, it is equivalent to the kernel density
estimator using the Epanechnikov kernel. As j gets larger, however, the equivalent kernel of the
minimum distance estimator becomes closer to the uniform kernel, which is why, as j — oo, the
minimum distance estimator has an asymptotic variance the same as the kernel density estimator

using the uniform kernel. [ |

Example 3 (Local Cubic Minimum Distance Estimation). We adopt the same setting in
Example 2, i.e., local polynomial density estimation with the uniform kernel at an interior evaluation
point. The difference is that we now consider a local cubic regression: P(u) = (u, %u2, %ui)‘)’ .

As before, the variance bound in Theorem 8 is easily found to be

9 15
1 -1 8 0 1
X .'LL.U/U = X ;
f()(/lP()P()d) ) L )
4 2

Again, we compute the asymptotic variance of our minimum distance estimator. Note, however,
that now we have both odd and even order polynomials in our basis P(u), therefore we include

two higher-order polynomials, that is, we set Q(u) = (u?,u?*1). The asymptotic variance of our

14



Table 1. Variance Comparison.

(a) Density f(x)

p=1 p=2 p=3 p=4

Kernel Function

Uniform 0.600 0.600 1.250 1.250
Triangular 0.743 0.743 1.452 1.452
Epanechnikov 0.714 0.714 1.407 1.407

MD Variance Bound 0.500 0.500 1.125 1.125

(b) Density Derivative f™(x)

p=2 p=3 p=4 p=5

Kernel Function

Uniform 2.143 2.143 11.932 11.932
Triangular 3.498 3.498 17.353 17.353
Epanechnikov 3.182 3.182 15.970 15.970

MD Variance Bound 1.500 1.500 9.375  9.375

Notes: Panel (a) compares asymptotic variance of the local polynomial density estimator of Cattaneo, Jansson, and
Ma (2020) for different polynomial orders (p = 1, 2, 3, and 4) and different kernel functions (uniform, triangular and
Epanechnikov). Also shown are the variance bound of the minimum distance estimator (MD Variance Bound),
calculated according to Theorem 8. Panel(b) provides the same information for the estimated density derivative.
All comparisons assume an interior evaluation point x.

minimum distance estimator is

» 9(45+15 15(45+17

fup(x) 12(%}:73 0 - 8%2;:7))
AsyV | fV 60 | = f(x) 0 piw 0 :

2(2) 15(4j+17) 0 45(4+19)

W' (%) T T8(247) 8j+28

which, again, asymptotes to the variance bound as j — oco. See also Table 1 for the efficiency gain

of employing the minimum distance technique. |

Example 4 (Local p = 5 Minimum Distance Estimation). We consider the same setting in
Example 2 and 3, but with p =5: P(u) = (u, 3u?, -+, fu®)".

15



The variance bound in Theorem 8 is

Again, we include two higher order polynomials: Q(u) =

of our minimum distance estimator is

(u2j Ju +1)’ . The asymptotic variance

r o225 525 2835 ]
= 0 -3 0 16
1 -1 0 % 0 _% 0
X) (/ P(u)P(u /du> = f(x) —% 0 —22805 0 —71441175
-1
0 _% 0 15275 0
2835 14175 99225
L 16 0 T4 0 2

- 225(45+19) 0 525(4j+21) 0 2835(45+23) T
fMD(X) 256(2719) a1 T T64(2749) a1 32(2)19)
5(4j+1 315(4j+19
fMD)(X) 525(?1 21) 16(2]j+7) 2205(2 23) - 8(2‘73”) 14175(24 25)
_ j+ i+ i+
AsyV fMD )| =fx) |- 64(2;+9) 0 16(2jj+9) 0 - 8(2ji9)
3) 0 _ 315(4j+19) 0 1575(45421) 0
Sin' (%) 825 8j+28
4) ) 2835(4j+23) 0 _ 14175(45+25) 0 99225(45427)
o - 32(25+9) 8(25+9) 8j+36

which converges to the variance bound as j — oo. See also Table 1 for the efficiency gain of
[

employing the minimum distance technique.

Before closing this section, we make several remarks on the variance bound derived in Theorem

8, as well as to what extent it is achievable.

Remark 1 (Achievability of the Variance Bound). The previous two examples suggest that
the variance bound derived in Theorem 8 can be achieved by employing a minimum distance
estimator with two additional regressors, one higher-order even polynomial and one higher-order
odd polynomial. With analytic calculation, we verify that this is indeed the case for p < 10 when
|

a uniform kernel function is used.

Remark 2 (Optimality of the Variance Bound). Granovsky and Miiller (1991) discuss the

problem of finding the optimal kernel function for kernel-type estimators. To be precise, consider

)

the following

— X

h

1 " T;
—T D Pk (
=1

where ¢y 1 (u) is a function satisfying
/1 0 0<j<k,j#/
-1

w g (u)du = - ,

‘ uF g 1o (u)du # 0.
0 =

/.
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Then it is easy to see that, with a Taylor expansion argument,

1 P — 1 1 _
i [nhmz@m (x ; X)] = hm/lm (uh X) f(u)du
i=1 -

That is, the kernel ¢ (u) facilitates estimating the ¢-th derivative of the density function with a

leading bias of order h*~¢. Asymptotic variance of this kernel-type estimator is easily found to be

WZ%(” >] /m du.

Granovsky and Miiller (1991) provide the exact form of the kernel function ¢y x(v) that minimizes

AsyV

the asymptotic variance subject to the order of the leading bias.
Take £ =0 and k = 2, ¢y (u) takes the following form:

Goplw) = 31l <),

which is the uniform kernel and minimizes variance among all second order kernels for density
estimation. As illustrated in Example 2, our variance bound matches f(x) f_ll b 1 (u)?du.

Now take £ = 1 and k = 3. This will give an estimator for the density derivative f(1)(x) with
a leading bias of order O(h?). The optimal choice of ¢ k(u) is

Bex) = Sull(u] < 1)

to match the order of bias, we consider the minimum distance estimator with p = 3. Again, the
variance bound in Theorem 8 matches f(x f L e k(u u)?du.

As a final illustration, take £ = 1 and k = 5, which gives an estimator for the density derivative
fM(x) with a leading bias of order O(h*). The optimal choice of ¢y x(u) is

bep(u) = <785u — 1g5u3> 1(Ju| < 1).

It is easy to see that f(x f L Gek(u u)?du = 75f(x)/8. To match the bias order, we take p =

5 for our minimum distance estimator. The variance bound is 75f(x)/8, which is the same as

x) f_ll qﬁg,k(u)zdu.

With analytic calculations, we verify that the variance bound stated in Theorem 8 is the same as
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the minimum variance found in Granovsky and Miiller (1991). Together with the previous remark,
we reach a much stronger conclusion: including two higher-order polynomials in our minimum
distance estimator can help achieve the variance bound in Theorem 8, which, in turn, is the smallest

variance any kernel-type estimator can achieve (given a specific leading bias order). [

Remark 3 (Another Density Estimator Which Achieves the Variance Bound). The
following estimator achieves the bound of Theorem 8, although it does not belong to the class of

estimators we consider in this paper.

b = </X Plu—x)P(u— x)’%K (“ - X) du>1 (711 iP(wi —x)%K (x};X)) ,

where P(u) = (1,u,u?/2,--- ,u?~'/(p—1)!)" is the (p—1)-th order polynomial basis. The subscript

represents “numerical derivative,” because the above estimator can be understood as
A : : 1 - -1 : 1 —x\ dF
bup = (/X Plu—x)P(u—x)', K (“ - X) du> (/X Plu—x); K (“ - X) diu)du>

R 2
B ) dF(u) . , 1 u— X
= arg;mn/x (du — P(u —x) 9) EK ( . ) du,

where the derivative dF (u)/du is interpreted in the sense of generalized functions. From the above,

it is clear that this estimator requires the knowledge of the boundary position (that is, the knowledge
of X).

With straightforward calculations, this estimator has a leading bias

E[fhn] = (/X P(u—x)P(u— X)’%K <“ , X) du>_1 E [P(mi - x)%K (xh_ X)]

=0+ WP, fP)(x) ( /Xx P (u) P (u) K (u) du> / P (u) v K (u) du + o(hPY},),

X—x
h
where T, is a diagonal matrix containing 1, A1, -+, A== Its leading variance is also easy to
establish:
) -1
V{fy) = %Thf(x) ( . P(u) P (u) K (u) du) (/X P(u) P (u) K (u)? du)
R R

. <AXP(u)P(u)’K(u)du> T

h

1

To reach the efficiency bound in Theorem 8, it suffices to set K (-) to be the uniform kernel. Section

5.1.1 in Loader (2006) also discussed this estimator, although it seems its efficiency property has
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not been realized in the literature. [ |

4 Uniform Distribution Theory

We establish distribution approximation for {fg(x),x € Z} and {#(x),x € Z}, which can be viewed
as processes indexed by the evaluation point x in some set Z C X. Recall the definition of I'y, , and
Y x from Section 1, and we define €, , = F};}(EMXF};}(.

We first study the following (infeasible) centered and Studentized process:

1 & cﬁz’XTth’i f% R(u) []1(3!:Z <x+ hu) — F(x+ hu) | K (u) g(x + hu)du
TG(X):iz 7X€:Z'-7
vn = S L x Thchx

(15)

where we consider linear combinations through a (known) vector ¢j,, which can depend on the
sample size through the bandwidth h, and can depend on the evaluation point. Again, we use the
subscript G to denote the local L? approach with G being the design distribution. To economize

notation, let

o) chThLx Jas R(u) [11(3; < %+ hu) — F(x + hu) | K () g(x + hu)du
hx\T) = )
S L x Thenx

then we can conveniently rewrite (15) as

Ta(x) = \}ﬁ ; Knx(x:),

and hence the centered and Studentized process T (-) takes a kernel form. The difference com-
pared to standard kernel density estimators, however, is that the (equivalent) kernel in our case
changes with the evaluation point, which is why our estimator is able to adapt to boundary points
automatically. From the pointwise distribution theory developed in Section 2, the process T¢g(x)

has variance
V[T(x)] =E [Kpx(z:)?] = 1.

We can also compute the covariance as

/
Chx Th8hxy Theny

Cov [Ta(x), Ta(y)] = E [Kpx(:)Kny (2i)] = —= ;
chvxThQ;hXThch’X\/chyTth’yThch?y

+ O(h),
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where €, = F,;}(Eh%yl“,;;, and

Sy = [, [, ROB) [P(6x+ bu) Ay + ho) = Flc+ ha)Fly + o)
K(u)K(v)g(x+ hu)g(y + hv)dudwv.

Of course one can further expand the above, but this is unnecessary for our purpose.

For future reference, let

ri(e,h) = sup |c§17XTh — cﬁwTﬂ , ro(h) = sup ,;

woy€T,|x—y|<e xeT |6, Lhl
Remark 4 (On the Order of ri(¢, h), r2(h) and sup,c7 0(h,x)). In general, it is not possible
to give precise orders of the quantities introduced above. In this remark, we consider the local
polynomial estimator of Cattaneo, Jansson, and Ma (2020) (see Section 1 for an introduction). The
local polynomial estimator employs a polynomial basis, and hence estimates the density function

and higher-order derivatives by (it also estimates the distribution function)

where e/ is the (£ + 1)-th standard basis vector. As a result, ¢, x = ey, which does not depend
on the evaluation point. For the scaling matrix T, we note that it is diagonal with elements
1,h~1, ... 7P, and hence it does not depend on the evaluation point either. Therefore, we conclude
that, for density (and higher-order) derivative estimation using the local polynomial estimator,
r1(e, h) is identically zero. Similarly, we have that ro(h) = h‘. Finally, given the discussion in
Section 1, the bias term generally has order sup,c7 o(h,x) = hP*1 for the local polynomial density
estimator.

The above discussion restricts to the local polynomial density estimator, but more can be said
about ro(h). We will argue that, in general, one should expect ro(h) = O(1). Recall that the
leading variance of cﬁljxé(x) and C;z,xéG(X) is %cAXTth,XThch,X, and that the maximum eigenvalue
of Qx is bounded. Therefore, the variance has order O(1/(nra(h)?)). In general, we do not expect
the variance to shrink faster than 1/n, which is why r9(h) is usually bounded. In fact, for most
interesting cases, c}hxé(x) and C;z,xéG(X) will be “nonparametric” estimators in the sense that they
estimate local features of the distribution function. If this is the case, we may even argue that ro(h)
will be vanishing as the bandwidth shrinks. |

We also make some additional assumptions.

Assumption 4. Let 7 be a compact interval.
(i) The density function is twice continuously differentiable and bounded away from zero in Z.
(ii) There exists some 6 > 0 and compactly supported kernel functions K(-) and {K¥+9(-)} <5,
such that (ii.1) sup,eg [KT ()], supges yer [ K4 (u)] < oo; (ii.2) the support of K#4(-) has Lebesgue
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measure bounded by Cd, where C is independent of d; and (ii.3) for all v and v such that |u—v| <,
|5 (w) = K (v)] < Ju—v| - KT(w) + KM ().

(iii) The basis function R(-) is Lipschitz continuous in [—1,1].

(iv) For all h sufficiently small, the minimum eigenvalues of I'j x and h_lzh,x are bounded
away from zero uniformly for x € 7.

(v) h — 0 and nh/logn — oo as n — oo.

(vi) For some C7 > 0 and Cq, C3 >0,

ri(e,h) =0 (5clh_c2) , ro(h) = O (hc3) .
In addition,

/
sup c Ty
B XEI’,’“X ‘:0(1).
lnfxe_’[ ‘ch7XTh| .

Assumption 5. The design density function g(-) is twice continuously differentiable and is bounded

away from zero in Z. [ |

For any h > 0 (and fixed n), we can define a centered Gaussian process, {Bg(x) : x € T},
which has the same variance-covariance structure as the process T (-). The following lemma shows

that it is possible to construct such a process, and that T (-) and B;(+) are “close in distribution.”

Theorem 9 (Strong Approximation). Assume Assumptions 1, 2, 4 and 5 hold. Then on a
possibly enlarged probability space there exist two processes, {T¢(x) : x € Z} and {Bg(x) : x € I},
such that (i) Tg(-) has the same distribution as Tg(-); (ii) B(-) is a Gaussian process with the

same covariance structure as T¢(+); and (iii)

~ Cs(u+ Cslogn) _c
P [sup |Ta(x) — Ba(x)| > < Cse™ 5%
|:X€I[) G( ) G( ) m >~ U5
where C5 is some constant that does not depend on h or n. |

Next we consider the continuity property of the implied (equivalent) kernel of the process
% (+), which will help control the complexity of the Gaussian process B¢(+). To be precise, define

the pseudo-metric og(x,y) as

oa(xy) = VVEal) — TaO)] = /B [(Knx(wi) — Kny ()2,

we would like to provide an upper bound of oG (x,y) in terms of [x —y| (at least for all x and y such

that |[x — y| is small enough).
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Lemma 10 (VC-type Property). Assume Assumptions 1, 2, 4 and 5 hold. Then for all x,y € Z
such that [x —y| =¢ < h,

1 1
ctxy) =0 (s 4 Jen bl + pra(enPra(i)? )
Therefore,
E [sup |‘Bg(x)]] =0 (Vlogn) , and E [sup \Tg(x)@ =0 (x/logn> .

x€Z x€L [ ]
4.1 Local L? Distribution Estimation
We first discuss the covariance estimator. For the local L? distribution estimator, let Qh,x,y =
F,:;i;hwffzi with ih%y given by

Z/X /X ﬂ(xZ§x+hu) (x—i—hu)} []l(xigy—l—hv)—ﬁ’(y—i-hv)]
—y X

(u)K(v)g(x + hu)g(y + hv)dudv.

The next lemma characterizes the convergence rate of €2, » .

Lemma 11 (Local L? Distribution Estimation: Covariance Estimation). Assume Assump-
tions 1, 2, 4 and 5 hold, and that nh?/logn — co. Then

sup C/h,xTh(qux,y = Qpxy) Theny —0 ( /logn)
=Op —
x,ye€Z CZ7XTth,xThCh,x \/C;Z,yTth,yThch,y nh

We now consider the estimator c?%xég(x). From (3) and (4), one has

Vitch . (do(x) - 6(x))

Ta(x) = =
o Ln 8 x L x

cAXThF}:l Jx—x R(u) {F(x + hu) — H,R(U)Tgl} K (u) g(x + hu)du
_ /m : A (16)
o LnS2hxThenx

) Zn: Cho YTk s R(1) []l(xi <x+hu) — F(x+ hu)} K (u) g(x + hu)du
+ — ’ : - .7
Vin i1 S T x Thep x

In the following lemma, we analyze the two terms in the above decomposition.
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Lemma 12. Assume Assumptions 1, 2, 4 and 5 hold, and that nh?/logn — co. Then

mpf0] =or (Fmpatnn).  mplan-se|-0r ((F5).

Now we state the main result on uniform distributional approximation.

Theorem 13 (Local L? Distribution Estimation: Uniform Distributional Approxima-
tion). Assume Assumptions 1, 2, 4 and 5 hold, and that nh?/logn — co. Then on a possibly
enlarged probability space there exist two processes, {Tg(x) : x € T} and {Bg(x) : x € I}, such
that (i) T¢(-) has the same distribution as T¢(-); (i) Bg(-) is a Gaussian process with the same

covariance structure as T¢(-); and (iii)

sup |Tg(x) — (Z(;(X)‘ + sup |Ta(x) — ‘Bg(x)’ = Op < logn + \/Zsup g(h,x)) .

xe€T x€T nh? x€T ]

The following theorem shows that a feasible approximation to the process B;(-) can be
achieved by simulating a Gaussian process with covariance estimated from the data. In the fol-
lowing, we use P*, E* and Cov* to denote the probability, expectation and covariance operator

conditioning on the data X,, = (x1,z2,...,2,)".

Theorem 14 (Local L? Distribution Estimation: Feasible Distributional Approxima-
tion). Assume Assumptions 1, 2, 4 and 5 hold, and that nh?/logn — oco. Then conditional on

the data there exists a centered Gaussian process s36;() with covariance

. . & sy The
Cov* [Ba(x), Baly)| = fx PRy P ,
o Tn82h,x L hCh x \/C/h’yTth,yThCh,y

1
log”n '\ *
= OP (( OghQn) ) .
" n
Remark 5 (On the Remainders in Theorems 13 and 14). Recall that the local polynomial

density estimator employs a polynomial basis, which implies that sup,c7 o(h,x) = hPH1 where p is

such that

sup
u€R

P[sup |BG(x)] < u] - P*[sup IBa(x)| < u}
x€T x€Z

the highest polynomial order. Then the error in Theorem 13 reduces to

Vnh2rtl 4 logn )

nh?

Therefore, a sufficient set of conditions for both errors to be negligible is nh?P** — 0 and nh?/log® n —
Q. |
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4.2 Local Regression Distribution Estimation

Now we consider the local regression estimator {0(x),x € Z}. As before, we first discuss the
construction of the covariance 2, . Let Qh%y = fﬁiihxyf‘g; Construction of f‘h7x is given in

Section 2.2. The following lemma shows that fh,x is uniformly consistent.

Lemma 15 (Uniform Consistency of IA“;LX). Assume Assumptions 1 and 4 hold. Then

1
— Op ( ogn> .
nh -

Construction of i]h,x,y also mimics that in Section 2.2. To be precise, we let

sup (I'nx — I x
x€T

Shoy = 7112”: Tllzn:ThR(xj —X) |:]].(m7, <) — F(:x])} %K (xyh— x>
i=1 j=1
S TRy )10 < )~ FGa)| i ()
j=1

where F(-) remains to be the empirical distribution function. The following result justifies consis-

tency of Qh,x,y.

Lemma 16 (Local Regression Distribution Estimation: Covariance Estimation). As-

sume Assumptions 1 and 4 hold, and that nh?/logn — co. Then

, A

sup Ch’XTh(Qh,x,y - Qh,x,y)’rhch,y 0 / log n

x,y€L s Y Thenxr /S X Then nh
h,X ) ) h,y Y Y
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The following is an expansion of 7'(+).

Vidh (00x) = 0(x))

o= c, XTth « LTnenx
o Cn D TR (i — )[1 = F ()] K (%57)
n\f Z Ch, T hcnx (%)
Z ThF ThR(a:Z X)[F(z;) — 6(x)' R(x; — x)]%K(%) (19)
\F Ch7XTth,xThCh,x

+ L zn: 1 {CQL’XThf;;ThR(xj %) [ll(xi <) - F(xj)] g <x1 —x

nyn i.i=1,i#i \/ Chx Lh8hx Tnh h h

_ /X_X c%7XThf;7iR(u) []l(:nl <x+hu) — F(x+ hu)} K (u) f(x+ hu)du}
h (20)
Ln- 1 cﬁl’XThf’;’i f% R(u) {]l(avZ <x+hu) — F(x+ hu)} K (u) f(x+ hu)du o

n\/ﬁ =1 \/C;L’XTth,xThCh,x
Lemma 17. Assume Assumptions 1 and 4 hold, and that nh?/logn — co. Then

supl19)] =0r () sup(19)] = 02 supethn). supi20) < 0p (FEL).

Lemma 18. Assume Assumptions 1 and 4 hold, and that nh?/logn — co. Then

sup [(21) ~ Tr(x)| = O < logn ) .

x€T nh2

Finally we have the following result on uniform distributional approximation for the local
regression distribution estimator, as well as a feasible approximation by simulating from a Gaussian

process with estimated covariance.

Theorem 19 (Local Regression Distribution Estimation: Uniform Distributional Ap-
proximation). Assume Assumptions 1 and 4 hold, and that nh?/logn — co. Then on a possibly
enlarged probability space there exist two processes, {fp(x) :x € I} and {Bpr(x) : x € T}, such
that (i) Tp(-) has the same distribution as T (-); (ii) Bp(-) is a Gaussian process with the same

logn \/ﬁ >
=0 4+ 4/ =supo(h,x) | .
’ <\/’I’Lh2 h XEII)Q( ) B

covariance structure as Tp(-); and (iii)

+ sup iF(X) —Br(x)
xeL

sup |T(x) — Tr(x)
xeT
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Theorem 20 (Local Regression Distribution Estimation: Feasible Distributional Ap-
proximation). Assume Assumptions 1 and 4 hold, and that nh?/logn — co. Then conditional

on the data there exists a centered Gaussian process B r(-) with covariance

. . cy YpQpxvThe
Cov* [%F(X)7%F(Y)] B A hox Ta82hxy Th h,yA 7
o Tn82h x Lheh x \/Clh’yTth,yThch,y

o)

such that

Jun

P[iggmsfw(x)r <] —P*[igg|%p<x>| < u|

sup
ueR
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5 Proofs

5.1 Proof of Theorem 1

Part (i)

The bias term can be bounded by

R(u) [F(x + hu) — e’R(u)T,;l] K (u) du

X —x uel—1,1

h

< sup ]’F(x—khu)—@'R(u)T;l’/h |R(w)|K (u) du

— o) [, IRWIK (u)du.

h
Part (ii)
The variance can be found as

\%

% Z s R(u) [1(331 <x+hu) — F(x+ hu)] K (u) g(x+ hu)du]

= //@ R(u)R(v)'K (u)K (v) [F(x + h(uAv)) — F(x+ hu)F(x + hv)] g(x + hu)g(x 4+ hv)dudo.

To establish asymptotic normality, we verify the Lyapunov condition with a fourth moment calculation. Take

¢ to be a nonzero vector of conformable dimension, and we employ the Cramer-Wold device:

2

% (c’th) E

</X_x ¢ R(u) []l(&rZ <x+hu) — F(x+ hu)] K (u) g(x + hu)du) :| .

h

If ¢'Sjc is bounded away from zero as the bandwidth decreases, the above will have order n™*, as K(-) is bounded
and compactly supported and R(:) is locally bounded. Therefore, the Lyapunov condition holds in this case. The
more challenging case is when ¢3¢ is of order h. In this case, it implies

2

F(x)(1 - F(x)) '//Xx ¢ R(w)K (u)gudu| = O(h).

Now consider the fourth moment. The leading term is

4

F(x)(1 — F(x))(3F(x)*> = 3F(x) + 1) /){7X ¢ R(w)K (w)g(x + hu)du| = O(h),

h

meaning that for the Lyapunov condition to hold, we need the requirement that nh — oo.

Part (iii)

This follows immediately from Part (i) and (ii).
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5.2 Proof of Theorem 2

To study the property of XAJ}“ we make the following decomposition:

$h = % Z_;/ . R(u)R(v)’ [IL (z: <x+hu)— F(x+ hu)] [IL (z; <x+hv) — F(x+ hv)] K(u)K(v)g(x 4+ hu)g(x + hv)dudv

l m
_ /  R()R(v) [F(x ¥ hu) — F(x + hu)] [F(x +h) — F(x + }w)] K (u) K (0)g(x + hu)g(x + hv)dudo.  (IT)

h

First, it is obvious that term (II) is of order Op(1/n). Term (I) requires more delicate analysis. Let ¢ be a vector

of unit length and suitable dimension, and define
ci = //X c'R(u)R(v)'c[]l (i <x+hu)— F(x+ hu)} []l (x; <x+hv) — F(x+ hv)] K(u)K (v)g(x + hu)g(x + hv)dudv.

Then

which implies that

d(De

1o 1 Eef]
E[¢(D)d 1‘%< + (@ Q)'

With the same argument used in the proof of Theorem 1, one can show that

ae =0 (i)

which implies

5.3 Proof of Theorem 3
Part (i)

For the “denominator,” its variance is bounded by

\%

<
A =

% ; ThR(x; — x)R(xi — x)'Th%K (331 - x)]

u — X

2
:%/X|ThR(u—x)R(u—x)'Th|2%K( - ) f(u)duz% N

o3)

Therefore, under the assumption that A — 0 and nh — oo, we have

‘711 ;ThR(l’i —x)R(z; _X)/Th%K (Izh—x) _r,

1
_O]P< TLh)’

28



which further implies that

60—, (:L i ToR(z: —x)[Fas) — R(zi —x)'60] %K (Ih_x)> (1+0p(1)).

Part (ii)

The order of the leave-in bias is clearly 1/n. For the approximation bias (7), we obtained its mean in the proof of

Theorem 1 by setting G = F, which has an order of g(h). The approximation bias has a variance of order

o[£ mame [t - ] e (23|
< %IE ‘ThR(xj —x) [F(xj) — R(zj; — x)'@o} %K (iﬁyh— x) ‘2:|

v =0 [r - R —][ g (M) s

- % o [BW) [F (x+ hu) — R(u — x)’eo] \2 K (u)?f(x + hu)du
< nflhg(h)Q /th |[R(w))’K (w)?f(x + hu)du = O (%}22) .

Therefore,

provided that nh — oo.

Part (iii)
We compute the variance of the U-statistic (9). For simplicity, define

wiy = YaR(z; — ) [1a < ;) = Fey)| 3 K (2) -

- R(u) [11(1:1- <x+ hu) — F(x+ hu)] K () f(x + hu)du,

X —x
h

which satisfies E[u;;] = E[ui;|x:] = Eluij|z;] = 0. Therefore

1 n n 1 n
V[(9)] = q Z Z E [uijui ] = "y Z E [wijui;] + E [ui;u}]

b= il g =1, i,5=1,i7j

meaning that

Part (iv)

This follows immediately from Part (i)—(iii) and Theorem 1.
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5.4 Proof of Theorem 4

We first decompose 3, into two terms,

Jrk=1

where we use R; = R(z; — x) and W; = K((x; — x)/h)/h to conserve space.

(IT) satisfies

It is obvious that

()] < sup |F(z) — F(x)

As for the second part, we have

% > E[|ThR; RYAW; W] =

Jrk=1

n—1

n

2 1
n2

J,k=1

—0: (1+ %) —0: (1),

which holds as long as nh — co. Then it further implies that

(IT) = Op <%> .

To analyze (I), we further expand this term into “diagonal” and “non-diagonal” sums:

> TRR R, W W]

/ . 1 /
E[[ThR, BEXhW; Wil | # k] + B[ [Th Re BT Wa Wi |

1 n
M= > TuBR.W; Wi (]l(aci <)) — F(xj)) (]l(mi <) — F(mk))
i,j,k=1
distinct

1
e

z": YRR, Y Wi W (IL(:EZ <uz)— F(:El)) (Il(ml <) — F(mk))

ik=1
distinct

+ % Zn: YThR; Ry W;W; (IL(xi <z)— F(xj)) (It(xi <) — F(l'i))

%)

=1

distinct

+ % f: YR RyY W, W; (]l(xi < @) - F(xj)) (1(% <) = F(zj))

0,7

=1

distinct

+ % SRR W (1(w: < ) = Fla)) (1 < 00) = Fa).

By calculating the expectation of the absolute value of the summands above, it is straightforward to show

(1.2) = Op (

1

n) (1.3) = Op (n

1

) . (14) :op(
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), (1.5):op(

1
n2h

).

(L1)

(1.2)

(1.3)

(L4)

(1.5)



Therefore, we have

. 1 1 <« 1

S = (L1) + Op <%) == > TWR BT, Wi (11(3:1- < ;) — F(xj)) (IL(xi <) — F(xk)) +0s (n—h) .
i,J,k=1
distinct

To proceed, define
U5 = ThR]'Wj (Il(:cl S .’Ej) - F(:L’J)) and U; = E[u”|xl,z 75 ]]

Then we can further decompose (I.1) into

1 <& R 1 &
) =3 D uigui = o3 > Elujuile]  + e > (uiju;k - E[“iju;k|xi])
i,5,k=1 i,5,k=1 i,5,k=1
distinct distinct distinct
n—1(n-2) — R
= % Uity + — Z (UijU:Lk - ﬂzﬂi) .
n i=1 n i4, k=1
distinct
1.1.1
( ) (I.1.2)

We have already analyzed (I.1.1) in Theorem 2, which suggests

1
[11) =% Op| — |-
a1 =3+ 0r(72)
Now we study (I.1.2), which satisfies

n n n

n—2 n—2 / 1 /
(1.1.2) = 3 Z (u” — ﬂi)ﬂg + 3 Z U (u,-]- — ﬁl) + — Z (ui]' — ﬁi) (ulk — ﬁi) .
n ij=1 n ij=1 e =1
distinct distinct distinct
(I.1.2.1) (1.1.2.2) (1.1.2.3)

With variance calculation, it is easy to see that

(11.2.3) = Op (%) .

Therefore we have

d(Sn—h)e o 1 d(I.1.2.1)c
d¥ne - F v/nh?2 cd¥ne

since (I.1.2.1) and (1.1.2.2) are transpose of each other. To close the proof, we calculate the variance of the last term

in the above.

d(1.1.2.1)c 1 (n—2)° < < N N
_diéjt;lct et

1 (n — 2)2 - / /7 —/ .
= — - 76[}3 E c uijU;cc uy jUyc| + higher order terms.
(¢'Ere) n
i,5,i' =1
| distinct
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The expectation is further given by (note that i, j and ¢’ are assumed to be distinct indices)
E {cluijﬁ;cc/ui/jﬁ;/c]

= E/ . Wj2 [c’ThRjR(u)cclThRjR(v)c} K(u)K(v)

h

A (x4 hu)) — F(z;)F(x + hu)] [F(z; A (x+ hv)) — F(z;)F(x 4+ hv)] f(x + hu) f(x + hv)dudv

“h ///x « R(u)ec R(w)R(v)e] K (u) K (v) K (w)
[F(x+ h(w Au)) — F(x+ hw)F(x 4+ hu)] [F(x + h(w Av)) — F(x 4+ hw)F(x + hv)] f(x 4+ hw) f (x + hu) f (x + hv)dwdudv
B %F( ///X x € R )CCIR(w)R(U)C] K(u)K(U)K(w)Q.fwfufvd’CUdUd’U + higher—order terms.

If ¢'Spe = O(1), then the above will have order h, which means

[0 ().

If ¢Spe = O(h), however, E [¢'usjujcc’uy juy c] will be O(1), which will imply that

d(1.1.2.1)c] 1
v { d'he } =0 (nh2> '

As a result, we have

Now consider

1S3 i 3/ e 1 NS — 2D e N (O =T, )8l e (0 =T )2} e

T8 e T 8T e ¢TI 'ST e TS e
T NS - ST e 2c’(f;1 — Ty e (O TSR T e
o c’F;thI‘glc c’F;lEthlc c’I‘;lEhF;lc '

From the analysis of i)h, we have

c’f,jl(i)h—Eh)f‘;lc _O ( 1 )
TS e \Wakz) '

For the second term, we have

(O =T8T e
T ST e

B Ly i or i R ed i
- Ty 2

_ @t -nhs ( 1 )
_ —oe (41,

T3 nh?

The third term has order

(0, - T )Eh(T =Ty e 1
1 1 = O]P’ 5 |-
150 R 78 A nh

5.5 Proof of Corollary 5

This follows directly from Theorem 1.
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5.6 Proof of Corollary 6

To understand (13), note that

ok — (/XA;R(ufx)R(u—x)’Ah%K(ugx dF(u))1 </ A;R(ufx)ﬁ(u)%l((u;x) dF(u))

— A7? (/XR(ufx)R(ufx)'%K(u;X ) (/Rufxls' )%K(U;X)dF(u)),

which means éf; = A;lép. Then we have (up to an approximation bias term)

0F — A, 00 = A} M (0F — 00)

— A </ R(u — x)R(u — x)’ %K (U;X)dF(u)>l< XR(u—x)(F(u)—F(u))%K(u;X) dF(u))

— AT, </ R(u K (u) f(x+ hu)du) 7 ( R (F(x + hu) — F(x+ hu))K (u) f(x + hu)du>

= A ThAs </XX RY(w)R*(u)'K (u) f(x+ hu)du) < e R*(u) (F(x + hu) — F(x+ hu))K (u) f(x+ hu)du> .

We first discuss the transformed parameter vector A;lﬁo. By construction, the matrix A, takes the following

form:
1 Ci,2 C1,3 -+ Clpt2
0 1 0 e C2 p+2
Ap=10 0 1 copte
0 O o .- 1

where ¢; ; are some constants (possibly depending on h). Therefore, the above matrix differs from the identity matrix
only in its first row and in the last column. This observation also holds for A;l. Since the last component of 6 is
zero (because the extra regressor Qp(+) is redundant), we conclude that, except for the first element, An0 and 6 are
identical. More specifically, let I_1 be the identity matrix excluding the first row:

0100 0
0010 - 0
I,=0 00 1 - 0f,
0000 -~ 1

which is used to extract all elements of a vector except for the first one, then by Theorem 1,

~1/2 [0 — 0
\/ﬁ(Ll(A;lnAh)(rﬁ)—lzﬁ(rﬁ)—l(AglrhAh)/ﬂl) { Pvgl P} ~ N(0, 1),
Q.F
where 9#71; contains the second to the p + 1-th element of 07, and Gé,F is the last element.
Now we discuss the covariance matrix in the above display. Due to orthogonalization, I'+ is block diagonal. To

be precise,

T = f(x) g, 0 |, Tip= /X_X K(u)du, T'p), = /X_X PH(u)P* (u) K (u)du, TG, = /X_ Q" (u)’K (u)du.
0 0 I o o
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Finally, using the structure of A, and Y, we have
T (A YA (D) = T Ch(Ty)

The form of ¥i is quite involved, but with some algebra, and using the fact that the basis R(-) (or R*(:))

includes a constant and polynomials, one can show the following:
(AL TR AR (Ti) 7 S () T AL ThAR) = hf ()T 1w (DL ) 82 f (T ) Yo,

where Y_1 1, Ffl’h and Efl,h are obtained by excluding the first row and the first column of Y, T+ and i,

respectively:
Rt o0 0 0
0 A2 0 . . .

- r 0 P =
Y o= 0 0 h3 ... 0 7 Fth :f(x) P,h N 7 Zil,h :f(x)s fP,h fQ,h 7

. : . 0 Ign Xoprn  XQa.n
0 0 0 Up,

and

3y / /M KWK (@) P ()P () (uAv)duds,  Sdon = /  K@K®Q* (WQ* (v)(u Av)dudy

Ston = (Zorn) = / . K (u)K(v)PH(w)Q* (v)(u A v)dudv.

5.7 Proof of Lemma 7

Part (i)

To start,

//M
h

N[=1,1]

H(g1)(u)H(g2)(u)du = /Xixﬁ[_l . (/Xx (v > u)K(vl)g(vl)dvl) </XX 1(vg > U)K('U2)g('l)2)d’l)2> du
- / . K (v1)K (v2)g(v1)g(ve) (/ L(vy > w)l(vg > u)du> dv; dvs

X —
o Nl=1.1]

- / L K1) K(vz2)g(v1)g(v2) {(vl Awz) A (EZX A 1) - (ggx v (—1))} dvydvs

h

= //@ K (v1)K (v2)g(v1)g(v2) (v1 A vz)dvidus,

where to show the last equality, we used the fact that v; < z;x A1l and vy < z;x A1 for the outer double integral.
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Part (ii)

For this part,

Joorp sy Mo it= [ ( [ 10> u)K(v)gl(v)dv> 2 (u)du

h

= [, K@a () (/X_xﬁ[l ; T(v > u)QQ(u)du> dv

h

- K (0)g1(v) {gg <m$m) _go (%v(q))] dv

X —x
h

. K(v)g1(v)g2(v)dv.

% A 1 for the outer integral.

Again, to show the last equality, we used the fact that v <

5.8 Proof of Theorem 8

To find a bound of the maximization problem, we note that for any ¢ € RP~!, one has

//H
h

due to the constraint. Therefore, an upper bound of the objective function is (due to the Cauchy-Schwartz inequality)

H u)H u)du =
L ) /H

[H(po) () + ¢ P(w) | H(@)(w)du,

inf /bm[_l ; [H(m)(U) + c'P(U)]Zdu

c

inf [H(pz)(u)Q +2¢ P(u)H(pe)(u) + c’P(u)P(u)’c] du

X —
¢ JE=Xn[-1,1]

/bm[-l@] H(pe)(u)2du + inf /bﬁ[—l,l] [2CIP(“)H(p€)(u) + C/P(U)P(u)lc] du

- /M 20'( v K (U>P<u)m<u>du) +d ( /Mm[_l \ p(u)m)’du) c],

h h
which is minimized by setting

H(pe)(u)*du + irclf

N[—1,1]

As a result, an upper bound of (14) is

/@m[_l I]H(m)(u)zdu< MK(U)P(U)pe(u)dU> ( /@n[_l . P<u>P<u>’du> ( MK(u)P(u)p«(u)du).

We may further simplify the above. First,
/ H(pe) () du = €4 (T )~ Shpa(Tha) er.
X=xn[_1,1]

Second, note that
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As a result, an upper bound of (14) is

1
62(Fjﬁ,h)ilzfp,h(rjﬁ,h)flez — € (/Xx P(U)P(u)'du> er

=e (lev,h)_lzzgp,h(rzlv,h)_l - </XX
TR

5.9 Additional Preliminary Lemmas

Lemma 21. Assume {u; x(a): a € A C R?} are independent across i, and E[u; 5, (a)] = 0 for all a € A and all h > 0.
In addition, assume for each € > 0 there exists {u;n,c(a) : a € A}, such that

la—bl<e = J|uin(a) —uin(d)] < uine(a).

Define
Cr = sup max Viuin(a)l, G = sup max fuin(a)l
Ci,e =sup max V{u;pe(a)], Ca.= sup max |ugn,e(a) — Eluine(a)]], Cs.e= sup max E[|uin.(a)l].
acAl<i<n A1<’L n A1<’L n
Then
1 n

sup |~ D uin(a)| = Op (v +7: + Cs.e)
ac€A i—1

where « and v, are any sequences satisfying

7n en
I and I < are bounded from below,
(Cl + 3702) IOgN(E7 A7 | : |) (CLS + 57502,5) log N(‘Sv A7 | : |)
and N(g, A,|-|) is the covering number of A. |

Remark 6. Provided that w; x(:) is reasonably smooth, one can always choose £ (as a function of n and h) small

enough, and the leading order will be given by v (and hence is determined by C7 and Cb). |

Proof. Let A: be an e-covering of A, then

§ uzh g uzh

Next we apply the union bound and Bernstein’s inequality:

n

l Z ui,h(a) - ui,h(b) .

sup
n -
i=1

acA

< sup sup

a€As,b€A,|a7b|§5

n

§ uzh

1 ¥ nu2
§2N(E,A,|'D6XP{_§m}
3

1 ~2nu? }
=2 ——————— +1logN(e, A, |- .
o {5 o g NG AL

>fyu:| < N(g, A, || supP|:
acA

> fyu:|

Now take u sufficiently large, then the above is further bounded by:

Z > yu| < 2expd —log N(e, A, | -|) |2 L oy
Uzh Yu| = p g y 41y QIOgN(E,A7\|)Cl+§'yC2u )

sup
a€A.
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which tends to zero if log N (g, A,| - |) = co and

7’n
(C1+ 379C2)log N(g, A, | -|)

is bounded from below,

in which case we have

sup
a€EA.

=Op (7).

1 n
o ;ui,h(a)

We can apply the same technique to the other term, and obtain

sup
a€A.,bEA,|a—b|<e

= O]P (’YE)?

1 n
25 o) — uinb
" i:lu h(a@) = uin(b)

where 7. is any sequence satisfying

Vin
(Cre + %%02,6) log N(e, A, |- |)

is bounded from below.

Lemma 22 (Corollary 5.1 in Chernozhukov, Chetverikov, Kato, and Koike 2019). Let z1,2z2 € R* be
two mean-zero Gaussian random vectors with covariance matrices €21 and €22, respectively. Further assume that the

diagonal elements in €2; are all one. Then

sup [P[z1 € A] —Pz2 € A]] < CV/ |21 — Q2|0 log 4n,

ACR!n
A rectangular

where || - || denotes the supremum norm, and C' is an absolute constant. ]

Lemma 23 (Equation (3.5) in Giné, Latala, and Zinn 2000). For a degenerate and decoupled second order
U-statistic, > hij(zi,Z;), the following holds:

n 2
P Z ij(Ti, )| >t <Cexp{—émin |:lt), (%)3, (%)

9,177

n
i,j=1,i#j

N

where C' is some universal constant, and A, B and D are any constants satisfying

> iy
A> | Jnax sup |wij (u, v)|

2
B® > max [sup
1<i5<n |y

Z Euij (xi, 1})2
i=1

|

where {z;,1 <7 < n} are independent random variables, and {Z;,1 <4 < n} is an independent copy of {z;,1 <17 <
n}. ]

, Sup
u

n
> Bui(u,35)°
j=1
n

D2 2 Z Euij(l'i,i'j)2.

i,j=1,i7#j

Remark 7. To apply the above lemma, an additional decoupling step is usually needed. Fortunately, the decoupling

step only introduces an extra constant, but will not affect the order of the tail probability bound. Formally,

Lemma 24 (de la Pena and Montgomery-Smith 1995). Consider the setting of Lemma 23. Then

n n
P Z Uij(iti,l’j) >t| <C-P|C Z uij(a:i,i:j) >t
1,5,i#] 4,5,i#]
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where C' is a universal constant. |

As a result, we will apply Lemma 23 without explicitly mentioning the decoupling step or the extra constant it

introduces. |

5.10 Proof of Theorem 9

To bound the distance between the two processes, T (+) and B¢ (+), we employ the proof strategy of Giné, Koltchinskii,
and Sakhanenko (2004). Recall that F' denotes the distribution of z;, and we define

Khxo F~H (@) = Knx(F ' ().
Take v < v’ in [0, 1], we have

|Khx 0 F7'(v) = Ko Fﬁl(v/)’
[ S ch T R () [IL(F’l(v) <x+hu) — LF~1(v') < x+ hu)] K (u) g(x + hu)du

A/ CI}LYXTth,xThCh,x

3 S cg,xrhr;;ph(u)' [1(F*1(v) <x+hu) — L(F~ (0') < x+ hu)} K () g(x + hu)du

C% xTth,xThch,x
\/ B

Therefore, the function K, x o F~*(+) has a total variation bounded by

[
h

c;l,xThF;;R(u)‘ [n(F*l(o) <x+hu) — L(F~Y(1) < x+ hu)] K (u) g(x + hu)du

A/ C;L’XTth,xThch,x

f_ll CQWThF;’iR(u)‘ K (u) g(x + hu)du
= <y

[ At
Cy xTthyxThch,x
B

It is well-known that functions of bounded variation can be approximated (pointwise) by convex combination

L
7

of indicator functions of half intervals. To be more precise,

{Kixo F7'(): xeT}c @%m{ £1( <), +0(> 1)}

Following (2.3) and (2.4) of Giné, Koltchinskii, and Sakhanenko (2004), we have

Ca(u+ Cslogn)

P {sup Ta(x) — %G(x)‘ > N

:| S 056_05u7
x€T

where C5 is some universal constant.
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5.11 Proof of Lemma 10

Take |x — y| < & to be some small number, then

hTnl f% R(u) [IL(x <x+hu) — F(x+ hu)} K (u) g(x + hu)du

\/ C/h’XTth,xThCh,x

Chy TnTr) [ R(u) [Il(as <y+hu)— F(y+ hu)] K () gy + hu)du

/At
Ch7yTth,yThCh,y

Khx(x) = Kh,y(x) =

AN TN AN b,
_ Chx Lnly B Chy Lnly / R(u) [IL(x <x+hu) - F(x+ hu)]K (u) g(x + hu)du
oy LrQx Then x Chy TnQhyTheny A
N chyTnlhy <1/ [R (D) X (D) R (u) K (“ - y) ] []l(:r <) — F(u)]g(u)du>
/C,h,yﬂrhﬂh,yﬂrhch,y h [y h h h h -
_ ! (choT = T Tk | [, RO[Lo < x hu) = Foc b)) K (0) gx-+ ) (m)
\/Chy TrShyTheny a5
+ 1 ¢y (T7k =T R(u) [1(e < x+ hu) — Fxt hu)| K (u) glx + hu)du (In)
1/Cl Tth,yThch,,y %

(I11)

_ 1 c/h“'rhlﬂ;; </ R(u) []l (x < x4+ hu) — F(x+ hu)} K (u) g(x+ hu)du)
Ch, xTth xThenx oy Trhy Then,y =

y Il - _ _ _
I (G R (57 - (5 ()t - )
(V)
For term (I), its variance (replace the placeholder = by x;) is

1

Y S o ’ o _ 1 2
V[(I)] - cz’yTth,yThch,y (Ch,xTh Ch,yTh) Qh,x (C}L,xTh Ch,yTh) o ( 7"1(6 h‘) (h’) ) .

h
Term (II) has variance

1

_ _ _ —1\/ 1 € 2
V() = ———— (T =Ty s, (T =T (6, Yh) = O ,(,M)
[( )] C;%y’thh,yThch,yCh’y h( h,x h,y) h, ( h,x h,y) (Chvy h) h \h )

1

where the order % A 1 comes from the difference Fh Iy ¥
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Next for term (III), we have

2

V[(I11)] = ! - L hx T Then

/ /
Ch’XTth,xThCh,x Chnyth,yThch,y

2
o LR Tnenx — ¢  Tallny Thcny
L=yt AR XIS,
h,y 1+ h3thy L hChy

2
/ /
- Ch,xTth,xThch,x - chnyth,yThch,y
Chy Ty Thcn,y

2

/ / / / /

o hx T (Qnx — Qny) Thenx n (hxTh = ChyTh)Qny Thchx + (ch Lh — Chy Th)Qny Lheny
Cznyth,yThch,y C;L)yTth,yThCh,y

The first term has bound

C;LXTh(Qh,x - Qh,y)ThCh,x -0 (i)
c’h,y"thh,yThch,y o h '

The third term has bound

r1(e, h)’f’g(h)) .

-

(C;l,xTh - c;z,y’rh)Qh,y’rhch,y ) |(CIh,XTh - c/h,yTh)Q}lL{y2| -0 (

/ ~
Ch7yTth,yThCh,y /C;l yTth,yThch,y

Finally, the second term can be bounded as

(chuTh = chyTr)QnyTrchx  (ChxTh = chyTn) iy Tneny + (¢ Tn = chy Tr)Qny(ch T — iy Th)

/ /
Ch’yTth,yThCh,y Ch’yTth,yThch,y

1 1 2 2
=0 (ﬁh(&h)m(h) + Eﬁ(é,h) ra(h) ) .

Overall, we have that

V(D) = 0 <% n %7‘1(5, R)2ra (h)? + %7‘1(5, h)4r2(h)4> .

Given our assumptions on the basis function and on the kernel function, it is obvious that term (IV) has variance

V[aV)] = O (% (% A 1)2) .

The bound on E[sup, 7 |Ba(x)|] can be found by standard entropy calculation, and the bound on E[sup,; |Ta(x)|]
is obtained by the following fact

E {sup |:¢G(x)|} <E {sup |%G(x)|} +E {sup 1Ta(x) — Bc(x)l} ;

x€T x€T x€T

and that

E [i‘éfi.’ Fa(x) - sBG(x)@ - /Ooo P {i‘ég Fo(x) — Ba(x)| > u] du=0 <1\3§TZ> — o(+/Togn),

which follows from Theorem 9 and our assumption that logn/(nh) — 0.
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5.12 Proof of Lemma 11

We adopt the following decomposition (the integration is always on % x =X unless otherwise specified):

% i // R(u)R(v)’ [Il(azl <x+hu) — F(x+ hu)] [IL(L <y+hv) - F(y+ hv)} K(u)K(v)g(x + hu)g(y + hv)dudv
7 0
- // R(u)R(v)’ [F(x + hu) — F(x+ hu)} [F(y +hv)— F(y+ hv)} K(u)K (v)g(x + hu)g(y + hv)dudv. (1I1)

By the uniform convergence of the empirical distribution function, we have that

sup |(IT)] = O (%) .

x,yeI

From the definition of ¥ «,, we know that

E[(I)] = Yhxy-

As (I) is a sum of bounded terms, we can apply Lemma 21 and easily show that

1
sup |(I) — Zpxy| + Op (\/ Ogn> .
x,yEL n

5.13 Proof of Lemma 12

We rewrite (16) as

(16) vn o TnnxThcnx cg,xThF,jl f% R(u) [F(x + hu) — H/R(u)'fgl} K (u) g(x + hu)du
= [vn -
Chx Tn8h xThen 1/ Chx TrhxThen
<

n h TuQxThenx | , .
— |su —————— | |su R(u)|F(x+ hu) — 0 R(u)Y K (u) g(x + hu)du
k {p \/ T [ () [Fx+ hu) = 0’ R(u) 0y | K () g(x+ ha)

=Op (\/Esup Q(h,X)) ;
h xe€T

where the final bound holds uniformly for x € 7.

|

X —x
h

Next, we expand term (17) as

L o TR [x R(u) []l(xi < x4+ hu) — F(x + hu)] K () g(x + hu)du
’ h

Vi 1/ x TrhxThenx

1 En: & XnQnTncnx cﬁl,XThF;i f% R(u) [IL (z: <x+hu) — F(x+ hu)] K (u) g(x + hu)du
+ — 1— = : . :
\/ﬁ i=1

\/ C;l’xrhﬂh,xrhch,x

Chox T hx Thenx

¢, TrhQnxThenx
N P LITYS TR PO
o LrSlh T hh
(I

Term (I) can be easily bounded by
logn logn
| = E = .
up |0l = Or (( nh? ) [ig'%(x)@) or (%)

41
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5.14 Proof of Theorem 13

The claim follows from Theorem 9 and previous lemmas.

5.15 Proof of Theorem 14

Let Z. be an e-covering (with respect to the Euclidean metric) of Z, and assume € < h. Then the process Ba(-) can

be decomposed into:
Ba(x) = Bo(z. (x) + Ba(x) — Be(llz, (%)),
where IIz, : Z — Z. is a mapping satisfying:

Iz, (x) = argmin |y — x|.
yeZe

We first study the properties of B (x) — B (7. (x)). With standard entropy calculation, one has:

<E sup [Be(x) — Baly)l

E [sup B (x) - %csz(x))@ < E[ sup B0 — Baly)
x,YET,o(x,y)<d(e)

x€T x,YEL,|x—y|<e

é(e)
= / Viog NN, Z, 06)d),
0

where

5(e)=C (%% + %m(s, hyra(h) + %7"1(5, h)%(hf) ,

for some C' > 0 that does not depend on ¢ and h, and N()\,Z,0¢) is the covering number of Z measured by the

pseudo metric o¢(+, ), which satisfies

N(A T, 06) 3 6_11@).
Therefore, we have
1 ¢ 1 1 2 2
B [sup B0 ~ Bo(lTz ()| = (224 Toratemina(h) + (e n?na®)? ) Viosn. (n

A similar bound holds for the process %G() due to the uniform consistency of the covariance estimator.
Now consider the discretized version of B¢(-) and Ba(:). By applying Lemmas 11 and 22, we directly obtain
the following bound:

sup

A rectangular

P[{%G(HIE (x),x € I} c A] P [{%G(HZE (x),x € I} c A] ‘ = Os ((ﬁif)i log i) G

As € appears in (I) polynomially but only logarithmically in (II), it is possible to choose ¢ sufficiently small so that

5
—0p [ lostn )
(nh?)a

the discretization error becomes negligible. Therefore,

sup
u€R

]P’[sup\%c(x)\ < u] —P*[sup|‘3g(x)| < u}

xEL x€T
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5.16 Proof of Lemma 15

We apply Lemma 21. For simplicity, assume R(-) is scalar, and let

i) =R (22) G (B5%) =T

Then it is easy to see that

sup max V[ui»(x)] = O(h™"), sup max |uin(x)] = O(h™").

xeZ 1<i<n xeZ 1<i<n

Let |x — y| <& < h, we also have

) — w1 = [ () e (% )- < ) L () T
R () R () R (P () e (2) 5 (S [
vl (m) 2t *(xi:)ﬁw(%:)ﬁl

where M is some constant that does not depend on n, h or €. Then it is easy to see that

IN

IA

sup max V[u; pe(x)] = O (i) , sup max |uip.e(x) — E[uin-(x)]] = O(R™"), sup max E[ju;n.(x)|] =O (E) .

xeZ 1<i<n h?2 xeZ 1<i<n xeZ 1<i<n

Now take e = y/hlogn/n, then log N(e,Z,| - |) = O(logn). Lemma 21 implies that

LR () e ()~ on (1/157).

Let R;(x) = R(zi — x) and Wi(x) = K ((zi — x)/h)/h, then we split 3 ., into two terms,

sup
x€Z

5.17 Proof of Lemma 16

5 D TR GORA) W (W) (£ s < ) = Fe)) (Mas < n) = Flon))

'L]k

=—= Z Th Ry () B (y) TaW; (OWiely) (F (@) = F(wy) ) (Plox) = F(an)).

(II) satisfies

sup |(IT)] <SuplF( ) = F(a)]” <sup ZIThRJ )Wj(X)|> :

x,yET czn

It is obvious that
R ) 1
sup |F(z) — F(z)|"=0p | — ) .
x n
As for the second part, one can employ the same technique used to prove Lemma 15 and show that

sup — Z IThR; ()W, (x)| = Op(1),

x€Z T
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implying that

1
IN=0p(~]).
sup (1] =0- (+)
For (I), we first define
wii () = TR (W, () (@i < ;) = F(z)),
and

Ui(x) = Eluij (x)|zs;9 # 5], @i(x) = EZuij(x).

Then

— S ww ) + 5 37 @60 w60) sy + - S s (aly) — ()
= S wm )+ 3 () — w6 ) + - S w0 (sly) — ()’
(1.1) (1.2) (1.3)

ST @0 — w00 () — )

i

(1.4)

Term (I.1) has been analyzed in Lemma 11, which satisfies

]
sup [(I.1) — Lhxy| = Op (, / Og”> .
x,yEL n

Term (I.2) has expansion:

1 _ _ 1 _ _ 1 _ _
(12) = 55 37 (i) — w00) 1aly)’ = 5 D7 (ot () — 000 aly) + 3 3 (e () — 1s(9) i)
e disltyi]nct .
(1.2.2)
(1.2.1)
By the same technique of Lemma 15, one can show that
1
sup [(1.2.2)| = Op (7> .
x,yET n
We need a further decomposition to make (I.2.1) a degenerate U-statistic:
n—1 _ — /
(L21) = == > B [ (ui;(0) — ai(x) a(y)’| 2;]
J
(1.2.1.1)
1 _ _ _ _
+o2 Z { (uig(x) = @i(x)) @i(y) — E [(wij(x) — @i(x)) @ily)’| 2] } :
7
distinct

(1.2.1.2)

(I.2.1) has zero mean. By discretizing Z and apply Bernstein’s inequality, one can show that the (I.2.1.1) has
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order Op (\/log n/n)
For (1.2.1.2), we first discretize Z and then apply a Bernstein-type inequality (Lemma 23) for degenerate U-

statistics, which gives an order

sup |(1.2.1.2)] = Os ( logn ) .

x,yeI n2h

Overall, we have

x,yeZ n th n

sup |(L2)] = Op (le,+ logn N logn> :OP< logn> ,

and the same bound applies to (I.3).

For (1.4), one can show that

sup sup | SR (W () (11(;,3 <) - F(:Ej)) ~E [ThRj(X)Wj(x) (n(x <) — F(Sﬂj))] ' = Op < /l(fn) :

x€Z z€X | TV

which means

1 1
sup |(L4)| = Op ( ogn> _0p < / ogn) ’
x,yET nh n

under our assumption that logn/(nh?) — 0.

As a result, we have

Sup |Zhxy — Bhxy
x,yYEL

—O]p< logn) '
n

/ A / n—1/5 n—1
Ch,xTh(Qh,x,y - Qh,x,y)Thch,y o Ch,xThFh,x(Zh»X;y - Zh,xyy)rh,y’rhchvy

Now take ¢ to be a generic vector. Then we have

C';L’XTth,xThCh,x c§17yTth7yThch,y C%7XTth,xTh0h,x cﬁl’yTth,yThch,y

/ —1 -1 —1
Ch,xTh(Fh,x B Fh,x)zhaxvyrh,yrhchvy

/ /
Ch’xTth,xThch,x Ch7yTth,yThch,y

/ -1 —1 -1
Ch,XThFh,thﬂan(Fh,y - Fh,y)Thch,y

C/hyxfthh,xThch,x c§17yTth7yThch,y

From the analysis of f]h,x,y, we have

Cl XT}Lfil 2h - Zh f‘il’rhch 1
sup h, h,x( XY ,xyy) hy DA O ogn

/ /
x,ye€l C}%XTth,xThch,x Ch’yTth,yThCh,y

For the second term, we have

/ —1 —1 —1 / n—1 —1 1/2 / —1s1/2
C}%XTh (Fh,x - Fh,x)Eh%,th,yThch,y |C}L,><Th(rh,x - F}L,X)Z}L,X ‘ : |Ch,yThFh,th,y |
Clh‘xTth,xThCh,x C;lnyth,yThCh,y C%,XTth’xThCh,x C/h’yTth,yThCh,y

logn
= Or ( nh? ) ’

The same bound holds for the third term.
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5.18 Proof of Lemma 17

We decompose (18) as

/ h—1

Ch,xThF X 1 T; — X
sup |(18)] < T sup - & {sup ng R((zi —x)/h)[1 — F(x )]EK( 7 ):|
x€T x€T /C%’xTth,x’rhCh,x x€T

@ (11)

As both ', , and c'h’X'I‘th,xThch,x are uniformly consistent, term (I) has order

For (II), we can employ the same technique used to prove Lemma 15 and show that

(II) = Op (1 + ljlgh”> = 0s(1),

= x)/h)[L = F(2:)] 3 K (*57).

where the leading order in the above represents the mean of R((x;

Next, term (19) is bounded by

/ —1 n

Ch,xThF X 1 1 xr; — X
sup|(19)] < vt |sup Y [sup =3 R(( ) W) — 06 Rl —)]3 K (P )} .
x€T xe€L /C/hyx'thh,XThCh,X xe€L =1

(I1)

(09)

Employing the same argument used to prove Lemma 17, we have

To bound term (II), recall that K (-) is supported on [—1, 1], meaning that

ey ZR o= X)W () = ) Rz — )] (2 %)

et nZR i = X)/h)[F(zi) = 0(x) R(zi —x)]1(|z; — x| < h)%K(mh_X)

< [sup1 i R((xi —X)/h)lK(mi —X)' [sup sup HF(U) —0(x)'R(u _X)] ’] .
x€Z T i=1 h V€T wex—hxth]

(IL.1) (I1.2)

Term (I1.2) has the bound sup,c 0(h,x). Term (IL.1) can be bounded by mean and variance calculations and

adopting the proof of Lemma 15, which leads to

(IL1) = Os (1 + 1‘:3:) = 0p(1).

To show the last conclusion, define the following:

wij(x) = ThR(z; — x) []l(xi <) — F(x]-)] %K (”ﬂ}: X) - [ R [11 (z: < x+ hu) — F(x + hu)] K (u) f(x + hu)du,
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then n~2 D=1z, Wi(x) is a degenerate U-statistic. We rewrite (20) as
c; Thf_l 1 n

sup [(20)] < v/n |sup sup [~ > uyg
xeZ

/ ~ 2
c f]f rr = n
x€T Clhyx hQ}’L,X hch,x x€l 21]71717£J

(1) (11)

As before, we have

Now we consider (II). Let Z. be an %-covering of Z, we have

n n n
1 1 1
sup | — E wij(x)| < max | — E wi; (X)| + max = g ui; (X) — uij(y) )| -
xez |nN° . = . x€Ze | M= — x€ZLe,yETL,|x—y|<e [N* = —
i,j=1,i#j i,j=1,i#] i,J=1,i#]

(1L.1) (Ir.2)

We rely on the concentration inequality in Lemma 23 for degenerate second order U-statistics. By our assump-
tions, A can be chosen to be Ch1h~* where C; is some constant that is independent of x. Similarly, B can be chosen
to be Cay/nh™"! for some constant Cy which is independent of x, and D can be chosen as Csnh~1/?
independent of x. Therefore, by setting n = K log n/m for some large constant K, we have

for some Cjs

P[(IL1) >n] < C’1 max P Z uij(x)| > n’n

E x€TZ, . .
© 1,j=1,i#j

1 1 . |n?mY?y n2hn
S Cg GXP{_C min |: nes ) n1/202

W

()}

2 1
1 1 . | Klogn (K\/nhlogn>3 <K\/n2hlogn>2
=C=-exp{ —— min , , | ——————
g C C3 C2 C1

As ¢ is at most polynomial in n, the above tends to zero for all K large enough, which implies

(IL1) = Op ( logn ) .

n2h

With tedious but still straightforward calculations, it can be shown that

Jr

Jr —
n2h  hv/n2h

(I12) = Os ( logn ¢ logn )

7

and to match the rates, let ¢ = hlogn/vn2?h.

5.19 Proof of Lemma 18

The proof resembles that of of Lemma 12.

5.20 Proof of Theorem 19

The proof resembles that of Theorem 13.
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5.21 Proof of Theorem 20

The proof resembles that of Theorem 14.
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