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1 Setup

Suppose x1, x2, · · · , xn is a random sample from a univariate distribution with cumulative dis-

tribution function F (·). Also assume the distribution function admits a (sufficiently accurate)

linear-in-parameters local approximation near an evaluation point x:

%(h, x) := sup
|x−x|≤h

∣∣F (x)−R(x− x)′θ(x)
∣∣ is small for h small,

where R(·) is a known basis function. The parameter θ(x) can be estimated by the following local

L2 method:

θ̂G = argmin
θ

∫
X

(
F̂ (u)−R(u− x)′θ

)2 1

h
K

(
u− x

h

)
dG(u), F̂ (u) =

1

n

n∑
i=1

1(xi ≤ u), (1)

where K(·) is a kernel function, X is the support of F (·), and G(·) is a known weighting function

to be specified later. The local L2 estimator (1) is closely related to another estimator, which is

constructed by local regression:

θ̂ = argmin
θ

n∑
i=1

(
F̂ (xi)−R(xi − x)′θ

)2 1

h
K

(
xi − x

h

)
. (2)

The local regression estimator can be equivalently expressed as θ̂F̂ , meaning that it can be viewed

as a special case of the local L2 estimator, with G(·) in (1) replaced by the empirical distribution

function F̂ (·).
For future reference, we first discuss some of the notation we use in the main paper and this

Supplemental Appendix (SA). For a function g(·), we denote its j-th derivative as g(j)(·). For

simplicity, we also use the “dot” notation to denote the first derivative: ġ(·) = g(1)(·). Assume

g(·) is suitably smooth on [x − δ, x) ∪ (x, x + δ] for some δ > 0, but not necessarily continuous or

differentiable at x. If g(·) and its one-sided derivatives can be continuously extended to x from the

two sides, we adopt the following special notation:

g(j)u = 1(u < 0)g(j)(x−) + 1(u ≥ 0)g(j)(x+).

With j = 0, the above is simply gu = 1(u < 0)g(x−) + 1(u ≥ 0)g(x+). Also for j = 1, we use

ġu = g
(1)
u . Convergence in probability and in distribution are denoted by

P→ and  , respectively,

and limits are taken with respect to the sample size n going to infinity unless otherwise specified.

We use | · | to denote the Euclidean norm.

The following matrices will feature in asymptotic expansions of our estimators:

Γh,x =

∫
X−x
h

R(u)R(u)′K (u) g(x + hv)du =

∫
X−x
h

R(u)R(u)′K (u) gudu+O(h) = Γ1h,x +O(h),
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and

Σh,x =

∫∫
X−x
h

R(u)R(v)′
[
F (x + h(u ∧ v))− F (x + hu)F (x + hv)

]
K (u)K (v) g(x + hu)g(x + hv)dudv

= F (x)(1− F (x))

(∫
X−x
h

R(u)K(u)gudu

)(∫
X−x
h

R(u)K(u)gudu

)′
+ h

∫∫
X−x
h

R(u)R(v)′K(u)K(v)
[
− F (x)(ufu + vfv)gugv + F (x)(1− F (x))(uġugv + vġvgu)

]
dudv

+ h

∫∫
X−x
h

R(u)R(v)′K(u)K(v)(u ∧ v)fu∧vgugvdudv +O(h2)

= Σ1h,x + hΣ2h,x +O(h2).

Now we list the main assumptions.

Assumption 1. x1, . . . , xn is a random sample from a distribution F (·) supported on X ⊆ R, and

x ∈ X .

(i) For some δ > 0, F (·) is absolutely continuous on [x− δ, x+ δ] with a density f(·) admitting

constants f(x−), f(x+), ḟ(x−), and ḟ(x+), such that

sup
u∈[−δ,0)

f(x + u)− f(x−)− uḟ(x−)

u2
+ sup
u∈(0,δ]

f(x + u)− f(x+)− uḟ(x+)

u2
<∞.

(ii) K(·) is nonnegative, symmetric, and continuous on its support [−1, 1], and integrates to 1.

(iii) R(·) is locally bounded, and there exists a positive-definite diagonal matrix Υh for each

h > 0, such that ΥhR(u) = R(u/h)

(iv) For all h sufficiently small, the minimum eigenvalues of Γh,x and h−1Σh,x are bounded

away from zero. �

Assumption 2. For some δ > 0, G(·) is absolutely continuous on [x − δ, x + δ] with a derivative

g(·) ≥ 0 admitting constants g(x−), g(x+), ġ(x−), and ġ(x+), such that

sup
u∈[−δ,0)

g(x + u)− g(x−)− uġ(x−)

u2
+ sup
u∈(0,δ]

g(x + u)− g(x+)− uġ(x+)

u2
<∞.

�

Example 1 (Local Polynomial Estimator). Before closing this section, we briefly introduce

the local polynomial estimator of Cattaneo, Jansson, and Ma (2020), which is a special case of

our local regression distribution estimator. The local polynomial estimator employs the following

polynomial basis:

R(u) =
(

1, u,
1

2
u2, · · · , 1

p!
up
)′
,

for some p ∈ N. As a result, it estimates the distribution function, the density function, and
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derivatives thereof. To be precise,

θ(x) =
(
F (x), f(x), f (1)(x), · · · , f (p−1)(x)

)′
.

With R(·) being a polynomial basis, it is straightforward to characterize the approximation bias

%(h, x). Assuming the distribution function F (·) is at least p+1 times continuously differentiable in

a neighborhood of x, one can employ a Taylor expansion argument and show that %(h, x) = O(hp+1).

We will revisit this local polynomial estimator below as a leading example when we discuss pointwise

and uniform asymptotic properties of our local distribution estimator. �

2 Pointwise Distribution Theory

We discuss pointwise (i.e., for a fixed evaluation point x ∈ X ) large-sample properties of the local

L2 estimator (1), and that of the local regression estimator (2). For ease of exposition, we suppress

the dependence on the evaluation point x whenever possible.

2.1 Local L2 Distribution Estimation

With simple algebra, the local L2 estimator in (1) takes the following form

θ̂G =

(∫
X
R(u− x)R(u− x)′

1

h
K

(
u− x

h

)
dG(u)

)−1(∫
X
R(u− x)F̂ (u)

1

h
K

(
u− x

h

)
dG(u)

)
.

We can further simplify the above. First note that the “denominator” can be rewritten as∫
X
R(u− x)R(u− x)′

1

h
K

(
u− x

h

)
dG(u)

= Υ−1h

(∫
X

ΥhR(u− x)R(u− x)′Υh
1

h
K

(
u− x

h

)
g(u)du

)
Υ−1h = Υ−1h ΓhΥ−1h .

The same technique can be applied to the “numerator”, which leads to

θ̂G − θ = ΥhΓ−1h

(∫
X−x
h

R(u)F̂ (x + hu)K (u) g(x + hu)du

)
− θ

=ΥhΓ−1h

∫
X−x
h

R(u)
[
F (x + hu)− θ′R(u)Υ−1h

]
K (u) g(x + hu)du (3)

+ Υh
1

n

n∑
i=1

Γ−1h

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du. (4)

The above provides a further expansion of the local L2 estimator into a term that contributes as

bias, and another term that contributes asymptotically to the variance.

The large-sample properties of the local L2 estimator (1) are as follows.
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Theorem 1 (Local L2 Distribution Estimation: Asymptotic Normality). Assume As-

sumptions 1 and 2 hold, and that h→ 0, nh→∞ and n%(h)2/h→ 0. Then

(i) (3) satisfies ∣∣∣∣∣
∫
X−x
h

R(u)
[
F (x + hu)− θ′R(u)Υ−1h

]
K (u) du

∣∣∣∣∣ = O(%(h)).

(ii) (4) satisfies

V

[∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

]
= Σh,

and

Σ
−1/2
h

(
1√
n

n∑
i=1

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)
 N (0, I).

(iii) The local L2 estimator is asymptotically normally distributed

√
n
(
Γ−1h ΣhΓ−1h

)−1/2
Υ−1h (θ̂G − θ) N (0, I).

�

For valid inference, one needs to construct standard errors. To start, note that Γh is known,

and hence we only need to estimate Σh. Consider the following:

Σ̂h =
1

n

n∑
i=1

∫∫
X−x
h

R(u)R(v)′
[
1(xi ≤ x + hu)− F̂ (x + hu)

][
1(xi ≤ x + hv)− F̂ (x + hv)

]
K(u)K(v)g(x + hu)g(x + hv)dudv, (5)

where F̂ (·) is the empirical distribution function. The following theorem shows that standard errors

constructed using Σ̂h are consistent.

Theorem 2 (Local L2 Distribution Estimation: Standard Errors). Assume Assumptions

1 and 2 hold, and that h→ 0 and nh→∞. Let c be a nonzero vector of suitable dimension, then∣∣∣∣∣c′Σ̂hc

c′Σhc
− 1

∣∣∣∣∣ = OP

(√
1

nh

)
.

If, in addition that n%(h)2/h→ 0, then

c′(θ̂G − θ)√
c′ΥhΓ−1h Σ̂hΓ−1h Υhc/n

 N (0, 1).

�
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2.2 Local Regression Distribution Estimation

The local regression distribution estimator (2) can be understood as a special case of the local

L2 estimator by setting G = F̂ (i.e., using the empirical distribution as the design). However,

the empirical measure F̂ is not smooth, so that large-sample properties of the local regression

estimator cannot be deduced directly from Theorem 1. In this subsection, we will show that

estimates obtained by the two approaches, (1) and (2), are asymptotically equivalent under suitable

regularity conditions. To be precise, we establish the equivalence of the local regression distribution

estimator, θ̂, and the (infeasible) local L2 distribution estimator, θ̂F (i.e., using F as the design

weighting in (1)). As before, we suppress the dependence on the evaluation point x.

First, the local regression estimator can be written as

θ̂ − θ =

(
1

n

n∑
i=1

R(xi − x)R(xi − x)′
1

h
K

(
xi − x

h

))−1
(

1

n

n∑
i=1

R(xi − x)
[
F̂ (xi)−R(xi − x)′θ

]1

h
K

(
xi − x

h

))

= ΥhΓ̂−1h ΓhΓ−1h

(
1

n

n∑
i=1

ΥhR(xi − x)
[
F̂ (xi)−R(xi − x)′θ

]1

h
K

(
xi − x

h

))
,

where

Γ̂h =
1

n

n∑
i=1

ΥhR(xi − x)R(xi − x)′Υh
1

h
K

(
xi − x

h

)
,

and Γh is defined as before with G = F .

To proceed, we further expand as follows

1

n

n∑
i=1

ΥhR(xi − x)
[
F̂ (xi)−R(xi − x)′θ

]1

h
K

(
xi − x

h

)

=
1

n2

n∑
i,j=1,i 6=j

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)

+
1

n2

n∑
j=1

ΥhR(xj − x)
[
1− F (xj)

]1

h
K

(
xj − x

h

)
(6)

+
1

n

n∑
j=1

ΥhR(xj − x)
[
F (xj)−R(xj − x)′θ

]1

h
K

(
xj − x

h

)
. (7)

The last two terms correspond to the leave-in bias and the approximation bias, respectively. We

7



further decompose the first term with conditional expectation:

1

n2

n∑
i,j=1,i 6=j

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)

=
1

n2

n∑
i,j=1,i 6=j

E
[

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)∣∣∣∣xi]

+
1

n2

n∑
i,j=1,i 6=j

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)

− E
[

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)∣∣∣∣xi]
=
n− 1

n2

n∑
i=1

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du (8)

+
1

n2

n∑
i,j=1,i 6=j

ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)
−
∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du. (9)

The following theorem studies the large-sample properties of each term in the above decom-

position, and shows that the local regression distribution estimator is asymptotically equivalent to

the local L2 estimator by setting G = F , and hence it is asymptotically normally distributed.

Theorem 3 (Local Regression Distribution Estimation: Asymptotic Normality). As-

sume Assumption 1 holds, and that h→ 0, nh2 →∞ and n%(h)2/h→ 0. Then

(i) Γ̂h satisfies

∣∣∣Γ̂h − Γh

∣∣∣ = OP

(√
1

nh

)
.

(ii) (6) and (7) satisfy

(6) = OP

(
1

n

)
, (7) = OP(%(h)).

(iii) (9) satisfies

(9) = OP

(√
1

n2h

)
.

(iv) The local regression distribution estimator (2) satisfies

√
n
(
Γ−1h ΣhΓ−1h

)−1/2
Υ−1h (θ̂ − θ) =

√
n
(
Γ−1h ΣhΓ−1h

)−1/2
Υ−1h (θ̂F − θ) + oP(1) N (0, I). �

We now discuss how to construct standard errors in the local regression framework. Note
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that Γh can be estimated by Γ̂h, whose properties have already been studied in Theorem 3(i). To

estimate Σh, we propose the following

Σ̂h =
1

n

n∑
i=1

 1

n

n∑
j=1

ΥhR(xj − x)
[
1(xi ≤ xj)− F̂ (xj)

]1

h
K

(
xj − x

h

)
·

 1

n

n∑
j=1

ΥhR(xj − x)
[
1(xi ≤ xj)− F̂ (xj)

]1

h
K

(
xj − x

h

)′ .
where F̂ (·) is the empirical distribution function. The following theorem shows that standard errors

constructed using Σ̂h are consistent.

Theorem 4 (Local Regression Distribution Estimation: Standard Errors). Assume As-

sumption 1 holds. In addition, assume h→ 0 and nh2 →∞. Let c be a nonzero vector of suitable

dimension. Then ∣∣∣∣∣c′Γ̂−1h Σ̂hΓ̂−1h c

c′Γ−1h ΣhΓ−1h c
− 1

∣∣∣∣∣ = OP

(√
1

nh2

)
.

If, in addition that n%(h)2/h→ 0, one has

c′(θ̂ − θ)√
c′ΥhΓ̂−1h Σ̂hΓ̂−1h Υhc/n

 N (0, 1).

�

3 Efficiency

For ease of presentation, we focus on the (infeasible) local L2 distribution estimator θ̂F ,

θ̂F = argmin
θ

∫
X

(
F̂ (u)−R(u− x)′θ

)2 1

h
K

(
u− x

h

)
dF (u), (10)

but all the results in this section are applicable to the local regression distribution estimator θ̂, as

we showed earlier that it is asymptotically equivalent to θ̂F . In addition, we consider a specific

basis:

R(u) =
(
1, P (u)′, Q(u)

)′
, (11)

where P (u) is a polynomial basis of order p:

P (u) =

(
u,

1

2
u2, · · · , 1

p!
up
)′
,

9



and Q(u) is a scalar function, and hence is a “redundant regressor.” Without Q(·), the above

reduces to the local polynomial estimator of Cattaneo, Jansson, and Ma (2020). See Section 1 and

Example 1 for an introduction.

We consider additional regressors because they may help improve efficiency (i.e., reduce the

asymptotic variance). Following Assumption 1, we assume there exists a scalar υh (depending on h)

such that υhQ(u) = Q(u/h). Therefore, Υh is a diagonal matrix containing 1, h−1, h−2, · · · , h−p, υh.

As we consider a (local) polynomial basis, it is natural to impose smoothness assumptions on F (·).
In particular,

Assumption 3. For some δ > 0, F (·) is (p+1)-times continuously differentiable in X ∩ [x−δ, x+δ]

for some p ≥ 1, and G(·) is twice continuously differentiable in X ∩ [x− δ, x + δ]. �

Under the above assumption, the approximation error satisfies %(h) = O(hp+1), and the pa-

rameter θ can be partitioned into the following:

θ =
(
θ1, θ

′
P , θQ

)′
=
(
F (x), f(x), · · · , f (p−1)(x), 0

)′
.

We first state a corollary, which specializes Theorem 1 to the polynomial basis (11).

Corollary 5 (Local Polynomial L2 Distribution Estimation: Asymptotic Normality).

Assume Assumptions 1 and 3 hold, and that h → 0, nh → ∞, and n%(h)2/h → 0. Then the local

polynomial L2 distribution estimator in (10) satisfies

√
n
(
Γ−1h ΣhΓ−1h

)−1/2
Υ−1h (θ̂F − θ) N (0, I).

�

3.1 Effect of Orthogonalization

To start, consider the following (sequentially) orthogonalized basis:

R⊥(u) =
(

1, P⊥(u)′, Q⊥(u)
)′
, (12)

where

P⊥(u) = P⊥(u)−
∫
X−x
h

K(u)P (u)du,

Q⊥(u) = Q(u)−
(

1, P (v)′
)(∫

X−x
h

K(v)
(

1, P (v)′
)′(

1, P (v)′
)

dv

)−1(∫
X−x
h

K(v)
(

1, P (v)′
)′
Q(v)dv

)
.

The above transformation can be represented by the following:

R⊥(u) = Λ′hR(u),

where Λh is a nonsingular upper triangular matrix. (Note that the matrix Λh depends on the

bandwidth only because we would like to handle both interior and boundary evaluation points. If,

10



for example, we fix the evaluation point to be in the interior of the support of the data, then Λh is

a fixed matrix and no longer depends on h. Alternatively, one could also use the notation “Λx” to

denote such dependence.) Now consider the following orthogonalized local polynomial L2 estimator

θ̂⊥F = argmin
θ

∫
X

(
F̂ (u)− Λ′hR(u− x)′θ

)2 1

h
K

(
u− x

h

)
dF (u). (13)

To discuss its properties, we partition the estimator and the target parameter as

θ̂⊥F =
(
θ̂⊥1,F , (θ̂⊥P,F )′, θ̂⊥Q,F

)′
,

where θ̂⊥1,F is the first element of θ̂⊥F and θ̂⊥Q,F is the last element of θ̂⊥F . Similarly, we can partition

the target parameter,

θ⊥ = Λ−1h θ =
(
θ⊥1 , (θ⊥P )′, θ⊥Q

)′
,

so that θ⊥1 is the first element of Λ−1h θ and θ⊥Q is the last element of Λ−1h θ. As θQ = 0, simple least

squares algebra implies

θ⊥ =
(
θ⊥1 , θ

′
P , 0

)′
=
(
θ⊥1 , f(x), f (1)(x), · · · , f (p−1)(x), 0

)′
.

Note that, in general, θ⊥1 6= θ1, meaning that after orthogonalization, the intercept of the local

polynomial estimator no longer estimates the distribution function F (x).

The following corollary gives the large-sample properties of the orthogonalized local polynomial

estimator, excluding the intercept.

Corollary 6 (Orthogonalized Local Polynomial L2 Distribution Estimation: Asymptotic

Normality). Assume Assumptions 1 and 3 hold, and that h → 0, nh → ∞, and n%(h)2/h → 0.

Then the orthogonalized local polynomial L2 distribution estimator in (13) satisfies[
(Γ⊥P,h)−1Σ⊥PP,h(Γ⊥P,h)−1 (Γ⊥P,h)−1Σ⊥PQ,h(Γ⊥Q,h)−1

(Γ⊥Q,h)−1Σ⊥QP,h(Γ⊥P,h)−1 (Γ⊥Q,h)−1Σ⊥QQ,h(Γ⊥Q,h)−1

]−1/2√
n

hf(x)
Υ−1−1,h

[
θ̂⊥P,F − θP
θ̂⊥Q,F

]
 N (0, I),

where

Γ⊥P,h =

∫
X−x
h

P⊥(u)P⊥(u)′K(u)du, Γ⊥Q,h =

∫
X−x
h

Q⊥(u)2K(u)du,

Σ⊥PP,h =

∫∫
X−x
h

K(u)K(v)P⊥(u)P⊥(v)′(u ∧ v)dudv,

Σ⊥QQ,h =

∫∫
X−x
h

K(u)K(v)Q⊥(u)Q⊥(v)(u ∧ v)dudv,

Σ⊥PQ,h = (Σ⊥QP,h)′ =

∫∫
X−x
h

K(u)K(v)P⊥(u)Q⊥(v)(u ∧ v)dudv,

11



and Υ−1,h is a diagonal matrix containing h−1, h−2, · · · , h−p, υh. �

3.2 Optimal Q

Now we discuss the optimal choice of Q, which minimizes the asymptotic variance of the minimum

distance estimator. Recall from the main paper that, with orthogonalized basis, the minimum

distance estimator of f (`)(x), for 0 ≤ ` ≤ p− 1, has an asymptotic variance

f(x)
[
e′`(Γ

⊥
P,h)−1Σ⊥PP,h(Γ⊥P,h)−1e` − e′`(Γ⊥P,h)−1Σ⊥PQ,h(Σ⊥QQ,h)−1Σ⊥QP,h(Γ⊥P,h)−1e`

]
,

where e` is the (`+ 1)-th standard basis vector. In subsequent analysis, we drop the multiplicative

factor f(x).

Let p`(u) be defined as

p`(u) = e′`(Γ
⊥
P,h)−1P⊥(u),

then the objective is to maximize(∫∫
X−x
h

K(u)K(v)Q⊥(u)Q⊥(v)(u ∧ v)dudv

)−1(∫∫
X−x
h

K(u)K(v)p`(u)Q⊥(v)(u ∧ v)dudv

)2

.

Alternatively, we would like to solve (recall that Q(u) is a scaler function)

maximize

(∫∫
X−x
h
K(u)K(v)p`(u)q(v)(u ∧ v)dudv

)2∫∫
X−x
h
K(u)K(v)q(u)q(v)(u ∧ v)dudv

, subject to

∫
X−x
h

K(u)q(u)(1, P (u)′)du = 0.

To proceed, define the following transformation for a function g(·):

H(g)(u) =

∫
X−x
h

1(v ≥ u)K(v)g(v)dv.

This transformation satisfies two important properties, which are summarized in the following

lemma.

Lemma 7 (H-transformation).

(i) If g1(·) and g2(·) are bounded, and that either
∫
X−x
h
K(u)g1(u)du or

∫
X−x
h
K(u)g2(u)du is

zero, then ∫
X−x
h
∩[−1,1]

H(g1)(u)H(g2)(u)du =

∫∫
X−x
h

K(u)K(v)g1(u)g1(v)(u ∧ v)dudv.

(ii) If g1(·) and g2(·) are bounded, g2(·) is continuously differentiable with a bounded derivative,

12



and that either
∫
X−x
h
K(u)g1(u)du or

∫
X−x
h
K(u)g2(u)du is zero, then

∫
X−x
h
∩[−1,1]

H(g1)(u)ġ2(u)du =

∫
X−x
h

K(u)g1(u)g2(u)du.
�

With the previous lemma, we can rewrite the maximization problem as

maximize

(∫
X−x
h
∩[−1,1]H(p`)(u)H(q)(u)du

)2∫
X−x
h
∩[−1,1]H(q)(u)2du

subject to

∫
X−x
h
∩[−1,1]

Ṗ (u)H(q)(u)du = 0, H(q)

(
inf X − x

h
∨ (−1)

)
= 0. (14)

Theorem 8 (Variance Bound of the Minimum Distance Estimator). An upper bound of

the maximization problem (14) is

e′`(Γ
⊥
P,h)−1Σ⊥PP,h(Γ⊥P,h)−1e` − e′`

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1
e`.

Therefore, the asymptotic variance of the minimum distance estimator is bounded below by

f(x)e′`

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1
e`,

where Ṗ (u) = (1, u, u2/2, u3/3!, · · · , up−1/(p− 1)!)′. �

Example 2 (Local Linear/Quadratic Minimum Distance Density Estimation). Consider

a simple example where ` = 0 and P (u) = u, which means we focus on the asymptotic variance

of the estimated density in a local linear regression. Also assume we employ a uniform kernel:

K(u) = 1
21(|u| ≤ 1), and that the integration region is X−xh = R (i.e., x is an interior evaluation

point). Note that this example also applies to local quadratic regressions, as u and u2 are orthogonal

for interior evaluation points.

Taking P (u) = u, the variance bound in Theorem 8 is easily found to be

f(x)

(∫ 1

−1
Ṗ (u)Ṗ (u)′du

)−1
= f(x)

1

2
.

We now calculate the asymptotic variance of the minimum distance estimator. To be specific,

we choose Q(u) = u2j+1, which is a higher-order polynomial function. With tedious calculation,

one can show that the minimum distance estimator has the following asymptotic variance

AsyV[f̂MD(x)] = f(x)
11 + 4j

20 + 8j
,

which asymptotes to f(x)/2 as j →∞. As a result, it is possible to achieve the maximum amount of

13
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Figure 1. Equivalent Kernel of the Local Linear Minimum Distance Density Estimator.

Notes: The basis function R(u) consists of an intercept, a linear term u (i.e., local linear regression), and an odd
higher-order polynomial term u2j+1 for j = 1, 2, · · · , 30. Without the higher-order polynomial regressor, the local
linear density estimator using the uniform kernel is equivalent to the kernel density estimator using the
Epanechnikov kernel (black line). Including a higher-order redundant regressor leads to an equivalent kernel that
approaches the uniform kernel as j tends to infinity (red).

efficiency gain by including one higher-order polynomial and using our minimum distance estimator.

In Figure 1, we plot the equivalent kernel of the local linear minimum distance density estimator

using a uniform kernel. Without the redundant regressor, it is equivalent to the kernel density

estimator using the Epanechnikov kernel. As j gets larger, however, the equivalent kernel of the

minimum distance estimator becomes closer to the uniform kernel, which is why, as j → ∞, the

minimum distance estimator has an asymptotic variance the same as the kernel density estimator

using the uniform kernel. �

Example 3 (Local Cubic Minimum Distance Estimation). We adopt the same setting in

Example 2, i.e., local polynomial density estimation with the uniform kernel at an interior evaluation

point. The difference is that we now consider a local cubic regression: P (u) = (u, 12u
2, 1

3!u
3)′.

As before, the variance bound in Theorem 8 is easily found to be

f(x)

(∫ 1

−1
Ṗ (u)Ṗ (u)′du

)−1
= f(x)


9
8 0 −15

4

0 3
2 0

−15
4 0 45

2

 .
Again, we compute the asymptotic variance of our minimum distance estimator. Note, however,

that now we have both odd and even order polynomials in our basis P (u), therefore we include

two higher-order polynomials, that is, we set Q(u) = (u2j , u2j+1)′. The asymptotic variance of our

14



Table 1. Variance Comparison.

(a) Density f(x)

p = 1 p = 2 p = 3 p = 4

Kernel Function

Uniform 0.600 0.600 1.250 1.250

Triangular 0.743 0.743 1.452 1.452

Epanechnikov 0.714 0.714 1.407 1.407

MD Variance Bound 0.500 0.500 1.125 1.125

(b) Density Derivative f (1)(x)

p = 2 p = 3 p = 4 p = 5

Kernel Function

Uniform 2.143 2.143 11.932 11.932

Triangular 3.498 3.498 17.353 17.353

Epanechnikov 3.182 3.182 15.970 15.970

MD Variance Bound 1.500 1.500 9.375 9.375

Notes: Panel (a) compares asymptotic variance of the local polynomial density estimator of Cattaneo, Jansson, and
Ma (2020) for different polynomial orders (p = 1, 2, 3, and 4) and different kernel functions (uniform, triangular and
Epanechnikov). Also shown are the variance bound of the minimum distance estimator (MD Variance Bound),
calculated according to Theorem 8. Panel(b) provides the same information for the estimated density derivative.
All comparisons assume an interior evaluation point x.

minimum distance estimator is

AsyV

 f̂MD(x)f̂
(1)
MD (x)

f̂
(2)
MD (x)

 = f(x)


9(4j+15)
16(2j+7) 0 −15(4j+17)

8(2j+7)

0 12j+39
8j+20 0

−15(4j+17)
8(2j+7) 0 45(4j+19)

8j+28

 ,
which, again, asymptotes to the variance bound as j →∞. See also Table 1 for the efficiency gain

of employing the minimum distance technique. �

Example 4 (Local p = 5 Minimum Distance Estimation). We consider the same setting in

Example 2 and 3, but with p = 5: P (u) = (u, 12u
2, · · · , 1

5!u
5)′.
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The variance bound in Theorem 8 is

f(x)

(∫ 1

−1
Ṗ (u)Ṗ (u)′du

)−1
= f(x)



225
128 0 −525

32 0 2835
16

0 75
8 0 −315

4 0

−525
32 0 2205

8 0 −14175
4

0 −315
4 0 1575

2 0
2835
16 0 −14175

4 0 99225
2

 .

Again, we include two higher order polynomials: Q(u) = (u2j , u2j+1)′. The asymptotic variance

of our minimum distance estimator is

AsyV


f̂MD(x)

f̂
(1)
MD (x)

f̂
(2)
MD (x)

f̂
(3)
MD (x)

f̂
(4)
MD (x)

 = f(x)



225(4j+19)
256(2j+9) 0 −525(4j+21)

64(2j+9) 0 2835(4j+23)
32(2j+9)

0 75(4j+17)
16(2j+7) 0 −315(4j+19)

8(2j+7) 0

−525(4j+21)
64(2j+9) 0 2205(4j+23)

16(2j+9) 0 −14175(4j+25)
8(2j+9)

0 −315(4j+19)
8(2j+7) 0 1575(4j+21)

8j+28 0
2835(4j+23)
32(2j+9) 0 −14175(4j+25)

8(2j+9) 0 99225(4j+27)
8j+36


,

which converges to the variance bound as j → ∞. See also Table 1 for the efficiency gain of

employing the minimum distance technique. �

Before closing this section, we make several remarks on the variance bound derived in Theorem

8, as well as to what extent it is achievable.

Remark 1 (Achievability of the Variance Bound). The previous two examples suggest that

the variance bound derived in Theorem 8 can be achieved by employing a minimum distance

estimator with two additional regressors, one higher-order even polynomial and one higher-order

odd polynomial. With analytic calculation, we verify that this is indeed the case for p ≤ 10 when

a uniform kernel function is used. �

Remark 2 (Optimality of the Variance Bound). Granovsky and Müller (1991) discuss the

problem of finding the optimal kernel function for kernel-type estimators. To be precise, consider

the following

1

nh`+1

n∑
i=1

φ`,k

(
xi − x

h

)
,

where φ`,k(u) is a function satisfying

∫ 1

−1
ujφ`,k(u)du =

0 0 ≤ j < k, j 6= `

`! j = `
,

∫ 1

−1
ukφ`,k(u)du 6= 0.
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Then it is easy to see that, with a Taylor expansion argument,

E

[
1

nh`+1

n∑
i=1

φ`,k

(
xi − x

h

)]
=

1

h`+1

∫ 1

−1
φ`,k

(
u− x

h

)
f(u)du

=
1

h`

∫ 1

−1
φ`,k (u) f(x + hu)du

=
1

h`

∫ 1

−1
φ`,k (u)

k−1∑
j=0

(hu)j

j!
f (j)(x) + ukO(hk)

du

= f (`)(x) +O(hk−`).

That is, the kernel φ`,k(u) facilitates estimating the `-th derivative of the density function with a

leading bias of order hk−`. Asymptotic variance of this kernel-type estimator is easily found to be

AsyV

[
1

nh`+1

n∑
i=1

φ`,k

(
xi − x

h

)]
= f(x)

∫ 1

−1
φ`,k(u)2du.

Granovsky and Müller (1991) provide the exact form of the kernel function φ`,k(u) that minimizes

the asymptotic variance subject to the order of the leading bias.

Take ` = 0 and k = 2, φ`,k(u) takes the following form:

φ`,k(u) =
1

2
1(|u| ≤ 1),

which is the uniform kernel and minimizes variance among all second order kernels for density

estimation. As illustrated in Example 2, our variance bound matches f(x)
∫ 1
−1 φ`,k(u)2du.

Now take ` = 1 and k = 3. This will give an estimator for the density derivative f (1)(x) with

a leading bias of order O(h2). The optimal choice of φ`,k(u) is

φ`,k(u) =
3

2
u1(|u| ≤ 1).

to match the order of bias, we consider the minimum distance estimator with p = 3. Again, the

variance bound in Theorem 8 matches f(x)
∫ 1
−1 φ`,k(u)2du.

As a final illustration, take ` = 1 and k = 5, which gives an estimator for the density derivative

f (1)(x) with a leading bias of order O(h4). The optimal choice of φ`,k(u) is

φ`,k(u) =

(
75

8
u− 105

8
u3
)
1(|u| ≤ 1).

It is easy to see that f(x)
∫ 1
−1 φ`,k(u)2du = 75f(x)/8. To match the bias order, we take p =

5 for our minimum distance estimator. The variance bound is 75f(x)/8, which is the same as

f(x)
∫ 1
−1 φ`,k(u)2du.

With analytic calculations, we verify that the variance bound stated in Theorem 8 is the same as
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the minimum variance found in Granovsky and Müller (1991). Together with the previous remark,

we reach a much stronger conclusion: including two higher-order polynomials in our minimum

distance estimator can help achieve the variance bound in Theorem 8, which, in turn, is the smallest

variance any kernel-type estimator can achieve (given a specific leading bias order). �

Remark 3 (Another Density Estimator Which Achieves the Variance Bound). The

following estimator achieves the bound of Theorem 8, although it does not belong to the class of

estimators we consider in this paper.

θ̂ND =

(∫
X
Ṗ (u− x)Ṗ (u− x)′

1

h
K

(
u− x

h

)
du

)−1( 1

n

n∑
i=1

Ṗ (xi − x)
1

h
K

(
xi − x

h

))
,

where Ṗ (u) = (1, u, u2/2, · · · , up−1/(p−1)!)′ is the (p−1)-th order polynomial basis. The subscript

represents “numerical derivative,” because the above estimator can be understood as

θ̂ND =

(∫
X
Ṗ (u− x)Ṗ (u− x)′

1

h
K

(
u− x

h

)
du

)−1(∫
X
Ṗ (u− x)

1

h
K

(
u− x

h

)
dF̂ (u)

du
du

)

= argmin
θ

∫
X

(
dF̂ (u)

du
− Ṗ (u− x)′θ

)2
1

h
K

(
u− x

h

)
du,

where the derivative dF̂ (u)/du is interpreted in the sense of generalized functions. From the above,

it is clear that this estimator requires the knowledge of the boundary position (that is, the knowledge

of X ).

With straightforward calculations, this estimator has a leading bias

E[θ̂ND] =

(∫
X
Ṗ (u− x)Ṗ (u− x)′

1

h
K

(
u− x

h

)
du

)−1
E
[
Ṗ (xi − x)

1

h
K

(
xi − x

h

)]
= θ + hpΥhf

(p)(x)

(∫
X−x
h

Ṗ (u) Ṗ (u)′K (u) du

)−1 ∫
X−x
h

Ṗ (u)upK (u) du+ o(hpΥh),

where Υh is a diagonal matrix containing 1, h−1, · · · , h−(p−1). Its leading variance is also easy to

establish:

V[θ̂ND] =
1

nh
Υhf(x)

(∫
X−x
h

Ṗ (u) Ṗ (u)′K (u) du

)−1(∫
X−x
h

Ṗ (u) Ṗ (u)′K (u)2 du

)

·

(∫
X−x
h

Ṗ (u) Ṗ (u)′K (u) du

)−1
Υh

+ o

(
1

nh
Υ2
h

)
.

To reach the efficiency bound in Theorem 8, it suffices to set K(·) to be the uniform kernel. Section

5.1.1 in Loader (2006) also discussed this estimator, although it seems its efficiency property has
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not been realized in the literature. �

4 Uniform Distribution Theory

We establish distribution approximation for {θ̂G(x), x ∈ I} and {θ̂(x), x ∈ I}, which can be viewed

as processes indexed by the evaluation point x in some set I ⊆ X . Recall the definition of Γh,x and

Σh,x from Section 1, and we define Ωh,x = Γ−1h,xΣh,xΓ
−1
h,x.

We first study the following (infeasible) centered and Studentized process:

TG(x) =
1√
n

n∑
i=1

c′h,xΥhΓ−1h,x
∫
X−x
h
R(u)

[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x
, x ∈ I,

(15)

where we consider linear combinations through a (known) vector ch,x, which can depend on the

sample size through the bandwidth h, and can depend on the evaluation point. Again, we use the

subscript G to denote the local L2 approach with G being the design distribution. To economize

notation, let

Kh,x(x) =
c′h,xΥhΓ−1h,x

∫
X−x
h
R(u)

[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x
,

then we can conveniently rewrite (15) as

TG(x) =
1√
n

n∑
i=1

Kh,x(xi),

and hence the centered and Studentized process TG(·) takes a kernel form. The difference com-

pared to standard kernel density estimators, however, is that the (equivalent) kernel in our case

changes with the evaluation point, which is why our estimator is able to adapt to boundary points

automatically. From the pointwise distribution theory developed in Section 2, the process TG(x)

has variance

V [TG(x)] = E
[
Kh,x(xi)2

]
= 1.

We can also compute the covariance as

Cov [TG(x),TG(y)] = E [Kh,x(xi)Kh,y(xi)] =
c′h,xΥhΩh,x,yΥhch,y√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

+O(h),
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where Ωh,x,y = Γ−1h,xΣh,x,yΓ
−1
h,y, and

Σh,x,y =

∫
X−y
h

∫
X−x
h

R(u)R(v)′
[
F ((x + hu) ∧ (y + hv))− F (x + hu)F (y + hv)

]
K(u)K(v)g(x + hu)g(y + hv)dudv.

Of course one can further expand the above, but this is unnecessary for our purpose.

For future reference, let

r1(ε, h) = sup
x,y∈I,|x−y|≤ε

∣∣c′h,xΥh − c′h,yΥh

∣∣ , r2(h) = sup
x∈I

1

|c′h,xΥh|
.

Remark 4 (On the Order of r1(ε, h), r2(h) and supx∈I %(h, x)). In general, it is not possible

to give precise orders of the quantities introduced above. In this remark, we consider the local

polynomial estimator of Cattaneo, Jansson, and Ma (2020) (see Section 1 for an introduction). The

local polynomial estimator employs a polynomial basis, and hence estimates the density function

and higher-order derivatives by (it also estimates the distribution function)

F̂ (`)(x) = e′`θ̂(x),

where e` is the (` + 1)-th standard basis vector. As a result, ch,x = e`, which does not depend

on the evaluation point. For the scaling matrix Υh, we note that it is diagonal with elements

1, h−1, · · · , h−p, and hence it does not depend on the evaluation point either. Therefore, we conclude

that, for density (and higher-order) derivative estimation using the local polynomial estimator,

r1(ε, h) is identically zero. Similarly, we have that r2(h) = h`. Finally, given the discussion in

Section 1, the bias term generally has order supx∈I %(h, x) = hp+1 for the local polynomial density

estimator.

The above discussion restricts to the local polynomial density estimator, but more can be said

about r2(h). We will argue that, in general, one should expect r2(h) = O(1). Recall that the

leading variance of c′h,xθ̂(x) and c′h,xθ̂G(x) is 1
nc
′
h,xΥhΩh,xΥhch,x, and that the maximum eigenvalue

of Ωh,x is bounded. Therefore, the variance has order O(1/(nr2(h)2)). In general, we do not expect

the variance to shrink faster than 1/n, which is why r2(h) is usually bounded. In fact, for most

interesting cases, c′h,xθ̂(x) and c′h,xθ̂G(x) will be “nonparametric” estimators in the sense that they

estimate local features of the distribution function. If this is the case, we may even argue that r2(h)

will be vanishing as the bandwidth shrinks. �

We also make some additional assumptions.

Assumption 4. Let I be a compact interval.

(i) The density function is twice continuously differentiable and bounded away from zero in I.

(ii) There exists some δ > 0 and compactly supported kernel functions K†(·) and {K‡,d(·)}d≤δ,
such that (ii.1) supu∈R |K†(u)|, supd≤δ,u∈R |K‡,d(u)| <∞; (ii.2) the support of K‡,d(·) has Lebesgue
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measure bounded by Cd, where C is independent of d; and (ii.3) for all u and v such that |u−v| ≤ δ,

|K(u)−K(v)| ≤ |u− v| ·K†(u) +K‡,|u−v|(u).

(iii) The basis function R(·) is Lipschitz continuous in [−1, 1].

(iv) For all h sufficiently small, the minimum eigenvalues of Γh,x and h−1Σh,x are bounded

away from zero uniformly for x ∈ I.

(v) h→ 0 and nh/ log n→∞ as n→∞.

(vi) For some C1 > 0 and C2, C3 ≥ 0,

r1(ε, h) = O
(
εC1h−C2

)
, r2(h) = O

(
hC3
)
.

In addition,

supx∈I |c′h,xΥh|
infx∈I |c′h,xΥh|

= O(1).
�

Assumption 5. The design density function g(·) is twice continuously differentiable and is bounded

away from zero in I. �

For any h > 0 (and fixed n), we can define a centered Gaussian process, {BG(x) : x ∈ I},
which has the same variance-covariance structure as the process TG(·). The following lemma shows

that it is possible to construct such a process, and that TG(·) and BG(·) are “close in distribution.”

Theorem 9 (Strong Approximation). Assume Assumptions 1, 2, 4 and 5 hold. Then on a

possibly enlarged probability space there exist two processes, {T̃G(x) : x ∈ I} and {BG(x) : x ∈ I},
such that (i) T̃G(·) has the same distribution as TG(·); (ii) BG(·) is a Gaussian process with the

same covariance structure as TG(·); and (iii)

P
[
sup
x∈I

∣∣∣T̃G(x)−BG(x)
∣∣∣ > C4(u+ C5 log n)√

nh

]
≤ C5e

−C5u,

where C5 is some constant that does not depend on h or n. �

Next we consider the continuity property of the implied (equivalent) kernel of the process

TG(·), which will help control the complexity of the Gaussian process BG(·). To be precise, define

the pseudo-metric σG(x, y) as

σG(x, y) =
√
V [TG(x)− TG(y)] =

√
E [(Kh,x(xi)−Kh,y(xi))2],

we would like to provide an upper bound of σG(x, y) in terms of |x− y| (at least for all x and y such

that |x− y| is small enough).
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Lemma 10 (VC-type Property). Assume Assumptions 1, 2, 4 and 5 hold. Then for all x, y ∈ I
such that |x− y| = ε ≤ h,

σG(x, y) = O

(
1√
h

ε

h
+

1√
h
r1(ε, h)r2(h) +

1

h
r1(ε, h)2r2(h)2

)
.

Therefore,

E
[
sup
x∈I
|BG(x)|

]
= O

(√
log n

)
, and E

[
sup
x∈I
|TG(x)|

]
= O

(√
log n

)
.

�

4.1 Local L2 Distribution Estimation

We first discuss the covariance estimator. For the local L2 distribution estimator, let Ω̂h,x,y =

Γ−1h,xΣ̂h,x,yΓ
−1
h,y with Σ̂h,x,y given by

Σ̂h,x,y =
1

n

n∑
i=1

∫
X−y
h

∫
X−x
h

R(u)R(v)′
[
1(xi ≤ x + hu)− F̂ (x + hu)

][
1(xi ≤ y + hv)− F̂ (y + hv)

]
K(u)K(v)g(x + hu)g(y + hv)dudv.

The next lemma characterizes the convergence rate of Ω̂h,x,y.

Lemma 11 (Local L2 Distribution Estimation: Covariance Estimation). Assume Assump-

tions 1, 2, 4 and 5 hold, and that nh2/ log n→∞. Then

sup
x,y∈I

∣∣∣∣∣∣ c′h,xΥh(Ω̂h,x,y − Ωh,x,y)Υhch,y√
c′h,xΥhΩh,xΥhch,x

√
c′h,yΥhΩh,yΥhch,y

∣∣∣∣∣∣ = OP

(√
log n

nh2

)
�

We now consider the estimator c′h,xθ̂G(x). From (3) and (4), one has

TG(x) =

√
nc′h,x

(
θ̂G(x)− θ(x)

)
√
c′h,xΥhΩ̂h,xΥhch,x

=
√
n
c′h,xΥhΓ−1h

∫
X−x
h
R(u)

[
F (x + hu)− θ′R(u)Υ−1h

]
K (u) g(x + hu)du√

c′h,xΥhΩ̂h,xΥhch,x

(16)

+
1√
n

n∑
i=1

c′h,xΥhΓ−1h,x
∫
X−x
h
R(u)

[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩ̂h,xΥhch,x

. (17)

In the following lemma, we analyze the two terms in the above decomposition.
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Lemma 12. Assume Assumptions 1, 2, 4 and 5 hold, and that nh2/ log n→∞. Then

sup
x∈I

∣∣∣(16)
∣∣∣ = OP

(√
n

h
sup
x∈I

%(h, x)

)
, sup

x∈I

∣∣∣(17)− TG(x)
∣∣∣ = OP

(
log n√
nh2

)
.

�

Now we state the main result on uniform distributional approximation.

Theorem 13 (Local L2 Distribution Estimation: Uniform Distributional Approxima-

tion). Assume Assumptions 1, 2, 4 and 5 hold, and that nh2/ log n → ∞. Then on a possibly

enlarged probability space there exist two processes, {T̃G(x) : x ∈ I} and {BG(x) : x ∈ I}, such

that (i) T̃G(·) has the same distribution as TG(·); (ii) BG(·) is a Gaussian process with the same

covariance structure as TG(·); and (iii)

sup
x∈I

∣∣∣TG(x)− TG(x)
∣∣∣+ sup

x∈I

∣∣∣T̃G(x)−BG(x)
∣∣∣ = OP

(
log n√
nh2

+

√
n

h
sup
x∈I

%(h, x)

)
.

�

The following theorem shows that a feasible approximation to the process BG(·) can be

achieved by simulating a Gaussian process with covariance estimated from the data. In the fol-

lowing, we use P?, E? and Cov? to denote the probability, expectation and covariance operator

conditioning on the data Xn = (x1, x2, . . . , xn)′.

Theorem 14 (Local L2 Distribution Estimation: Feasible Distributional Approxima-

tion). Assume Assumptions 1, 2, 4 and 5 hold, and that nh2/ log n → ∞. Then conditional on

the data there exists a centered Gaussian process B̂G(·) with covariance

Cov?
[
B̂G(x), B̂G(y)

]
=

c′h,xΥhΩ̂h,x,yΥhch,y√
c′h,xΥhΩ̂h,xΥhch,x

√
c′h,yΥhΩ̂h,yΥhch,y

,

such that

sup
u∈R

∣∣∣∣P[ sup
x∈I
|BG(x)| ≤ u

]
− P?

[
sup
x∈I
|B̂G(x)| ≤ u

]∣∣∣∣ = OP

((
log5 n

nh2

) 1
4

)
.

�

Remark 5 (On the Remainders in Theorems 13 and 14). Recall that the local polynomial

density estimator employs a polynomial basis, which implies that supx∈I %(h, x) = hp+1, where p is

the highest polynomial order. Then the error in Theorem 13 reduces to

√
nh2p+1 +

log n√
nh2

.

Therefore, a sufficient set of conditions for both errors to be negligible is nh2p+1 → 0 and nh2/ log5 n→
∞. �
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4.2 Local Regression Distribution Estimation

Now we consider the local regression estimator {θ̂(x), x ∈ I}. As before, we first discuss the

construction of the covariance Ωh,x,y. Let Ω̂h,x,y = Γ̂−1h,xΣ̂h,x,yΓ̂
−1
h,y. Construction of Γ̂h,x is given in

Section 2.2. The following lemma shows that Γ̂h,x is uniformly consistent.

Lemma 15 (Uniform Consistency of Γ̂h,x). Assume Assumptions 1 and 4 hold. Then

sup
x∈I

∣∣∣Γ̂h,x − Γh,x

∣∣∣ = OP

(√
log n

nh

)
.

�

Construction of Σ̂h,x,y also mimics that in Section 2.2. To be precise, we let

Σ̂h,x,y =
1

n

n∑
i=1

 1

n

n∑
j=1

ΥhR(xj − x)
[
1(xi ≤ xj)− F̂ (xj)

]1

h
K

(
xj − x

h

)
 1

n

n∑
j=1

ΥhR(xj − y)
[
1(xi ≤ xj)− F̂ (xj)

]1

h
K

(
xj − y

h

)′ .
where F̂ (·) remains to be the empirical distribution function. The following result justifies consis-

tency of Ω̂h,x,y.

Lemma 16 (Local Regression Distribution Estimation: Covariance Estimation). As-

sume Assumptions 1 and 4 hold, and that nh2/ log n→∞. Then

sup
x,y∈I

∣∣∣∣∣∣ c′h,xΥh(Ω̂h,x,y − Ωh,x,y)Υhch,y√
c′h,xΥhΩh,xΥhch,x

√
c′h,yΥhΩh,yΥhch,y

∣∣∣∣∣∣ = OP

(√
log n

nh2

)
�
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The following is an expansion of T (·).

T (x) =

√
nc′h,x

(
θ̂(x)− θ(x)

)
√
c′h,xΥhΩ̂h,xΥhch,x

=
1

n
√
n

n∑
i=1

c′h,xΥhΓ̂−1h,xΥhR(xi − x)[1− F (xi)]
1
hK(xi−xh )√

c′h,xΥhΩ̂h,xΥhch,x

(18)

+
1√
n

n∑
i=1

c′h,xΥhΓ̂−1h,xΥhR(xi − x)[F (xi)− θ(x)′R(xi − x)] 1hK(xi−xh )√
c′h,xΥhΩ̂h,xΥhch,x

(19)

+
1

n
√
n

n∑
i,j=1,i 6=j

1√
c′h,xΥhΩ̂h,xΥhch,x

{
c′h,xΥhΓ̂−1h,xΥhR(xj − x)

[
1(xi ≤ xj)− F (xj)

]1

h
K

(
xj − x

h

)

−
∫
X−x
h

c′h,xΥhΓ̂−1h,xR(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du

}
(20)

+
n− 1

n
√
n

n∑
i=1

c′h,xΥhΓ̂−1h,x
∫
X−x
h
R(u)

[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du√

c′h,xΥhΩ̂h,xΥhch,x

. (21)

Lemma 17. Assume Assumptions 1 and 4 hold, and that nh2/ log n→∞. Then

sup
x∈I

∣∣∣(18)
∣∣∣ = OP

(
1√
nh

)
, sup

x∈I

∣∣∣(19)
∣∣∣ = OP

(√n

h
sup
x∈I

%(h, x)
)
, sup

x∈I

∣∣∣(20)
∣∣∣ = OP

(
log n√
nh2

)
.
�

Lemma 18. Assume Assumptions 1 and 4 hold, and that nh2/ log n→∞. Then

sup
x∈I

∣∣∣(21)− TF (x)
∣∣∣ = OP

(
log n√
nh2

)
.

�

Finally we have the following result on uniform distributional approximation for the local

regression distribution estimator, as well as a feasible approximation by simulating from a Gaussian

process with estimated covariance.

Theorem 19 (Local Regression Distribution Estimation: Uniform Distributional Ap-

proximation). Assume Assumptions 1 and 4 hold, and that nh2/ log n→∞. Then on a possibly

enlarged probability space there exist two processes, {T̃F (x) : x ∈ I} and {BF (x) : x ∈ I}, such

that (i) T̃F (·) has the same distribution as TF (·); (ii) BF (·) is a Gaussian process with the same

covariance structure as TF (·); and (iii)

sup
x∈I

∣∣∣T (x)− TF (x)
∣∣∣+ sup

x∈I

∣∣∣T̃F (x)−BF (x)
∣∣∣ = OP

(
log n√
nh2

+

√
n

h
sup
x∈I

%(h, x)

)
.

�
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Theorem 20 (Local Regression Distribution Estimation: Feasible Distributional Ap-

proximation). Assume Assumptions 1 and 4 hold, and that nh2/ log n → ∞. Then conditional

on the data there exists a centered Gaussian process B̂F (·) with covariance

Cov?
[
B̂F (x), B̂F (y)

]
=

c′h,xΥhΩ̂h,x,yΥhch,y√
c′h,xΥhΩ̂h,xΥhch,x

√
c′h,yΥhΩ̂h,yΥhch,y

,

such that

sup
u∈R

∣∣∣∣P[ sup
x∈I
|BF (x)| ≤ u

]
− P?

[
sup
x∈I
|B̂F (x)| ≤ u

]∣∣∣∣ = OP

((
log5 n

nh2

) 1
4

)
.

�
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5 Proofs

5.1 Proof of Theorem 1

Part (i)

The bias term can be bounded by∣∣∣∣∣
∫
X−x
h

R(u)
[
F (x + hu)− θ′R(u)Υ−1

h

]
K (u) du

∣∣∣∣∣ ≤ sup
u∈[−1,1]

∣∣∣F (x + hu)− θ′R(u)Υ−1
h

∣∣∣ ∫
X−x
h

|R(u)|K (u) du

= %(h)

∫
X−x
h

|R(u)|K (u) du.

Part (ii)

The variance can be found as

V

[
1√
n

n∑
i=1

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

]

=

∫∫
X−x
h

R(u)R(v)′K(u)K(v)
[
F (x + h(u ∧ v))− F (x + hu)F (x + hv)

]
g(x + hu)g(x + hv)dudv.

To establish asymptotic normality, we verify the Lyapunov condition with a fourth moment calculation. Take

c to be a nonzero vector of conformable dimension, and we employ the Cramer-Wold device:

1

n

(
c′Σhc

)−2 E

[(∫
X−x
h

c′R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)4]
.

If c′Σhc is bounded away from zero as the bandwidth decreases, the above will have order n−1, as K(·) is bounded

and compactly supported and R(·) is locally bounded. Therefore, the Lyapunov condition holds in this case. The

more challenging case is when c′Σhc is of order h. In this case, it implies

F (x)(1− F (x))

∣∣∣∣∣
∫∫
X−x
h

c′R(u)K(u)gudu

∣∣∣∣∣
2

= O(h).

Now consider the fourth moment. The leading term is

F (x)(1− F (x))(3F (x)2 − 3F (x) + 1)

∣∣∣∣∣
∫
X−x
h

c′R(u)K(u)g(x + hu)du

∣∣∣∣∣
4

= O(h),

meaning that for the Lyapunov condition to hold, we need the requirement that nh→∞.

Part (iii)

This follows immediately from Part (i) and (ii).
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5.2 Proof of Theorem 2

To study the property of Σ̂h, we make the following decomposition:

Σ̂h =
1

n

n∑
i=1

∫∫
X−x
h

R(u)R(v)′
[
1(xi ≤ x + hu)− F (x + hu)

][
1(xi ≤ x + hv)− F (x + hv)

]
K(u)K(v)g(x + hu)g(x + hv)dudv

(I)

−
∫∫
X−x
h

R(u)R(v)′
[
F̂ (x + hu)− F (x + hu)

][
F̂ (x + hv)− F (x + hv)

]
K(u)K(v)g(x + hu)g(x + hv)dudv. (II)

First, it is obvious that term (II) is of order OP(1/n). Term (I) requires more delicate analysis. Let c be a vector

of unit length and suitable dimension, and define

ci =

∫∫
X−x
h

c′R(u)R(v)′c
[
1(xi ≤ x + hu)− F (x + hu)

][
1(xi ≤ x + hv)− F (x + hv)

]
K(u)K(v)g(x + hu)g(x + hv)dudv.

Then

c′(I)c = E[c′(I)c] +OP

(√
V[c′(I)c]

)
= E[ci] +OP

(√
1

n

(
E[c2i ]− (E[ci])2

))
,

which implies that

c′(I)c

E[c′(I)c]
− 1 = OP

(√
1

n

(
E[c2i ]

(E[ci])2
− 1

))
.

With the same argument used in the proof of Theorem 1, one can show that

E[c2i ]

(E[ci])2
= O

(
1

h

)
,

which implies

c′(I)c

c′Σhc
− 1 = OP

(√
1

nh

)
.

5.3 Proof of Theorem 3

Part (i)

For the “denominator,” its variance is bounded by∣∣∣∣∣V
[

1

n

n∑
i=1

ΥhR(xi − x)R(xi − x)′Υh
1

h
K
(xi − x

h

)]∣∣∣∣∣ ≤ 1

n
E
[∣∣ΥhR(xi − x)R(xi − x)′Υh

∣∣2 1

h2
K
(xi − x

h

)2]
=

1

n

∫
X

∣∣ΥhR(u− x)R(u− x)′Υh

∣∣2 1

h2
K
(u− x

h

)2
f(u)du =

1

nh

∫
X−x
h

∣∣R(u)R(u)′
∣∣2K (u)2 f(x + hu)du

= O

(
1

nh

)
.

Therefore, under the assumption that h→ 0 and nh→∞, we have∣∣∣∣∣ 1n
n∑
i=1

ΥhR(xi − x)R(xi − x)′Υh
1

h
K
(xi − x

h

)
− Γh

∣∣∣∣∣ = OP

(√
1

nh

)
,
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which further implies that

θ̂ − θ = ΥhΓ−1
h

(
1

n

n∑
i=1

ΥhR(xi − x)
[
F̂ (xi)−R(xi − x)′θ0

] 1

h
K
(xi − x

h

))(
1 + oP(1)

)
.

Part (ii)

The order of the leave-in bias is clearly 1/n. For the approximation bias (7), we obtained its mean in the proof of

Theorem 1 by setting G = F , which has an order of %(h). The approximation bias has a variance of order∣∣∣∣∣V
[

1

n

n∑
j=1

ΥhR(xj − x)
[
F (xj)−R(xj − x)′θ0

] 1

h
K
(xj − x

h

)]∣∣∣∣∣
≤ 1

n
E

[∣∣∣∣ΥhR(xj − x)
[
F (xj)−R(xj − x)′θ0

] 1

h
K
(xj − x

h

)∣∣∣∣2
]

=
1

n

∫
X

∣∣∣ΥhR(u− x)
[
F (u)−R(u− x)′θ0

]∣∣∣2 1

h2
K
(u− x

h

)2
f(u)du

=
1

nh

∫
X−x
h

∣∣∣R(u)
[
F (x + hu)−R(u− x)′θ0

]∣∣∣2K(u)2f(x + hu)du

≤ 1

nh
%(h)2

∫
X−x
h

|R(u)|2K(u)2f(x + hu)du = O

(
ρ(h)2

nh

)
.

Therefore,

(7) = OP

(
%(h) + %(h)

√
1

nh

)
= OP(%(h)),

provided that nh→∞.

Part (iii)

We compute the variance of the U-statistic (9). For simplicity, define

uij = ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

] 1

h
K
(xj − x

h

)
−
∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du,

which satisfies E[uij ] = E[uij |xi] = E[uij |xj ] = 0. Therefore

V [(9)] =
1

n4

n∑
i,j=1,i 6=j

n∑
i′,j′=1,i 6=j

E
[
uiju

′
i′j′
]

=
1

n4

n∑
i,j=1,i 6=j

E
[
uiju

′
ij

]
+ E

[
uiju

′
ji

]
,

meaning that

(9) = OP

(√
1

n2h

)
.

Part (iv)

This follows immediately from Part (i)–(iii) and Theorem 1.
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5.4 Proof of Theorem 4

We first decompose Σ̂h into two terms,

(I) =
1

n3

n∑
i,j,k=1

ΥhRjR
′
kΥhWjWk

(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xk)− F (xk)

)
(II) = − 1

n2

n∑
j,k=1

ΥhRjR
′
kΥhWjWk

(
F̂ (xj)− F (xj)

)(
F̂ (xk)− F (xk)

)
,

where we use Ri = R(xi − x) and Wi = K((xi − x)/h)/h to conserve space.

(II) satisfies

|(II)| ≤ sup
x
|F̂ (x)− F (x)|2 1

n2

n∑
j,k=1

∣∣ΥhRjR
′
kΥhWjWk

∣∣ .
It is obvious that

sup
x
|F̂ (x)− F (x)|2 = OP

(
1

n

)
.

As for the second part, we have

1

n2

n∑
j,k=1

E
[∣∣ΥhRjR

′
kΥhWjWk

∣∣] =
n− 1

n
E
[ ∣∣ΥhRjR

′
kΥhWjWk

∣∣ ∣∣∣j 6= k
]

+
1

n
E
[ ∣∣ΥhRkR

′
kΥhWkWk

∣∣ ]
=OP

(
1 +

1

nh

)
= OP (1) ,

which holds as long as nh→∞. Then it further implies that

(II) = OP

(
1

n

)
.

To analyze (I), we further expand this term into “diagonal” and “non-diagonal” sums:

(I) =
1

n3

n∑
i,j,k=1
distinct

ΥhRjR
′
kΥhWjWk

(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xk)− F (xk)

)
(I.1)

+
1

n3

n∑
i,k=1
distinct

ΥhRiR
′
kΥhWiWk

(
1(xi ≤ xi)− F (xi)

)(
1(xi ≤ xk)− F (xk)

)
(I.2)

+
1

n3

n∑
i,j=1

distinct

ΥhRjR
′
iΥhWjWi

(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xi)− F (xi)

)
(I.3)

+
1

n3

n∑
i,j=1

distinct

ΥhRjR
′
jΥhWjWj

(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xj)− F (xj)

)
(I.4)

+
1

n3

∑
i

ΥhRiR
′
iΥhWiWi

(
1(xi ≤ xi)− F (xi)

)(
1(xi ≤ xi)− F (xi)

)
. (I.5)

By calculating the expectation of the absolute value of the summands above, it is straightforward to show

(I.2) = OP

(
1

n

)
, (I.3) = OP

(
1

n

)
, (I.4) = OP

(
1

nh

)
, (I.5) = OP

(
1

n2h

)
.
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Therefore, we have

Σ̂h = (I.1) +OP

(
1

nh

)
=

1

n3

n∑
i,j,k=1
distinct

ΥhRjR
′
kΥhWjWk

(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xk)− F (xk)

)
+OP

(
1

nh

)
.

To proceed, define

uij = ΥhRjWj

(
1(xi ≤ xj)− F (xj)

)
and ūi = E[uij |xi; i 6= j].

Then we can further decompose (I.1) into

(I.1) =
1

n3

n∑
i,j,k=1
distinct

uiju
′
ik =

1

n3

n∑
i,j,k=1
distinct

E[uiju
′
ik|xi] +

1

n3

n∑
i,j,k=1
distinct

(
uiju

′
ik − E[uiju

′
ik|xi]

)

=
(n− 1)(n− 2)

n3

n∑
i=1

ūiū
′
i︸ ︷︷ ︸

(I.1.1)

+
1

n3

n∑
i,j,k=1
distinct

(
uiju

′
ik − ūiū′i

)
︸ ︷︷ ︸

(I.1.2)

.

We have already analyzed (I.1.1) in Theorem 2, which suggests

(I.1.1) = Σh +OP

(
1√
n

)
.

Now we study (I.1.2), which satisfies

(I.1.2) =
n− 2

n3

n∑
i,j=1

distinct

(
uij − ūi

)
ū′i

︸ ︷︷ ︸
(I.1.2.1)

+
n− 2

n3

n∑
i,j=1

distinct

ūi
(
uij − ūi

)′
︸ ︷︷ ︸

(I.1.2.2)

+
1

n3

n∑
i,j,k=1
distinct

(
uij − ūi

)(
uik − ūi

)′
︸ ︷︷ ︸

(I.1.2.3)

.

With variance calculation, it is easy to see that

(I.1.2.3) = OP

(
1

nh

)
.

Therefore we have

c′(Σ̂h − Σh)c

c′Σhc
= OP

(
1√
nh2

)
+ 2

c′(I.1.2.1)c

c′Σhc
,

since (I.1.2.1) and (I.1.2.2) are transpose of each other. To close the proof, we calculate the variance of the last term

in the above.

V
[
c′(I.1.2.1)c

c′Σhc

]
=

1

(c′Σhc)2
(n− 2)2

n6
E

 n∑
i,j=1

distinct

n∑
i′,j′=1
distinct

c′
(
uij − ūi

)
ū′icc

′
(
ui′j′ − ūi′

)
ū′i′c



=
1

(c′Σhc)2
(n− 2)2

n6
E

 n∑
i,j,i′=1
distinct

c′uij ū
′
icc
′ui′j ū

′
i′c

+ higher order terms.
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The expectation is further given by (note that i, j and i′ are assumed to be distinct indices)

E
[
c′uij ū

′
icc
′ui′j ū

′
i′c
]

= E
∫∫
X−x
h

W 2
j

[
c′ΥhRjR(u)cc′ΥhRjR(v)c

]
K(u)K(v)

[F (xj ∧ (x + hu))− F (xj)F (x + hu)] [F (xj ∧ (x + hv))− F (xj)F (x + hv)] f(x + hu)f(x + hv)dudv

=
1

h

∫∫∫
X−x
h

[
c′R(w)R(u)cc′R(w)R(v)c

]
K(u)K(v)K(w)2

[F (x + h(w ∧ u))− F (x + hw)F (x + hu)] [F (x + h(w ∧ v))− F (x + hw)F (x + hv)] f(x + hw)f(x + hu)f(x + hv)dwdudv

=
1

h
F (x)2(1− F (x))2

∫∫∫
X−x
h

[
c′R(w)R(u)cc′R(w)R(v)c

]
K(u)K(v)K(w)2fwfufvdwdudv + higher-order terms.

If c′Σhc = O(1), then the above will have order h, which means

V
[
c′(I.1.2.1)c

c′Σhc

]
= O

(
1

nh

)
.

If c′Σhc = O(h), however, E [c′uij ū
′
icc
′ui′j ū

′
i′c] will be O(1), which will imply that

V
[
c′(I.1.2.1)c

c′Σhc

]
= O

(
1

nh2

)
.

As a result, we have

c′(Σ̂h − Σh)c

c′Σhc
= OP

(
1√
nh2

)
.

Now consider

c′Γ̂−1
h Σ̂hΓ̂−1

h c

c′Γ−1
h ΣhΓ−1

h c
− 1 =

c′Γ̂−1
h (Σ̂h − Σh)Γ̂−1

h c

c′Γ−1
h ΣhΓ−1

h c
+
c′(Γ̂−1

h − Γ−1
h )ΣhΓ̂−1

h c

c′Γ−1
h ΣhΓ−1

h c
+
c′(Γ̂−1

h − Γ−1
h )ΣhΓ−1

h c

c′Γ−1
h ΣhΓ−1

h c

=
c′Γ̂−1

h (Σ̂h − Σh)Γ̂−1
h c

c′Γ−1
h ΣhΓ−1

h c
+ 2

c′(Γ̂−1
h − Γ−1

h )ΣhΓ−1
h c

c′Γ−1
h ΣhΓ−1

h c
+
c′(Γ̂−1

h − Γ−1
h )Σh(Γ̂−1

h − Γ−1
h )c

c′Γ−1
h ΣhΓ−1

h c
.

From the analysis of Σ̂h, we have

c′Γ̂−1
h (Σ̂h − Σh)Γ̂−1

h c

c′Γ−1
h ΣhΓ−1

h c
= OP

(
1√
nh2

)
.

For the second term, we have∣∣∣∣∣c′(Γ̂−1
h − Γ−1

h )ΣhΓ̂−1
h c

c′Γ−1
h ΣhΓ−1

h c

∣∣∣∣∣ ≤ |c′(Γ̂−1
h − Γ−1

h )Σ
1/2
h | · |c

′Γ−1
h Σ

1/2
h |

|c′Γ−1
h Σ

1/2
h |2

=
|c′(Γ̂−1

h − Γ−1
h )Σ

1/2
h |

|c′Γ−1
h Σ

1/2
h |

= OP

(√
1

nh2

)
.

The third term has order

c′(Γ̂−1
h − Γ−1

h )Σh(Γ̂−1
h − Γ−1

h )c

c′Γ−1
h ΣhΓ−1

h c
= OP

(
1

nh2

)
.

5.5 Proof of Corollary 5

This follows directly from Theorem 1.
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5.6 Proof of Corollary 6

To understand (13), note that

θ̂⊥F =

(∫
X

Λ′hR(u− x)R(u− x)′Λh
1

h
K
(u− x

h

)
dF (u)

)−1(∫
X

Λ′hR(u− x)F̂ (u)
1

h
K
(u− x

h

)
dF (u)

)
= Λ−1

h

(∫
X
R(u− x)R(u− x)′

1

h
K
(u− x

h

)
dF (u)

)−1(∫
X
R(u− x)F̂ (u)

1

h
K
(u− x

h

)
dF (u)

)
,

which means θ̂⊥F = Λ−1
h θ̂F . Then we have (up to an approximation bias term)

θ̂⊥F − Λ−1
h θ0 = Λ−1

h (θ̂F − θ0)

= Λ−1
h

(∫
X
R(u− x)R(u− x)′

1

h
K
(u− x

h

)
dF (u)

)−1(∫
X
R(u− x)

(
F̂ (u)− F (u)

) 1

h
K
(u− x

h

)
dF (u)

)

= Λ−1
h Υh

(∫
X−x
h

R(u)R(u)′K (u) f(x + hu)du

)−1(∫
X−x
h

R(u)
(
F̂ (x + hu)− F (x + hu)

)
K (u) f(x + hu)du

)

= Λ−1
h ΥhΛh

(∫
X−x
h

R⊥(u)R⊥(u)′K (u) f(x + hu)du

)−1(∫
X−x
h

R⊥(u)
(
F̂ (x + hu)− F (x + hu)

)
K (u) f(x + hu)du

)
.

We first discuss the transformed parameter vector Λ−1
h θ0. By construction, the matrix Λh takes the following

form:

Λh =



1 c1,2 c1,3 · · · c1,p+2

0 1 0 · · · c2,p+2

0 0 1 · · · c2,p+2

...
...

...
. . .

...

0 0 0 · · · 1


where ci,j are some constants (possibly depending on h). Therefore, the above matrix differs from the identity matrix

only in its first row and in the last column. This observation also holds for Λ−1
h . Since the last component of θ0 is

zero (because the extra regressor Qh(·) is redundant), we conclude that, except for the first element, Λhθ and θ are

identical. More specifically, let I−1 be the identity matrix excluding the first row:

I−1 =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1


,

which is used to extract all elements of a vector except for the first one, then by Theorem 1,

√
n
(
I−1(Λ−1

h ΥhΛh)(Γ⊥h )−1Σ⊥h (Γ⊥h )−1(Λ−1
h ΥhΛh)′I ′−1

)−1/2
[
θ̂⊥P,F − θP
θ̂⊥Q,F

]
 N (0, I),

where θ⊥P,F contains the second to the p+ 1-th element of θ⊥F , and θ⊥Q,F is the last element.

Now we discuss the covariance matrix in the above display. Due to orthogonalization, Γ⊥h is block diagonal. To

be precise,

Γ⊥h = f(x)

Γ⊥1,h 0 0

Γ⊥P,h 0

0 0 Γ⊥Q,h

 , Γ⊥1,h =

∫
X−x
h

K(u)du, Γ⊥P,h =

∫
X−x
h

P⊥(u)P⊥(u)′K(u)du, Γ⊥Q,h =

∫
X−x
h

Q⊥(u)2K(u)du.
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Finally, using the structure of Λh and Υh, we have

I−1(Λ−1
h ΥhΛh)(Γ⊥h )−1 = I−1Υh(Γ⊥h )−1.

The form of Σ⊥h is quite involved, but with some algebra, and using the fact that the basis R(·) (or R⊥(·))
includes a constant and polynomials, one can show the following:

(Λ−1
h ΥhΛh)(Γ⊥h )−1Σ⊥h (Γ⊥h )−1(Λ−1

h ΥhΛh)′ = hf(x)Υ−1,h(Γ⊥−1,h)−1Σ⊥−1,h(Γ⊥−1,h)−1Υ−1,h,

where Υ−1,h, Γ⊥−1,h and Σ⊥−1,h are obtained by excluding the first row and the first column of Υh, Γ⊥h and Σ⊥h ,

respectively:

Υ−1,h =



h−1 0 0 · · · 0

0 h−2 0 · · · 0

0 0 h−3 · · · 0
...

...
...

. . .
...

0 0 0 · · · υh


, Γ⊥−1,h = f(x)

[
Γ⊥P,h 0

0 Γ⊥Q,h

]
, Σ⊥−1,h = f(x)3

[
Σ⊥PP,h Σ⊥PQ,h

Σ⊥QP,h Σ⊥QQ,h

]
,

and

Σ⊥PP,h =

∫∫
X−x
h

K(u)K(v)P⊥(u)P⊥(v)′(u ∧ v)dudv, Σ⊥QQ,h =

∫∫
X−x
h

K(u)K(v)Q⊥(u)Q⊥(v)(u ∧ v)dudv

Σ⊥PQ,h = (Σ⊥QP,h)′ =

∫∫
X−x
h

K(u)K(v)P⊥(u)Q⊥(v)(u ∧ v)dudv.

5.7 Proof of Lemma 7

Part (i)

To start,∫
X−x
h
∩[−1,1]

H(g1)(u)H(g2)(u)du =

∫
X−x
h
∩[−1,1]

(∫
X−x
h

1(v1 ≥ u)K(v1)g(v1)dv1

)(∫
X−x
h

1(v2 ≥ u)K(v2)g(v2)dv2

)
du

=

∫∫
X−x
h

K(v1)K(v2)g(v1)g(v2)

(∫
X−x
h
∩[−1,1]

1(v1 ≥ u)1(v2 ≥ u)du

)
dv1dv2

=

∫∫
X−x
h

K(v1)K(v2)g(v1)g(v2)

[
(v1 ∧ v2) ∧

(
x− x

h
∧ 1

)
−
(x− x

h
∨ (−1)

)]
dv1dv2

=

∫∫
X−x
h

K(v1)K(v2)g(v1)g(v2)(v1 ∧ v2)dv1dv2,

where to show the last equality, we used the fact that v1 ≤ x−x
h
∧ 1 and v2 ≤ x−x

h
∧ 1 for the outer double integral.
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Part (ii)

For this part,∫
X−x
h
∩[−1,1]

H(g1)(u)ġ2(u)du =

∫
X−x
h
∩[−1,1]

(∫
X−x
h

1(v ≥ u)K(v)g1(v)dv

)
ġ2(u)du

=

∫
X−x
h

K(v)g1(v)

(∫
X−x
h
∩[−1,1]

1(v ≥ u)ġ2(u)du

)
dv

=

∫
X−x
h

K(v)g1(v)

[
g2

(
v ∧ x− x

h
∧ 1

)
− g2

(x− x

h
∨ (−1)

)]
dv

=

∫
X−x
h

K(v)g1(v)g2(v)dv.

Again, to show the last equality, we used the fact that v ≤ x−x
h
∧ 1 for the outer integral.

5.8 Proof of Theorem 8

To find a bound of the maximization problem, we note that for any c ∈ Rp−1, one has∫
X−x
h
∩[−1,1]

H(p`)(u)H(q)(u)du =

∫
X−x
h
∩[−1,1]

[
H(p`)(u) + c′Ṗ (u)

]
H(q)(u)du,

due to the constraint. Therefore, an upper bound of the objective function is (due to the Cauchy-Schwartz inequality)

inf
c

∫
X−x
h
∩[−1,1]

[
H(p`)(u) + c′Ṗ (u)

]2
du

= inf
c

∫
X−x
h
∩[−1,1]

[
H(p`)(u)2 + 2c′Ṗ (u)H(p`)(u) + c′Ṗ (u)Ṗ (u)′c

]
du

=

∫
X−x
h
∩[−1,1]

H(p`)(u)2du+ inf
c

∫
X−x
h
∩[−1,1]

[
2c′Ṗ (u)H(p`)(u) + c′Ṗ (u)Ṗ (u)′c

]
du

=

∫
X−x
h
∩[−1,1]

H(p`)(u)2du+ inf
c

[
2c′
(∫

X−x
h

K(u)P (u)p`(u)du

)
+ c′

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)
c

]
,

which is minimized by setting

c = −

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1(∫
X−x
h

K(u)P (u)p`(u)du

)
.

As a result, an upper bound of (14) is

∫
X−x
h
∩[−1,1]

H(p`)(u)2du−

(∫
X−x
h

K(u)P (u)p`(u)du

)′(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1(∫
X−x
h

K(u)P (u)p`(u)du

)
.

We may further simplify the above. First,∫
X−x
h
∩[−1,1]

H(p`)(u)2du = e′`(Γ
⊥
P,h)−1Σ⊥PP,h(Γ⊥P,h)−1e`.

Second, note that∫
X−x
h

K(u)P (u)p`(u)du =

(∫
X−x
h

K(u)P (u)P⊥(u)′du

)
(Γ⊥P,h)−1e` =

(∫
X−x
h

K(u)P⊥(u)P⊥(u)′du

)
(Γ⊥P,h)−1e` = e`.
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As a result, an upper bound of (14) is

e′`(Γ
⊥
P,h)−1Σ⊥PP,h(Γ⊥P,h)−1e` − e′`

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1

e`

= e′`

[
(Γ⊥P,h)−1Σ⊥PP,h(Γ⊥P,h)−1 −

(∫
X−x
h
∩[−1,1]

Ṗ (u)Ṗ (u)′du

)−1]
e`.

5.9 Additional Preliminary Lemmas

Lemma 21. Assume {ui,h(a) : a ∈ A ⊂ Rd} are independent across i, and E[ui,h(a)] = 0 for all a ∈ A and all h > 0.

In addition, assume for each ε > 0 there exists {ui,h,ε(a) : a ∈ A}, such that

|a− b| ≤ ε ⇒ |ui,h(a)− ui,h(b)| ≤ ui,h,ε(a).

Define

C1 = sup
a∈A

max
1≤i≤n

V[ui,h(a)], C2 = sup
a∈A

max
1≤i≤n

|ui,h(a)|

C1,ε = sup
a∈A

max
1≤i≤n

V[ui,h,ε(a)], C2,ε = sup
a∈A

max
1≤i≤n

|ui,h,ε(a)− E[ui,h,ε(a)]|, C3,ε = sup
a∈A

max
1≤i≤n

E[|ui,h,ε(a)|].

Then

sup
a∈A

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ = OP (γ + γε + C3,ε) ,

where γ and γε are any sequences satisfying

γ2n

(C1 + 1
3
γC2) logN(ε,A, | · |)

and
γ2
εn

(C1,ε + 1
3
γεC2,ε) logN(ε,A, | · |)

are bounded from below,

and N(ε,A, | · |) is the covering number of A. �

Remark 6. Provided that ui,h(·) is reasonably smooth, one can always choose ε (as a function of n and h) small

enough, and the leading order will be given by γ (and hence is determined by C1 and C2). �

Proof. Let Aε be an ε-covering of A, then

sup
a∈A

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ ≤ sup
a∈Aε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣+ sup
a∈Aε,b∈A,|a−b|≤ε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)− ui,h(b)

∣∣∣∣∣ .
Next we apply the union bound and Bernstein’s inequality:

P

[
sup
a∈Aε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ ≥ γu
]
≤ N(ε,A, | · |) sup

a∈A
P

[∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ ≥ γu
]

≤ 2N(ε,A, | · |) exp

{
−1

2

γ2nu2

C1 + 1
3
γC2u

}
= 2 exp

{
−1

2

γ2nu2

C1 + 1
3
γC2u

+ logN(ε,A, | · |)
}
.

Now take u sufficiently large, then the above is further bounded by:

P

[
sup
a∈Aε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ ≥ γu
]
≤ 2 exp

{
− logN(ε,A, | · |)

[
1

2

1

logN(ε,A, | · |)
γ2n

C1 + 1
3
γC2

u− 1

]}
,
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which tends to zero if logN(ε,A, | · |)→∞ and

γ2n

(C1 + 1
3
γC2) logN(ε,A, | · |)

is bounded from below,

in which case we have

sup
a∈Aε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)

∣∣∣∣∣ = OP (γ) .

We can apply the same technique to the other term, and obtain

sup
a∈Aε,b∈A,|a−b|≤ε

∣∣∣∣∣ 1n
n∑
i=1

ui,h(a)− ui,h(b)

∣∣∣∣∣ = OP (γε) ,

where γε is any sequence satisfying

γ2
εn

(C1,ε + 1
3
γεC2,ε) logN(ε,A, | · |)

is bounded from below.

�

Lemma 22 (Corollary 5.1 in Chernozhukov, Chetverikov, Kato, and Koike 2019). Let z1, z2 ∈ R`n be

two mean-zero Gaussian random vectors with covariance matrices Ω1 and Ω2, respectively. Further assume that the

diagonal elements in Ω1 are all one. Then

sup
A⊆R`n

A rectangular

|P [z1 ∈ A]− P [z2 ∈ A]| ≤ C
√
‖Ω1 −Ω2‖∞ log `n,

where ‖ · ‖∞ denotes the supremum norm, and C is an absolute constant. �

Lemma 23 (Equation (3.5) in Giné, Lata la, and Zinn 2000). For a degenerate and decoupled second order

U-statistic,
∑n
i,j=1,i 6=j hij(xi, x̃j), the following holds:

P

∣∣∣∣∣∣
n∑

i,j,i 6=j

uij(xi, x̃j)

∣∣∣∣∣∣ > t

 ≤ C exp

{
− 1

C
min

[
t

D
,

(
t

B

) 2
3

,

(
t

A

) 1
2

]}
,

where C is some universal constant, and A, B and D are any constants satisfying

A ≥ max
1≤i,j≤n

sup
u,v
|uij(u, v)|

B2 ≥ max
1≤i,j≤n

[
sup
v

∣∣∣∣∣
n∑
i=1

Euij(xi, v)2

∣∣∣∣∣ , sup
u

∣∣∣∣∣
n∑
j=1

Euij(u, x̃j)2
∣∣∣∣∣
]

D2 ≥
n∑

i,j=1,i 6=j

Euij(xi, x̃j)2.

where {xi, 1 ≤ i ≤ n} are independent random variables, and {x̃i, 1 ≤ i ≤ n} is an independent copy of {xi, 1 ≤ i ≤
n}. �

Remark 7. To apply the above lemma, an additional decoupling step is usually needed. Fortunately, the decoupling

step only introduces an extra constant, but will not affect the order of the tail probability bound. Formally,

Lemma 24 (de la Peña and Montgomery-Smith 1995). Consider the setting of Lemma 23. Then

P

∣∣∣∣∣∣
n∑

i,j,i 6=j

uij(xi, xj)

∣∣∣∣∣∣ > t

 ≤ C · P
C

∣∣∣∣∣∣
n∑

i,j,i 6=j

uij(xi, x̃j)

∣∣∣∣∣∣ > t

 ,
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where C is a universal constant. �

As a result, we will apply Lemma 23 without explicitly mentioning the decoupling step or the extra constant it

introduces. �

5.10 Proof of Theorem 9

To bound the distance between the two processes, T̃G(·) and BG(·), we employ the proof strategy of Giné, Koltchinskii,

and Sakhanenko (2004). Recall that F denotes the distribution of xi, and we define

Kh,x ◦ F−1(x) = Kh,x(F−1(x)).

Take v < v′ in [0, 1], we have∣∣Kh,x ◦ F−1(v)−Kh,x ◦ F−1(v′)
∣∣

=

∣∣∣∣∣∣
∫
X−x
h

c′h,xΥhΓ−1
h,xR(u)

[
1(F−1(v) ≤ x + hu)− 1(F−1(v′) ≤ x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

∣∣∣∣∣∣
≤

∫
X−x
h

∣∣∣c′h,xΥhΓ−1
h,xR(u)

∣∣∣ [1(F−1(v) ≤ x + hu)− 1(F−1(v′) ≤ x + hu)
]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x
.

Therefore, the function Kh,x ◦ F−1(·) has a total variation bounded by∫
X−x
h

∣∣∣c′h,xΥhΓ−1
h,xR(u)

∣∣∣ [1(F−1(0) ≤ x + hu)− 1(F−1(1) ≤ x + hu)
]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

=

∫ 1

−1

∣∣∣c′h,xΥhΓ−1
h,xR(u)

∣∣∣K (u) g(x + hu)du√
c′h,xΥhΩh,xΥhch,x

≤ C4
1√
h
.

It is well-known that functions of bounded variation can be approximated (pointwise) by convex combination

of indicator functions of half intervals. To be more precise,{
Kh,x ◦ F−1(·) : x ∈ I

}
⊂ C4

1√
h

conv
{
± 1(· ≤ t),±1(· ≥ t)

}
.

Following (2.3) and (2.4) of Giné, Koltchinskii, and Sakhanenko (2004), we have

P
[
sup
x∈I

∣∣∣T̃G(x)−BG(x)
∣∣∣ > C4(u+ C5 logn)√

nh

]
≤ C5e

−C5u,

where C5 is some universal constant.
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5.11 Proof of Lemma 10

Take |x− y| ≤ ε to be some small number, then

Kh,x(x)−Kh,y(x) =
c′h,xΥhΓ−1

h,x

∫
X−x
h

R(u)
[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

−
c′h,yΥhΓ−1

h,y

∫
X−y
h

R(u)
[
1(x ≤ y + hu)− F (y + hu)

]
K (u) g(y + hu)du√

c′h,yΥhΩh,yΥhch,y

=

 c′h,xΥhΓ−1
h,x√

c′h,xΥhΩh,xΥhch,x
−

c′h,yΥhΓ−1
h,y√

c′h,yΥhΩh,yΥhch,y

(∫
X−x
h

R(u)
[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)

+

 c′h,yΥhΓ−1
h,y√

c′h,yΥhΩh,yΥhch,y

( 1

h

∫
X

[
R
(u− x

h

)
K
(u− x

h

)
−R

(u− y

h

)
K
(u− y

h

) ][
1(x ≤ u)− F (u)

]
g(u)du

)

=
1√

c′h,yΥhΩh,yΥhch,y

(
c′h,xΥh − c′h,yΥh

)
Γ−1
h,x

(∫
X−x
h

R(u)
[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)
(I)

+
1√

c′h,yΥhΩh,yΥhch,y
c′h,yΥh

(
Γ−1
h,x − Γ−1

h,y

)(∫
X−x
h

R(u)
[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)
(II)

+

 1√
c′h,xΥhΩh,xΥhch,x

− 1√
c′h,yΥhΩh,yΥhch,y

 c′h,xΥhΓ−1
h,x

(∫
X−x
h

R(u)
[
1(x ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du

)
(III)

+

 c′h,yΥhΓ−1
h,y√

c′h,yΥhΩh,yΥhch,y

( 1

h

∫
X

[
R
(u− x

h

)
K
(u− x

h

)
−R

(u− y

h

)
K
(u− y

h

) ][
1(x ≤ u)− F (u)

]
g(u)du

)
.

(IV)

For term (I), its variance (replace the placeholder x by xi) is

V[(I)] =
1

c′h,yΥhΩh,yΥhch,y

(
c′h,xΥh − c′h,yΥh

)
Ωh,x

(
c′h,xΥh − c′h,yΥh

)′
= O

(
1

h
r1(ε, h)2r2(h)2

)
.

Term (II) has variance

V[(II)] =
1

c′h,yΥhΩh,yΥhch,y
c′h,yΥh

(
Γ−1
h,x − Γ−1

h,y

)
Σh,x

(
Γ−1
h,x − Γ−1

h,y

)′ (
c′h,yΥh

)′
= O

(
1

h

( ε
h
∧ 1
)2)

,

where the order ε
h
∧ 1 comes from the difference Γ−1

h,x − Γ−1
h,y.
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Next for term (III), we have

V[(III)] =

 1√
c′h,xΥhΩh,xΥhch,x

− 1√
c′h,yΥhΩh,yΥhch,y

2

c′h,xΥhΩh,xΥhch,x

=

(
1−

√
1 +

c′h,xΥhΩh,xΥhch,x − c′h,yΥhΩh,yΥhch,y

c′h,yΥhΩh,yΥhch,y

)2

�

(
c′h,xΥhΩh,xΥhch,x − c′h,yΥhΩh,yΥhch,y

c′h,yΥhΩh,yΥhch,y

)2

=

(
c′h,xΥh(Ωh,x − Ωh,y)Υhch,x

c′h,yΥhΩh,yΥhch,y
+

(c′h,xΥh − c′h,yΥh)Ωh,yΥhch,x + (c′h,xΥh − c′h,yΥh)Ωh,yΥhch,y

c′h,yΥhΩh,yΥhch,y

)2

.

The first term has bound

c′h,xΥh(Ωh,x − Ωh,y)Υhch,x

c′h,yΥhΩh,yΥhch,y
= O

( ε
h

)
.

The third term has bound

(c′h,xΥh − c′h,yΥh)Ωh,yΥhch,y

c′h,yΥhΩh,yΥhch,y
-
|(c′h,xΥh − c′h,yΥh)Ω

1/2
h,y |√

c′h,yΥhΩh,yΥhch,y
= O

(
1√
h
r1(ε, h)r2(h)

)
.

Finally, the second term can be bounded as

(c′h,xΥh − c′h,yΥh)Ωh,yΥhch,x

c′h,yΥhΩh,yΥhch,y
=

(c′h,xΥh − c′h,yΥh)Ωh,yΥhch,y + (c′h,xΥh − c′h,yΥh)Ωh,y(c
′
h,xΥh − c′h,yΥh)′

c′h,yΥhΩh,yΥhch,y

= O

(
1√
h
r1(ε, h)r2(h) +

1

h
r1(ε, h)2r2(h)2

)
.

Overall, we have that

V[(III)] = O

(
ε2

h2
+

1

h
r1(ε, h)2r2(h)2 +

1

h2
r1(ε, h)4r2(h)4

)
.

Given our assumptions on the basis function and on the kernel function, it is obvious that term (IV) has variance

V[(IV)] = O

(
1

h

( ε
h
∧ 1
)2)

.

The bound on E[supx∈I |BG(x)|] can be found by standard entropy calculation, and the bound on E[supx∈I |TG(x)|]
is obtained by the following fact

E
[
sup
x∈I
|TG(x)|

]
≤ E

[
sup
x∈I
|BG(x)|

]
+ E

[
sup
x∈I
|T̃G(x)−BG(x)|

]
,

and that

E
[
sup
x∈I
|T̃G(x)−BG(x)|

]
=

∫ ∞
0

P
[
sup
x∈I
|T̃G(x)−BG(x)| > u

]
du = O

(
logn√
nh

)
= o(

√
logn),

which follows from Theorem 9 and our assumption that logn/(nh)→ 0.
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5.12 Proof of Lemma 11

We adopt the following decomposition (the integration is always on X−y
h
× X−x

h
, unless otherwise specified):

1

n

n∑
i=1

∫∫
R(u)R(v)′

[
1(xi ≤ x + hu)− F (x + hu)

][
1(xi ≤ y + hv)− F (y + hv)

]
K(u)K(v)g(x + hu)g(y + hv)dudv

(I)

−
∫∫

R(u)R(v)′
[
F̂ (x + hu)− F (x + hu)

][
F̂ (y + hv)− F (y + hv)

]
K(u)K(v)g(x + hu)g(y + hv)dudv. (II)

By the uniform convergence of the empirical distribution function, we have that

sup
x,y∈I

|(II)| = OP

(
1

n

)
.

From the definition of Σh,x,y, we know that

E[(I)] = Σh,x,y.

As (I) is a sum of bounded terms, we can apply Lemma 21 and easily show that

sup
x,y∈I

|(I)− Σh,x,y|+OP

(√
logn

n

)
.

5.13 Proof of Lemma 12

We rewrite (16) as

|(16)| =

∣∣∣∣∣∣√n
√
c′h,xΥhΩh,xΥhch,x

c′h,xΥhΩ̂h,xΥhch,x

c′h,xΥhΓ−1
h

∫
X−x
h

R(u)
[
F (x + hu)− θ′R(u)Υ−1

h

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

∣∣∣∣∣∣
≤
√
n

h

[
sup
x∈I

√
c′h,xΥhΩh,xΥhch,x

c′h,xΥhΩ̂h,xΥhch,x

][
sup
x∈I

∣∣∣∣∣
∫
X−x
h

R(u)
[
F (x + hu)− θ′R(u)Υ−1

h

]
K (u) g(x + hu)du

∣∣∣∣∣
]

= OP

(√
n

h
sup
x∈I

%(h, x)

)
,

where the final bound holds uniformly for x ∈ I.

Next, we expand term (17) as

(17) =
1√
n

n∑
i=1

c′h,xΥhΓ−1
h,x

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

+
1√
n

n∑
i=1

[
1−

√
c′h,xΥhΩh,xΥhch,x

c′h,xΥhΩ̂h,xΥhch,x

]
c′h,xΥhΓ−1

h,x

∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) g(x + hu)du√

c′h,xΥhΩh,xΥhch,x

= TG(x) +

[
1−

√
c′h,xΥhΩh,xΥhch,x

c′h,xΥhΩ̂h,xΥhch,x

]
TG(x)︸ ︷︷ ︸

(I)

.

Term (I) can be easily bounded by

sup
x∈I
|(I)| = OP

((√
logn

nh2

)
E
[
sup
x∈I
|TG(x)|

])
= OP

(
logn√
nh2

)
.
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5.14 Proof of Theorem 13

The claim follows from Theorem 9 and previous lemmas.

5.15 Proof of Theorem 14

Let Iε be an ε-covering (with respect to the Euclidean metric) of I, and assume ε ≤ h. Then the process BG(·) can

be decomposed into:

BG(x) = BG(ΠIε(x)) + BG(x)−BG(ΠIε(x)),

where ΠIε : I → Iε is a mapping satisfying:

ΠIε(x) = argmin
y∈Iε

|y − x|.

We first study the properties of BG(x)−BG(ΠIε(x)). With standard entropy calculation, one has:

E
[
sup
x∈I
|BG(x)−BG(ΠIε(x))|

]
≤ E

[
sup

x,y∈I,|x−y|≤ε
|BG(x)−BG(y)|

]
≤ E

[
sup

x,y∈I,σ(x,y)≤δ(ε)
|BG(x)−BG(y)|

]

-
∫ δ(ε)

0

√
logN(λ, I, σG)dλ,

where

δ(ε) = C

(
1√
h

ε

h
+

1√
h
r1(ε, h)r2(h) +

1

h
r1(ε, h)2r2(h)2

)
,

for some C > 0 that does not depend on ε and h, and N(λ, I, σG) is the covering number of I measured by the

pseudo metric σG(·, ·), which satisfies

N(λ, I, σG) -
1

δ−1(λ)
.

Therefore, we have

E
[
sup
x∈I
|BG(x)−BG(ΠIε(x))|

]
-

(
1√
h

ε

h
+

1√
h
r1(ε, h)r2(h) +

1

h
r1(ε, h)2r2(h)2

)√
logn. (I)

A similar bound holds for the process B̂G(·) due to the uniform consistency of the covariance estimator.

Now consider the discretized version of BG(·) and B̂G(·). By applying Lemmas 11 and 22, we directly obtain

the following bound:

sup
A rectangular

∣∣∣P[{BG(ΠIε(x)), x ∈ I
}
∈ A

]
− P?

[{
B̂G(ΠIε(x)), x ∈ I

}
∈ A

]∣∣∣ = OP

((
logn

nh2

) 1
4

log
1

ε

)
. (II)

As ε appears in (I) polynomially but only logarithmically in (II), it is possible to choose ε sufficiently small so that

the discretization error becomes negligible. Therefore,

sup
u∈R

∣∣∣∣P[ sup
x∈I
|BG(x)| ≤ u

]
− P?

[
sup
x∈I
|B̂G(x)| ≤ u

]∣∣∣∣ = OP

(
log

5
4 n

(nh2)
1
4

)
.
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5.16 Proof of Lemma 15

We apply Lemma 21. For simplicity, assume R(·) is scalar, and let

ui,h(x) = R
(xi − x

h

)2 1

h
K
(xi − x

h

)
− Γh,x.

Then it is easy to see that

sup
x∈I

max
1≤i≤n

V[ui,h(x)] = O(h−1), sup
x∈I

max
1≤i≤n

|ui,h(x)| = O(h−1).

Let |x− y| ≤ ε ≤ h, we also have

|ui,h(x)− ui,h(y)| ≤
∣∣∣∣R(xi − x

h

)2 1

h
K
(xi − x

h

)
−R

(xi − y

h

)2 1

h
K
(xi − y

h

)∣∣∣∣+ |Γh,x − Γh,y|

≤
∣∣∣∣R(xi − x

h

)2
−R

(xi − y

h

)2∣∣∣∣ 1

h
K
(xi − x

h

)
+R

(xi − y

h

)2 1

h

∣∣∣K (xi − x

h

)
−K

(xi − y

h

)∣∣∣+ |Γh,x − Γh,y|

≤M
[
ε

h

1

h
K
(xi − x

h

)
+
ε

h

1

h
K†
(xi − x

h

)
+

1

h
K‡
(xi − x

h

)
+
ε

h

]
.

where M is some constant that does not depend on n, h or ε. Then it is easy to see that

sup
x∈I

max
1≤i≤n

V[ui,h,ε(x)] = O
( ε
h2

)
, sup

x∈I
max
1≤i≤n

|ui,h,ε(x)− E[ui,h,ε(x)]| = O(h−1), sup
x∈I

max
1≤i≤n

E[|ui,h,ε(x)|] = O
( ε
h

)
.

Now take ε =
√
h logn/n, then logN(ε, I, | · |) = O(logn). Lemma 21 implies that

sup
x∈I

∣∣∣∣∣ 1n
n∑
i=1

R
(xi − x

h

)2 1

h
K
(xi − x

h

)
− Γh,x

∣∣∣∣∣ = OP

(√
logn

nh

)
.

5.17 Proof of Lemma 16

Let Ri(x) = R(xi − x) and Wi(x) = K((xi − x)/h)/h, then we split Σ̂h,x,y into two terms,

(I) =
1

n3

∑
i,j,k

ΥhRj(x)Rk(y)′ΥhWj(x)Wk(y)
(
1(xi ≤ xj)− F (xj)

)(
1(xi ≤ xk)− F (xk)

)
(II) = − 1

n2

∑
j,k

ΥhRj(x)Rk(y)′ΥhWj(x)Wk(y)
(
F̂ (xj)− F (xj)

)(
F̂ (xk)− F (xk)

)
.

(II) satisfies

sup
x,y∈I

|(II)| ≤ sup
x
|F̂ (x)− F (x)|2

(
sup
x∈I

1

n

∑
j

|ΥhRj(x)Wj(x)|

)2

.

It is obvious that

sup
x
|F̂ (x)− F (x)|2 = OP

(
1

n

)
.

As for the second part, one can employ the same technique used to prove Lemma 15 and show that

sup
x∈I

1

n

∑
j

|ΥhRj(x)Wj(x)| = OP(1),
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implying that

sup
x,y∈I

|(II)| = OP

(
1

n

)
.

For (I), we first define

uij(x) = ΥhRj(x)Wj(x)
(
1(xi ≤ xj)− F (xj)

)
,

and

ūi(x) = E[uij(x)|xi; i 6= j], ûi(x) =
1

n

∑
j

uij(x).

Then

(I) =
1

n

∑
i

(
1

n

∑
j

uij(x)

)(
1

n

∑
j

uij(y)

)′
=

1

n

∑
i

ûi(x)ûi(y)′

=
1

n

∑
i

ūi(x)ūi(y)′ +
1

n

∑
i

(ûi(x)− ūi(x)) ûi(y)′ +
1

n

∑
i

ūi(x) (ûi(y)− ūi(y))′

=
1

n

∑
i

ūi(x)ūi(y)′︸ ︷︷ ︸
(I.1)

+
1

n

∑
i

(ûi(x)− ūi(x)) ūi(y)′︸ ︷︷ ︸
(I.2)

+
1

n

∑
i

ūi(x) (ûi(y)− ūi(y))′︸ ︷︷ ︸
(I.3)

+
1

n

∑
i

(ûi(x)− ūi(x)) (ûi(y)− ūi(y))′︸ ︷︷ ︸
(I.4)

.

Term (I.1) has been analyzed in Lemma 11, which satisfies

sup
x,y∈I

|(I.1)− Σh,x,y| = OP

(√
logn

n

)
.

Term (I.2) has expansion:

(I.2) =
1

n2

∑
i,j

(uij(x)− ūi(x)) ūi(y)′ =
1

n2

∑
i,j

distinct

(uij(x)− ūi(x)) ūi(y)′

︸ ︷︷ ︸
(I.2.1)

+
1

n2

∑
i

(uii(x)− ūi(x)) ūi(y)′︸ ︷︷ ︸
(I.2.2)

.

By the same technique of Lemma 15, one can show that

sup
x,y∈I

|(I.2.2)| = OP

(
1

n

)
.

We need a further decomposition to make (I.2.1) a degenerate U-statistic:

(I.2.1) =
n− 1

n2

∑
j

E
[
(uij(x)− ūi(x)) ūi(y)′

∣∣xj]︸ ︷︷ ︸
(I.2.1.1)

+
1

n2

∑
i,j

distinct

{
(uij(x)− ūi(x)) ūi(y)′ − E

[
(uij(x)− ūi(x)) ūi(y)′

∣∣xj]}
︸ ︷︷ ︸

(I.2.1.2)

.

(I.2.1) has zero mean. By discretizing I and apply Bernstein’s inequality, one can show that the (I.2.1.1) has
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order OP

(√
logn/n

)
.

For (I.2.1.2), we first discretize I and then apply a Bernstein-type inequality (Lemma 23) for degenerate U-

statistics, which gives an order

sup
x,y∈I

|(I.2.1.2)| = OP

(
logn√
n2h

)
.

Overall, we have

sup
x,y∈I

|(I.2)| = OP

(
1

n
+

√
logn

n
+

logn√
n2h

)
= OP

(√
logn

n

)
,

and the same bound applies to (I.3).

For (I.4), one can show that

sup
x∈I

sup
x∈X

∣∣∣∣∣ 1n∑
j

ΥhRj(x)Wj(x)
(
1(x ≤ xj)− F (xj)

)
− E

[
ΥhRj(x)Wj(x)

(
1(x ≤ xj)− F (xj)

)]∣∣∣∣∣ = OP

(√
logn

nh

)
,

which means

sup
x,y∈I

|(I.4)| = OP

(
logn

nh

)
= OP

(√
logn

n

)
,

under our assumption that logn/(nh2)→ 0.

As a result, we have

sup
x,y∈I

∣∣∣Σ̂h,x,y − Σh,x,y

∣∣∣ = OP

(√
logn

n

)
.

Now take c to be a generic vector. Then we have

c′h,xΥh(Ω̂h,x,y − Ωh,x,y)Υhch,y√
c′h,xΥhΩh,xΥhch,x

√
c′h,yΥhΩh,yΥhch,y

=
c′h,xΥhΓ̂−1

h,x(Σ̂h,x,y − Σh,x,y)Γ̂
−1
h,yΥhch,y√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

+
c′h,xΥh(Γ̂−1

h,x − Γ−1
h,x)Σh,x,yΓ̂

−1
h,yΥhch,y√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

+
c′h,xΥhΓ−1

h,xΣh,x,y(Γ̂
−1
h,y − Γ−1

h,y)Υhch,y√
c′h,xΥhΩh,xΥhch,x

√
c′h,yΥhΩh,yΥhch,y

.

From the analysis of Σ̂h,x,y, we have

sup
x,y∈I

∣∣∣∣∣∣ c
′
h,xΥhΓ̂−1

h,x(Σ̂h,x,y − Σh,x,y)Γ̂
−1
h,yΥhch,y√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

∣∣∣∣∣∣ = OP

(√
logn

nh2

)
.

For the second term, we have∣∣∣∣∣∣ c′h,xΥh(Γ̂−1
h,x − Γ−1

h,x)Σh,x,yΓ̂
−1
h,yΥhch,y√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

∣∣∣∣∣∣ ≤ |c
′
h,xΥh(Γ̂−1

h,x − Γ−1
h,x)Σ

1/2
h,x | · |c

′
h,yΥhΓ̂−1

h,yΣ
1/2
h,y |√

c′h,xΥhΩh,xΥhch,x
√
c′h,yΥhΩh,yΥhch,y

= OP

(√
logn

nh2

)
.

The same bound holds for the third term.
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5.18 Proof of Lemma 17

We decompose (18) as

sup
x∈I
|(18)| ≤ 1√

n

sup
x∈I

∣∣∣∣∣∣ c′h,xΥhΓ̂−1
h,x√

c′h,xΥhΩ̂h,xΥhch,x

∣∣∣∣∣∣


︸ ︷︷ ︸
(I)

[
sup
x∈I

∣∣∣∣∣ 1n
n∑
i=1

R((xi − x)/h)[1− F (xi)]
1

h
K(

xi − x

h
)

∣∣∣∣∣
]

︸ ︷︷ ︸
(II)

.

As both Γ̂h,x and c′h,xΥhΩ̂h,xΥhch,x are uniformly consistent, term (I) has order

(I) = OP

(√
1

h

)
.

For (II), we can employ the same technique used to prove Lemma 15 and show that

(II) = OP

(
1 +

√
logn

nh

)
= OP(1),

where the leading order in the above represents the mean of R((xi − x)/h)[1− F (xi)]
1
h
K(xi−x

h
).

Next, term (19) is bounded by

sup
x∈I
|(19)| ≤

√
n

sup
x∈I

∣∣∣∣∣∣ c′h,xΥhΓ̂−1
h,x√

c′h,xΥhΩ̂h,xΥhch,x

∣∣∣∣∣∣


︸ ︷︷ ︸
(I)

[
sup
x∈I

∣∣∣∣∣ 1n
n∑
i=1

R((xi − x)/h)[F (xi)− θ(x)′R(xi − x)]
1

h
K(

xi − x

h
)

∣∣∣∣∣
]

︸ ︷︷ ︸
(II)

.

Employing the same argument used to prove Lemma 17, we have

(I) = OP

(√
1

h

)
.

To bound term (II), recall that K(·) is supported on [−1, 1], meaning that

sup
x∈I

∣∣∣∣∣ 1n
n∑
i=1

R((xi − x)/h)[F (xi)− θ(x)′R(xi − x)]
1

h
K(

xi − x

h
)

∣∣∣∣∣
= sup

x∈I

∣∣∣∣∣ 1n
n∑
i=1

R((xi − x)/h)[F (xi)− θ(x)′R(xi − x)]1(|xi − x| ≤ h)
1

h
K(

xi − x

h
)

∣∣∣∣∣
≤

[
sup
x∈I

1

n

n∑
i=1

∣∣∣∣R((xi − x)/h)
1

h
K(

xi − x

h
)

∣∣∣∣
]

︸ ︷︷ ︸
(II.1)

[
sup
x∈I

sup
u∈[x−h,x+h]

∣∣∣[F (u)− θ(x)′R(u− x)
]∣∣∣]︸ ︷︷ ︸

(II.2)

.

Term (II.2) has the bound supx∈I %(h, x). Term (II.1) can be bounded by mean and variance calculations and

adopting the proof of Lemma 15, which leads to

(II.1) = OP

(
1 +

√
logn

nh

)
= OP(1).

To show the last conclusion, define the following:

uij(x) = ΥhR(xj − x)
[
1(xi ≤ xj)− F (xj)

] 1

h
K
(xj − x

h

)
−
∫
X−x
h

R(u)
[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du,
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then n−2∑n
i,j=1,i 6=j uij(x) is a degenerate U-statistic. We rewrite (20) as

sup
x∈I
|(20)| ≤

√
n

sup
x∈I

∣∣∣∣∣∣ c′h,xΥhΓ̂−1
h,x√

c′h,xΥhΩ̂h,xΥhch,x

∣∣∣∣∣∣


︸ ︷︷ ︸
(I)

sup
x∈I

∣∣∣∣∣∣ 1

n2

n∑
i,j=1,i 6=j

uij

∣∣∣∣∣∣


︸ ︷︷ ︸
(II)

.

As before, we have

(I) = OP

(√
1

h

)
.

Now we consider (II). Let Iε be an ε
2
-covering of I, we have

sup
x∈I

∣∣∣∣∣∣ 1

n2

n∑
i,j=1,i 6=j

uij(x)

∣∣∣∣∣∣ ≤ max
x∈Iε

∣∣∣∣∣∣ 1

n2

n∑
i,j=1,i 6=j

uij(x)

∣∣∣∣∣∣︸ ︷︷ ︸
(II.1)

+ max
x∈Iε,y∈I,|x−y|≤ε

∣∣∣∣∣∣ 1

n2

n∑
i,j=1,i 6=j

(
uij(x)− uij(y)

)∣∣∣∣∣∣︸ ︷︷ ︸
(II.2)

.

We rely on the concentration inequality in Lemma 23 for degenerate second order U-statistics. By our assump-

tions, A can be chosen to be C1h
−1 where C1 is some constant that is independent of x. Similarly, B can be chosen

to be C2
√
nh−1 for some constant C2 which is independent of x, and D can be chosen as C3nh

−1/2 for some C3

independent of x. Therefore, by setting η = K logn/
√
n2h for some large constant K, we have

P [(II.1) ≥ η] ≤ C 1

ε
max
x∈Iε

P

∣∣∣∣∣∣
n∑

i,j=1,i 6=j

uij(x)

∣∣∣∣∣∣ ≥ n2η


≤ C 1

ε
exp

{
− 1

C
min

[
n2h1/2η

nc3
,

(
n2hη

n1/2c2

) 2
3

,

(
n2hη

c1

) 1
2

]}

= C
1

ε
exp

− 1

C
min

K logn

c3
,

(
K
√
nh logn

c2

) 2
3

,

(
K
√
n2h logn

c1

) 1
2

 .

As ε is at most polynomial in n, the above tends to zero for all K large enough, which implies

(II.1) = OP

(
logn√
n2h

)
.

With tedious but still straightforward calculations, it can be shown that

(II.2) = OP

(
ε

h
+

logn√
n2h

+
ε

h

logn√
n2h

)
,

and to match the rates, let ε = h logn/
√
n2h.

5.19 Proof of Lemma 18

The proof resembles that of of Lemma 12.

5.20 Proof of Theorem 19

The proof resembles that of Theorem 13.
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5.21 Proof of Theorem 20

The proof resembles that of Theorem 14.
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