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SA.1. Proofs.

SA.1.1. Proof of Lemma A.1. Lemma 4.2 of van der Vaart and van der Laan (2006)
implies that, on (l, u),

GCM[l,u](Γ ◦Φ−) = GCM[l,u](LSC(Γ ◦Φ−)).

Since Φ(x) ∈ (l, u), we therefore have

θ(x) = ∂−GCM[l,u](Γ ◦Φ−) ◦Φ(x) = ∂−GCM[l,u](LSC(Γ ◦Φ−)) ◦Φ(x),

so Lemma 4.1 of van der Vaart and van der Laan (2006) implies that

θ(x)> t ⇐⇒ y? <Φ(x),

where

y? = max argmax
y∈[l,u]

{
ty− LSC(Γ ◦Φ−)(y)

}
.

Suppose y? ∈Φ(I). Then y? = Φ(x?), where

x? = Φ−(y?) ∈ argmax
x∈Φ−([l,u])

{tΦ(x)− LSCΦ(Γ)(x)} .

In particular,

θ(x)> t ⇐⇒ y? = Φ(x?)<Φ(x) ⇐⇒ x? <Φ−(Φ(x)),

where, in fact,

x? = max argmax
x∈Φ−([l,u])

{tΦ(x)− LSCΦ(Γ)(x)} ,

because if

x? < x′ ∈ argmax
x∈Φ−([l,u])

{tΦ(x)− LSCΦ(Γ)(x)} ,

then, contradicting the definition of y?, we have

y′ = Φ(x′) ∈ argmax
y∈[l,u]

{
ty− LSC(Γ ◦Φ−)(y)

}
and y′ > y?.

The proof can therefore be completed by showing that y? ∈Φ(I).
If Φ(I)⊇ [l, u], then there is nothing to show, so suppose Φ(I) 6⊇ [l, u]. If y ∈Φ(I)c∩ [l, u],

then, since Φ(I)∩ [l, u] is closed and l, u ∈Φ(I), we have [y− η, y+ η]∩Φ(I) = ∅ for some
η > 0 with [y − η, y + η] ⊂ [l, u]. Therefore, the function LSC(Γ ◦ Φ−) in constant on the
interval [y− η/2, y+ η/2], implying in particular that

y? = max argmax
y′∈[l,u]

{
ty′ − LSC(Γ ◦Φ−)(y′)

}
6= y.

SA.1.2. Proof of Lemma A.2. We begin by adapting the arguments of Kim and Pollard
(1990, pp. 196-198) to show that a maximizer of G(v) over v ∈ R exists and is unique with
probability one. Let G̃(v) =G(v)− µ(v) be the centered process and suppose that, for the
same c > 1/2 as in Assumption A.2,

(SA.1) P

[
lim sup
|v|→∞

G̃(v)

|v|c
> η

]
= 0 for any η > 0.
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Then, with probability one, G(v)→−∞ as |v| →∞, implying in turn that a maximizer of
G(v) exists (because sample paths are continuous). Also, since

V[G(v)−G(v′)] =K(v, v) +K(v′, v′)− 2K(v, v− v′) =K(v− v′, v− v′)> 0

for v 6= v′, Lemma 2.6 of Kim and Pollard (1990) implies that this maximizer is unique with
probability one. In turn, (SA.1) follows from the Borel-Cantelli lemma because

∞∑
k=2

P

[
sup

k−1≤|v|≤k

G̃(v)

|v|c
> η

]
≤
∞∑
k=2

P

[
sup
|v|≤k

G̃(v)> (k/2)cη

]

=

∞∑
k=2

P

[
sup
|v|≤1

G̃(v)> kc−1/22−cη

]

≤
24c/(2c−1)E

[
sup|v|≤1 |G̃(v)|4c/(2c−1)

]
η4c/(2c−1)

∞∑
k=2

k−2 <∞,

where the equality uses the rescaling property K(vτ, v′τ) = τK(v, v′) and where the last
inequality uses Jain and Marcus (1978, Corollary 4.7).

To show continuity of the function x 7→P[argmaxv∈RG(v)≤ x], it suffices to show that
P[argmaxv∈RG(v) = x] = 0 for every x ∈R. Fix x ∈R and define Z̃(x) = 0 and

Z̃(v) =
G(v)−G(x)√
K(v− x, v− x)

, v 6= x.

Then maxv∈R Z̃(v)≥ 0 and, for any set V ⊂R,

(SA.2) P

[
argmax
v∈R

G(v) = x

]
=P

[
max
v∈R

Z̃(v)≤ 0

]
≤P

[
max
v∈V

Z̃(v)≤ 0

]
.

In the sequel, we show that the majorant in (SA.2) can be made arbitrarily small by choice of
V . In particular, for ε ∈ (0,1) and N ∈N, we construct vε1,N , . . . , v

ε
N,N such that

(SA.3) E

[
Z̃(vεi,N )

]
≥−ε for every 1≤ i≤N,

and

(SA.4)
∣∣∣Cov

(
Z̃
(
vεi,N ), Z̃(vεj,N )

)∣∣∣≤ ε for every 1≤ i < j ≤N.

Defining VεN = {vε1,N , . . . , vεN,N}, we therefore have

P

[
max
v∈R

Z̃(v)≤ 0

]
≤ lim inf

ε↓0
P

[
max
v∈VεN

Z̃(v)≤ 0

]
≤
∣∣∣∣∫ 0

−∞

exp(−x2/2)√
2π

dx

∣∣∣∣N = 2−N ,

where the second inequality uses the fact that convergence of means and covariances of nor-
mal random vectors implies convergence in distribution. Since N is arbitrary, the left-hand
side in the preceding display is zero. Letting ε ∈ (0,1) and N ∈ N be given, the proof can
therefore be completed by exhibiting {vεi,N}Ni=1 satisfying (SA.3) and (SA.4).

Because K(τ, τ) = τK(1,1) and limτ↓0[µ(x + τ) − µ(x)]/
√
τ = 0, there exists τ̄

′

ε > 0
such that

E

[
Z̃(x+ τ)

]
=
µ(x+ τ)− µ(x)√

K(τ, τ)
=

[µ(x+ τ)− µ(x)]/
√
τ√

K(1,1)
≥−ε
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for every τ ∈ (0, τ̄
′

ε). Also, because K(τi, τj) = τiK(1, τj/τi) and limτ↓0K(1, τ)/
√
τ = 0,

there exists τ̄
′′

ε > 0 such that

Cov
(
Z̃(x+ τi), Z̃(x+ τj)

)
=

K(τi, τj)√
K(τi, τi)K(τj , τj)

=
K(1, τj/τi)/

√
τj/τi

K(1,1)
∈ [−ε, ε]

for all τi, τj > 0 with τj/τi < τ̄
′′

ε . Now, if vεi,N = x+ τ̄ iε/2 for some τ̄ε <min{τ̄ ′ε, τ̄
′′

ε ,1}, then
{vεi,N}Ni=1 satisfies (SA.3) and (SA.4).

SA.1.3. Technical Lemmas. In preparation for the proof of Theorem 1, this section
presents six technical lemmas. The first lemma is a switching lemma, which will be used
when characterizing the limiting distributions obtained in Theorem 1.

LEMMA SA-1. Let Γ : R→R be a lower semi-continuous function that is bounded from
below and satisfies lim|v|→∞Γ(v)/|v|=∞. Then, for any x, t ∈R,

∂−GCMR(Γ)(x)> t ⇐⇒ max argmax
v∈R

{vt− Γ(v)}< x.

PROOF. Because lim|v|→∞Γ(v)/|v| =∞, there exists a K > |x| such that if |v| ≥ K ,
then vt− Γ(v)<−Γ(0), implying in particular that

argmax
v∈R

{vt− Γ(v)}= argmax
v∈[−c,c]

{vt− Γ(v)}

for every c≥K . Also, by Lemma A.1. of Sen, Banerjee and Woodroofe (2010) there exists
a c >K such that GCMR(Γ) = GCM[−c,c](Γ) on [−K,K], implying in particular that

∂−GCMR(Γ)(x) = ∂−GCM[−c,c](Γ)(x).

For any such c, the conclusion of the lemma is equivalent to the statement

∂−GCM[−c,c](Γ)(x)> t ⇐⇒ max argmax
v∈[−c,c]

{vt− Γ(v)}< x,

whose validity follows from Lemma 4.1 of van der Vaart and van der Laan (2006).

The proof of Theorem 1 furthermore employs various approximations to functionals of
the form LSCΦ(f). The approximations in question are obtained using Lemmas SA-2, SA-3,
SA-5, and SA-6. In all cases, the approximations are based on the representation

(SA.5) LSCΦ(f)(x) = lim inf
ε↓0

inf
x′∈X εΦ(x)

f(x′),

where X εΦ(x) = (Φ−(Φ(x)− ε),Φ−(Φ(x))]∪ (Φ−(Φ(x)+),Φ−(Φ(x) + ε)).
The following lemma uses (SA.5) and the special structure of Γ0 to obtain a simple

“global” bound on the error of the approximation LSCΦ(Γ0)≈ Γ0.

LEMMA SA-2. Suppose Assumption A holds and suppose Φ is non-decreasing and right-
continuous on I . Then, for every x ∈ I ,∣∣LSCΦ(Γ0

)
(x)− Γ0(x)

∣∣≤ 2

(
sup
x′∈I
|θ0(x′)|

)(
sup
x′∈I
|Φ(x′)−Φ0(x′)|

)
.
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PROOF. By (SA.5) and continuity of Γ0,

LSCΦ(Γ0)(x) = min
[
Γ0(Φ−(Φ(x))),Γ0(Φ−(Φ(x)+))

]
,

while, by Assumption A,

|Γ0(x′)− Γ0(x)| ≤
(

sup
x′′∈I
|θ0(x′′)|

)
|Φ0(x′)−Φ0(x)|.

Now, using Φ ◦Φ− ◦Φ = Φ,

|Φ0(Φ−(Φ(x)))−Φ0(x)|= |Φ0(Φ−(Φ(x)))−Φ(Φ−(Φ(x))) + Φ(x)−Φ0(x)|

≤ 2

(
sup
x′∈I
|Φ(x′)−Φ0(x′)|

)
.

Also,

|Φ0(Φ−(Φ(x)+))−Φ0(x)| ≤ 2

(
sup
x′∈I
|Φ(x′)−Φ0(x′)|

)
because, for every η > 0,

0≤Φ0(Φ−(Φ(x)+))−Φ0(x)≤Φ0(Φ−(Φ(x) + η))−Φ0(x)

≤Φ0

(
Φ−
(

Φ0(x) + sup
x′∈I
|Φ(x′)−Φ0(x′)|+ η

))
−Φ0(x)

≤Φ0

(
Φ−0

(
Φ0(x) + 2 sup

x′∈I
|Φ(x′)−Φ0(x′)|+ η

))
−Φ0(x)

≤ 2 sup
x′∈I
|Φ(x′)−Φ0(x′)|+ η,

where the last inequality uses continuity of Φ0.

A simple “global” bound on the error of the approximation LSCΦ(f)≈ f is available also
in the important special case where f is proportional to Φ.

LEMMA SA-3. Suppose Assumption A holds and suppose Φ is non-decreasing and right-
continuous on I . Then, for every x ∈ I and every θ ∈R,

|LSCΦ

(
θΦ
)
(x)− θΦ(x)| ≤ |θ|

(
sup
x′∈I
|Φ(x′)−Φ(x′−)|

)
.

PROOF. First, if θ > 0, then the result follows from the fact that, by (SA.5),

LSCΦ

(
θΦ
)
(x) = θΦ(Φ−(Φ(x))−)≤ θΦ(Φ−(Φ(x))) = θΦ(x),

where

Φ(x) = Φ(Φ−(Φ(x)))≤Φ(Φ−(Φ(x))−) + sup
x′∈I
|Φ(x′)−Φ(x′−)|.

Next, if θ < 0, then the result follows from the fact that, by (SA.5),

LSCΦ

(
θΦ
)
(x) = θΦ(Φ−(Φ(x)+))≤ θΦ(Φ−(Φ(x))) = θΦ(x),

where

Φ(Φ−(Φ(x)+))≤ lim inf
η↓0

Φ(Φ−(Φ(x) + η)−) + sup
x′∈I
|Φ(x′)−Φ(x′−)|

≤Φ(x) + sup
x′∈I
|Φ(x′)−Φ(x′−)|.
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Next, we give a “local” approximation to Φ− ◦Φ. That approximation will later be used in
combination with (SA.5) to obtain “local” approximations to LSCΦ(f), but the approxima-
tion is also useful in its own right and we therefore state it as a separate lemma.

LEMMA SA-4. Suppose Assumption A holds and suppose Φ is non-decreasing and right-
continuous on I . Also, suppose

2 supx′∈Iδ+εx
|Φ(x′)−Φ0(x′)|

infx′∈Iδ+εx
∂Φ0(x′)

< ε

for some δ, ε > 0 with Iδ+εx ⊆ I . Then, for every x ∈ Iδx ,

|Φ−(Φ(x))− x|< ε and |Φ−(Φ(x)+)− x|< ε.

PROOF. First, suppose |Φ−(Φ(x))− x| ≥ ε. Then Φ−(Φ(x))≤ x− ε, implying in partic-
ular that Φ(x− ε) = Φ(x) and therefore also

[Φ(x− ε)−Φ0(x− ε)]− [Φ(x)−Φ0(x)] = Φ0(x)−Φ0(x− ε).

Now, if x ∈ Iδx , then [x− ε, x]⊆ Iδ+εx , so

Φ0(x)−Φ0(x− ε)≥ ε
(

inf
x′∈Iδ+εx

∂Φ0(x′)

)
> 2

(
sup

x′∈Iδ+εx

|Φ(x′)−Φ0(x′)|

)
,

whereas∣∣∣∣ [Φ(x− ε)−Φ0(x− ε)]− [Φ(x)−Φ0(x)]

∣∣∣∣≤ 2

(
sup

x′∈Iδ+εx

|Φ(x′)−Φ0(x′)|

)
.

In other words, x 6∈ Iδx .
Next, suppose |Φ−(Φ(x)+) − x| ≥ ε. Then, for every η, η′ > 0, Φ−(Φ(x) + η) ≥ x + ε

and therefore

Φ(x+ ε− η′)− sup
x′∈Iδ+εx

|Φ(x′)−Φ0(x′)| − η <Φ(x)− sup
x′∈Iδ+εx

|Φ(x′)−Φ0(x′)|,

where, for x ∈ Iδx ,

Φ(x)− sup
x′∈Iδ+εx

|Φ(x′)−Φ0(x′)| ≤Φ0(x),

whereas

lim inf
η,η′↓0

[
Φ(x+ ε− η′)− sup

x′∈Iδ+εx

|Φ(x′)−Φ0(x′)| − η

]

≥ lim inf
η′↓0

[
Φ0(x+ ε− η′)− 2 sup

x′∈Iδ+εx

|Φ(x′)−Φ0(x′)|

]

≥Φ0(x) +

(
inf

x′∈Iδ+εx

∂Φ0(x′)

)
lim inf
η′↓0

[
ε−

2 supx′∈Iδ+εx
|Φ(x′)−Φ0(x′)|

infx′∈Iδ+εx
∂Φ0x′)

− η′
]
>Φ0(x).

In other words, x 6∈ Iδx .
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Next, we obtain two “local” approximations to LSCΦ(f). The first of these is a generic ap-
proximation obtained by simply combining (SA.5) and Lemma SA-4, but for later reference
we state the result as a separate lemma.

LEMMA SA-5. Suppose the assumptions of Lemma SA-4 hold. Then, for every x ∈ Iδx
and every f : I→R,

inf
|x′−x|≤ε

f(x′)≤ LSCΦ(f)(x)≤ sup
|x′−x|≤ε

f(x′)

and

|LSCΦ(f)(x)− f(x)| ≤ sup
|x′−x|≤ε

|f(x′)− f(x)|.

The final lemma is concerned with the special case where f is proportional to Φ. In
that case, the following “local” analog of Lemma SA-3 shows that the bound(s) obtained
in Lemma SA-5 can be improved under mild conditions on Φ.

LEMMA SA-6. Suppose the assumptions of Lemma SA-4 hold. Then, for every x ∈ Iδx
and every θ ∈R,

|LSCΦ

(
θΦ
)
(x)− θΦ(x)| ≤ |θ|

(
sup

x′∈Iδ+εx

|Φ(x′)−Φ(x′−)|

)
.

PROOF. First, if θ > 0, then the result follows from the fact that, by (SA.5),

LSCΦ

(
θΦ
)
(x) = θΦ(Φ−(Φ(x))−)≤ θΦ(Φ−(Φ(x))) = θΦ(x),

where, if x ∈ Iδx , then Φ−(Φ(x)) ∈ Iδ+εx by Lemma SA-4, and therefore

Φ(x) = Φ(Φ−(Φ(x)))≤Φ(Φ−(Φ(x))−) + sup
x′∈Iδ+εx

|Φ(x′)−Φ(x′−)|.

Next, if θ < 0, then the result follows from the fact that, by (SA.5),

LSCΦ

(
θΦ
)
(x) = θΦ(Φ−(Φ(x)+))≤ θΦ(Φ−(Φ(x))) = θΦ(x),

where, if x ∈ Iδx , then Φ−(Φ(x)+) ∈ Iδ+εx by Lemma SA-4, and therefore

Φ(Φ−(Φ(x)+))≤ lim inf
η↓0

Φ(Φ−(Φ(x) + η)−) + sup
x′∈Iδ+εx

|Φ(x′)−Φ(x′−)|

≤Φ(x) + sup
x′∈Iδ+εx

|Φ(x′)−Φ(x′−)|.

SA.1.4. Proof of Theorem 1.

Proof of (2). Let t ∈R be given. By Lemma A.1 and change of variables,

P

[
rn(θ̂n(x)− θ0(x))> t

]
=P

[
max argmax

x∈Φ̂−n ([0,ûn])

{
[θ0(x) + tr−1

n ]Φ̂n(x)− LSCΦ̂n

(
Γ̂n
)
(x)
}
< Φ̂−n ◦ Φ̂n(x)

]

=P

[
max argmin

v∈V̂ q
x,n

Ĥq
x,n(v; t)< Ẑq

x,n

]
,
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where

V̂ q
x,n =

{
an(x− x) : x ∈ Φ̂−n ([0, ûn])

}
,

Ĥq
x,n(v; t) = LSCL̂q

x,n

(
Ĝq

x,n +Mq
x,n + rnθ0(x)L̂q

x,n

)
(v)− [rnθ0(x) + t]L̂q

x,n(v)

and

Ẑq
x,n = an

[
Φ̂−n ◦ Φ̂n(x)− x

]
,

with

Ĝq
x,n(v) =

√
nan

[
Γ̂n(x+ va−1

n )− Γ̂n(x)− Γ0(x+ va−1
n ) + Γ0(x)

]
− θ0(x)

√
nan

[
Φ̂n(x + va−1

n )− Φ̂n(x)−Φ0(x+ va−1
n ) + Φ0(x)

]
,

Mq
x,n(v) =

√
nan

[
Γ0(x + va−1

n )− Γ0(x)
]
− θ0(x)

√
nan

[
Φ0(x + va−1

n )−Φ0(x)
]
,

L̂q
x,n(v) = an

[
Φ̂n(x+ va−1

n )− Φ̂n(x)
]
.

By (B4) and Lemma SA-4, Ẑq
x,n = oP(1). Suppose also that

(SA.6) max argmin
v∈V̂ q

x,n

Ĥq
x,n(v; t) argmin

v∈R
Hq

x(v; t),

where Hq
x(v; t) = Gx(v) +Mq

x(v)− t∂Φ0(x)v. Then

P

[
rn(θ̂n(x)− θ0(x))> t

]
=P

[
max argmin

v∈V̂ q
x,n

Ĥq
x,n(v; t)< Ẑq

x,n

]

→P
[
argmin
v∈R

Hq
x(v; t)< 0

]
=P

[
1

∂Φ0(x)
∂−GCMR(Gx +Mq

x(0)> t

]
,

where the second line uses Lemma A.2 and where the last equality uses Lemma SA-1. The
proof of (2) can therefore be completed by showing (SA.6).

We shall do so by means of the argmax continuous mapping theorem of Cox (2022). To
be specific, using that theorem it can be shown that (SA.6) holds if

(SA.7) v̂n(t) = max argmin
v∈V̂ q

x,n

Ĥq
x,n(v; t) =OP(1)

and if

(SA.8) Ĥq
x,n(·; t) Hq

x(·; t).

We begin by showing (SA.8). First, by (B1), Ĝq
x,n Gx. Also, by (A2) and (A3), as u→ 0,

Γ0(x+ u)− θ0(x)Φ0(x+ u)− Γ0(x) + θ0(x)Φ0(x)

uq+1
→ lim

u→0

[θ0(x + u)− θ0(x)]∂Φ0(x+ u)

(q+ 1)uq

=
∂qθ0(x)∂Φ0(x)

(q+ 1)!
,
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where the first equality uses L’Hôpital’s rule and

∂ [Γ0(x+ u)− θ0(x)Φ0(x + u)− Γ0(x) + θ0(x)Φ0(x)] = [θ0(x+ u)− θ0(x)]∂Φ0(x + u).

As a consequence,Mq
x,n Mq

x . Moreover, L̂q
x,n−Lq

x,n 0 by (B4) and Lq
x,n Lx by (A3),

where Lq
x,n(v) = an

[
Φ0(x+ va−1

n )−Φ0(x)
]
. In particular, L̂q

x,n Lx and therefore

(Ĝq
x,n,M

q
x,n, L̂

q
x,n) (Gx,Mq

x ,Lx).

Because Ĝq
x,n +Mq

x,n is asymptotically equicontinuous,

LSCL̂q
x,n

(
Ĝq

x,n +Mq
x,n

)
−
(
Ĝq

x,n +Mq
x,n

)
 0

by (B4) and Lemma SA-5. Also, by (B8) and Lemma SA-6,

LSCL̂q
x,n

(
rnθ0(x)L̂q

x,n

)
−
(
rnθ0(x)L̂q

x,n

)
 0.

The result (SA.8) follows from the three preceding displays and the fact that, on V̂ q
x,n,

0≥ LSCL̂q
x,n

(
Ĝq

x,n +Mq
x,n + rnθ0(x)L̂q

x,n

)
−
(
Ĝq

x,n +Mq
x,n + rnθ0(x)L̂q

x,n

)
≥ LSCL̂q

x,n

(
Ĝq

x,n +Mq
x,n

)
−
(
Ĝq

x,n +Mq
x,n

)
+ LSCL̂q

x,n

(
rnθ0(x)L̂q

x,n

)
−
(
rnθ0(x)L̂q

x,n

)
.

Next, to show (SA.7), we first define θn(x; t) = θ0(x) + tr−1
n and note that

v̂n(t) = an

[
max argmax

x∈Φ̂−n ([0,ûn])

{
θn(x; t)Φ̂n(x)− LSCΦ̂n

(
Γ̂n

)
(x)
}
− x

]
.

Now, if |v̂n(t)|> anδ > 0, then

sup
x 6∈Iδx

{
θn(x; t)Φ̂n(x)− LSCΦ̂n

(
Γ̂n

)
(x)
}
≥ θn(x; t)Φ̂n(x)− LSCΦ̂n

(
Γ̂n

)
(x),

where |θn(x; t)− θ0(x)|=O(r−1
n ) = o(1), and, by (B4),

sup
x∈I

∣∣∣Φ̂n(x)−Φ0(x)
∣∣∣= oP(1).

Also, using (B3), (B4), and Lemma SA-2,

sup
x∈I

∣∣∣LSCΦ̂n

(
Γ̂n

)
(x)− Γ0(x)

∣∣∣
≤ sup

x∈I

∣∣∣LSCΦ̂n

(
Γ̂n

)
(x)− LSCΦ̂n

(Γ0) (x)
∣∣∣+ sup

x∈I

∣∣∣LSCΦ̂n
(Γ0) (x)− Γ0(x)

∣∣∣
≤ sup

x∈I

∣∣∣Γ̂n(x)− Γ0(x)
∣∣∣+ 2

(
sup
x∈I
|θ0(x)|

)(
sup
x∈I
|Φ̂n(x)−Φ0(x)|

)
= oP(1).

As a consequence, v̂n(t) = oP(an): For any δ > 0,

P [|v̂n(t)|> anδ]

≤P

[
sup
x 6∈Iδx
{θ0(x)Φ0(x)− Γ0(x)} ≥ θ0(x)Φ0(x)− Γ0(x) + oP(1)

]
= o(1),

where the equality uses the fact, noted by Westling and Carone (2020, Supplement, proof of
Lemma 3), that the function v 7→ θ0(x)Φ0(v)− Γ0(v) is unimodal and maximized at v = x.
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Next, defining V̂ q
x,n(j) = {v ∈ V̂ q

x,n : 2j < |v| ≤ 2j+1} and using v̂n(t) = oP(an), we have,
for any K , any positive δ′, and any sequence of events {A′n} with limn→∞P[A′n] = 1,

lim sup
n→∞

P
[
|v̂n(t)|> 2K

]
≤ lim sup

n→∞

∑
j≥K:2j≤anδ′

P
[
2j < |v̂n(t)| ≤ 2j+1 ∩A′n

]
≤ lim sup

n→∞

∑
j≥K:2j≤anδ′

P

[
inf

v∈V̂ q
x,n(j)

Ĥq
x,n(v; t)≤ Ĥq

x,n(0; t)∩A′n

]
.

The proof of (SA.7) can therefore be completed by showing that the majorant side in the
display can be made arbitrarily small by choice of K , δ′, and {A′n}.

To do so, we begin by analyzing each term in the basic bound

Ĥq
x,n(v; t)− Ĥq

x,n(0; t)≥ LSCL̂q
x,n

(
Ĝq

x,n

)
(v) + LSCL̂q

x,n

(
Mq

x,n

)
(v)− tL̂q

x,n(v)

+ LSCL̂q
x,n

(
rnθ0(x)L̂q

x,n

)
(v)− rnθ0(x)L̂q

x,n(v)− Ĥq
x,n(0; t).

Because Ĥq
x,n(0; t) Hq

x(0; t) = 0 and because, by (B8) and Lemma SA-6, there is a positive
δ′ such that

sup
|v|≤anδ′

∣∣∣LSCL̂q
x,n

(
rnθ0(x)L̂q

x,n

)
(v)− rnθ0(x)L̂q

x,n(v)
∣∣∣= oP(1),

we may assume that, on {A′n} and for some C0,

sup
|v|≤anδ′

∣∣∣LSCL̂q
x,n

(
rnθ0(x)L̂q

x,n

)
(v)− rnθ0(x)L̂q

x,n(v)− Ĥq
x,n(0; t)

∣∣∣≤C0.

Also, because, by (B4) and (A3), there is a positive δ′ such that

sup
|v|≤anδ′

∣∣∣L̂q
x,n(v)−Lq

x,n(v)
∣∣∣= oP(1) and sup

1≤|v|≤anδ′

∣∣∣∣Lq
x,n(v)

Lx(v)

∣∣∣∣<∞,
we may assume that, on {A′n} and for some CL,

sup
1≤|v|≤anδ′

∣∣∣∣∣ L̂q
x,n(v)

v

∣∣∣∣∣≤CL.
Next, by (B4) and Lemma SA-5, with probability approaching one,

LSCL̂q
x,n

(
Mq

x,n

)
(v)≥ inf

|v|/2≤|v′|≤2|v|
Mq

x,n(v′) for every |v| ≥ 2,

while, by (A2) and (A3), there is a positive δ′ such that

inf
1≤|v|≤ηanδ′

Mq
x,n(v)

Mq
x(v)

> 0.

We may therefore assume that, on {A′n} and for some positive CM ,

inf
2≤|v|≤anδ′

LSCL̂q
x,n

(
Mq

x,n

)
(v)

vq+1
≥CM .

Finally, by (B4) and Lemma SA-5, with probability approaching one,∣∣∣LSCL̂q
x,n

(
Ĝq

x,n

)
(v)
∣∣∣≤ sup
|v|/2≤|v′|≤2|v|

∣∣∣Ĝq
x,n(v′)

∣∣∣ for every |v| ≥ 2,
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and we may therefore assume that, on {A′n},

sup
v∈V̂ q

x,n(j)

∣∣∣LSCL̂q
x,n

(
Ĝq

x,n

)
(v)
∣∣∣≤ sup

v∈V2(j)

∣∣∣Ĝq
x,n(v)

∣∣∣ for every j ≥ 2 with 2j ≤ anδ′,

where Vη(j) = {v ∈R : η−12j ≤ |v| ≤ η2j+1}.
As a consequence, by the Markov inequality,

P

[
inf

v∈V̂ q
x,n(j)

Ĥq
x,n(v; t)≤ Ĥq

x,n(0; t)∩A′n

]

≤P

[
sup

v∈V2(j)

∣∣∣Ĝq
x,n(v)

∣∣∣≥ inf
v∈V1(j)

[
CMv

q+1 −CL|v| −C0

]
∩A′n

]

≤
E

[
supv∈V2(j)

∣∣∣Ĝq
x,n(v)

∣∣∣1A′n]
infv∈V1(j) [CMvq+1 −CL|v| −C0]

for every j ≥ 2 with 2j ≤ anδ′,

where, by (B4), we may assume that, for some CG,

E

[
sup

v∈V2(j)

∣∣∣Ĝq
x,n(v)

∣∣∣1A′n
]
≤

∑
j−1≤j′≤j+1

E

[
sup

v∈V1(j)

∣∣∣Ĝq
x,n(v)

∣∣∣1A′n
]
≤CG2jβ,

and where, for all sufficiently large j,

inf
v∈V1(j)

[
CMv

q+1 −CL|v| −C0

]
≥ 1

2
CM2j(q+1).

In other words, for large K ,

lim sup
n→∞

∑
j≥K:2j≤anδ′

P

[
inf

v∈V̂ q
x,n(j)

Ĥq
x,n(v; t)≤ Ĥq

x,n(0; t)∩A′n

]
≤ 2CG
CM

∑
j≥K

2j[β−(q+1)],

which can be made arbitrarily small by choice of K .

Proof of (7). We proceed as in the proof of (2). Let t ∈ R be given. By Lemma A.1 and
change of variables,

P
∗
n

[
rn(θ̃∗n(x)− θ̂n(x))> t

]
=P∗n

[
max argmax

x∈Φ̂∗−n ([0,û∗n])

{
[θ̂n(x) + tr−1

n ]Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n
)
(x)
}
< Φ̂∗−n ◦ Φ̂∗n(x)

]

=P

[
max argmin

v∈V̂ q,∗
x,n

Ĥq,∗
x,n(v; t)< Ẑq,∗

x,n

]
,

where

V̂ q,∗
x,n =

{
an(x− x) : x ∈ Φ̂∗−n ([0, û∗n])

}
,

Ĥq,∗
x,n(v; t) = LSCL̂q,∗

x,n

(
Ĝq,∗

x,n + M̃q
x,n + rnθ̂n(x)L̂q,∗

x,n

)
(v)− [rnθ̂n(x) + t]L̂q,∗

x,n(v)

and

Ẑq,∗
x,n = an

[
Φ̂∗−n ◦ Φ̂∗n(x)− x

]
,
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with

Ĝq,∗
x,n(v) =

√
nan

[
Γ̂∗n(x+ va−1

n )− Γ̂∗n(x)− Γ̂n(x + va−1
n ) + Γ̂n(x)

]
− θ̂n(x)

√
nan

[
Φ̂∗n(x+ va−1

n )− Φ̂∗n(x)− Φ̂n(x+ va−1
n ) + Φ̂n(x)

]
,

M̃q
x,n(v) =

√
nanM̃x,n(va−1

n ), L̂q,∗
x,n(v) = an

[
Φ̂∗n(x + va−1

n )− Φ̂∗n(x)
]
.

By (B4) and Lemma SA-4, Ẑq,∗
x,n = oP(1). Suppose also that

(SA.9) max argmin
v∈V̂ q,∗

x,n

Ĥq,∗
x,n(v; t) P argmin

v∈R
Hq

x(v; t).

Then, as in the proof of (2),

P
∗
n

[
rn(θ̃∗n(x)− θ̂n(x))> t

]
→P P

[
1

∂Φ0(x)
∂−GCMR(Gx +Mq

x(0)> t

]
.

The proof of (7) can therefore be completed by showing (SA.9).
We shall do so by showing that

(SA.10) v̂∗n(t) = max argmin
v∈V̂ q,∗

x,n

Ĥq,∗
x,n(v; t) =OP(1)

and

(SA.11) Ĥq,∗
x,n(·; t) P Hq

x(·; t).

We begin by showing (SA.11). First, by (B1), Ĝq,∗
x,n  P Gx. Also, by Assumption C,

M̃q,∗
x,n  PMq

x . Moreover, L̂q,∗
x,n− L̂q

x,n P 0 by (B4), where, as shown in the proof of (SA.6),
L̂q
x,n Lx. In particular, L̂q,∗

x,n P Lx and therefore

(Ĝq,∗
x,n, M̃

q
x,n, L̂

q,∗
x,n) P (Gqx ,Mq

x ,Lx).

Because Ĝq,∗
x,n + M̃q

x,n is asymptotically equicontinuous,

LSCL̂q,∗
x,n

(
Ĝq,∗

x,n + M̃q
x,n

)
−
(
Ĝq,∗

x,n + M̃q
x,n

)
 P 0

by (B4) and Lemma SA-5. Also, by (B8) and Lemma SA-6,

LSCL̂q,∗
x,n

(
rnθ̂n(x)L̂q,∗

x,n

)
−
(
rnθ̂n(x)L̂q,∗

x,n

)
 P 0.

The result (SA.11) follows from the three preceding displays and the fact that, on V̂ q,∗
x,n ,

0≥ LSCL̂q,∗
x,n

(
Ĝq,∗

x,n + M̃q
x,n + rnθ̂n(x)L̂q,∗

x,n

)
−
(
Ĝq,∗

x,n + M̃q
x,n + rnθ̂n(x), L̂q,∗

x,n

)
≥ LSCL̂q,∗

x,n

(
Ĝq,∗

x,n + M̃q
x,n

)
−
(
Ĝq,∗

x,n + M̃q
x,n

)
+ LSCL̂q,∗

x,n

(
rnθ̂n(x)L̂q,∗

x,n

)
−
(
rnθ̂n(x)L̂q,∗

x,n

)
.

Next, to show (SA.10), we first define θ̂n(x; t) = θ̂n(x) + tr−1
n and note that

v̂∗n(t) = an

[
max argmax

x∈Φ̂∗−n ([0,û∗n])

{
θ̂n(x; t)Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n

)
(x)
}
− x

]
.
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Now, if |v̂∗n(t)|> anδ > 0, then

sup
x 6∈Iδx

{
θ̂n(x; t)Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n

)
(x)
}
≥ θ̂n(x; t)Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n

)
(x),

where |θ̂n(x; t)− θ0(x)|=OP(r−1
n ) = oP(1), and, by (B4),

sup
x∈I

∣∣∣Φ̂∗n(x)−Φ0(x)
∣∣∣= oP(1).

Therefore, defining x̂∗n = Φ̂∗−n (Φ̂∗n(x)) = x + oP(1) and using (SA.5),

θ̂n(x; t)Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n

)
(x)

≤ θ̂n(x; t)Φ̂∗n(x)− Γ̃∗n(x̂∗n)

= θ̂n(x; t)Φ̂∗n(x)− θ̂n(x)Φ̂n(x̂∗n)− Γ̂∗n(x̂∗n) + Γ̂n(x̂∗n)− M̃q
x,n(Ẑq,∗

n )/
√
nan = oP(1),

where the last equality uses (B3), Ẑq,∗
n = oP(1), and Assumption C. Also, using (B3), (B4),

and Assumption C, we have, uniformly in x 6∈ Iδx and for some c > 0,

Γ̃∗n(x)− θ̂n(x)Φ̂∗n(x) = Γ̂∗n(x)− Γ̂n(x)− θ̂n(x)
(

Φ̂∗n(x)− Φ̂n(x)
)

+ M̃n(x− x)

≥ cδq+1 + oP(1),

and therefore, by Lemma SA-3,

sup
x 6∈Iδx

{
θ̂n(x; t)Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̃∗n

)
(x)
}
≤−cδq+1 + oP(1).

As a consequence, v̂∗n(t) = oP(an): For any δ > 0,

P [|v̂∗n(t)|> anδ]≤P
[
−cδq+1 ≥ oP(1)

]
= o(1).

Next, defining V̂ q,∗
x,n (j) = {v ∈ V̂ q,∗

x,n : 2j < |v| ≤ 2j+1} and using v̂∗n(t) = oP(an), we
have, for any K , any positive δ′, and any sequence of events {A′n} with limn→∞P[A′n] = 1,

lim sup
n→∞

P
[
|v̂∗n(t)|> 2K

]
≤ lim sup

n→∞

∑
j≥K:2j≤anδ′

P
[
2j < |v̂∗n(t)| ≤ 2j+1 ∩A′n

]
≤ lim sup

n→∞

∑
j≥K:2j≤anδ′

P

[
inf

v∈V̂ q,∗
x,n (j)

Ĥq,∗
x,n(v; t)≤ Ĥq,∗

x,n(0; t)∩A′n

]
.

The proof of (SA.10) can therefore be completed by showing that the majorant side in the
display can be made arbitrarily small by choice of K , δ′, and {A′n}.

To do so, we begin by analyzing each term in the basic bound

Ĥq,∗
x,n(v; t)− Ĥq,∗

x,n(0; t)≥ LSCL̂q,∗
x,n

(
Ĝq,∗

x,n

)
(v) + LSCL̂q,∗

x,n

(
M̃q

x,n

)
(v)− tL̂q,∗

x,n(v)

+ LSCL̂q,∗
x,n

(
rnθ̂n(x)L̂q,∗

x,n

)
(v)− rnθ̂n(x)L̂q,∗

x,n(v)− Ĥq,∗
x,n(0; t).

Because Ĥq,∗
x,n(0; t) P Hq

x(0; t) = 0 and because, by (B8) and Lemma SA-6, there is a pos-
itive δ′ such that

sup
|v|≤anδ′

∣∣∣LSCL̂q,∗
x,n

(
rnθ̂n(x)L̂q,∗

x,n

)
(v)− rnθ̂n(x)L̂q,∗

x,n(v)
∣∣∣= oP(1),
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we may assume that, on {A′n} and for some C0,

sup
|v|≤anδ′

∣∣∣LSCL̂q,∗
x,n

(
rnθ̂n(x)L̂q,∗

x,n

)
(v)− rnθ̂n(x)L̂q,∗

x,n(v)− Ĥq,∗
x,n(0; t)

∣∣∣≤C0.

Also, because, by (B4) and (A3), there is a positive δ′ such that

sup
|v|≤anδ′

∣∣∣L̂q,∗
x,n(v)−Lq

x,n(v)
∣∣∣= oP(1) and sup

1≤|v|≤anδ′

∣∣∣∣Lq
x,n(v)

Lx(v)

∣∣∣∣<∞,
we may assume that, on {A′n} and for some CL,

sup
1≤|v|≤anδ′

∣∣∣∣∣ L̂q,∗
x,n(v)

v

∣∣∣∣∣≤CL.
Next, by (B4) and Lemma SA-5, with probability approaching one,

LSCL̂q,∗
x,n

(
M̃q

x,n

)
(v)≥ inf

|v|/2≤|v′|≤2|v|
M̃q

x,n(v′) for every |v| ≥ 2,

while, by Assumption C, there is a positive c such that, with probability approaching one,

inf
|v|≥1

M̃q
x,n(v)

vq+1
> c.

We may therefore assume that, on {A′n} and for some positive CM ,

inf
2≤|v|≤anδ′

LSCL̂q,∗
x,n

(
M̃q

x,n

)
(v)

vq+1
≥CM .

Finally, by (B4) and Lemma SA-5, with probability approaching one,∣∣∣LSCL̂q,∗
x,n

(
Ĝq,∗

x,n

)
(v)
∣∣∣≤ sup
|v|/2≤|v′|≤2|v|

∣∣∣Ĝq,∗
x,n(v′)

∣∣∣ for every |v| ≥ 2,

and we may therefore assume that, on {A′n},

sup
v∈V̂ q,∗

x,n (j)

∣∣∣LSCL̂q,∗
x,n

(
Ĝq,∗

x,n

)
(v)
∣∣∣≤ sup

v∈V2(j)

∣∣∣Ĝq,∗
x,n(v)

∣∣∣ for every j ≥ 2 with 2j ≤ anδ′.

As a consequence, by the Markov inequality,

P

[
inf

v∈V̂ q,∗
x,n (j)

Ĥq,∗
x,n(v; t)≤ Ĥq,∗

x,n(0; t)∩A′n

]

≤P

[
sup

v∈V2(j)

∣∣∣Ĝq,∗
x,n(v)

∣∣∣≥ inf
v∈V1(j)

[
CMv

q+1 −CL|v| −C0

]
∩A′n

]

≤
E

[
supv∈V2(j)

∣∣∣Ĝq,∗
x,n(v)

∣∣∣1A′n]
infv∈V1(j) [CMvq+1 −CL|v| −C0]

for every j ≥ 2 with 2j ≤ anδ′,

where, by (B4), we may assume that, for some CG,

E

[
sup

v∈V2(j)

∣∣∣Ĝq,∗
x,n(v)

∣∣∣1A′n
]
≤

∑
j−1≤j′≤j+1

E

[
sup

v∈V1(j)

∣∣∣Ĝq,∗
x,n(v)

∣∣∣1A′n
]
≤CG2jβ,
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and where, for all sufficiently large j,

inf
v∈V1(j)

[
CMv

q+1 −CL|v| −C0

]
≥ 1

2
CM2j(q+1).

In other words, for large K ,

lim sup
n→∞

∑
j≥K:2j≤anδ′

P

[
inf

v∈V̂ q,∗
x,n (j)

Ĥq,∗
x,n(v; t)≤ Ĥq,∗

x,n(0; t)∩A′n

]
≤ 2CG
CM

∑
j≥K

2j[β−(q+1)],

which can be made arbitrarily small by choice of K .

Proof of (8). The bootstrap consistency result (8) follows from (2), (7), Polya’s theorem,
and the fact that, by Lemma A.2, the limiting distribution in (2) and (7) has a continuous
cdf.

SA.1.5. Proof of Lemma 1. For the monomial approximation estimator, we have

D̃MA
q,n(x) = ε−(q+1)

n [Γ0(x+ εn)− Γ0(x)− θ0(x){Φ0(x+ εn)−Φ0(x)}]

+ ε−(q+1/2)
n n−1/2Ĝx,n(1; εn)

− ε−qn [θ̂n(x)− θ0(x)]R̂x,n(1; εn)

− ε−(q+1)
n [θ̂n(x)− θ0(x)][Φ0(x + εn)−Φ0(x)]

=
∂qθ0(x)∂Φ0(x)

(q+ 1)!
+ o(1) +OP[(nε1+2q

n )−1/2 + (nε1+2q
n )−q/(1+2q)]

=
∂qθ0(x)∂Φ0(x)

(q+ 1)!
+ oP(1),

where the second equality uses εn→ 0 and the last equality uses nε1+2q
n →∞.

Similarly, for the forward difference estimator, we have

D̃FD
q,n(x) = ε−(q+1)

n

q+1∑
k=1

(−1)k+q+1

(
q+ 1

k

)
[Υ0(x + kεn)−Υ0(x)]

+ ε−(q+1/2)
n n−1/2

q+1∑
k=1

(−1)k+q+1

(
q+ 1

k

)
Ĝx,n(k; εn)

− ε−qn [θ̂n(x)− θ0(x)]

q+1∑
k=1

(−1)k+q+1

(
q+ 1

k

)
R̂x,n(k; εn)

− ε−(q+1)
n [θ̂n(x)− θ0(x)]

q+1∑
k=1

(−1)k+q+1

(
q+ 1

k

)
[Φ0(x + kεn)−Φ0(x)]

=
∂qθ0(x)∂Φ0(x)

(q+ 1)!
+ o(1) +OP[(nε1+2q

n )−1/2 + (nε1+2q
n )−q/(1+2q)]

=
∂qθ0(x)∂Φ0(x)

(q+ 1)!
+ oP(1).
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SA.1.6. Proof of Lemma 2. Proceeding as in the proof of Lemma 1, we have

D̃BR
j,n(x) = ε−(j+1)

n

s+1∑
k=1

λBRj (k)[Υ0(x + ckεn)−Υ0(x)]

+ ε−(j+1/2)
n n−1/2

s+1∑
k=1

λBRj (k)Ĝx,n(ck; εn)

− ε−jn [θ̂n(x)− θ0(x)]

s+1∑
k=1

λBRj (k)R̂x,n(ck; εn)

− ε−(j+1)
n [θ̂n(x)− θ0(x)]

s+1∑
k=1

λBRj (k)[Φ0(x + ckεn)−Φ0(x)]

=
∂j+1Υ0(x)

(j + 1)!
+O(εmin{s,s+1}−j

n ) +OP(ε−(j+1/2)
n n−1/2 + ε−jn a−qn )

=Dj(x) +O(εmin{s,s+1}−j
n ) + aj−qn OP[(anεn)−(j+1/2) + (anεn)−j ],

where the second equality uses εn→ 0 and the defining property of {λBRj (k) : k = 1, . . . , s}.
The second part of the lemma follows from the fact that if

nε(1+2q̄) min(s,s−1)/(q̄−1)
n → 0 and nε1+2q̄

n →∞,

then

aq−jn εmin{s,s+1}−j
n → 0 and anεn→∞.

SA.1.7. Higher-order expansion of the bias-reduced estimator . In addition to the as-
sumptions of Lemma 2, suppose that R̂x,n(1;ηn) =OP(a

−1/2
n ) for a−1

n η−1
n =O(1) and that,

for some δ > 0, θ0 is (s + 1)-times continuously differentiable and Φ0 is (s + 2)-times con-
tinuously differentiable on Iδx . Then, the first term in the stochastic expansion of D̃BR

j,n(x)
satisfies

ε−(j+1)
n

s+1∑
k=1

λBRj (k)[Υ0(x + ckεn)−Υ0(x)]− ∂j+1Υ0(x)

(j + 1)!

= εs+1−j
n

∂s+2Υ0(x)

(s+ 2)!

s+1∑
k=1

λBRj (k)c
s+2
k + o(εs+1−j

n ) = εs+1−j
n BBR

j (x) + o(εs+1−j
n ).

Also, the approximate variance of

ε−(j+1/2)
n n−1/2

s+1∑
k=1

λBRj (k)Ĝx,n(ck; εn)

is

1

nε1+2j
n

s+1∑
k=1

s+1∑
l=1

λBRj (k)λBRj (l)Cx(ck, cl) =
1

nε1+2j
n

VBR
j (x).
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Finally, the third term in the stochastic expansion of D̃BR
j,n(x) is asymptotically negligible

under the condition that R̂x,n(1;ηn) =OP(a
−1/2
n ) for a−1

n η−1
n =O(1), while the fourth term

exhibits only a higher-order dependence on εn (relative to the dependence exhibited by the
first two terms).

SA.1.8. Proof of Lemma 3. We verify that Assumptions A and E imply Assumptions
(B1)-(B4). Define

Γ̄∗n(x) =
1

n

n∑
i=1

Wi,nγ0(x;Zi) and Φ̄∗n(x) =
1

n

n∑
i=1

Wi,nφ0(x;Zi).

Verifying Assumption (B1).

Non-bootstrap weak convergence. We first prove Ĝq
x,n Gx. By Assumption (E3)-(E4),

√
nan sup

|v|≤K

∣∣∣Γ̂n(x + va−1
n )− Γ̂n(x)− Γ̄n(x + va−1

n ) + Γ̄n(x)
∣∣∣= oP(1),

√
nan sup

|v|≤K

∣∣∣Φ̂n(x+ va−1
n )− Φ̂n(x)− Φ̄n(x+ va−1

n ) + Φ̄n(x)
∣∣∣= oP(1),

for each K > 0, and thus,

sup
|v|≤K

∣∣∣∣∣Ĝq
x,n(v)−

√
an
n

n∑
i=1

{
ψx(va

−1
n ;Zi)−E[ψx(va

−1
n ;Z)]

}∣∣∣∣∣= oP(1).

Letting ψ̄x,n(v;Zi) =
√
anψx(va

−1
n ;Zi), we want to prove that the empirical process of

{ψ̄x,n(v; ·) : |v| ≤ K} weakly converges to Gx. We verify finite-dimensional weak conver-
gence and stochastic equicontinuity.

Letting ηn =Ka−1
n ,

n−1 sup
|v|≤K

E[|ψ̄x,n(v;Z)|4]≤ (1 + |θ0(x)|)4n−1a2
nE[D̄ηn

γ (Z)4 + D̄ηn
φ (Z)4] = o(1).

Also, convergence of the covariance kernel is imposed in Assumption (E5). Thus, the Lya-
punov central limit theorem implies the finite-dimensional convergence.

For stochastic equicontinuity, following the argument of Kim and Pollard (1990, Lemma
4.6) and using anE[D̄ηn

γ (Z)2 + D̄ηn
φ (Z)2] =O(1), it suffices to show

sup|v−s|≤εn,|v|∨|s|≤K
1
n

∑n
i=1 |ψ̄x,n(v;Zi) − ψ̄x,n(s;Zi)|2 = oP(1) for any εn = o(1). For a

constant M > 0,

sup
|v−s|≤εn,|v|∨|s|≤K

1

n

n∑
i=1

|ψ̄x,n(v;Zi)− ψ̄x,n(s;Zi)|2

≤ 4(1 + |θ0(x)|)2 1

n

n∑
i=1

an[D̄ηn
γ (Zi)

2 + D̄ηn
φ (Zi)

2]1{D̄ηn
γ (Zi) + D̄ηn

φ (Zi)>M}

+ anM sup
|v−s|≤εn,|v|∨|s|≤K

E
[
|ψx(va

−1
n ;Z)−ψx(sa

−1
n ;Z)|

]
+Man sup

|v−s|≤εn
|v|∨|s|≤K

1

n

n∑
i=1

{
|ψx(va

−1
n ;Zi)−ψx(sa

−1
n ;Zi)| −E

[
|ψx(va

−1
n ;Z)−ψx(sa

−1
n ;Z)|

]}
where the first term after the inequality can be made arbitrarily small by making M large
using anE[D̄ηn

γ (Z)4 + D̄ηn
φ (Z)4] = O(1). The second term is oP(1) by Assumption (E5).

Finally, the third term is OP(
√
an/n) using Theorem 4.2 of Pollard (1989).
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Bootstrap weak convergence. We next prove Ĝq
x,n P Gx. First we posit

√
nan sup

|v|≤K
|Γ̂∗n(x+ va−1

n )− Γ̂∗n(x)− Γ̄∗n(x + va−1
n ) + Γ̄∗n(x)|= oP(1),

√
nan sup

|v|≤K
|Φ̂∗n(x + va−1

n )− Φ̂∗n(x)− Φ̄∗n(x+ va−1
n ) + Φ̄∗n(x)|= oP(1),(SA.12)

which follows from the hypothesis of the lemma as shown below. By the above display,

sup
|v|≤K

∣∣∣∣∣∣Ĝq,∗
x,n(v)−

√
an
n

n∑
i=1

Wi,n

{
ψx(va

−1
n ;Zi)−

1

n

n∑
j=1

ψx(va
−1
n ;Zj)

}∣∣∣∣∣∣= oP(1)

where we use
√

an
n

∑n
i=1Wi,n{φ0(x+ va−1

n ;Zi)−φ0(x;Zi)− 1
n

∑n
j=1[φ0(x+ va−1

n ;Zj)−
φ0(x;Zj)]} = OP(1) uniformly over |v| ≤ K , and θ̂n(x) →P θ0(x). Let ψ̂x,n(v;Z) =√
an[ψx(va

−1
n ;Z)− 1

n

∑n
j=1ψx(va

−1
n ;Zj)] and to prove the finite-dimensional convergence,

we apply Lemma 3.6.15 of van der Vaart and Wellner (1996). Assumption (E2) implies
1
n

∑n
i=1(Wi,n − 1)2→P 1 and n−1 max1≤i≤nW

2
i,n = oP(1). Since

1

n

n∑
i=1

ψ̂x,n(v;Zi)ψ̂x,n(u;Zi) = an

[
1

n

n∑
i=1

ψx(v;Zi)ψx(u;Zi)

− 1

n

n∑
i=1

ψx(v;Zi)
1

n

n∑
i=1

ψx(u;Zi)

]
and sup|v|≤η |ψx(v;Z)| ≤ D̄η

γ(Z) + |θ0(x)|D̄η
φ(Z), for any v,u ∈R,

1

n

n∑
i=1

ψ̂x,n(v;Zi)ψ̂x,n(u;Zi)− anE[ψx(va
−1
n ;Z)ψx(ua

−1
n ;Z)] = oP(1).

Also, 1
n

∑n
i=1 ψ̂

4
x,n(v;Zi) =OP(1) and we verified the hypothesis of the lemma.

For stochastic equicontinuity, let εn = o(1) and ηn =Ka−1
n . Lemma 3.6.7 of van der Vaart

and Wellner (1996) implies that for any n0 ∈ {1, . . . , n}, there is a fixed constant C > 0 such
that

E

[
sup

|v−u|≤εn,|v|∨|u|≤K

∣∣∣∣ 1√
n

n∑
i=1

Wi,n

[
ψ̂x,n(v;Zi)− ψ̂x,n(u;Zi)

]∣∣∣∣∣∣∣{Zi}ni=1

]

≤C
√
an
n

n∑
i=1

[
D̄ηn
γ (Zi) + D̄ηn

φ (Zi)
]
(n0 − 1)E max

1≤i≤n
|Wi,n|n−1/2

+C max
n0≤k≤n

E

[
sup

|v−u|≤εn,|v|∨|u|≤K

∣∣∣∣ 1√
k

k∑
i=n0

[
ψ̂x,n(va−1

n ;ZRi)− ψ̂x,n(ua−1
n ;ZRi)

]∣∣∣∣∣∣∣{Zi}ni=1

]
where (R1, . . . ,Rn) is uniformly distributed on the set of all permutations of {1, . . . , n},
independent of {Zi}ni=1. Choose n0 such that n1/2−1/r/n0→∞ and n0/an→∞ (which is
possible by r> (4q+ 2)/(2q−1)), and the first term after the inequality in the above display
is oP(1). For the second term, following the argument of van der Vaart and Wellner (1996,
Theorem 3.6.13), it suffices to bound

max
n0≤k≤n

E
∗ sup
|v−u|≤εn,|v|∨|u|≤K

∣∣∣∣ 1√
k

k∑
i=1

[
ψ̂x,n(v;Z∗i )− ψ̂x,n(u;Z∗i )

]∣∣∣∣
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where {Z∗i }ki=1 denotes a random sample from the empirical cdf andE∗ is the expectation un-
der this empirical bootstrap law. Following the argument of Kim and Pollard (1990, Lemma
4.6), it suffices to show

max
n0≤k≤n

E
∗ sup
|v−u|≤εn,|v|∨|u|≤K

1

k

k∑
i=1

∣∣ψ̂x,n(v;Z∗i )− ψ̂x,n(u;Z∗i )
∣∣2 = oP(1).

For k ∈ {n0, . . . , n} and M > 0,

E
∗ sup
|v−u|≤εn,|v|∨|u|≤K

1

k

k∑
i=1

∣∣ψ̂x,n(v;Z∗i )− ψ̂x,n(u;Z∗i )
∣∣2

≤ 2(1 + |θ0(x)|)2an
1

n

n∑
i=1

[
D̄ηn
γ (Zi)

2 + D̄ηn
φ (Zi)

2
]
1{D̄ηn

γ (Zi) + D̄ηn
φ (Zi)>M − oP(1)}

+ 2Man sup
|v−u|≤εn,|v|∨|u|≤K

1

n

n∑
i=1

∣∣ψx(va
−1
n ;Zi)−ψx(ua

−1
n ;Zi)

∣∣
+ 2ManE

∗ sup
|v−u|≤εn,|v|∨|u|≤K

1

k

k∑
i=1

∣∣ψx(va
−1
n ;Z∗i )−ψx(ua

−1
n ;Z∗i )

∣∣
−E∗

[∣∣ψx(va
−1
n ;Z∗)−ψx(ua

−1
n ;Z∗)

∣∣].
The first term after the inequality does not depend on k and its expectation can be made
arbitrarily small by taking M sufficiently large. The second term is independent of k and we
can handle this term by adding and subtracting the expectation inside the summation. For
the third term, applying Theorem 4.2 of Pollard (1989) again, it is bounded by a constant
multiple of

ank
−1/2

(
1

n

n∑
i=1

[
D̄ηn
γ (Zi)

2 + D̄ηn
φ (Zi)

2
])1/2

=OP
(√

an/k
)
,

which is oP(1) by the choice of n0.

Verifying (SA.12). We focus on the first display. By adding and subtracting the bootstrap
means,

Γ̂∗n(x+ va−1
n )− Γ̂∗n(x)− Γ̄∗n(x + va−1

n ) + Γ̄∗n(x)

=
1

n

n∑
i=1

Wi,nγ̆n(v;Z) +
[
Γ̌n(x+ va−1

n )− Γ̌n(x)− Γ̄n(x + va−1
n ) + Γ̄n(x)

]
where

γ̆n(v;Z) = γ̂(x+ va−1
n ;Zi)− γ̂(x;Zi)− γ0(x + va−1

n ;Zi) + γ0(x;Zi)

− Γ̌n(x+ va−1
n ) + Γ̌n(x)− Γ̄n(x + va−1

n ) + Γ̄n(x).

By Assumption (E3),
√
nan sup|v|≤K |Γ̌n(x + va−1

n ) − Γ̌n(x) − Γ̄n(x + va−1
n ) + Γ̄n(x)| =

oP(1). Identical to above, Lemma 3.6.7 and the argument in Theorem 3.6.13 of van der Vaart
and Wellner (1996) imply that for some fixed C > 0,

√
nanE

[
sup
|v|≤K

∣∣∣∣ 1n
n∑
i=1

Wi,nγ̆n(v;Zi)

∣∣∣∣∣∣∣{Zi}ni=1

]
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≤C
√
an
n

n∑
i=1

sup
|v|≤K

|γ̆n(v;Zi)|
n0n

r

√
n

+C
√
an max

n0≤k≤n
E
∗ sup
|v|≤K

∣∣∣∣ 1√
k

k∑
i=1

γ̆n(v;Z∗i )

∣∣∣∣.
(SA.13)

For the first term in the last line,
√
an
n

n∑
i=1

sup
|v|≤K

|γ̆n(v;Zi)|

≤
√
an
n

n∑
i=1

sup
|v|≤K

|γ̂(x+ va−1
n ;Zi)− γ̂(x;Zi)− γ0(x + va−1

n ;Zi) + γ0(x;Zi)|

+
√
an sup
|v|≤K

∣∣Γ̌n(x + va−1
n )− Γ̌n(x)− Γ̄n(x+ va−1

n ) + Γ̄n(x)
∣∣

and both terms are oP(1) by Assumption (E3). For the second term in (SA.13), Corollary 4.3
of Pollard (1989) implies that for some fixed C > 0,

E
∗

[
sup
|v|≤K

∣∣∣∣ 1√
k

k∑
i=1

γ̆n(v;Z∗i )

∣∣∣∣
]2

≤C 1

n

n∑
i=1

sup
|v|≤K

|γ̂(x + va−1
n ;Zi)− γ̂(x;Zi)− γ0(x+ va−1

n ;Zi) + γ0(x;Zi)|2

and this term is oP(a−1
n ) by Assumption (E3).

Verifying Assumption (B2). Let

Ḡq
x,n(v) =

√
nan

[
Γ̄n(x + va−1

n )− Γ̄n(x)− Γ0(x+ va−1
n ) + Γ0(x)

]
− θ0(x)

√
nan

[
Φ̄n(x + va−1

n )− Φ̄n(x)−Φ0(x + va−1
n ) + Φ0(x)

]
.

From the definition,

Ĝq
x,n(v)− Ḡq

x,n(v) =
√
nan

[
Γ̂n(x+ va−1

n )− Γ̂n(x)− Γ̄n(x+ va−1
n ) + Γ̄n(x)

]
− θ0(x)

√
nan

[
Φ̂n(x + va−1

n )− Φ̂n(x)− Φ̄n(x+ va−1
n ) + Φ̄n(x)

]
For the two terms after the equality, Assumption (E3) and (E4) imply that for V ∈ [1, anδ],
√
nan sup

|v|∈[V,2V ]
|Γ̂n(x + va−1

n )− Γ̂n(x)− Γ̄n(x+ va−1
n ) + Γ̄n(x)| ≤ (2V )βa−βn Bn +An

and
√
nan sup

|v|∈[V,2V ]
|Φ̂n(x + va−1

n )− Φ̂n(x)− Φ̄n(x + va−1
n ) + Φ̄n(x)| ≤ (2V )βa−βn Bn +An,

where β = max(βγ , βφ),An = max(Aγ,n,Aφ,n), and Bn = max(Bγ,n,Bφ,n). Since An =

oP(1), a−βn Bn = oP(1), and An and Bn are independent of V , there exists η′n = o(1) such
that

lim
n→∞

P

 ⋂
V ∈[1,anδ]

{
sup

|v|∈[V,2V ]
|Ĝq

x,n(v)− Ḡq
x,n(v)| ≤ [V β + 1]η′n

}= 1

holds, and we take the event in the display to be An. Also, E[sup|v|≤V |Ḡ
q
x,n(v)|] ≤ C

√
V

for V ∈ (0, anδ] follows from Corollary 4.3 of Pollard (1989) and lim supη↓0E[D̄η
γ(Z)2/η]+



BOOTSTRAP-ASSISTED INFERENCE FOR MONOTONE ESTIMATORS 21

E[D̄η
φ(Z)2/η]<∞. Then,E[sup|v|∈[V,2V ] |Ĝ

q
x,n(v)|1An ]≤C

√
V +[V β+1]η′n holds, which

implies

sup
V ∈[1,anδ]

E

[
V −β sup

|v|∈[V,2V ]
|Ĝq

x,n(v)|1An

]
=O(1).

For the bootstrap counterpart, let

Ḡq,∗
x,n(v) =

√
nan

[
Γ̄∗n(x + va−1

n )− Γ̄∗n(x)− Γ̄n(x+ va−1
n ) + Γ̄n(x)

]
− θ0(x)

√
nan

[
Φ̄∗n(x + va−1

n )− Φ̄∗n(x)− Φ̄n(x + va−1
n ) + Φ̄n(x)

]
and we have

Ĝq,∗
x,n(v)− Ḡq,∗

x,n(v)(SA.14)

=
√
nan

[
Γ̂∗n(x+ va−1

n )− Γ̂∗n(x)− Γ̄∗n(x+ va−1
n ) + Γ̄∗n(x)

]
− θ̂n(x)

√
nan

[
Φ̂∗n(x + va−1

n )− Φ̂∗n(x)− Φ̄∗n(x + va−1
n ) + Φ̄∗n(x)

]
+
√
nan

[
Γ̄n(x+ va−1

n )− Γ̄n(x)− Γ̂n(x+ va−1
n ) + Γ̂n(x)

]
− θ̂n(x)

√
nan

[
Φ̄n(x + va−1

n )− Φ̄n(x)− Φ̂n(x + va−1
n ) + Φ̂n(x)

]
+
√
an[θ̂n(x)− θ0(x)]

√
n
[
Φ̄∗n(x+ va−1

n )− Φ̄∗n(x)− Φ̄n(x+ va−1
n ) + Φ̄n(x)

]
.

The last term is oP(1) uniformly over |v| ≤ anδ as
√
an[θ̂n(x) − θ0(x)] = oP(1) and√

n sup|v|≤δ |Φ̄∗n(x+v)−Φ̄n(x+v)|=OP(1). For the first term after the equality in (SA.14),
√
nan

[
Γ̂∗n(x + va−1

n )− Γ̂∗n(x)− Γ̄∗n(x+ va−1
n ) + Γ̄∗n(x)

]
=

1√
n

n∑
i=1

Wi,nγ̆n(va−1
n ;Zi) +

√
nan

[
Γ̌n(x + va−1

n )− Γ̌n(x)− Γ̄n(x+ va−1
n ) + Γ̄n(x)

]
where γ̆n(v;Z) =

√
an{γ̂n(x + v;Z)− γ̂n(x;Z)− γ0(x + v;Z) + γ0(x;Z)− [Γ̌n(x + v)−

Γ̌n(x)− Γ̄n(x + v) + Γ̄n(x)]} and the second part satisfies
√
nan sup|v|≤V |Γ̌n(x + va−1

n )−
Γ̌n(x)− Γ̄n(x+va−1

n )+Γ̄n(x)|= [1+V β]oP(1) uniformly over V ∈ [1, anδ] by Assumption
(E3). For 1√

n

∑n
i=1Wi,nγ̆n(va−1

n ;Zi), we apply Lemma 3.6.7 of van der Vaart and Wellner
(1996) as we did above to verify Assumption (B1): for n0 ∈ {1, . . . , n},

E

[
sup
|v|≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

Wi,nγ̆n(v;Zi)

∣∣∣∣∣
∣∣∣∣{Zi}ni=1

]

≤C 1

n

n∑
i=1

sup
|v|≤δ
|γ̆n(v;Zi)|

n0√
n
E

[
max

1≤i≤n
|Wi,n|

]
+C max

n0≤k≤n
E
∗ sup
|v|≤δ

∣∣∣∣ 1√
k

k∑
i=1

γ̆n(v;Z∗i )

∣∣∣∣
(SA.15)

where C > 0 is a fixed constant, E∗ is the expectation under the empirical cdf measure,
and {Z∗i }ni=1 is a random sample from the empirical cdf. Let n0 be a diverging sequence
(dependent on n) such that n0n

r
√
an/n= o(1). The first term in (SA.15) is bounded by

C
1

n

n∑
i=1

sup
|x−x|≤δ

|γ̂n(x;Zi)− γ0(x;Zi)|+C sup
|v|≤δ
|Γ̌n(x+ v)− Γ̄n(x + v)|= oP(1).
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By Corollary 4.3 of Pollard (1989), the second term in (SA.15) is bounded by (up to a con-
stant)

√
an

∣∣∣∣ 1n
n∑
i=1

sup
x∈Iδx
|γ̂n(x;Zi)− γ0(x;Zi)|2

∣∣∣∣1/2
which is oP(1) by Assumption (E3). Then, there exists a sequence of random variables A′n =
oP(1) such that for V ∈ [1, anδ],

√
nan sup

|v|≤[V,2V ]

∣∣∣Γ̂∗n(x + va−1
n )− Γ̂∗n(x)− Γ̄∗n(x+ va−1

n ) + Γ̄∗n(x)
∣∣∣≤ [V β + 1]A′n,

and by identical arguments, an analogous bound holds for the second term after the inequality
in (SA.14). Then, there exists η′n = o(1) and events An such that limn→∞ P[An] = 1 and

E

[
sup

|v|∈[V,2V ]

∣∣Ĝq,∗
x,n(v)− Ḡq,∗

x,n(v)
∣∣1An

]
≤ [V β + 1]η′n

for any V ∈ [1, anδ], where bounds for the third and fourth terms after the equality in (SA.14)
were derived in the non-bootstrap case. Finally, the boundE[sup|v|∈[V,2V ] |Ḡ

q,∗
x,n(v)|]≤C

√
V

holds by a similar argument to the stochastic equicontinuity, and the desired result follows.

Verifying Assumptions (B3)-(B4).

sup
x∈I

∣∣Γ̂n(x)− Γ0(x)
∣∣≤ sup

x∈I

∣∣Γ̂n(x)− Γ̄n(x)
∣∣+ sup

x∈I

∣∣Γ̄n(x)− Γ0(x)
∣∣

where the first term after the inequality is assumed to be oP(1) and the second term is oP(1)

by standard arguments. The identical argument implies supx∈I |Φ̂n(x)−Φ0(x)|= oP(1). By
adding and subtracting,

sup
x∈Iδx

∣∣Φ̂n(x)−Φ0(x)
∣∣≤ sup

x∈Iδx

∣∣Φ̂n(x)− Φ̂n(x)− Φ̄n(x) + Φ̄n(x)
∣∣

+ sup
x∈Iδx

∣∣Φ̄n(x)−Φ0(x)
∣∣+ ∣∣Φ̂n(x)− Φ̄n(x)

∣∣
where the last two terms are oP(a−1

n ). Assumption (E4) implies

sup
x∈Iδx

∣∣Φ̂n(x)− Φ̂n(x)− Φ̄n(x) + Φ̄n(x)
∣∣≤ (nan)−1/2

[Aφ,n + δβφBφ,n] = oP(a−1
n )

where the last equality uses Bφ,n = oP(a
βφ
n ) and βφ ≤ q.

Now we look at the bootstrap objects. For Γ̂∗n,

sup
x∈I

∣∣Γ̂∗n(x)− Γ̂n(x)
∣∣≤ sup

x∈I

∣∣Γ̂∗n(x)− Γ̄∗n(x)
∣∣+ sup

x∈I

∣∣Γ̄∗n(x)− Γ̄n(x)
∣∣+ sup

x∈I

∣∣Γ̄n(x)− Γ̂n(x)
∣∣

where the last term is oP(1) by the hypothesis. For Γ̂∗n(x)− Γ̄∗n(x),

sup
x∈I

∣∣Γ̂∗n(x)− Γ̄∗n(x)
∣∣≤ 1

n

n∑
i=1

|Wi,n| sup
x∈I

∣∣γ̂n(x;Zi)− γ0(x;Zi)
∣∣

≤

√√√√ 1

n

n∑
i=1

|Wi,n|2
1

n

n∑
i=1

sup
x∈I

∣∣γ̂n(x;Zi)− γ0(x;Zi)
∣∣2
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and the last term is oP(1) by the hypothesis. For Γ̄∗n(x) − Γ̄n(x), using Lemma 3.6.7 of
van der Vaart and Wellner (1996) and the same argument as for verifying Assumption (B1),
it suffices to show

n−1/2 max
b
√
nc≤k≤n

E
∗ sup
x∈I

∣∣∣∣ 1√
k

k∑
i=1

γ̄n(x;Z∗i )

∣∣∣∣= oP(1)

where {Z∗i }ki=1 denotes a random sample from the empirical cdf and E∗ is the expectation
under this empirical bootstrap law. Corollary 4.3 of Pollard (1989) implies the desired result.

For Φ̂∗n, supx∈I |Φ̂∗n(x)− Φ̂n(x)|= oP(1) follows from the same argument as for Γ̂∗n. For
an supx∈Iδx |Φ̂

∗
n(x)− Φ̂n(x)|= oP(1),

sup
x∈Iδx

∣∣Φ̂∗n(x)− Φ̂n(x)
∣∣≤ sup

x∈Iδx

∣∣Φ̂∗n(x)− Φ̄∗n(x)
∣∣+ sup

x∈Iδx

∣∣Φ̄∗n(x)− Φ̄n(x)
∣∣

+ sup
x∈Iδx

∣∣Φ̄n(x)−Φ0(x)
∣∣+ sup

x∈Iδx

∣∣Φ̂n(x)−Φ0(x)
∣∣

where the last term is oP(a−1
n ) as shown above and the second and third terms after the

inequality are OP(n−1/2) by standard arguments. For the remaining term,

sup
x∈Iδx

∣∣Φ̂∗n(x)− Φ̄∗n(x)
∣∣≤ sup

x∈Iδx

∣∣∣∣ 1n
n∑
i=1

Wi,nφ̆n(x;Zi)

∣∣∣∣+ ∣∣Φ̌n(x)− Φ̄n(x)
∣∣

+ sup
x∈Iδx

∣∣Φ̌n(x)− Φ̌n(x)− Φ̄n(x) + Φ̄n(x)
∣∣

where φ̆n(x;Z) = φ̂n(x;Z)−φ0(x;Z)− [Φ̌n(x)−Φ̄n(x)]. The last two terms are oP(a−1
n ) by

Assumption (E4). Using Lemma 3.6.7 of van der Vaart and Wellner (1996) and the argument
similar to above, the remaining term is oP(a−1

n ).

SA.1.9. Proof of Theorem A.1. The proof is by contradiction and follows Kosorok
(2008). We omit some details in cases where the arguments are almost identical to those
for Theorem 1 and Lemma 3.

Suppose that the bootstrap approximation is consistent; that is, suppose

rn
(
θ̂∗n(x)− θ̂n(x)

)
 P Y, Y = (∂Φ0(x))−1∂−GCMR{Gx +Mq

x}(0).

Then, by Theorem 2.2 of Kosorok (2008), we have

(SA.16) rn
(
θ̂∗n(x)− θ0(x)

)
 Y1 + Y2 =d

√
2Y

where =d denotes the distributional equality, Y1 and Y2 are independent copies of Y , and
where the convergence in distribution is unconditional.

Using the switching lemma, P[rn
(
θ̂∗n(x)− θ0(x)

)
> t] equals

P

[
max argmax

x∈Φ̂∗−n ([0,û∗n])

{
[θ0(x) + r−1

n t]Φ̂∗n(x)− LSCΦ̂∗n

(
Γ̂∗n
)
(x)
}
< Φ̂∗−n ◦ Φ̂∗n(x)

]
.

By the arguments used in the proof of Theorem 1, to characterize the limiting distribution of
rn(θ̂∗n(x)− θ0(x)), it suffices to look at

−Ǧq,∗
x,n(v)− M̌q

x,n(v) + tL̂q,∗
x,n(v)
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where

Ǧq,∗
x,n(v) =

√
nan

[
Γ̂∗n(x + va−1

n )− Γ̂∗n(x)− Γ̌n(x+ va−1
n ) + Γ̌n(x)

]
− θ0(x)

√
nan

[
Φ̂∗n(x + va−1

n )− Φ̂∗n(x)− Φ̌n(x + va−1
n ) + Φ̌n(x)

]
and

M̌q
x,n(v) =

√
nan

[
Γ̌n(x + va−1

n )− Γ̌n(x)− θ0(x){Φ̌n(x+ va−1
n )− Φ̌n(x)}

]
.

It can be shown that Ǧq,∗
x,n P Gx, L̂q,∗

x,n Lx, and that M̌q
x,n Gx +Mq

x . Thus,

P
[
rn
(
θ̂∗n(x)− θ0(x)

)
> t
]
→P

[
argmin
v∈R

{
Gx,1(v) + Gx,2(v) +Mq

x(v)− t∂Φ0(x)v
}
< 0
]

where Gx,1 and Gx,2 are independent copies of Gx. Noting that Gx(av) =d

√
|a|Gx(v) and

using the change of variable v = u2
1

2q+1 , the limit distribution equals

P

[
2

1

2q+1 argmin
u∈R

{
Gx(u) +Mq

x(u)− 2−
q

2q+1 t∂Φ0(x)u
}
< 0
]

=P
[
2

q
2q+1 (∂Φ0(x))−1∂−GCMR{Gx +Mq

x}(0)> t
]
.

As a consequence,

rn
(
θ̂∗n(x)− θ0(x)

)
 2

q
2q+1 (∂Φ0(x))−1∂−GCMR{Gx +Mq

x}(0),

contradicting (SA.16) because 2
q

2q+1 6=
√

2.
In other words, the bootstrap estimator θ̂∗n(x) fails to approximate the limit distribution.

SA.1.10. Remarks on verifying conditions in applications. Below we verify the hypoth-
esis of Theorem 1 for various examples. For this purpose, one should verify Assumptions A,
(B5)-(B8), and E since Assumption E implies (B1)-(B4) by Lemma 3.

When γ0 is known, it is natural to take Γ̂n = Γ̌n = Γ̄n, in which case (E3) reduces to the
requirement that, for some ργ ∈ (0,2),
(SA.17)

lim sup
ε↓0

logNU (ε,Fγ)

ε−ργ
<∞, E[F̄γ(Z)2]<∞, lim sup

η↓0

E[D̄η
γ(Z)2 + D̄η

γ(Z)4]

η
<∞.

An identical remark applies to φ0 and (E4).
In addition, as remarked in the main paper after Lemma 3, the second display of (B5)

follows from the second display of (E5), and the first display of (B5) follows from

(SA.18) lim
n→∞

η−1
n E[ψxn(sηn;Z)ψxn(tηn;Z)] = Cx(s, t)

for anηn =O(1) and any xn→ x. To see the second claim,

η−1
n

{
E[ψx((s+ t)ηn;Z)ψx((s+ t)ηn;Z)]− 2E[ψx(sηn;Z)ψx((s+ t)ηn;Z)]

+E[ψx(sηn;Z)ψx(sηn;Z)]
}
→Cx(s+ t, s+ t)−Cx(s+ t, s)−Cx(s, s+ t) + Cx(s, s)

and at the same time, setting xn = x+ sηn,

η−1
n

{
E[ψx((s+ t)ηn;Z)ψx((s+ t)ηn;Z)]− 2E[ψx(sηn;Z)ψx((s+ t)ηn;Z)]

+E[ψx(sηn;Z)ψx(sηn;Z)]
}

= η−1
n

{
E[{ψxn(tηn;Z)−ψxn(−sηn;Z)}{ψxn(tηn;Z)−ψxn(−sηn;Z)}]

+ 2E[ψxn(−sηn;Z){ψxn(tηn;Z)−ψxn(−sηn;Z)}] +E[ψxn(−sηn;Z)ψxn(−sηn;Z)]
}

= η−1
n E[ψxn(tηn;Z)ψxn(tηn;Z)]→Cx(t, t)
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and thus, Cx(s+ t, s+ t)− Cx(s+ t, s)− Cx(s, s+ t) + Cx(s, s) = Cx(t, t) holds. Thus, for
the two displays in (B5), it suffices to check (E5) and (SA.18).

SA.1.11. Proof of Corollary 1. Assumption A and (E1)-(E2) follow from the hypothesis.

(E3). In this example, γ0(x;Z) = 1{X ≤ x} is known, so it suffices to verify (SA.17). The
uniform covering number of {1{· ≤ x} : x ∈ R} grows linearly, and an envelope function
can be taken to be 1. For an envelope function of {1{· ≤ x} − 1{· ≤ x} : |x− x| ≤ η}, we
can take 1{−η + x≤ · ≤ x + η} and the moment bound is satisfied as E[1{−η + x≤X ≤
x + η}]≤Cη.

(E4) trivially holds as Φ̂n(x) = Φ̂∗n(x) = x.

(E5). Here ψx(v;Z) = 1{X ≤ x+ v} − 1{X ≤ x} −Φ0(x)v. Then,

E[|ψx(v;Z)−ψx(v
′;Z)|]

|v− v′|
≤ E[1{x+ v ∧ v′ <X ≤ x+ v ∨ v′}]

|v− v′|
+ f0(x)≤C.

Also, ψxn(sηn;Z) = 1{xn ∧ (xn + sηn)}<X ≤ xn ∨ (xn + sηn)} − f0(x)sηn and

ψxn(sηn;Z)ψxn(tηn;Z) = 1{xn <X ≤ xn + ηn(s∧ t)}1{s > 0, t > 0}

+ 1{xn + (s∨ t)<X ≤ xn}1{s < 0, t < 0}

− 1{xn ∧ (xn + sηn)<X ≤ xn ∨ (xn + sηn)}f0(xn)tηn

− 1{xn ∧ (xn + tηn)<X ≤ xn ∨ (xn + tηn)}f0(xn)sηn

+ f0(xn)2stη2
n.

Then, for any s, t ∈R and xn→ x, using continuity of f0 at x,

η−1
n E[ψxn(sηn;Z)ψxn(tηn;Z)]

= η−1
n

∫ xn+ηn(s∧t)

xn

f0(u)du1{s > 0, t > 0}

+ η−1
n

∫ xn

xn+ηn(s∨t)
f0(u)du1{s < 0, t < 0}+ o(1)

= f0(x)[(s∧ t)1{s > 0, t > 0} − (s∨ t)1{s < 0, t < 0}] + o(1)

= f0(x)(|s| ∧ |t|)1{sign(s) = sign(t)}+ o(1).

(B5). It is clear that Cx(1,1) > 0 from f0(x) > 0. Also, Cx(1, η)/
√
η = f0(x)

√
η1{η > 0}

for |η| < 1 and lim supη↓0 Cx(1, η)/
√
η = 0 holds. The remaining conditions follow from

verifying (E5) above.

(B6) holds since ûn = û∗n converges in probability to u0, the supremum of the support of X
by i.i.d. assumption.

(B7) and (B8) hold trivially since Φ̂n and Φ̂∗n are the identity map.

Assumption D follows from (E3) and empirical process theory arguments.

SA.1.12. Proof of Corollary 2. Assumption A and (E1)-(E2) follow from the hypothesis.
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(E3). We have Γ̂n = 1− Ŝn with Ŝn the Kaplan-Meier estimator. By Theorem 1 of Lo and
Singh (1986),

sup
x∈I

∣∣∣∣Γ̂n(x)− 1

n

n∑
i=1

γ0(x;Z)

∣∣∣∣=OP

(∣∣∣ logn

n

∣∣∣3/4).
Since

√
nan ≤ n2/3 for q ≥ 1, supx∈I |Γ̂n(x)− Γ0(x)| = oP(1) and

√
na sup|v|≤δ |Γ̂n(x +

v)− Γ̂n(x)− Γ̄n(x+ v) + Γ̄n(x)|= oP(1) hold.
We have

γ̂n(x;Z)− γ0(x;Z)

= F̂n(x)− F0(x) +
[
Ŝn(x)− S0(x)

][ 1{X̌ ≤ x}∆
Ŝn(X̌)Ĝn(X̌)

−
∫ X̌∧x

0

Λ̂n(du)

Ŝn(u)Ĝn(u)

]

+ S0(x)1{X̌ ≤ x}∆S0(X̌)G0(X̌)− Ŝn(X̌)Ĝn(X̌)

S0(X̌)G0(X̌)Ŝn(X̌)Ĝn(X̌)

− S0(x)

∫ X̌∧x

0

S0(u)G0(u)− Ŝn(u)Ĝn(u)

S0(u)G0(u)Ŝn(u)Ĝn(u)
Λ̂n(du)− S0(x)

∫ X̌∧x

0

[Λ̂n −Λ0](du)

S0(u)G0(u)
.

By S0(u0)G0(u0)> 0, we have
√
n supx∈I |Ŝn(x)−S0(x)|=OP(1),

√
n supx∈I |Ĝn(x)−

G0(x)|=OP(1), and
√
n supx∈I |Λ̂n(x)−Λ0(x)|=OP(1), which in turn implies

1

n

n∑
i=1

sup
x∈I

∣∣γ̂n(x;Zi)−γ0(x;Zi)
∣∣2 = oP(1), an

1

n

n∑
i=1

sup
x∈Iδx

∣∣γ̂n(x;Zi)−γ0(x;Zi)
∣∣2 = oP(1).

Let δ = min{x, (u0 − x)}/4, R1n(v) = |F̂n(x + v)− F̂n(x)− F0(x + v) + F0(x)|, R2n =

|F̂n(x) − F0(x)|, R3n = supx∈I |[Ŝn(x)Ĝn(x)]−1 − [S0(x)G0(x)]−1|, and R4n(x1, x2) =

|
∫ x2

x1

Λ̂n(du)

Ŝn(u)Ĝn(u)
−
∫ x2

x1

Λ0(du)
S0(u)G0(u) |. For |v| ≤ δ,∣∣Γ̌n(x+ v)− Γ̌n(x)− Γ̄n(x + v) + Γ̄n(x)

∣∣
≤R1n(v)

[
1 +

1 + Λ̂n(x)

Ŝn(x)Ĝn(x)

]
+R2n

[
Ŝn(x− δ)Ĝn(x− δ)

]−1 1

n

n∑
i=1

1{|Xi − x| ≤ v}

+R2n

∫ x+v

x−v

Λ̂n(du)

Ŝn(u)Ĝn(u)
+ sup
x∈Iδx

f0(x)|v|
[
R3n +

1

n

n∑
i=1

R4n(0, X̌i ∧ (x+ v))

]

+R3n
1

n

n∑
i=1

1{|Xi − x| ≤ v}+
1

n

n∑
i=1

R4n(X̌i ∧ x, X̌i ∧ (x + v)).

As noted above, sup|v|≤δR1n(v) = oP((nan)−1/2),R2n =OP(n−1/2), andR3n =OP(n−1/2)

by S0(u0)G0(u0)> 0. Also, uniformly over V ∈ (0,2δ], sup|v|≤V | 1n
∑n

i=1(1{Xi ≤ x+v}−
1{Xi ≤ x})| ≤CV +OP(n−1/2). If

(SA.19) sup
|v|≤δ

1

n

n∑
i=1

R4n(0, X̌i ∧ (x + v)) =OP(n−1/2)

and

(SA.20)
1

n

n∑
i=1

R4n(X̌i ∧ x, X̌i ∧ (x + v))≤ |v|OP(n−1/2) + oP

(
(nan)−1/2

)
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uniformly over |v| ≤ 2δ, then there exists random variables An = oP(1) and Bn =OP(
√
an)

independent of v such that for V ∈ (0,2δ],
√
nan sup

|v|≤V

∣∣Γ̌n(x+ v)− Γ̌n(x)− Γ̄n(x + v) + Γ̄n(x)
∣∣≤An + V Bn

i.e., βγ = 1 in the notation of (E3). To show (SA.19) and (SA.20), for x1, x2 ∈ I ,

R4n(x1, x2)≤R3n

∣∣Λ̂n(x2)− Λ̂n(x1)
∣∣+ ∣∣∣∣∣

∫ x2

x1

[Λ̂n −Λ0](du)

S0(u)G0(u)

∣∣∣∣∣ .
Let J0(u) = 1/[S0(u)G0(u)] and integration by parts implies∫ x2

x1

[Λ̂n −Λ0](du)

S0(u)G0(u)
=

Λ̂n(x2)−Λ0(x2)

S0(x2)G0(x2)
− Λ̂n(x1)−Λ0(x1)

S0(x1)G0(x1)
−
∫ x2

x1

[Λ̂n(u)−Λ0(u)]J0(du)

= [Λ̂n(x2)−Λ0(x2)]

[
1

S0(x2)G0(x2)
− 1

S0(x1)G0(x1)

]
+

Λ̂n(x2)−Λ0(x2)− Λ̂n(x1) + Λ0(x1)

S0(x1)G0(x1)
−
∫ x2

x1

[Λ̂n(u)−Λ0(u)]J0(du).

The first term after the second equality is bounded by OP(n−1/2)|x2 − x1|. For the sec-
ond term, Theorem 1 of Burke, Csörgő and Horváth (1988) implies that on a suitable
probability space there exists a sequence of standard Brownian motion Wn such that√
an sup|x1−x2|≤v |

√
n[Λ̂n(x1)−Λ0(x2)− Λ̂n(x1) + Λ0(x2)]−Wn(d(x1)) +Wn(d(x2))|=

oP(1), where d(x) =
∫ x

0
F0(du)

S0(u)2G0(u) . By Theorem 3.2 of Pollard (1989), there is some
fixed constant C > 0 such that E[sup|x1−x2|≤v |Wn(d(x1)) − Wn(d(x2))|] ≤ Cv. Fi-
nally, |

∫ x2

x1
[Λ̂n(u) − Λ0(u)]J0(du)| ≤ supx′∈[x1,x2] |Λ̂n(x′) − Λ0(x′)|[J0(x2) − J0(x1)] ≤

OP(n−1/2)|x2 − x1|. Thus, (SA.19) and (SA.20) hold.
For the function class Fγ , we can take F̄γ(Z) = 1 + [S0(u0)G0(u0)]−1[1 + Λ0(u0)] as

a constant envelope. For the function class {S0(x) : x ∈ I}, given m ∈ N, there exists
{x1, . . . , xm+1} ⊂ I such that supx∈I minl=1,...,m+1 |S0(xl)−S0(x)| ≤ 1/m, which implies
the uniform covering number is bounded by a linear function. The covering numbers of
{1{· ≤ s} : s ∈ I} and {

∫ ·∧s
0 [S0(u)G0(u)]−1Λ0(du) : s ∈ I} are also bounded by a linear

function. By Lemma 5.1 of van der Vaart and van der Laan (2006), there exists ρ ∈ (0,2)
such that lim supη↓0 logNU (η,Fγ)ηρ <∞ holds.

Now consider the uniform covering number of F̂γ . Given a realization of (Ŝn, Ĝn),
the mapping x 7→

∫ x∧s
0 [Ŝn(u)Ĝn(u)]−1Λ̂n(du) is a composition of x 7→ x ∧ s and x 7→∫ x

0 [Ŝn(u)Ĝn(u)]−1Λ̂n(du). The latter mapping is monotone, and the first mapping is
a VC-subgraph class, and Lemma 2.6.18 of van der Vaart and Wellner (1996) implies
{
∫ ·∧s

0 [Ŝn(u)Ĝn(u)]−1Λ̂n(du) : s ∈ I} is a VC-subgraph class. Note that since S0,G0 are
bounded away from zero, Ŝn, Ĝn are bounded away from zero with probability approaching
one. Thus, for some ρ ∈ (0,2), lim supη↓0 logNU (η, F̂γ)ηρ =OP(1) holds.

For s≤ t ∈ I ,

|γ0(s;Z)−γ0(t;Z)| ≤C|F0(s)−F0(t)|+C|1{X̌ ≤ s}−1{X̌ ≤ t}|∆+

∫ X̌∧t

X̌∧s

Λ0(du)

S0(du)G0(du)

and we can take Dη
γ(Z) to be a constant multiple of sup|s|≤η |F0(x+ s)−F0(x)|+ ∆1{|X̌−

x| ≤ η} +
∫ x+η
x−η Λ0(du)/S0(u)G0(u). For η > 0 small enough, there is some fixed C > 0

with

E[Dη
γ(Z)2 +Dη

γ(Z)4]≤Cf0(x+ η)η.
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(E4) trivially holds as Φ̂n(x) = Φ̂∗n(x) = x.

(E5). We have

ψx(v;Z) = S0(x)
(1{X̌ ≤ x + v} − 1{X̌ ≤ x})∆

S0(X̌)G0(X̌)
+O(|v|)

where O(|v|) is uniformly over small enough |v|. Since

E[|1{X̌ ≤ x+ v} − 1{X̌ ≤ x+ v′}|∆] =

∫ x+v∨v′

x+v∧v′
G0(u)f0(u)du≤C|v− v′|,

the first display in (E5) is satisfied. For the covariance kernel,

E[ψxn(sηn;Z)ψxn(tηn;Z)]

= S0(xn)2

(∫ xn+ηn(s∧t)

xn

f0(u)

S0(u)2G0(u)
du1{s > 0, t > 0}

+

∫ xn

xn+ηn(s∨t)

f0(u)

S0(u)2G0(u)
du1{s < 0, t < 0}

)
+O(η2

n)

=
S0(xn)2f0(x)

S0(x)2G0(x)
(s∧ t)ηn1{s > 0, t > 0}

− S0(xn)2f0(x)

S0(x)2G0(x)
(s∨ t)ηn1{s < 0, t < 0}+ o(ηn)

where the last equality uses continuity of (S0,G0, f0) at x i.e.,
∫ xn+ηn
xn

[ f0(u)
S0(u)2G0(u) −

f0(x)
S0(x)2G0(x) ]du= o(1)ηn. Thus, (SA.18) holds.

(B5). Cx(1,1)> 0 follows from f0(x)> 0. limη↓0 Cx(1, η)/
√
η = 0 follows from the same

computation as in the no censoring case. The remaining conditions follow from verifying
(E5) above.

(B6), (B7), and (B8) hold since in this example, ûn = û∗n = u0 and Φ̂n, Φ̂
∗
n are the identity

map.

Assumption D. As noted when verifying (E3), Ĝn(1;ηn) = oP(1) for any ηn = o(1) with
a−1
n η−1

n =O(1). Φ̂n = Φ0 is the identity map and the desired result holds.

SA.1.13. Proof of Corollary 3. Assumption A and (E1)-(E2) follow from the hypothesis.

(E3). In this example, γ0(x;Z) = Y 1{X ≤ x} is known, so it suffices to verify (SA.17).
The uniform covering number bound is straightforward as {1{· ≤ x} : x ∈ R} is a VC-
subgraph class. An envelope function is |Y |, whose second moment is finite. For x ∈ Iηx ,
|γ0(x;Z)− γ0(x;Z)| ≤ |Y |1{x− η ≤X ≤ x + η}, which we can take as D̄η

γ(Z). Then, for
j = 2,4,

E[D̄η
γ(Z)j ]≤ 2j−1

∫ x+η

x−η

(
|µ0(x)|j +E[εj |X = x]

)
f0(x)dx≤Cη

and the desired bound holds.

(E4). φ0(x;Z) = 1{X ≤ x} is known, so it suffices to verify the analogue of (SA.17). The
argument is the same as for checking (E3) in monotone density estimation with no censoring.
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(E5). We have

ψx(v;Z) = ε(1{X ≤ x+ v}−1{X ≤ x}) + (µ0(X)−µ0(x))(1{X ≤ x+ v}−1{X ≤ x}).
Then,

E[|ψx(v;Z)−ψx(v
′;Z)|]≤

∫ x+v∨v′

x+v∧v′
[σ0(x) + |µ0(x)− µ0(x)|]f0(x)dx≤C|v− v′|

and the first display holds. For the covariance kernel, note |(µ0(X)− µ0(xn))(1{X ≤ xn +
v} − 1{X ≤ xn}| ≤ |v| sup|x−x|≤2η |∂µ0(x)| for |xn − x| ∨ |v| ≤ η for η > 0 small enough.
Then,

E[ψxn(sηn;Z)ψxn(tηn;Z)]

=E[ε2(1{X ≤ xn + sηn} − 1{X ≤ xn})(1{X ≤ xn + tηn} − 1{X ≤ xn})] +O(η2
n)

=

∫ xn+ηn(s∧t)

xn

σ2
0(x)f0(x)dx1{s > 0, t > 0}

+

∫ xn

xn+ηn(s∨t)
σ2

0(x)f0(x)dx1{s < 0, t < 0}+O(η2
n)

and

η−1
n E[ψxn(sηn;Z)ψxn(tηn;Z)]

→ σ2
0(x)f0(x)

[
(s∧ t)1{s > 0, t > 0} − (s∨ t)1{s < 0, t < 0}

]
= σ2

0(x)f0(x)(|s| ∧ |t|)1{sign(s) = sign(t)},
as desired.

(B5). Cx(1,1) > 0 follows from f0(x)σ2
0(x) > 0. limη↓0 Cx(1, η)/

√
η = 0 follows from the

same computation as in the monotone density estimation. The remaining conditions follow
from verifying (E5) above.

(B6) trivially holds since ûn = û∗n = 1 in this example.

(B7). Φ̂n, Φ̂
∗
n are (empirical) cdfs, so they are non-negative, non-decreasing, and right-

continuous. {0, ûn} ⊂ Φ̂n(I) and {0, û∗n} ⊂ Φ̂∗n(I) hold as ûn = û∗n = 1, Φ̂n(miniXi−) =

0 = Φ̂∗n(miniXi−), and Φ̂n(maxiXi) = 1 = Φ̂∗n(maxiXi). The sets Φ̂n(I), Φ̂∗n(I) are finite
and thus closed.

(B8). With probability one, all Xi’s are distinct. If x is one of Xi’s, Φ̂∗n(x) − Φ̂∗n(x−) =

n−1Wj,n for some j, and Φ̂∗n(x)−Φ̂∗n(x−) = 0 otherwise. GivenE|W1,n|r <∞, n−1 max1≤i≤n |Wi,n|=
oP(n−5/6), which implies

√
nan supx∈I |Φ̂∗n(x)− Φ̂∗n(x−)| = oP(1). The argument for Φ̂n

is similar, but simpler.

Assumption D follows from (E3)-(E4) and empirical process theory arguments.

SA.1.14. Proof of Corollary 4. Assumption A and (E1)-(E2) follow from the hypothesis.

(E3). In this example, Γ̌n = Γ̂n.

|γ̂n(x;Z)− γ0(x;Z)| ≤ 1{X ≤ x}
[
|ε|
∣∣∣ĝn(X,A)−1 − g0(X,A)−1

∣∣∣+ |µ̂n(X,A)− µ0(X,A)|
ĝn(X,A)

+
1

n

n∑
j=1

|µ̂n(X,Aj)− µ0(X,Aj)|+
∣∣∣∣ 1n

n∑
j=1

µ0(X,Aj)− θ0(X)

∣∣∣∣].
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The last sum is bounded by supx∈I | 1n
∑n

j=1 µ0(x,Aj)−θ0(x)|, and this object isOP(n−1/2):
to see this claim, first note that Assumption MRC (iv) and Theorem 2.7.11 of van der
Vaart and Wellner (1996) imply lim supε↓0 logNU (ε,{µ(x, ·) : x ∈ I})εV <∞ for some
V ∈ (0,2) and Theorem 4.2 of Pollard (1989) implies supx∈I | 1n

∑n
j=1 µ0(x,Aj)− θ0(x)|=

OP(n−1/2). Together with Assumption MRC (iii), an 1
n

∑n
i=1 supx∈I |γ̂n(x;Z)−γ0(x;Z)|2 =

oP(1) holds.
By Assumption MRC (iii), uniformly over V ∈ (0,2δ]
√
nan sup

|v|≤V

∣∣Γ̂n(x+ v)− Γ̂n(x)− Γ̄n(x + v) + Γ̄n(x)
∣∣≤ oP(1) +OP(

√
an)V

and the desired inequality holds.
The uniform covering numbers of Fγ , F̂γ,n are the same order as for {1{· ≤ x} : x ∈

I}. For x ∈ Iηx , |γ0(x;Z)− γ0(x;Z)| ≤ 1{x− η ≤X ≤ x + η}(|ε|c−1 + θ0(x + η)). Then,
lim supη↓0E[D̄η

γ(Z)j ]η−1 <∞ holds for j = 2,4.

(E4). φ0(x;Z) = 1{X ≤ x} is known and the same as in the classical case, so the same
argument applies.

(E5). We have

ψx(v;Z) = (1{X ≤ x+ v} − 1{X ≤ x})
[

ε

g0(X,A)
+ θ0(X)− θ0(x)

]
.

Then, for v, v′ ∈ [−η, η] with sufficiently small η > 0,

|ψx(v;Z)−ψx(v
′;Z)| ≤ |1{X ≤ x + v} − 1{X ≤ x + v′}|

(
c−1|ε|+ |X − x| sup

x∈Iηx
|∂θ0(x)|

)
and supv 6=v′∈[−ηn,ηn]E[|ψx(v;Z)−ψx(v

′;Z)|]/|v− v′|=O(1) holds.
For sηn small enough, ψx(sηn;Z) = (1{X ≤ x + sηn} − 1{X ≤ x})εg0(X,A)−1 +

O(ηn) and

E[ψx(sηn;Z)ψx(tηn;Z)]

=E

[
σ2

0(X,A)

g0(X,A)2
(1{X ≤ x + sηn} − 1{X ≤ x})(1{X ≤ x+ tηn} − 1{X ≤ x})

]
+O(η2

n)

and

E

[
σ2

0(X,A)

g0(X,A)2
(1{X ≤ x + sηn} − 1{X ≤ x})(1{X ≤ x+ tηn} − 1{X ≤ x})

]
=E

[∫ x+ηn(s∧t)

x

σ2
0(x,A)

g0(x,A)2
fX|A(x|A)dx

]
1{s > 0, t > 0}

+E

[∫ x

x+ηn(s∨t)

σ2
0(x,A)

g0(x,A)2
fX|A(x|A)dx

]
1{s < 0, t < 0}

=E

[
σ2

0(x,A)

g0(x,A)2
fX|A(x|A)

](
ηn(s∧ t)1{s > 0, t > 0} − ηn(s∨ t)1{s < 0, t < 0}

)
+ o(ηn).

Since fX|A(x|A)
g0(x,A)2 = f0(x)

g0(x,A) , we have

η−1
n E[ψx(sηn;Z)ψx(tηn;Z)]→ f0(x)E

[
σ2

0(x,A)

g0(x,A)

](
(s∧t)1{s, t > 0}−(s∨t)1{s, t < 0}

)
,

as desired.
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(B5). Cx(1,1)> 0 follows from f0(x)E[σ
2
0(x,A)
g0(x,A) ]> 0. limη↓0 Cx(1, η)/

√
η = 0 follows from

the same computation as in the monotone density estimation. The remaining conditions fol-
low from verifying (E5) above.

(B6) (B7) (B8). Verifying these conditions is the same as in the classical monotone regres-
sion case.

SA.2. Primitive sufficient conditions for Assumption MRC (iii). Here we provide
primitive sufficient conditions for Assumption MRC (iii) by focusing on specific estima-
tors µ̂n and ĝn. As discussed by Westling, Gilbert and Carone (2020), cross-fitting avoids
restrictions on uniform entropy, allowing for a large class of flexible preliminary estima-
tors. Here we use sample splitting to simplify exposition, but the proposed procedure can be
straightforwardly modified for cross-fitting.

Suppose there is a separate random sample Z̃1, . . . , Z̃n drawn from the distribution of Z,
which is independent of Z1, . . . ,Zn. Preliminary estimators µ̂n and ĝn are constructed from
Z̃1, . . . , Z̃n. For concreteness, we consider a partitioning-based least squares estimator µ̂n
(Cattaneo, Farrell and Feng, 2020) and local polynomial kernel-based estimators f̂X|A,n(x|a)

and f̂n(x) of fX|A(x|a) and f0(x) (Cattaneo, Jansson and Ma, 2020; Cattaneo et al., 2024),
from which we construct ĝn(x,a) = f̂X|A,n(x|a)/f̂n(x).

Let d = dim(A). For simplicity, suppose the support of (X,A′)′ equals [0,1]1+d. Let
p(x,a) be a kn-dimensional vector of bounded basis functions of order m on S which are
locally supported e.g., splines (see Cattaneo, Farrell and Feng, 2020, for details and examples
of basis functions). We consider the estimator

µ̂n(x,a) = p(x,a)′
( n∑
i=1

p(X̃i, Ãi)p(X̃i, Ãi)
′
)−1 n∑

i=1

p(X̃i, Ãi)Ỹi.

For the estimator of fX|A(x|a), letting F̂X|A,n(·|a) be an estimator ofP[X ≤ ·|A = a] spec-
ified below, f̂X|A,n(x|a) is obtained by local polynomial regression:

f̂X|A,n(x|a) = e′2β̂(x|a), β̂(x|a) = argmin
u∈Rp1+1

n∑
i=1

(
F̂X|A,n(X̃i|a)−q1(X̃i−x)′u

)2
Kh(X̃i−x)

where p1 ≥ 1 is the order of the polynomial basis q1(x) = (1, x/1!, x2/2!, . . . , xp1/p1!)′, el
is the conformable unit vector whose lth element is unity, and Kh(x) =K(x/h)/h for some
kernel function K and some positive bandwidth h. The estimator F̂X|A,n(x|a) is constructed
via local polynomial regression of order p2 = p1 − 1:

F̂X|A,n(x|a) = e′1γ̂(x|a), γ̂(x|a) = argmin
v∈Rkp2

n∑
i=1

(
1{X̃i ≤ x}−q2(Ãi−a)′v

)2
Lh(Ãi−a)

where, using standard multi-index notation, q2(a) denotes the kp2
-dimensional vector col-

lecting the polynomials am/m! for 0 ≤ |m| ≤ p2 with am = am1

1 am2

2 . . . amd

d , |m| =∑d
j=1mj , and kp2

= (d+p2)!
d!p2! + 1, and Lh(a) = L(a/h)/hd for L(a) =

∏d
j=1K(aj) i.e.,

product kernel. The estimator f̂n(x) is constructed in a similar manner. First, the empirical
cdf F̂n of {X̃i} is constructed and then f̂n(x) is formed via local polynomial regression:

f̂n(x) = e′2δ̂n(x), δ̂n(x) = argmin
w∈Rp1+1

n∑
i=1

(
F̂n(X̃i)− q1(X̃i − x)′w

)2
Kb(X̃i − x)
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where b > 0 is some bandwidth.
Now we state sufficient conditions for Assumption MRC (ii) based on the partitioning-

based series estimator µ̂n and the kernel-based estimator ĝn.

Primitive Conditions MRC
(i) Z̃1, . . . , Z̃n are independent of Z1, . . . ,Zn.
(ii) The support of (X,A′)′ is [0,1]1+d, and the distribution of (X,A′)′ is absolutely contin-

uous. The Lebesgue density of (X,A′)′ and the conditional variance of Y given (X,A′)′

are bounded away from zero and continuous on [0,1]1+d. µ0 is (m+1)-times continuously
differentiable on [0,1]1+d.

(iii) The vector of basis functions p satisfies Assumptions 2, 3, and 4 of Cattaneo, Farrell
and Feng (2020).

(iv) fX|A(x|a) and f0(x) are p1-times continuously differentiable in x, and fX|A(x|a) is
p1-times continuously differentiable in a.

(v) K is a symmetric, Lipschitz continuous probability density function supported on
[−1,1].

As verified by Cattaneo, Farrell and Feng (2020), (iii) holds for widely used local basis func-
tions such as splines and wavelets.

LEMMA SA-7. Suppose Z̃1, . . . , Z̃n is a random sample drawn from the distribution of

Z and Primitive Conditions MRC hold. In addition, with τn = n−1 logn, kn =O(τ
− d+1

2m+d+1
n ),

h = O(τ
d+1

2p1+d+1

n ), b = O(τ
1

2p1+1

n ), m
2m+d+1 + p1

2p1+d+1 ≥
1
2 , and min{ 2m

2m+d+1 ,
2p1

2p1+d+1} >
1

2q+1 . Then, µ̂n and ĝn described above and Γ̂n based on the µ̂n, ĝn satisfy Assumption MRC
(iii) with δ = min{x,1− x}/4. In particular,

√
n sup
|v|≤V

∣∣Γ̂n(x+ v)− Γ̂n(x)− Γ̄n(x+ v) + Γ̄n(x)
∣∣≤ V OP(1) + oP(a−1

n )

uniformly over V ∈ (0,2δ].

PROOF. By Theorem 4.3 of Cattaneo, Farrell and Feng (2020),

sup
(x,a)∈[0,1]1+d

|µ̂n(x,a)− µ0(x,a)|=OP

(√
kn logn

n
+ k
− m

d+1
n

)
and by Theorem 1 of Cattaneo et al. (2024),

sup
(x,a)∈[0,1]1+d

|f̂X|A,n(x|a)− fX|A(x|a)|=OP

(√
logn

nh1+d
+ hp1

)
.

Also, one can show

sup
x∈[0,1]

|f̂n(x)− f0(x)|=OP

(√
logn

nb
+ bp1

)
.

Then, with the specified rate of kn, h, b,

sup
(x,a)∈[0,1]1+d

|µ̂n(x,a)− µ0(x,a)|=OP

(
τ

m

2m+d+1
n

)
,

sup
(x,a)∈[0,1]1+d

|ĝn(x,a)− g0(x,a)|=OP

(
τ

p1
2p1+d+1

n

)
.
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Since min{ 2m
2m+d+1 ,

2p1

2p1+d+1} >
1

2q+1 , it follows an 1
n

∑n
i=1 |µ̂n(Xi,Ai)− µ0(Xi,Ai)|2 =

oP(1), an 1
n2

∑n
i=1

∑n
j=1 |µ̂n(Xi,Aj)−µ0(Xi,Aj)|2 = oP(1), and an 1

n

∑n
i=1 ε

2
i |ĝn(Xi,Ai)−

g0(Xi,Ai)|2 = oP(1). Also, by m
2m+d+1 + p1

2p1+d+1 ≥
1
2 ,

sup
(x,a)∈[0,1]1+d

|µ̂n(x,a)− µ0(x,a)| sup
(x,a)∈[0,1]1+d

|ĝn(x,a)− g0(x,a)|=OP

(
n−1/2

)
.

(SA.21)

Decompose γ̂n into γ̂1,n and γ̂2,n where

γ̂1,n(x;Z) = 1{X ≤ x}Y − µ̂n(X,A)

ĝn(X,A)
, γ̂2,n(x;Z) = 1{X ≤ x} 1

n

n∑
j=1

µ̂n(X,Aj)

and let Γ̂k,n(x) = 1
n

∑n
i=1 γ̂1,n(x;Zi) for k = 1,2. Define γk,0, Γ̄k,n k = 1,2 in the same

manner.
Letting Z̃n be the σ-field generated by Z̃1, . . . , Z̃n,

V

[
Γ̂1,n(x + v)− Γ̂1,n(x)− Γ̄1,n(x+ v) + Γ̄1,n(x)

∣∣∣Z̃n]
≤ n−1

E

[(
1{X ≤ x + v} − 1{X ≤ x}

)2(Y − µ̂n(X,A)

ĝn(X,A)
− Y − µ0(X,A)

g0(X,A)

)2
∣∣∣∣∣ Z̃n

]
≤ n−1CE

[∣∣1{X ≤ x+ v} − 1{X ≤ x}
∣∣ε2
]

sup
|x−x|≤|v|

sup
a∈[0,1]d

|ĝn(x,a)− g0(x,a)|2

+ n−1CE
[∣∣1{X ≤ x + v} − 1{X ≤ x}

∣∣] sup
|x−x|≤|v|

sup
a∈[0,1]d

|µ̂n(x,a)− µ0(x,a)|2

= oP
(
(nan)−1

)
where the inequalities hold with probability one.

Note Γ̂2,n(x) = 1
n2

∑
1≤i 6=j≤n 1{Xi ≤ x}µ̂n(Xi,Aj) +OP(n−1), and

V

 1

n(n− 1)

∑
1≤i 6=j≤n

(
1{Xi ≤ x+ v} − 1{Xi ≤ x}

)(
µ̂n(Xi,Aj)− µ0(Xi,Aj)

)∣∣∣∣∣∣ Z̃n


≤ n−1C|v| sup
|x−x|≤|v|

sup
a∈[0,1]d

|µ̂n(x,a)− µ0(x,a)|2

+Cn−2|v| sup
|x−x|≤|v|

sup
a∈[0,1]d

|µ̂n(x,a)− µ0(x,a)|2 = oP
(
(nan)−1

)
where we use Hoeffding decomposition and the inequality holds with probability one.

To complete the proof, it suffices to show that there is a sequence of random variables
A′n =OP(1) such that for V ∈ (0, anδ],

√
n sup
|v|≤V

∣∣∣E[Γ̂n(x+ v)− Γ̂n(x)− Γ̄n(x + v) + Γ̄n(x)
∣∣Z̃n]∣∣∣≤A′nV.

With fA(a) denoting the Lebesgue density of A,

E
[
Γ̂n(x + v)− Γ̂n(x)

∣∣Z̃n]
=

∫ ∫ (
1{u≤ x + v} − 1{u≤ x}

) g0(u,a)

ĝn(u,a)

[
µ0(u,a)− µ̂n(u,a)

]
f0(u)dufA(a)da
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+

∫ (
1{u≤ x+ v} − 1{u≤ x}

)∫
µ̂n(u,a)fA(a)dadu

E
[
Γ̄n(x + v)− Γ̄n(x)

∣∣Z̃n]
=

∫ (
1{u≤ x + v} − 1{u≤ x}

)∫
µ0(u,a)fA(a)daf0(u)du.

Then, for v ≥ 0,

E
[
Γ̂n(x + v)− Γ̂n(x)− Γ̄n(x+ v) + Γ̄n(x)

∣∣Z̃n]
=

∫
x≤u≤x+v

[
µ̂n(u,a)− µ0(u,a)

][
1− g0(u,a)

ĝn(u,a)

]
f0(u)fA(a)d(u,a).

A similar expression holds for v < 0. Then, for some fixed C > 0,∣∣∣E[Γ̂n(x+ v)− Γ̂n(x)− Γ̄n(x+ v) + Γ̄n(x)
∣∣Z̃n]∣∣∣

≤C|v| sup
|x−x|≤|v|

sup
a∈[0,1]d

|µ̂n(x,a)− µ0(x,a)| sup
|x−x|≤|v|

sup
a∈[0,1]d

|ĝn(x,a)− g0(x,a)|

and the desired result follows from (SA.21).

SA.3. Additional example: monotone density function with conditionally indepen-
dent right-censoring. We introduce covariates A and consider the case of censoring at
random:X ⊥⊥C|A. See van der Laan and Robins (2003); Zeng (2004) and references therein
for existing analysis of this problem. We have

γ0(x;Z) = F0(x|A) + S0(x|A)

[
∆1{X̌ ≤ x}

S0(X̌|A)G0(X̌|A)
−
∫ X̌∧x

0

Λ0(du|A)

S0(u|A)G0(u|A)

]
where F0(x|A) = 1 − S0(x|A), S0(x|A) = P[X > x|A], G0(c|A) = P[C > c|A], and
Λ0(x|A) =

∫ x
0
f0(u|A)
S0(u|A)du with f0 being the Lebesgue density of X . Denote by Ŝn(·|·),

Ĝn(·|·), Λ̂n(·|·) preliminary estimates of S0,G0,Λ0, respectively.

Assumption SA.3. Let Sn, Gn,Ln be sequences of function classes that contain S0(·|·),
G0(·|·), Λ0(·|·), respectively.

(i) x is in the interior of I = [0, u0], X ⊥⊥C|A, and θ0 = f0 satisfies Assumption (A2).
(ii) There exist c, c1, c2 > 0, ργ ∈ (0,2)such that for n≥ 1, for any S ∈Sn, G ∈Gn, and
Λ ∈ Ln, the following hold: logNU (ε,{S(x|·) : x ∈ I})≤ cε−ργ for ε ∈ (0,1), where NU

is as defined in Section 4.2 of the main paper, and c1 ≤ S(x|A)≤ c2, c1 ≤G(x|A)≤ c2

for x ∈ I , and Λ(u0|A)≤ c2 with probability one.
(iii) There exist δ > 0, βγ ∈ [1/2,2) such that for V ∈ (0,2δ],

√
nan sup|v|≤V |Γ̂n(x +

v)− Γ̂n(x)− Γ̄n(x + v) + Γ̄n(x)| ≤ oP(1) + V βγoP(a
βγ
n ) where oP terms do not depend

on V .
(iv) With probability approaching one, Ŝn ∈ Sn, Ĝn ∈ Gn, Λ̂n ∈ Ln. For (ĥn, h0) ∈
{(Ŝn, S0), (Ĝn,G0), (Λ̂n,Λ0)},

an
1

n

n∑
i=1

sup
x∈I
|ĥn(x|Ai)− h0(x|Ai)|2 = oP(1).

(v) The conditional distribution of X given A has bounded Lebesgue density fX|A,

E[
fX|A(x|A)
G0(x|A) ] > 0, and there are real-valued functions B,ω such that E[B(A)] < ∞,
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limη↓0ω(η) = 0, and for |x − x| sufficiently small, | fX|A(x|A)
S0(x|A)G0(x|A) −

fX|A(x|A)
S0(x|A)G0(x|A) | ≤

ω(|x− x|)B(A).

The condition (iii) is high-level, and there are a few different approaches to verify them. See
Westling and Carone (2020) for details.

COROLLARY SA-1. Under Assumption SA.3, Assumptions A and B hold with

Γ̂n(x) =
1

n

n∑
i=1

γ̂n(x;Zi), Γ̂∗n(x) =
1

n

n∑
i=1

Wi,nγ̂n(x;Zi)

γ̂n(x;Z) = F̂n(x|A) + Ŝn(x|A)

[
∆1(X̌ ≤ x)

Ŝn(X̌|A)Ĝn(X̌|A)
−
∫ X̌∧x

0

Λ̂n(du|A)

Ŝn(u|A)Ĝn(u|A)

]
,

where F̂n = 1− Ŝn,

Φ̂n(x) = Φ̂∗n(x) = x, ûn = û∗n = u0,

Cx(s, t) =E
[fX|A(x|A)

G0(x|A)

]
(|s| ∧ |t|)1{sign(s) = sign(t)}, Dq(x) =

∂qf0(x)

(q+ 1)!
.

SA.3.1. Proof of Corollary SA-1. In this example, Φ̂n(x) = Φ̂∗n(x) = x = Φ0(x). As-
sumptions A and (E1)-(E2) follow from the hypothesis.

(E3). In this example, Γ̌n = Γ̂n. For x ∈ I ,

γ̂n(x;Z)− γ0(x;Z) = F̂n(x|A)− F0(x|A)

+
[
Ŝn(x|A)− S0(x|A)

][ ∆1(X̌ ≤ x)

Ŝn(X̌|A)Ĝn(X̌|A)
−
∫ X̌∧x

0

Λ̂n(du|A)

Ŝn(u|A)Ĝn(u|A)

]
+ S0(x|A)∆1{X̌ ≤ x}

[(
Ŝn(X̌|A)Ĝn(X̌|A)

)−1 −
(
S0(X̌|A)G0(X̌|A)

)−1
]

− S0(x|A)

[∫ X̌∧x

0

Λ̂n(du|A)

Ŝn(u|A)Ĝn(u|A)
−
∫ X̌∧x

0

Λ0(du|A)

S0(u|A)G0(u|A)

]
and ∣∣∣∣∣

∫ X̌∧x

0

Λ̂n(du|A)

Ŝn(u|A)Ĝn(u|A)
−
∫ X̌∧x

0

Λ0(du|A)

S0(u|A)G0(u|A)

∣∣∣∣∣
≤ sup
x′∈I

∣∣∣(Ŝn(x′|A)Ĝn(x′|A)
)−1 −

(
S0(x′|A)G0(x′|A)

)−1
∣∣∣Λ̂n(u0|A)

+

∣∣∣∣∣ Λ̂n(X̌ ∧ x|A)−Λ0(X̌ ∧ x|A)

S0(X̌ ∧ x|A)G0(X̌ ∧ x|A)

∣∣∣∣∣+
∣∣∣∣∣ Λ̂n(0|A)−Λ0(0|A)

S0(0|A)G0(0|A)

∣∣∣∣∣
+

∣∣∣∣∣
∫ X̌∧x

0
[Λ̂n(u|A)−Λ0(u|A)]J0(du|A)

∣∣∣∣∣



36

using integration by parts, where J0(u|a) = [S0(u|a)G0(u|a)]−1. Thus, there is a fixedC > 0
such that

|γ̂n(x;Z)− γ0(x;Z)| ≤C
[

sup
x∈I
|Ŝn(x|A)− S0(x|A)|+ sup

x∈I
|Ĝn(x|A)−G0(x|A)|

+ sup
x∈I
|Λ̂n(x|A)−Λ0(x|A)|

]
,

From the hypothesis,

1

n

n∑
i=1

sup
x∈I
|γ̂n(x;Zi)− γ0(x;Zi)|2 = oP(1), an

1

n

n∑
i=1

sup
x∈Iδx

∣∣γ̂n(x;Zi)− γ0(x;Zi)
∣∣2 = oP(1)

follow.
For uniform covering numbers, it suffices to show that each of {S(x|·) : x ∈ I}, {1{· ≤

x} : x ∈ I}, and {
∫ ·∧x

0
Λ(du|·)

S(u|·)G(u|·) : x ∈ I} has an appropriate bound on the uniform covering
number by Lemma 5.1 of van der Vaart and van der Laan (2006) (see examples after the
lemma). For {

∫ ·∧x
0

Λ(du|·)
S(u|·)G(u|·) : x ∈ I} with (S,G,Λ) ∈Sn ×Gn × Ln, the mapping x 7→∫ x

0
Λ(du|·)

S(u|·)G(u|·) is monotone (by the non-decreasing property of Λ and S,G ≥ c1 > 0) and
Lemma 2.6.18 of van der Vaart and Wellner (1996) implies the desired result.

There is a fixed C > 0 such that for x ∈ Iηx ,

|γ0(x;Z)− γ0(x;Z)| ≤C
[
|S0(x|A)− S0(x|A)|+C∆|1{X̌ ≤ x} − 1{X̌ ≤ x}|

]
and using 1− S0(x|·) =

∫ x
0 fX|A(u|·)du with fX|A being bounded, we can take

D̄η
γ(Z) =C∆1{x− η ≤ X̌ ≤ x+ η}+Cη,

which satisfies the desired bound condition.

(E5). We have

ψx(v;Z) = S0(x|A)
(1{X̌ ≤ x+ v} − 1{X̌ ≤ x})∆

S0(X̌|A)G0(X̌|A)
+O(|v|)

and the first display follows as in the independent censoring case. For the covariance kernel,

E[ψxn(sηn;Z)ψxn(tηn;Z)] =E

[
S0(xn|A)2

∫ xn+ηn(s∧t)

xn

fX|A(u|A)

S0(u|A)2G0(u|A)
du1{s, t > 0}

]
+E

[
S0(xn|A)2

∫ xn

xn+ηn(s∨t)

fX|A(u|A)

S0(u|A)2G0(u|A)
du1{s, t < 0}

]
+O(η2

n)

and η−1
n E[ψxn(sηn;Z)ψxn(tηn;Z)] converges toE[

fX|A(x|A)
G0(x|A) ](|s|∧|t|)1{sign(s) = sign(t)}.

(B5). Cx(1,1) > 0 follows from E[fX|A(x|A)/G0(x|A)] > 0. limη↓0 Cx(1, η)/
√
η = 0 fol-

lows from the same computation as in the no censoring case. The remaining conditions follow
from verifying (E5).

(B6), (B7), and (B8) hold since in this example, ûn = û∗n = u0 and Φ̂n, Φ̂
∗
n are the identity

map.
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SA.4. Additional example: monotone hazard function. Let X be a non-negative ran-
dom variable, f0 be its Lebesgue density, and S0(x) = P[X > x] be its survival function.
We consider the parameter of estimating the hazard function of X , θ0(x) = f0(x)/S0(x),
with possible right-censoring as in the monotone density function example. Observations
Z1, . . . ,Zn come from a random sample of Z = (X̌,∆)′ where X̌ = min{X,C} and
∆ = 1{X ≤ C}, C being a random censoring time. As pointed out by Westling and Carone
(2020), with strictly increasing Φ0, the function Γ0 takes the form Γ0(x) =

∫ x
0
f0(u)
S0(u)Φ0(du),

and by taking Φ0(x) =
∫ x

0 S0(u)du, Γ0(x) = F0(x) = P[X ≤ x]. Since Γ0 is identical to the
monotone density case with the choice Φ0 =

∫ x
0 S0(u)du, we can leverage the analysis for

the monotone density. The interval I equals [0, uMD0 ] where uMD0 is u0 in the monotone density
example. The u0 for the monotone hazard function estimation is u0 = Φ0(uMD0 ).

Consider the case of completely random censoring i.e., X ⊥⊥ C . As in the setup for
Corollary 2, let Ŝn(x) be the Kaplan-Meier estimator for S0(x) = 1 − F0(x) = P[X > x],
F̂n = 1− Ŝn, and Ĝn be the Kaplan-Meier estimator for G0(x) = P[C > x]. Also,

γ0(x;Z) = F0(x) + S0(x)

[
∆1{X̌ ≤ x}
S0(X̌)G0(X̌)

−
∫ X̌∧x

0

Λ0(du)

S0(u)G0(u)

]
and φ0(x;Z) = x−

∫ x
0 γ0(u;Z)du.

COROLLARY SA-2. Suppose that the hypothesis of Corollary 2 and Assumption BW
hold. Then, Assumptions A and B hold with

Γ̂n(x) = 1− Ŝn(x), Γ̂∗n(x) =
1

n

n∑
i=1

Wi,nγ̂n(x;Zi),

γ̂n(x;Z) = F̂n(x) + Ŝn(x)

[
∆1{X̌ ≤ x}
Ŝn(X̌)Ĝn(X̌)

−
∫ X̌∧x

0

Λ̂n(du)

Ŝn(u)Ĝn(u)

]
,

Φ̂n(x) =

∫ x

0
F̂n(u)du, Φ̂∗n(x) =

∫ x

0
[1− Γ̂∗n(u)]du=

1

n

n∑
i=1

Wi,nφ̂n(x;Zi),

φ̂n(x;Z) = x−
∫ x

0
γ̂n(u;Z)du, ûn = û∗n = Φ̂n(uMD0 ),

Cx(s, t) =
f0(x)

G0(x)
(|s| ∧ |t|)1{sign(s) = sign(t)}, Dq(x) =

S0(x)∂qf0(x)

(q+ 1)!
.

SA.4.1. Proof of Corollary SA-2. We use the same γ̂n function and assumptions as in
the monotone density setting. Also, the covariance kernels are the same as in the monotone
density case. Thus, (E3) and part of (B5) follow from the same argument. We focus on (E4)-
(E5) and (B6)-(B8).

(E4). Since

φ̂n(x;Z)− φ0(x;Z) =−
∫ x

0
[γ̂n(u;Z)− γ0(u;Z)]du,

1

n

n∑
i=1

sup
x∈I
|φ̂n(x;Zi)−φ0(x;Zi)|2 = oP(1), an

1

n

n∑
i=1

sup
x∈Iδx
|φ̂n(x;Zi)−φ0(x;Zi)|2 = oP(1)
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follow from an
1
n

∑n
i=1 supx∈I |γ̂n(x;Zi) − γ0(x;Zi)|2, which was verified in Section

SA.1.12. To check supx∈I |Φ̂n(x)−Φ0(x)|= oP(1), supx∈I | 1n
∑n

i=1 φ0(x;Zi)−Φ0(x)|=
oP(1) follows from Glivenko-Cantelli, and

sup
x∈I

∣∣∣∣ 1n
n∑
i=1

[
φ̂n(x;Zi)− φ0(x;Zi)

]∣∣∣∣≤ 1

n

n∑
i=1

sup
x∈I
|γ̂n(x;Zi)− γ0(x;Zi)|= oP(1),

where the last equality follows from 1
n

∑n
i=1 supx∈I |γ̂n(x;Zi)− γ0(x;Zi)|2 = oP(1). Now

supx∈I |Φ̂n(x)−Φ0(x)|= oP(1) follows by the triangle inequality.
For |v| ≤ V∣∣Φ̂n(x+ v)−Φ̂n(x)− Φ̄n(x+ v) + Φ̄n(x)

∣∣= ∣∣∣∣∫ x+v

x−v
[Γ̂n(u)− Γ̄n(u)]du

∣∣∣∣
≤ 2|V |

(
sup
|v|≤|V |

|Γ̂n(x+ v)− Γ̂n(x)− Γ̄n(x + v) + Γ̄n(x)|+ |Γ̂n(x)− Γ̄n(x)|
)

Using the argument in Section SA.1.12, we can bound sup|v|≤|V | |Γ̂n(x+v)−Γ̂n(x)−Γ̄n(x+

v) + Γ̄n(x)|. Then,
√
n|Γ̂n(x)− Γ̄n(x)|=OP(1) implies

√
nan sup

|v|≤V

∣∣Φ̂n(x+ v)− Φ̂n(x)− Φ̄n(x + v) + Φ̄n(x)
∣∣≤ oP(1) + V OP

(√
an
)

uniformly over V ∈ (0,2δ]. Theorem 1 of Lo and Singh (1986) implies
√
nan supx∈I |Φ̌n(x)−

Φ̌n(x)− Φ̄n(x) + Φ̄n(x)|= oP(1).
The conditions on the uniform covering number hold because γ0 and γ̂n are bounded (for

γ̂n, with probability approaching one) and thus |φ0(x1;Z) − φ0(x2;Z)| ≤ C|x1 − x2| and
|φ̂n(x1;Z)− φ̂n(x2;Z)| ≤ C|x1 − x2| with probability approaching one. By this Lipschitz
property, the condition on D̄η

φ(Z) also holds.

(E5). Let ψMD
x (v;Z) = γ0(x+v;Z)−γ0(x;Z)−θ0(x)v be the ψx function for the monotone

density. Then, for x sufficiently close to x and |v| small enough,

ψx(v;z) = γ0(x+ v;z)− γ0(x;z)− θ0(x)[φ0(x+ v;z)− φ0(x;z)]

= ψMD
x (v;Z) + θ0(x)

∫ x+v

x
γ0(u;Z)du= ψMD

x (v;Z) +O(|v|).

Then, the same argument as in the monotone density case implies the desired result.

(B6) follows from consistency of Φ̂n and Φ̂∗n.

(B7). Φ̂n(x) =
∫ x

0 F̂n(u)du, Φ̂∗n(x) =
∫ x

0 1− Γ̂∗n(u)du are non-negative since F̂n ≥ 0 and
1− Γ̂∗n ≥ 0 with probability approaching one. This property also implies the non-decreasing
property as Φ̂n, Φ̂

∗
n are integrals. The continuity property also follows from the integral rep-

resentation. By definition, Φ̂n(0) = 0 = Φ̂∗n(0) and Φ̂n(uMD0 ) = ûn = û∗n = Φ̂∗n(uMD0 ) with
I = [0, uMD0 ]. The closedness of the range follows from continuity and I being a compact
interval.

(B8) follows from continuity of Φ̂n and Φ̂∗n.

SA.5. Additional example: distribution function estimation with current status data.
We consider the problem of estimating the cdf of X at x, θ0(x) = F0(x). Observations
Z1, . . . ,Zn come from a random sample of Z = (∆,C,A′)′ where ∆ = 1{X ≤ C}, C is
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a random censoring time, and A is a vector of covariates. In this example, we do not observe
X̌ = X ∧ C . Instead, we observe the censoring time and whether the observation was cen-
sored. This setup is often referred to as current status data. Let H0(x) = P[C ≤ x] be the
cdf of C . We can use Γ0(x) =

∫ x
0 F0(u)H0(du) and Φ0(x) = H0(x). The interval I is the

support of X and u0 = 1. We also assume H0 admits a Lebesgue density h0. The structure
of the estimation problem turns out to be identical to the one for the monotone regression
example, and we can leverage the common structure.

SA.5.1. Independent right-censoring. First we consider the case of completely at ran-
dom censoring X ⊥⊥ C . See Groeneboom and Wellner (1992) for existing analysis. In this
exaple, we do not use covariates A. We set γ0(x;Z) = ∆1{C ≤ x} and φ0(x;Z) = 1{C ≤
x}. Note that if the notation is mapped by (∆,C)↔ (Y,X), then these functions are identi-
cal to those of the classical monotone regression problem (Corollary 3). Thus, the following
result is identical to Corollary 3, up to notation and some changes due to boundedness of ∆.

COROLLARY SA-3. Let ε= ∆−E[∆|C] and x be an interior point of I . Suppose that
Assumption BW holds, θ0 = F0 satisfies Assumption (A2), the cdf Φ0 =H0 satisfies Assump-
tion (A3), and σ2

0(x) =E[ε2|C = x] is continuous and positive at x. Then Assumptions A and
B hold with

Γ̂n(x) =
1

n

n∑
i=1

∆1{C ≤ x}, Γ̂∗n(x) =
1

n

n∑
i=1

Wi,n∆1{C ≤ x},

Φ̂n(x) =
1

n

n∑
i=1

1{C ≤ x}, Φ̂∗n(x) =
1

n

n∑
i=1

Wi,n1{C ≤ x}, ûn = û∗n = 1,

Cx(s, t) = h0(x)σ2
0(x)(|s| ∧ |t|)1{sign(s) = sign(t)}, Dq(x) =

h0(x)∂qF0(x)

(q+ 1)!
.

SA.5.2. Conditionally independent right-censoring. We consider the case where right-
censoring is conditionally independent i.e.,X ⊥⊥C|A. van der Vaart and van der Laan (2006)
analyzed this example as well as settings with time-varying covariates. We are focusing on
time-invariant covariates. Define F0(C,A) = E[∆|C,A] and g0(C,A) =

hC|A(C|A)
h0(C) where

hC|A is the conditional density ofC given A and h0 is the marginal density ofC . Let F̂n(c,a)
and ĝn(c,a) be preliminary estimators for F0(c,a) and g0(c,a), respectively.

Identical to the censoring completely at random case, with appropriate changes in the
notation (i.e., (∆,C)↔ (Y,X)), the setup is equivalent to that of the monotone regression
with covariates.

Assumption SA.5.2. Let ε = ∆−E[∆|C,A], σ2
0(C,A) =E[ε2|C,A], and η > 0 be some

fixed number.

(i) x is in the interior of I , θ0 = F0 satisfies (A2), and Φ0 =H0 satisfies (A3).
(ii) The conditional distribution of C given A has a bounded Lebesgue density hC|A,
and there is c > 0 such that g0(C,A)≥ c with probability one.
(iii) There exist δ > 0 and random variables An = oP(a

−1/2
n ), Bn = OP(1) such that√

n sup|v|≤V |Γ̂n(x+ v)− Γ̂n(x)− Γ0(x+ v) + Γ0(x)| ≤An +BnV for V ∈ (0,2δ]. For
each n ≥ 1, (Z1, . . . ,Zn, F̂n, ĝn) ⊥⊥ (W1,n, . . . ,Wn,n). Also, an 1

n

∑n
i=1 |F̂n(Ci,Ai) −

F0(Ci,Ai)|2 = oP(1), an 1
n2

∑n
i=1

∑n
j=1 |F̂n(Ci,Aj)−F0(Ci,Aj)|2 = oP(1), an 1

n

∑n
i=1 |ĝn(Ci,Ai)−

g0(Ci,Ai)|2 = oP(1).
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(iv) There exists a real-valued function F̄ such that |F0(c1,A) − F0(c2,A)| ≤ |c1 −
c2|F̄ (A) for |c1 − c2| ≤ η and E[F̄ (A)2]<∞.
(v) E[σ

2
0(x,A)
g0(x,A) ] > 0, and there are real-valued functions B,ω such that E[B(A)] <∞,

limη↓0ω(η) = 0, and for |x − x| ≤ η, |σ
2
0(x,A)hC|A(x|A)

g0(x,A)2 − σ2
0(x,A)hC|A(x|A)

g0(x,A)2 | ≤ ω(|x −
x|)B(A).

COROLLARY SA-4. Under Assumption SA.5.2and Assumption BW, Assumptions A and
B hold with

Γ̂n(x) =
1

n

n∑
i=1

γ̂n(x;Zi), Γ̂∗n(x) =
1

n

n∑
i=1

Wi,nγ̂n(x;Zi),

γ̂n(x;Z) = 1{C ≤ x}
[

∆− F̂n(C,A)

ĝn(C,A)
+

1

n

n∑
j=1

F̂n(C,Aj)

]
,

Φ̂n(x) =
1

n

n∑
i=1

1{Ci ≤ x}, Φ̂∗n(x) =
1

n

n∑
i=1

Wi,n1{Ci ≤ x}, ûn = û∗n = 1,

Cx(s, t) = h0(x)E

[
σ2

0(x,A)

g0(x,A)

]
(|s| ∧ |t|)1{sign(s) = sign(t)}, Dq(x) =

h0(x)∂qF0(x)

(q+ 1)!
.

SA.5.3. Proof of Corollaries SA-3 and SA-4. As noted above, by mapping the notation
(∆,C)↔ (Y,X), the arguments in Sections SA.1.13 and SA.1.14 directly apply to the cur-
rent status estimators.

SA.6. Rule-of-thumb step size selection. Here we develop a rule-of-thumb procedure
to choose a step size for the bias-reduced numerical derivative estimator in the context of
isotonic regression without covariates. Specifically, we consider the numerical derivative es-
timator

D̃BR
j,n(x) = ε−(j+1)

n

s+1∑
k=1

λBRj (k)[Υ̂n(x + ckεn)− Υ̂n(x)]

with s = 3, c1 = 1, c2 =−1, c3 = 2, c4 =−2. Then,

λBR1 (1) =
2

3
= λBR1 (2), λBR1 (3) =− 1

24
= λBR1 (4),

λBR3 (1) =−1

6
= λBR3 (2), λBR3 (3) =

1

24
= λBR3 (4).

We use the (asymptotic) MSE-optimal step size discussed in the main paper. See also SA.1.7.
Yet, with the choice of ck’s, part of the bias constant

∑s+1
k=1 λ

BR
j (k)c

s+2
k equals zero, and we

need to turn to the next leading term of the bias, which is

εs+2−j
n

∂s+3Υ0(x)

(s+ 3)!

s+1∑
k=1

λBRj (k)c
s+3
k .

Then, letting BBR
j (x) = ∂6Υ0(x)

6!

∑4
k=1 λ

BR
j (k)c6

k, the MSE-optmal step size is

εBRj,n =

(
(2j + 1)VBR

j (x)

2(5− j)BBR
j (x)2

)1/11

n−1/11.
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The bias and variance constants depend on unknown features of the data generating process.
Specifically, BBR

j (x) depends on the regression function θ0, the Lebesgue density of X , and
their derivatives at X = x while VBR

j (x) is determined by the density of X and the conditional
variance of the regression error ε= Y − θ0(X) at X = x. To operationalize the construction
of the step size, we posit a simple parametric model:

E[Y |X] = γ0 +

5∑
k=1

γk(X − x0)k, X ∼Normal(µ,σ2)

where {γ0, γ1, γ2, γ4, γ4, γ5, µ,σ} are parameters to be estimated. Once we estimate the pa-
rameters of this reference model, we can construct a rule-of-thumb step size εROTj,n by replacing
BBR
j (x) and VBR

j (x) with their estimates. Note that although the bias and variance constant esti-
mators may not be consistent for the true BBR

j (x) and VBR
j (x), the rate of εROTj,n is MSE-optimal,

and the numerical derivative estimator converges toDj(x) sufficiently fast to satisfy Equation
(11) in the main paper.
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