CHAPTER 15

Tests of the Null Hypothesis of
Cointegration Based on Efficient Tests
for a Unit MA Root

Michael Jansson

ABSTRACT

A new family of tests of the null hypothesis of cointegration is proposed. Each member of this
family is a plug-in version of a point optimal stationarity test. Appropriately selected tests dominate
existing cointegration tests in terms of local asymptotic power.

1. INTRODUCTION

In recent years, several papers have studied the problem of testing the null
hypothesis of cointegration against the alternative of no cointegration. A variety
of testing procedures have been proposed, but very little is known about the
asymptotic power properties of these tests. In an attempt to shed some light on
the issue of power, this chapter makes two contributions.

First, a new test of the null hypothesis of cointegration is introduced. Similar
to the tests proposed by Park (1990), Shin (1994), Choi and Ahn (1995), and
Xiao and Phillips (2002), the test developed in this chapter can be viewed as
an extension of an existing test of the null hypothesis of stationarity. Unlike
the tests introduced in the cited studies, the test proposed herein is based on a
stationarity test (derived in Rothenberg (2000)), which is known to enjoy nearly
optimal local asymptotic power properties.

Second, the paper compares the power of the new test to the power of pre-
viously proposed tests by numerical evaluation of the local asymptotic power
functions. It turns out that a cointegration test based on an optimal stationarity
test inherits the good (relative to competing test procedures) local asymptotic
power properties of the stationarity tests upon which it is based. In particular,
the new test dominates existing tests in terms of local asymptotic power.

Section 2 motivates the testing procedure introduced in this paper. Section 3
presents the model and the assumptions under which the development of formal
results will proceed. The new family of tests is introduced in Section 4. Sec-
tion 5 investigates the asymptotic properties of the tests and two competing test

This paper draws on material in Chapter 2 of the author’s Ph.D. dissertation at University of Aarhus,
Denmark.
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procedures. Finally, Section 6 offers a few concluding remarks, while mathe-
matical derivations appear in three Appendices.

2. MOTIVATION

The leading special case of the testing problem considered in this chapter is the
problem of testing the null hypothesis 8 = 1 against the alternative hypothesis
0 < 1 in the model

yi=pxi4+v, t=1..T, 2.1

where v, and x, are independent zero mean Gaussian time series (of dimensions
1 and k, respectively), Ax; ~ i.i.d. A/(0, I;) with initial condition xo = 0, and
v; is generated by the model

y y
Avy = u; —0Ou;_,

t=2,...,T, 2.2)

where A is the difference operator, u} ~i.i.d. A/(0, 1), and the initial condition
isv; = u{ The parameters 8 € R*and 6 e (-1, 1) are assumed to be unknown.

In the literature on stationarity testing, the model (2.2) of v, is often referred
to as the moving average model. A convenient feature of the moving average
model is that the null hypothesis of stationarity can be formulated as a simple
parametric restriction.! Indeed, v, is stationary if and only if the moving average
coefficient @ in (2.2) equals unity. (The “if” part is true because v, = u} ~ i.i.d.
N(0, 1) when § = 1, whereas the “only if” part follows from the fact v, is an
integrated process with a random walk-type nonstationarity whenever 6 differs
from unity.) By implication, the time series y, and x; are cointegrated (in the
sense of Engle and Granger (1987)) if and only if 6 = 1.

If B was known, the null hypothesis of cointegration could be tested by
applying a stationarity test to the observed series v; = y, — 8x,. Studying the
moving average model (2.2), Rothenberg (2000, Section 4) derived the family
of point optimal (PO) tests of the null hypothesis & = 1.> The stationarity test
derived in Rothenberg (2000) rejects for large value of

T T
Pr() =Y uj (0 =) u/ (),
=1 =1
where (1) = Y\Z0(1 = T~'1)' Av,; (for 1 € {0,%) and 7 € (1,...,T}),

vp = 0, and A > 0 is some prespecified constant. The test based on Pr (1) is the
PO test of # = 1 against the point alternative # = 1 — T~!X in the model (2.2).

An alternative to the moving average model, which also parameterizes stationarity as a point, is the
“local-level” unobserved components model. As discussed by Stock (1994), the two models are
closely related. In fact, it can be shown that the two models give rise to identical Gaussian power
envelopes for tests of the null hypothesis cointegration whenever a constant term is included
in the model (Jansson 2005). For this reason, only the moving average model will be studied

here.
2 See also Saikkonen and Luukkonen (1993), who derived the family of PO location invariant tests
of 0 = 1.
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By implication, the test is also the PO test of § = 1 against§ = 1 — T~!'X in
the model (2.1)—(2.2) when B is known and {x,} is independent of {v,}.?

It follows from Rothenberg (2000) that the test based on Pr(X) is “nearly”
optimal (has local asymptotic power function “close” to the Gaussian power
envelope) if A is chosen appropriately. In particular, such PO stationarity tests
have better local asymptotic power properties than the stationarity tests by Park
and Choi (1988), Kwiatkowski et al. (1992), Choi and Ahn (1998), and Xiao
(2001), respectively.

When 8 is unknown (as is assumed here), it seems natural to test the null
hypothesis of cointegration by using a plug-in approach in which a stationarity
test is applied to an estimate of v,. The cointegration tests proposed by Park
(1990), Shin (1994), Choi and Ahn (1995), and Xiao and Phillips (2002) are
all of the plug-in variety, being based on the stationarity tests proposed by Park
and Choi (1988), Kwiatkowski et al. (1992), Choi and Ahn (1998), and Xiao
(2001), respectively. This chapter explores the extent to which the superiority
of Rothenberg’s stationarity test (Rothenberg 2000) is inherited by a plug-in
cointegration test based upon it. Specifically, it is explored whether a plug-in
cointegration test based on Rothenberg’s stationarity test dominates the tests by
Park (1990), Shin (1994), Choi and Ahn (1995), and Xiao and Phillips (2002)
in terms of local asymptotic power.

3. THE MODEL AND ASSUMPTIONS

The plug-in cointegration test based on Rothenberg’s stationarity test (Rothen-
berg 2000) will be developed under the assumption that z; = (y;, x;)’ is an
observed (k + 1)-vector time series (partitioned into a scalar y, and a k-vector
X;) generated by

=+, t=1,...,T, (3.1

where 147 is a deterministic component and z? is a zero mean stochastic compo-
nent. Partitioning z? conformably with z, as z¥ = (y°, x?')', it is assumed that
7V is generated by the potentially cointegrated system

W= px) + v, (3.2)
Ax? = u?, (3.3)

where v; is an error process with initial condition v; = u] and generating mech-
anism

.
Avy = u; — Huly_l,

t=2,...,T. (3.4

3 If {x,} and {v;} are not independent, more powerful tests can often be found. Jansson (2004) has
developed PO tests under the assumption that 8 is known and (1}, Ax])’ is Gaussian white noise.
These tests are more powerful than the test based on Pr(X) whenever the correlation between u,y
and Ax; is nonzero, but the source of these power gains is not exploitable when § is unknown
(as is assumed in this chapter).

https://doi.org/10.1017/cBO97805 G@Mbsidae BemmnlinesP GamRgdaaildrivassity Press, 2010


https://doi.org/10.1017/CBO9780511614491.016

360 Jansson

In 3.2) — (3.4), B € R¥ and 6 € (-1, 1] are unknown parameters and u, =
(u7, u¥) is a stationary process whose long-run variance covariance matrix

is assumed to be positive definite.
For concreteness, the deterministic component .} is assumed to be a pth
order polynomial time trend:

wy =a.dy, t=1,...,T, (3.5)

whered, = (1,...,t") anda,isa(p + 1) x m matrix of unknown parameters.
The leading special cases of (3.5) are the constant mean (p = 0) and linear trend
(p = 1) cases corresponding to d;, = 1 and d, = (1, t)’, respectively.

In the development of distributional results, it will be assumed that

7]
T2 Z U —q QPWE), (3.6)
=1
and

T t—1 1
! (Z u) T 91/2/ W) dwEYQY? +1', (3.7
=2 0

s=1

where |-| denotes the integer part of the argument, W(-) is a Wiener process of
dimension m, and

T -1
F=lim 7' Y > E (uu})
oo =2 s=1
is the one-sided long-run covariance matrix of u,.

Similar to the model of Section 2, the model (3.1)—(3.7) enjoys the property
that the null hypothesis of cointegration can be formulated as a simple paramet-
ric restriction. Indeed, the problem of testing the null hypothesis of cointegration
against the alternative of no cointegration can once again be formulated as the
problem of testing

Hy :6=1 versus H; : 0 <1.

The model (3.1)—(3.7) generalizes (2.1) and (2.2) in several respects. The
presence of the deterministic component w7 in (3.1) relaxes the zero mean as-
sumption of (2.1) and (2.2). Moreover, the high-level assumptions (3.6) and
(3.7) on the latent errors u, accommodate quite general forms of contempora-
neous and serial correlation (and do not require normality). Indeed, the conver-
gence results (3.6) and (3.7) hold (jointly) under a variety of weak dependence
conditions on u,. For instance, the following assumption suffices:

Al u, =) 72, Cig,y, where {g, : t € Z} is i.id. (0, I,,), > ;2 C; has
full rank, and Zfﬁ] i||Ci|| < oo, where | - || is the Euclidean norm.
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Under Al, the long-run covariance matrix of u, is @ = (32, C))(Y ey Ci)s a
positive definite matrix. The assumption that €2 is positive definite is a standard,
but important, regularity condition. It implies that x,o is a non-cointegrated
integrated process and rules out multicointegration (in the sense of Granger

and Lee 1990) under the null hypothesis of cointegration.

4. A FAMILY OF COINTEGRATION TESTS

Conformably with z;, partition o, as a; = («,, ). Defining o = oy — a8,
the following relation can be obtained by combining (3.1), (3.2), and (3.5):

yo=ad'd +Bx+v, t=1,...,T. 4.1)

The family of cointegration tests proposed herein is obtained by applying (a
suitably modified version of) Rothenberg’s stationarity test (Rothenberg 2000)
to an estimate of the error term v, in (4.1).

Suppose (4.1) is estimated by OLS:

yi=a'd, + B'x; + 0. 4.2)

As it turns out, tests constructed by applying stationarity tests to 9, generally
have limiting distributions with complicated nuisance parameter dependen-
cies unless x, satisfies a certain exogeneity condition.* In the case of the sta-
tionarity tests proposed by Park and Choi (1988), Kwiatkowski et al. (1992),
Choi and Ahn (1998), and Xiao (2001), this problem can be circumvented by
employing an asymptotically efficient (under Hp) estimation procedure when
constructing a plug-in cointegration tests (for details, see Park (1990), Shin
(1994), Choi and Ahn (1995), and Xiao and Phillips (2002)). These proper-
ties are shared by the PO stationarity test, implying that the plug-in versions
of Rothenberg’s stationarity tests (Rothenberg 2000) should employ asymp-
totically efficient (under Hj) estimators of o and B in the construction of
estimates of v;. For concreteness, it is assumed that Park’s canonical coin-
tegrating regression (CCR) (Park 1992) estimators of « and 8 are used. (A brief
discussion of alternative estimation strategies is provided at the end of this
section.)

To construct the CCR estimators, consistent (under Hy and local alternatives)
estimators of 2 and I' are needed. Suppose 2 and I' are estimated by kernel
estimators of the form

. e It — s|
Q=T § § k( 3
T

t=1 s=1

> i, (4.3)

4 Specifically, lim 707! S0 S B} )y and lim 7 oo T~V S0 S E(u] u') must
be zero if these nuisance parameter dependencies are to be avoided. That is, € must be block
diagonal and I" must be block upper triangular, where 2 and I" are the matrices defined in

Section 3.

https://doi.org/10.1017/cBO97805 G@Mbsidae BemmnlinesP GamRgdaaildrivassity Press, 2010


https://doi.org/10.1017/CBO9780511614491.016

362 Jansson

and

eSS
it “4.4)

where k(-) is a (measurable) kernel function, 13T is a sequence of (possibly
random) bandwidth parameters, and i, = (d,, A%”), where 0, are the OLS
residuals from (4.2) and fcto are the OLS residuals from

X, =a.d, + & (4.5)

The consistency requirement on € and I" is met under the following assumption
on k(-) and br.

A2. (i) k(0) = 1, k(-) is continuous at zero and k(0) + fooo k(rydr < oo,
where k(r) = sup;,|k(s)| (for all r > 0).
(i1) bT = arbr, where ar and by are positive, dr +aT = 0,(1),
and, by is nonrandom with b + T '2b = o(1).

Assumption A2 (i) is adapted from Jansson (2002) and is discussed there, while
A2 (ii) is adapted from Andrews (1991).

Partition I” and Q in conformity withu, = (u], u "’)’ andletl,. = =Ty o),
Dyyx = #'Qk, and Vyyx =K 'T'%, where & = (1, —&', Q ) Let & and B be
the OLS estimators obtained from the multiple regressron

vl =a&d + B'x] + o, (4.6)

where y =y — AR + BTS20, x=x, 415, $=
T- Zl AT and ,3 is the OLS estimator from (4.2). The estimators & and
from (4.6) are Park’s CCR estimators (Park 1992) of o and 8. Under Hy, these
estimators are asymptotically efficient (in the sense of Saikkonen (1991)). In ad-
dition, the behavior of suitably normalized partial sums involving the residuals
¥, is such that asymptotically pivotal (under Hy) test statistics can be constructed
using these residuals.

Let §p = 0 and define @, (1) = Y_i_o(1 — T~'1' A®,_; (for [ € {0, 1} and

tef{l,..., T}).The proposed test rejects Hy for large values of
T ~y/\2 T i) ()2 T
- _ i;(0)” — A2 =209,
01y = 2 IO = 2t O = 2 (47
Dyy.x

where X > 0 is a prespecified constant. (Guidance on the choice of A will be
provided in Section 5.)

In the numerator of Q7 (%), the term 3"/, @' (0)> — Y7 &) (X)* is a plug-in
version of the test statistic Pr(X) of Section 2. The statistic Q7 () is a modified
version of Py (1) in which two nonparametric corrections are employed in order
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to produce a test statistic which is asymptotically pivotal under Hy. Specifically,
the term —249 . corrects S (0 — 0, @) (1)? for “serial correlation
bias,” while the denominator removes scale parameter dependencies from the
limiting distribution of Q7(X).

Remark. Lemma A.2 in Appendix A summarizes the properties of 9, that are
used in the derivation of the distributional result reported in Theorem 5.1 of
Section 5. These properties are shared by the “fully modified” (Phillips and
Hansen 1990) residual process

v A7 A—1 A 20 v/ %/
Uy = Yt — CU,Cnyx AZX, —a'd; — B x,

where ¢ and B are asymptotically efficient estimators of & and . As a conse-
quence, the test can also be based on v,. Likewise, the test can be based on the
DOLS (Stock and Watson 1993) residuals ¥, from the regression

yi =d'd, + B'x; + y(L)Ax, + i,

where (L) is a two-sided lag polynomial.

5. ASYMPTOTIC THEORY

Similar to the existing cointegration tests, the test based on Q7 (1) has nontrivial
power against local alternatives of the form 1 — 6 = O(T ). This fact moti-
vates the reparameterization 0 = 67 = 1 — T-'A, where A is a non-negative
constant. Under this reparameterization, the null and alternative hypotheses are
A =0and X > 0, respectively. A similar reparameterization was implicitly em-
ployed in the definition of Q7 (A), which is a plug-in version of the optimal test
against the alternative § = 1 — T~'. Theorem 5.1 characterizes the limiting
distribution of Q7 (1) under Hy and local alternatives.

Theorem 5.1. Let z; be generated by (3.1)—(3.5) and suppose AI-A2 hold.
Moreover, suppose 0 = 0p =1 — T~'A for some A > 0. Then

1 1
0r (%) =4 2X/ Ug(r)dl”ﬂ(r)—,iz/ U (r)2dr,
0 0

where UX(r) = [y e =9 dU*(s),

1
dU*(r) = dU(r) — (/ X(s)dU*(s))
0

1 71
X (/ X($)X(s) ds) X(r)dr,
0

UMr)=U@r)+ A [y Uls)ds, X(r) = (V(r), 1,..., rp), and U and V are in-
dependent Wiener processes of dimensions 1 and k, respectively.
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Table 15.1. Percentiles of Q7(X)

k=1 k=2 k=3 k=4 k=5 k=6
Constant Mean
X 10 12 14 16 18 20
90% —4.19 —5.78 —7.24 —8.68 —10.14 —11.61
95% —-3.24 —4.82 —6.34 —7.74 —-9.17 —10.64
97.5% —2.33 —-3.90 —5.46 —6.83 —8.23 —9.66
99% —1.09 —2.74 —4.21 —5.62 —7.08 —8.63
Linear trend
A 14 16 18 19 21 23
90% —6.72 —8.25 —9.64 —10.74 —12.15 —13.55
95% -5.70 —7.24 —8.57 —9.83 —11.20 —12.59
97.5% —4.73 —6.27 —7.53 —8.84 —10.19 —11.60
99% —-3.50 —4.96 —6.26 —7.67 —8.98 —10.43

To implement the test, the analyst must specify an alternative § = 1 — T~'A
against which good power is desired. The approach recommended here is to
choose X in such a way that the local asymptotic power against the alternative
6 = 1 — T~'Xis approximately equal to 50% when the 5% test based on Q7(X)
is used. In related testing problems, a similar approach has been advocated by
Elliott, Rothenberg, and Stock (1996), Stock (1994), and Rothenberg (2000).
Table 15.1 tabulates the recommended values of A fork = 1,...,6 regressors
in the constant mean and linear trend) case and reports selected percentiles of
the asymptotic null distributions of the corresponding Q () statistics.’

The local asymptotic power properties of the new test will be compared
to those of the cointegration tests proposed by Xiao and Phillips (2002) and
Shin (1994), respectively.® The cointegration test proposed by Xiao and Phillips
(2002) rejects Hy for large values of

13
T2 " a(0)
s=1

whereas Shin’s test (Shin 1994) rejects for large values of

T-1[ ¢ 2
N Z [Z a;(O)} , (5.2)
t=1 s=1

—1/2

Rr = &,}" maxXi<<r

) GRY;

5 The percentiles were computed by generating 20,000 draws from the discrete time approximation
(based on 2,000 steps) to the limiting random variables.

6 The local power results of Jansson and Haldrup (2002) indicate that none of the cointegration
tests proposed by Park (1990) and Choi and Ahn (1995) are superior to the test by Shin (1994).
Therefore, cointegration tests by Park (1990) and Choi and Ahn (1995) are not studied here.
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where &,y and i; (0) are defined as in Section 4.7 It is shown in Appendix B
that Ry —4 supy_,|U*(r)] and Sp —4 fol U*(r)? dr under the assumptions
of Theorem 5.1, where U*(r) = [ dU™(s).

Figure 15.1(a) plots the local asymptotic power functions of the constant
mean Q7(10), Ry, and St tests in the case where x; is a scalar (k = 1).% The
test based on Q7(10) dominates existing tests in terms of local asymptotic
power whenever A exceeds 5. Even for alternatives close to Hy, where Sy
enjoys certain optimality properties (Harris and Inder 1994), the new test is
very competitive in terms of power.

Figure 15.1(b) investigates the optimality properties of Q7, (10) by plot-
ting its local asymptotic power function against two benchmarks. For any
alternative A > 0, the level of the quasi-envelope plotted in Figure 15.1(b)
is obtained by maximizing (over A > 0) the power of a cointegration test
based on a member of the family {Q7(X) : A > 0} of test statistics proposed
herein. As a consequence, the optimality of the choice A = 10 can be eval-
uated by comparing the power of Q7(10) to the quasi-envelope. The power
of Q7(10) is almost indistinguishable from the quasi-envelope for values of
A between 8 and 16 and is reasonably close to the quasi-envelope for values
of A outside this range. By choosing A smaller (greater) than 10, the differ-
ence between the power of Qr(}) and the quasi-envelope can be decreased
for small (large) values of A at the expense of a greater gap for large (small)
values of A. Therefore, although Q7(10) fails to attain the quasi-envelope, no
other value of A delivers a test statistic Q7 (1) with uniformly better power
properties.

The envelope plotted in Figure 15.1(b) is an upper bound on the local
asymptotic power of (a class of cointegration tests that contains all) plug-
in cointegration tests. That bound, developed in a follow-up paper (Jansson
2005), can be used to investigate the optimality properties of {Q7(X) : A > 0}
within the class of tests that are invariant under transformations of the form
yi — Y +a'd, + b'x;, where a € RP*! and b € R¥. The presence of a visible
difference between the quasi-envelope and the power envelope suggests that
an even more powerful cointegration test might exist. A confirmation of that
conjecture is provided in Jansson (2005), where a cointegration test (not of
the plug-in variety) with nearly optimal local asymptotic power properties is
developed.

N

Strictly speaking, R and St are modifications of the test statistics proposed by Xiao and Phillips
(2002) and Shin (1994). Unlike R7 and St, tests by Shin (1994) and Xiao and Phillips (2002)
are not based on estimation procedure by Park (1992). Under the assumptions of Theorem 5.1,
the difference between Ry and Xiao and Phillips’s test statistic (Xiao and Phillips 2002) is
asymptotically negligible, as is the difference between S7 and test statistic by Shin (1994).

The power functions were obtained by generating 20,000 draws from the discrete time approxi-
mation (based on 2,000 steps) to the limiting distributions of the test statistics for selected values
of A.

o
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Figure 15.1. Power curves (5% level tests, constant mean, scalar x).
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The result for the linear trend case are qualitatively similar to those for the
constant mean case as can be seen from Figures 15.2(a) and 15.2(b).

The test statistic Q7 () has been constructed with local alternatives in mind.
As the following theorem shows Q7 (1) can also be used to detect distant alter-
natives. Indeed, the test which rejects for large values of Q7 (%) is consistent in
the sense that power against any fixed alternative § = 8 < 1 tends to one as T
increases without bound.

Theorem 5.2. Let z, be generated by (3.1)—(3.5) and suppose AI-A2 hold.
Moreover, suppose 0 < 1 is fixed. Then lim7_ o Pr[Q7(X) > c] =1 for any
ceR.

6. CONCLUSION

A new family of tests of the null hypothesis of cointegration was proposed.
Each member of this family is a plug-in version of a PO stationarity test.
Similar to the PO stationarity tests upon which they are based, the cointegration
tests proposed in this chapter have good power properties. In particular, an
appropriately selected version of the new test dominates existing cointegration
tests in terms of local asymptotic power.

APPENDIX A: PROOF OF THEOREM 5.1

The proof of Theorem 5.1 utilizes the following two lemmas.
Lemma A.1. Under the assumptions of Theorem 5.1, Q — , Q and ' — , T.

Lemma A.2. Under the assumptions of Theorem 5.1,

L7-]
T2 " (0) >4 w204
t=1

and

f—

T 1
! Z; [Z it (0)] i} (0) =g Wyy.x fo T*(r)dU*(r) + vy,

1
s=1

Joinly, where wyy. = k', v, = k'Tk, and k = (1, = Q).

Under Hy, Lemma A.1 follows from Corollary 4 of Jansson (2002). The
extension to local alternatives is straightforward, but tedious, and can be estab-
lished by proceeding as in the proof of Lemma 5 of Jansson and Haldrup (2002).
Lemma A.2 follows from Lemma 6(c)—(f) of Jansson and Haldrup (2002) and
the fact that i; (0) = 9.
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Figure 15.2. Power curves (5% level tests, linear trend, scalar x).
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Proof of Theorem 5.1. By Lemma A.1, ;.. =, ¥y, and Oyy.c =, 0yyx.
Since
T T
> @ (0 - Z ity (3)°
t=1 t=1

T

T
=@ - [@O + () -z 0]

=1 t=1
T T

I OB e, Zu;<0>—af(i>]a;“(0>,

=1 =1

the proof of Theorem 5.1 can therefore be completed by establishing the fol-
lowing convergence results:

T 1
Z [} (0) — ﬁf(i)]z > Koy /0 UX(r)* dr, (A.1)

t=1

T 1
> [ ©) — ! ()] 7 (0) >4 & (ww.x /0 UX(r)dU*(r) + yyy.x>.

t=1

(A.2)
Let éT =1-T"'A. Using the relation @ () =i, (0)—AT"! Z’j;l]
2 i;(0) and summation by parts,

=2

i (0)— @/ () =T""'% (U}_l — 0Ty ey 7) , (A.3)
=1

where U =Y"_, @;(0). Now, T~'20}; | —4 w5 U*(-) by Lemma A.2.
Moreover, lim 7_, SUP(<, < |9LT —exp(=Air)| =0, so

TV [a)7.,0) = @p (W] =a 22 U (A4)

by the continuous mapping theorem (CMT), Theorem 13.4 of Billingsley
(1999), and the fact that

Ur) = U"(r) — X/rexp[X(s -] 0*s)ds,  rel0,1].
0

Using (A.4) and applying CMT,

T 1
Zl:[a,y(O)—a;’(x)]z =/0 (T @)y, ,(0) u{m(i)])zdr
+ [w0) — 2D
—>d/ ()\a)%ZXU)‘(r)) dr,
0

establishing (A.1).
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By (A.3),

T T T
Y@ -a @) a0 =T"2> 0 @O+ TR
=1 t=1

t=1
t—2
x (-Xé;‘ZT—l > oy ~}'> it} (0).
j=1
Now,
T 1
! Z U i1 (0) =4 @yyx /0 U r)dU*(r) + y .
=1

by Lemma A.2. Moreover,

T -2
_ ——f—2, — i~ "
T 121 (-w’T T 12 leT’ ;) i, (0)
t= j=

T 1
=T [@ 0 -7 D] T > Xa)yy.x/ T2 ()0 () dr,
0

t=1

where the equality uses summation by parts, (A.3), and f]% =0, while
the last line uses (A.4), Lemma A.2, and CMT. Combining the preced-
ing displays, the limiting distribution of " (& (0) — &; (1))@} (0) can be
represented as

1 1
x (wyy.x [ / U*(r)dU*(r) + A / ﬁ;(r)z?*(r)dr} + yyy.x>

0 0
1
=X (a)yy.x/ U%(r)dU*(r) + yyy,x) ,
0

where the equality follows from integration by parts. Therefore, (A.2) holds
and the proof is complete. ||

APPENDIX B: LIMITING DISTRIBUTIONS

OF Ry AND Sy

The limiting distribution of Ry is derived as follows:

A—1/2
Ry = &},/? maxj<r

t
T2 " (0)
s=1
LTr]

T2 " (0)
s=1

= (a)y_vléc2 + OP(I)) SUPp<,<1

—> 4SUPp<, < |l~]’\(r)

9
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where the second equality uses Lemma A.1, while the last line uses Lemma
A.2 and CMT.
Similarly,

T—1 / 1 2
Sro= @y T72) (Z ﬁ§(0)>

=1 s=1
| LT+ 2
= [y, +o0p(1)] / T2 Za;;’(O) dr
0 s=1

1
—4 / U’\(r)zdr,
0

where the second equality uses Lemma A.1, while the last line uses Lemma A.2
and CMT.

APPENDIX C: PROOF OF THEOREM 5.2

Let &) (]) = Z’j_:h(l —T7'1)Ad,_j forl € {0, } and t € {1, ..., T}, where
99 = 0 and {?,} are the residuals from (4.2). The following lemmas are used in
the proof of Theorem 5.2.

Lemma C.1. Under the assumptions of Theorem 5.2,

T72017) =4 (1= 02U (),

where U(r) = U(r) — (fy X()U))(fy X(5)X(s)ds)"' X(r), while U and X
are defined as in Theorem 5.1.

Lemma C.2. Under the assumptions of Theorem 5.2, T*3/2)7yy —, 0,
T'9y —=p0and T 'y, —, 0.

Lemma C.3. Under the assumptions of Theorem 5.2,

T T T T
T [Z HOSESS a;‘mz} =77 [Z HOSESY ﬁ;‘d)z} +0,(1),
t=1

=1 =1 =1
Lemma C.1 follows from standard spurious regression results. The

proof of Lemma C.2 uses T’l(?y’V =72 Zthl 92 = 0,(1), S =T"" Zsz1
AZOA 2 = 0,(1), and the fact that T2 37" k(i /br)| — , 0 under A2
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(Jansson 2002). For instance,

T-1 , T—i
l
779, = TWZk(A—) (Tl ﬁ,+lﬁz)
' io \br =1
T-1 ; T—i
<l ()] ()
i=0 br =1
T-1 ; T—i 1/2 i 172
<772 k<A—)‘ T2y ory) (TP

where the second inequality uses the Cauchy—Schwarz inequality. Finally, the
proof of Lemma C.3 uses 7' yx —p 0and a considerable amount of tedious
algebra. To conserve space, the details are omitted.

Proof of Theorem 5.2. For any T,
Pr(Qr() > c]
T T
= Pr [Z it} (0)* — Z i () — 209y — Clyy > 0} .
=1 =1

By Lemmas C.2 and C.3 and using 77'6, = 0,(1),

T
[Z (07 - Z ) =207, — Cé)yy.xi|

T T

=772 [Z HOESY ﬁ,y(X)Z] +0,(1).
=1 t=1

In view of the portmanteau theorem (for example, Billingsley 1999), the proof

of Theorem 5.2 can therefore be completed by showing that T’z[ZtT=1 ) (0)? —

"I, &7 (1)1 has a limiting distribution with positive support

Letf7 = 1 — T~'A. Therelation i () = #; (0) — AT~ Z —1=j }(0)
can be restated as follows:

-t [T i
Y _ Yy 7lTr)— -y
MT,LTrJ(l)_uT,LTrJ_)‘QT /0 9T i, de , 0<r<l.

Now, lim 7, 5SUpPy<, </ |9LTT” — exp(—Ar)| = 0, so it follows from the preced-

ing display, Lemma C.1, and CMT that 7~'22);. /() =4 (1 — Oy U3 (),

where

U;n=0@0)—x / exp(—A(r — s)U(s)ds.
0
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Using this result, Lemma C.1, and CMT,

T T
T [Z HOSEDY ﬁi’(i)z}
t=1

t=1
1 1
—a (1 =60 wyy, [ f U@r)’dr — / 0;(r)2dr],
0 0

so it suffices to show that Pr[ [ U(r)2dr — [} Us(r)?dr > 0] = 1.
Since Uz (r) = U(r) — Xfol 1(s < ryexp[—i(r — 5)]U(s)ds, where 1(-) is
the indicator function, it follows from straightforward algebra that

1 1 1 pl
/ [7(r)2dr—/ U;(r)zdr=/ / K;(r, s)U(r)U(s)drds,
o Jo

0 0

where

A - _
K;(r,s) = 5 (exp [—A(Z —r— s)] + exp [—)» |r — s|]) .

The desired result now follows from the fact that the function K7j (-, -) is positive
definite in the sense that fol fol K;5(@r,s)f(r)f(s)drds > O for any nonzero,
continuous function f(-). |
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