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Abstract

We present a general framework for studying regularized estimators; such estima-

tors are pervasive in estimation problems wherein “plug-in” type estimators are either

ill-defined or ill-behaved. Within this framework, we derive, under primitive condi-

tions, consistency and a generalization of the asymptotic linearity property. We also

provide data-driven methods for choosing tuning parameters that, under some condi-

tions, achieve the aforementioned properties. We illustrate the scope of our approach

by presenting a wide range of applications.
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1 Introduction

It was noted as early as Stein Stein [1956] that in many complex models, the parameter

mapping, ψ, that links the probability distribution generating the data, P , to some parameter

space may be ill-behaved or even ill-defined when evaluated at the empirical distribution. The

widespread solution in these cases is to regularize the problem. Regularization procedures

are ubiquitous in statistics and elsewhere, examples of these include kernel-based estimators;

series-based estimators and penalization-based estimators among many others.1 Even though

there has been an enormous amount of work in statistics and other sciences studying the

properties of these procedures, they are viewed, by and large, as separate and unrelated. In

particular, results like consistency or large sample distribution theory, when they exists, they

have only been derived in a case-by-case basis; to our knowledge, there is no general theory

or systematic approach. The goal of this paper is to fill this gap by providing the basis for an

unifying large sample theory for regularized estimators that will allow us to make systematic

progress in studying their large sample properties.

Our point of departure is the general conceptual framework put forward by Bickel and

Li (Bickel and Li [2006]), wherein the authors propose a general definition of regularization.

According to their framework, a regularization can be viewed sequence of parameter map-

pings, (ψk)
∞
k=1 that replaces the original parameter mapping, ψ, each element is well-behaved,

and its limit coincides with the original mapping. The index of this sequence (denoted by

k) represents what is often referred as the tuning (or regularization) parameter; e.g. it is

the (inverse of the) bandwidth for kernels, the number of terms in a series expansion, or the

(inverse of the) scale parameter in penalizations. While Bickel and Li’s framework encom-

passes many examples and applications, it is unclear what type of asymptotic properties can

be obtained in such a general framework. We provide two set of general theorems under

intuitive conditions that establish large sample properties for regularized estimators. One

set of results establishes consistency and rate of convergence, and a data-driven method

for choosing the tuning parameter that achieves these rates. Another set of results provide

1Examples of regularizations are so ubiquitous that providing a thorough review is outside the scope of
the paper; see e.g. Bickel and Li [2006], Bühlmann and Van De Geer [2011], Härdle and Linton [1994] and
Chen [2007] for excellent reviews of several regularization methods.
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foundations for large sample distribution theory by deriving a generalization of the classical

asymptotic linearity property.

Our approach to obtain consistency and convergence rate results is akin to the one used

in the standard large sample theory for “plug-in” estimators, in the sense that it relies on

continuity of the mapping used for estimation (see Wolfowitz [1957], Donoho and Liu [1991]).

The key difference is that in plug-in estimation this mapping is ψ, but for regularized esti-

mators the natural mapping is the (sequence of) regularized parameter mappings, (ψk)
∞
k=1;

this difference — in particular, the fact that we have a sequence of mappings — introduces

nuances that are not present in the standard “plug-in” estimation case. We show that the

key component of the convergence rate is the modulus of continuity of the regularized map-

ping, which, typically, will deteriorate as one moves further into the sequence of regularized

mappings, thus yielding a generalized version of the well-known “noise-bias” trade-off. While

this result, by itself, does not constitute a big leap from Bickel and Li’s framework, we use

the underlying insights to propose a data-driven method to choose the tuning parameter

that under some conditions yields convergence rates proportional to the “oracle” ones, i.e.,

those implied by the choice that balances the “noise-bias” trade-off. This method is an

extension of the Lepski method as presented in Pereverzev and Schock [2006] for ill-posed

inverse problems.2

Our second set of results are concerned with obtaining a type of asymptotic linear repre-

sentation for regularized estimators. The property of asymptotic linearity is well-known in

the literature and is the cornerstone of large sample distribution theory. This property states

that the estimator, once centered at the true parameter, is equal to a sample average of a

mean zero function — referred as the influence function — plus an asymptotically negligible

term.

In parametric models, asymptotic linearity is typically satisfied by commonly used esti-

mators like the “plug-in” estimator. In more complex settings such semi-/non-parametric

models, however, this is not longer true. In such cases, there are no estimators satisfying this

property, because, for instance, the efficiency bound of the parameter of interest is infinite,

or more generally, the parameter is not root-n estimable. For these situations, asymptotic

representations analogous to asymptotic linearity have been obtained in specific examples

for specific regularizations, but, to our knowledge, there is no general approach. This is

specially problematic as there is no systematic method for properly standardizing the esti-

mator in situations where the parameter is not root-n estimable.3 Our goal is to propose

2Similar versions has been used in several particular applications. Closest to our examples are the work: by
Pouzo [2015] for regularized M-estimators; by Chen and Christensen [2015] in non-parametric IV regressions;
by Gine and Nickl [2008] for estimation of the integrated square density; by Gaillac and Gautier [2019] in a
random coefficient model; by Lepski and Spokoiny [1997] for estimation of a function at a point.

3For density and regression estimation problems there is a large literature, especially for particular func-
tionals like evaluation at a point; e.g. see Eggermont and LaRiccia [2001] Vol I and II for references and
results. In more general contexts such as M-estimation and GMM-based models, to our knowledge, the
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a systematic approach by considering a generalization of asymptotic linearity that relaxes

certain features of the standard property but still provides a useful asymptotic characteri-

zation of the estimator. This property, which is already present in many examples and we

refer to as Generalized Asymptotic Linearity (GAL for short), relaxes the standard one in

two dimensions: It allows for the location term to be different from the true parameter, and

it allows for this centering and the influence function to vary with the sample size. Each

of these relaxations attempts to capture different nuances that already exists in the many

scattered examples in the literature. Our results, which we now describe, will shed more

light on the role and necessity of each.

We provide sufficient conditions for regularized estimators to satisfy GAL. Analogously

to the theory of asymptotic linearity for plug-in estimators, our results rely on a notion

of differentiability, but contrary to plug-in estimators, it relies on differentiability of each

element in the sequence of regularized mappings, (ψk)
∞
k=1 not on differentiability of the

original mapping ψ.

As a consequence of this approach, GAL for regularized estimators exhibits two simplified

features. First, the location term is given by ψk(P ) which can be interpreted as a psuedo-true

parameter. The second simplified feature concerns the influence function and its dependence

on the sample size. As in the location term, the dependence on the sample size of the

influence function arises only through the dependence of the tuning parameter, k, on the

sample size. Thus, the relevant object is a sequence of influence functions, each related to the

derivative of the elements in (ψk)
∞
k=1. We view this quantity as the natural departure from

the traditional influence function as it is the sequence of regularized mappings, (ψk)
∞
k=1, an

not the original mapping, ψ, the one used for constructing the estimator. This last feature

allows us to propose a natural and systematic way of standardizing the estimator regardless

of whether root-n consistency holds. To explain this, we first note that in situations where

asymptotic linearity holds, the proper standardization is given by square root of the sample

size divided by the standard error of the value of the influence function. Under GAL the

standarization of the regularized estimators turns out to be analogous except that in this case

the influence function is indexed by the tuning parameter which at the same time depends

on the sample size. Whether the standardization is root-n or slower depends on the behavior

of the standard error of the value influence function as we move further into the sequence of

regularized mappings (i.e., as k diverges).

Throughout the paper we present examples not to break new ground but to illustrate

our assumptions and results, and their scope.

literature is much more sparse with only a few papers allowing for slower than root-n parameters in partic-
ular settings. Closest to ours are the papers by Chen and Liao [2014], Chen et al. [2014] in the context of
M-estimation models with series/sieve-based estimators; Newey [1994] in a two-stage moment model using
kernel-based estimators; Chen and Pouzo [2015] in conditional moment models with sieve-based estimators;
Cattaneo and Farrell [2013] in partitioning estimators of the conditional expectation function and its deriva-
tives.
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Notation. The term “wpa1-P” is short for with probability approaching 1 under P ,

so for a generic sequence of IID random variables (Zn)n with Zn ∼ P , the phrase “Zn ∈ A

wpa1-P” formally means P (Zn /∈ A) = o(1). For any random variables (X, Y ) we use pX
and pXY to denote the pdf (w.r.t. Lebesgue) corresponding to X and X, Y resp. For any

linear normed spaces (A, ||.||A) and (B, ||.||B), let A∗ be the dual of A, and for any continuous,

homogeneous of degree 1 function f : (A, ||.||A) 7→ (B, ||.||B), ||f ||∗ = supa∈A : ||a||A 6=1 ||f(a)||B.
For a Euclidean set S, we use Lp(S) to denotes the set of Lp functions with respect to

Lebesgue. For any other measure µ, we use Lp(S, µ) or Lp(µ). The norm ||.|| denotes the

Euclidean norm and when applied to matrices it corresponds to the operator norm. For any

matrix A, let emin(A) denote the minimal eigenvalue. The symbol - denotes less or equal

up to universal constants; % is defined analogously.

2 Setup

Let Z ⊆ Rd and let z ≡ (z1, z2, ...) ∈ Z∞ denote a sequence of IID data drawn from some

P ∈ P(Z) ⊂ ca(Z), where P(Z) is the set of Borel probability measures over Z and ca(Z)

is the space of signed Borel measures of finite variation. For each P ∈ P(Z), let P be the

induced probability over Z∞. A model is defined as a subset of P(Z); and it will typically

be denoted as M.

Remark 2.1. Since we only consider IID random variables, it is enough to define a model

as a family of probabilities over marginal probabilities. For richer data structures, one would

have to define the model as a family of probabilities over (Z1, Z2, ...). See Appendix A.2 for

a discussion about how to extend our results to general stationary models. △

A parameter on model M is a mapping ψ : M → Θ with (Θ, ||.||Θ) being a normed

space.4

For the results in this paper, we need to endow M with some topology. For the results in

Section 3 it suffices to work with a distance, d, under which the empirical distribution (defined

below) converges to P . For the results in Section 6 and beyond, however, it is convenient to

have more structure on the distance function, and thus, we work with a distance of the form

||P −Q||S ≡ sup
f∈S

∣

∣

∣

∣

∫

f(z)P (dz)−
∫

f(z)Q(dz)

∣

∣

∣

∣

where S is some class of Borel measurable and uniformly bounded functions (bounded by

one). For instance, the total variation norm can be viewed as taking S as the class of

indicator functions over Borel sets, and its denoted directly as ||.||TV ; the weak topology

over P(Z) is metricized by taking S = LB — the space of bounded Lipschitz functions —

4If the mapping does not point-identified an element of Θ, i.e., ψ is one-to-many, our results go through
with minimal changes that account for the fact that ψ(P ) is a set in Θ.
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and its norm is denoted directly as ||.||LB; see van der Vaart and Wellner [1996] for a more

thorough discussion.

2.1 Regularization

Let D ⊆ P(Z) be the set of all discretely supported probability distributions. Let Pn ∈ D
be the empirical distribution, where Pn(A) = n−1

∑n
i=1 1{Zi ∈ A} for any A ⊆ Z. As

illustrated by our examples, in many situations — especially in non-/semi-parametric models

— the parameter mapping might be either ill-defined (e.g., if Pn /∈ M) or ill-behaved when

evaluated at the empirical distribution Pn, so it has to be regularized.

The following definition of regularization is based on the first part of the definition in

Bickel and Li [2006] p. 7. To state it, we define a tuning set as any subset of R+ that is

unbounded from above, and the approximation error function as k 7→ Bk(P ) ≡ ||ψk(P )−
ψ(P )||Θ.

Definition 2.1. Given a modelM, a regularization of the parameter mapping ψ is a sequence

ψ ≡ (ψk)k∈K such that K is a tuning set and

1. For any k ∈ K, ψk : Dψ ⊆ ca(Z) → Θ where Dψ ⊇ M∪D.

2. For any P ∈ M, limk→∞Bk(P ) = 0.

Condition 1 ensures that ψk(Pn) and ψk(P ) are well-defined and that they are singletons

for all k ∈ K. Condition 2 ensures that, in the limit, the regularization approximates the

original parameter mapping; the limit is warranted as the tuning set K is unbounded from

above. In many applications the tuning set is given by N but there are applications such as

kernel-based estimators, where it is more natural to use a (uncountable) subset of R+.

For each k ∈ K, the implied estimator is given by ψk(Pn) which — like the “plug-in”

estimator — is permutation invariant. While, this restriction still encompasses a wide array

of commonly used methods, it does rule out some estimation methods, notably those that rely

on non-trivial sample-splitting procedures. We briefly discuss how to extend our framework

to these cases in Appendix A.1.

Conditions 1 and 2 are not enough to obtain “nice” asymptotic properties of the regu-

larized estimator such as consistency and asymptotic normality. In analogy to the standard

asymptotic theory for “plug-in” estimators, these properties will be obtained by essentially

imposing different degrees of smoothness on the regularization.

2.2 Examples

The following examples complement those in Bickel and Li [2006] to illustrate that the Def-

inition 2.1 encompasses a wide array of commonly used methods.
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Example 2.1 (Non-Parametric IV Regression (NPIV)). This example studies a popular

regression model used in economics called the Non-parametric Instrumental Variable (IV)

model, that belongs to the class of ill-posed inverse problems; see Darolles et al. [2011],

Hall and Horowitz [2005], Ai and Chen [2003, 2007b], Newey and Powell [2003], Florens [2003],

Blundell et al. [2007] among others. The model is given by

E[Y − h(W ) | X ] = 0, (1)

where h is such that E[|h(W )|2] <∞, Y is the outcome variable,W is the endogenous regres-

sor and X is the IV. We show how our method encompasses commonly used regularizations

schemes such as sieves-based and penalized-based ones.

For a given subspace of L2([0, 1], pW ), Θ, the model M is defined as the class of proba-

bilities over Z = (Y,W,X) ∈ R × [0, 1]2 with pdf with respect to Lebesgue, p, such that:5

(1) pX = pW = U(0, 1), E[|Y |2] < ∞ and ||pXW ||L∞ < ∞; and (2) there exists a unique

h ∈ Θ that satisfies 1. The restriction (1) can be relaxed and is made for simplicity so

we can focus on the objects of interest that are h and P ; it implies that L2([0, 1], pX) =

L2([0, 1], pW ) = L2([0, 1]) which simplifies the derivations.6 The restriction (2) is what de-

fines an IV non-parametric model. It implies that for any P ∈ M, rP (·) ≡
∫

yPYX(dy, ·) is
well-defined and belongs to the range of the operator TP : Θ ⊆ L2([0, 1]) → L2([0, 1]) given

by TP [h](·) =
∫

h(w)pWX(w, ·)dw for any h ∈ L2([0, 1]).7 Thus, for any P ∈ M, ψ(P ) is the

(unique) solution of rP = TP [h].

To illustrate our method, we consider the estimation of a linear functional of ψ(P ) of the

form γ(P ) ≡
∫

π(w)ψ(P )(w)dw for some π ∈ L2([0, 1]), which by the Riesz representation

theorem covers any linear bounded functional on L2([0, 1]).

It is well-known that the estimation problem needs to be regularized. First, we need to

regularize the “first stage parameters” — the operator TP and rP ;second, given the regular-

ization of TP and rP , the inverse problem for finding ψ(P ) typically needs to be regularized;

e.g. when TP is compact or when ψ(P ) is not a singleton.

By setting K = N, the regularization of the “first stage” is given by a sequence of

mappings (Tk,P , rk,P )k∈N such that, for any k ∈ N, Tk,P : Θ → L2([0, 1]) and rk,P ∈ L2([0, 1]).

The “second stage” regularization is summarized by an operatorRk,P : L2([0, 1]) → L2([0, 1])

for which

ψk(P ) = Rk,P [T
∗
k,P [rk,P ]], ∀P ∈ lin(M∪D). (2)

5This restriction is mild and can be changed to accommodate discrete variables simply by requiring pdf’s
with respect to the counting measure.

6To restrict the support to [0, 1] is common in the literature (e.g. Hall and Horowitz [2005]). At this
level of generality, one can always re-define h as h ◦ F−1

W so that pW = U(0, 1); of course this will affect the
smoothness properties of h. The restriction pX = U(0, 1) is really about pX being known, since in that case,
one can always take FX(X) as the instrument.

7Alternatively, we can define TP [h](X) =
∫

h(w)p(w|X)dw and rP (X) =
∫

yp(y|X)dy. Depending on the
type of the regularization one has at hand, it is more convenient to use one or the other.
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We assume that the regularization structure (Tk,P , rk,P ,Rk,P )k∈N is such that: (1) limk→∞ ||Rk,P [T
∗
k,P [g]]−

(T ∗
PTP )

−1T ∗
P [g]||L2([0,1]) = 0 pointwise over g ∈ L2([0, 1]); (2) limk→∞ ||Rk,P [T

∗
k,P [rk,P −

rP ]]||L2([0,1]) = 0. We relegate a more thorough discussion and particular examples of the

regularization to Appendix B.1. For now, it suffices to note that the first stage regularization

encompasses commonly used regularizations such as the Kernel-based (e.g., Darolles et al.

[2011], Hall and Horowitz [2005]) and the Series-Based (e.g., Ai and Chen [2003] and Newey and Powell

[2003]) regularizations, and the second stage regularization encompasses commonly used reg-

ularizations such as Tikhonov-/Penalization-based regularization (e.g., Darolles et al. [2011]

and Hall and Horowitz [2005]) and Series-based regularization (e.g., Ai and Chen [2003] and

Newey and Powell [2003]). For these combinations, conditions (1)-(2) haven been verified,

under primitive conditions, in the literature; e.g. see Engl et al. [1996] Ch. 3-4.

It is easy to see that under conditions (1)-(2), the expression in 2 is in fact a regularization

for ψ(P ) with Dψ ⊇ M∪D being a linear subspace specified in expression 16 in Appendix B.1.

From this result, it also follows that {γk(P ) ≡
∫

π(w)ψk(P )(w)dw}k∈N is a regularization

for γ(P ) (in this case, Θ = R). △

The next is not an example but rather a commonly used estimation technique that also

fits in our framework.

Example 2.2 (Regularized M-Estimators). Given some model M, the parameter mapping

is defined as

ψ(P ) = argmin
θ∈Θ

EP [φ(Z, θ)], ∀P ∈ M,

where Θ and φ : Z×Θ → R+ are primitives of the problem and are such that the argmin is

non-empty for any P ∈ M.

We impose the following assumptions over (M,Θ, φ): Θ is a subspace of Lq where Lq ≡
Lq(Z, µ) for any q ∈ [1,∞) and some finite measure µ, and for q = ∞, L∞ = C(Z,R);8 and

θ 7→ EP [|φ(Z, θ)|] bounded and continuous, for all P ∈ M.

The regularization is lifted from Pouzo [2015] and is defined using K = N by: a sequence

of nested linear subspaces of Lq, (Θk)k∈N, such that dim(Θk) = k and the union is dense

in Θ; a vanishing real-valued sequence (λk)k∈N with λk ∈ (0, 1] and a lower-semi compact

function Pen : Lq → R+ such that, for each k ∈ N
9

ψk(P ) ≡ arg min
θ∈Θk

EP [φ(Z, θ)] + λkPen(θ)

is a singleton for any P ∈ M∪D.

It is clear that condition 1 in Definition 2.1 holds; we now show by contradiction that

Condition 2 also holds. Suppose that there exists a ǫ > 0 such that ||ψk(P )− ψ(P )||Θ ≥ ǫ

for all k large. Let Πkψ(P ) be the projection of ψ(P ) onto Θk; for sufficiently large

k, ||Πkψ(P ) − ψ(P )||Θ ≤ ǫ. Then, by optimality of ψk(P ) and some algebra, for large

8The class C(Z,R) is the class of continuous and uniformly bounded real-valued functions on Z.
9A lower-semi compact function is one with compact lower contour sets.
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k, infθ∈Θ: ||θ−ψ(P )||Θ≥ǫEP [φ(Z, θ)] ≤ EP [φ(Z, ψ(P ))] − {EP [φ(Z, ψ(P )) − φ(Z,Πkψ(P ))] +

λkPen(Πkψ(P ))}. By continuity of EP [φ(Z, ·)], λk ↓ 0 and convergence of Πkψ(P ) to

ψ(P ) the term in the curly bracket vanishes as k diverges, leading to the contradiction

infθ∈Θ: ||θ−ψ(P )||Θ≥ǫEP [φ(Z, θ)] ≤ EP [φ(Z, ψ(P ))]. △

As these examples, those below and those in Bickel and Li [2006] illustrate, the formu-

lation of regularization is very flexible. Indeed, Definition 2.1 is sufficiently mild that one

may wonder whether any results can be obtained at the present level of generality. In what

follows, we establish some useful asymptotic properties by imposing additional smoothness

restrictions on the regularization.

3 Consistency for Regularized Estimators

We say a regularization is consistent if for each k ∈ K, ψk(Pn) = ψk(P ) + oP (1). Using

Definition 2.1 it is straightforward to show that for consistent regularizations there exists a

tuning parameter sequence (kn)n such that ψkn(Pn) = ψ(P ) + oP (1). This claim, however,

is silent about how to choose the tuning parameter sequence and what is the corresponding

rate. This feature does not seem to be a shortcoming of the claim, but rather a manifestation

of the fact that the consistency requirement is very mild. In other words, it would appear

that some strengthening of this requirement is needed if we want obtain stronger conclusions.

In this section and the next one, our goal is to give general but “easy-to-interpret” conditions

that will enable us to obtain convergence rates and a data-driven choice of tuning param-

eter sequence that achieves such rates, thus providing a general guideline for establishing

asymptotic concentration results for regularized estimators.

In order to do this, we take as given that the empirical distribution converges to the

truth at rate, (rn)n — a diverging positive real-valued sequence — under a distance d,

i.e., d(Pn, P ) = OP (r
−1
n ). Such results can typically be obtained from empirical process

theory and are not the focus of this paper. Under this condition, from the classical results

of Wolfowitz [1957], continuity of the regularization (with respect to d) presents itself as

a natural condition to establish consistency of the regularization. To define the notion of

continuity formally we say a function f : R+ → R+ is a modulus of continuity if f is

continuous, non-decreasing and such that f(t) = 0 iff t = 0.

Definition 3.1 (Continuous Regularization). A regularization ψ of ψ is continuous at P ∈
Dψ with respect to d, if there exists a family of modulus of continuity (δk)k∈R such that for

any k ∈ K

||ψk(P ′)− ψk(P )||Θ ≤ δk(d(P
′, P )) (3)

for any P ′ ∈ Dψ.

9



The definition is equivalent to the standard “δ/ǫ”-definition of continuity because the

modulus of continuity of ψk, δk, can converge to 0 arbitrary slowly. Admittedly, this condition

is not necessary to obtain our results as it requires continuity to hold for any deviation of

P , but the notion of consistent regularization requires continuity only along those deviations

taken by Pn for all n large enough. However, we still view this condition as a reasonable

“initial step” to obtain consistency results. Moreover, the definition does not impose any

uniform bounds on δk across different k ∈ K. While such restriction would simplify the

proofs considerably, it is too strong for many applications. Recall that the regularization is

introduced precisely due to the poor behavior of ψ at P .

As the lemma C.2 in Appendix C shows, when the regularization is continuous, the

“sampling error” term, ||ψk(Pn) − ψk(P )||Θ is of order δk(r
−1
n ) in probability. From this

result and the fact that lim supn→∞ δk(r
−1
n ) = 0 for every k ∈ K, a simple diagonalization

argument establishes existence of a tuning parameter sequence, (kn)n for which (ψkn(Pn))n∈N
is consistent. The next theorem formalizes this claim.

Theorem 3.1 (Consistency of Regularized Estimators). Suppose a regularization, ψ, is

continuous (at P ) with respect to d such that d(Pn, P ) = OP (r
−1
n ). Then there exists a

(kn)n∈N in K such that

Bkn(P ) = o(1) and δkn(d(Pn, P )) = oP (1),

and

||ψkn(Pn)− ψ(P )||Θ = oP (1).

Proof. See Appendix C.

Although constructive, the consistency result outlined above suffers from the potential

problem that the associated tuning parameter sequence makes no attempt to ensure that

the magnitude of the estimation error is in some sense minimal. Indeed, because the tuning

parameter sequence has been designed to satisfy only the minimal requirement that Bkn(P )+

δkn(d(Pn, P )) = oP (1); the only property that can be claimed on the part of the regularized

estimator is consistency. The goal of the next section is to improve on this as well as to

construct a data-driven choice of tuning parameter.

4 Data-driven Choice of Tuning Parameter

Let Kn be the (user-specified) set over which the tuning parameter is chosen; it is assumed

to be a finite subset of K.10 Also, in this section, we strengthen the consistency of Pn to

d(Pn, P ) = oP (r
−1
n ) (remark 4.1 below discusses the reason behind this choice).

10In Appendix D.3 we extend the main theorem of this section to the case where Kn is any closed set of
K, not necessarily finite.
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By Theorem 3.1 and the triangle inequality it is easy to see that the distance between the

regularized estimator, ψkn(Pn), and the true parameter is bounded by the sum of two terms:

the “sampling error”, δkn(r
−1
n ) and the “approximation error”, Bkn(P ), which generalizes

the well-known “noise-bias” trade-off present in many applications. Thus, this observation

suggests the following criterion to construct tuning sequence (kn)n that yields a consistent

estimators:

arg min
k∈Kn

{δk(r−1
n ) +Bk(P )},

which minimizes the trade-off between the approximation and the sampling errors. This

choice represents commonly used heuristics and it is a good prescription to obtain approx-

imately optimal rate of convergences (Birge and Massart [1998]). However, often times it

is unfeasible, since it relies on knowledge of the approximation error, which is typically

unknown because it depends on features of the unknown P .

It is thus desirable to construct a choice of tuning parameter that sidestep this issue

while still providing similar rates of convergence. We propose an adaptation of the Lepski

method that provides a data-driven choice that satisfies these properties, without requiring

knowledge of Bk(P ). Due to the nature of the Lepski method, in order to establish the

desired results we need monotonicity of the sampling and approximation errors as functions

of the tuning parameter. Since these functions may not be monotonic, we replace them

by monotonic majorants. Formally, let k 7→ B̄k(P ) be a non-increasing function from R+

to itself such that B̄k(P ) ≥ ||ψk(P ) − ψ(P )||Θ for all k ≥ 0, limk→∞ B̄k(P ) = 0, and, for

each n ∈ N, let k 7→ δ̄k(r
−1
n ) be a non-decreasing function from R+ to itself such that

δ̄k(r
−1
n ) ≥ δk(r

−1
n ).

For each n ∈ N, given Kn and a non-decreasing function υn : Kn → R+ such that

k 7→ υn(k) = 4δ̄k(r
−1
n ), the Lepski choice is given by

k̃n ≡ min{k : k ∈ Ln},
where

Ln ≡ Ln(υn) ≡ {k ∈ Kn : ||ψk(Pn)− ψk′(Pn)||Θ ≤ υn(k
′), ∀k′ ≥ k in Kn}. (4)

The following theorem is the main result of this section.

Theorem 4.1. Suppose a regularization, ψ, is continuous (at P ) with respect to d and there

exists a real-valued positive diverging sequence (rn)n∈N such that d(Pn, P ) = oP (r
−1
n ). Then

||ψk̃n(Pn)− ψ(P )||Θ = OP

(

inf
k∈Kn

{δ̄k(r−1
n ) + B̄k(P )}

)

.

Proof. See Appendix D.1.

Remark 4.1. The rate (rn)n is defined as d(Pn, P ) = oP (r
−1
n ), as opposed to d(Pn, P ) =

OP (r
−1
n ) as in Theorem 3.1. That is, rn diverges (arbitrary) slower than the usual rates for

Pn — which is typically given by
√
n in our context. This type of lost is common when

11



studying choice of tuning parameters (cf. Gine and Nickl [2008] and references therein). In

our setup, it stems from the following fact: Take a rate (sn)n such that d(Pn, P ) = OP (s
−1
n ).

For this rate, there are unknown constants (e.g. M in Lemma C.2) which will render our

data-driven choice infeasible. So to avoid them it suffices to replace s−1
n by a (arbitrary)

slower rate, e.g. r−1
n = log(1 + n)s−1

n or r−1
n = log(log(1 + n))s−1

n . △

Remark 4.2. The rate of convergence does not depend on the “complexity” of the set Kn.

This result stems from a certain “separability” property of the estimator: The probability

statements stem from the behavior of d(Pn, P ) which does not depend on k nor on Kn, the

tuning parameter k only appear through the topological properties of the regularization. △

Remark 4.3 (Heuristics of the proof of Theorem 4.1). Heuristically, for any k ∈ Kn that

is larger or equal than k̃n it follows that ||ψk̃n(Pn) − ψ(P )||Θ is bounded above (up to

constants) by δ̄k(r
−1
n ) + B̄k(P ) with probability approaching one. Lemma D.1 in Appendix

D.1 formalizes this observation and shows that in order to establish the claim of the theorem

it suffices to show existence of a tuning parameter in Kn that is larger or equal than k̃n (with

probability approaching one) and minimizes (up to constants) k 7→ {δ̄k(r−1
n ) + B̄k(P )} over

Kn. Moreover, since k̃n is chosen as the minimal value in Ln, to obtain the former condition

it suffices to show that the tuning parameter belongs to Ln (with high probability).

By studying “projections” onto Kn of the tuning parameter that balances k 7→ δ̄k(r
−1
n )

and k 7→ B̄k(P ) we are able to explicitly construct a sequence of tuning parameters that

satisfies these conditions; it is in this part that the monotonicity properties of these mappings

are used. See Lemmas D.4 and D.3 in Appendix D.1. △

The following corollary is a direct consequence of Theorem 4.1 and its proof is omitted.

Corollary 4.1. Suppose k 7→ Bk(P ) and k 7→ δk(r
−1
n ) are continuous, and non-increasing

and non-decreasing resp.. Then under the conditions of Theorem 4.1, it follows

||ψk̃n(rn)(Pn)− ψ(P )||Θ = OP

(

inf
k∈Kn

{δk(r−1
n ) +Bk(P )}

)

.

Theorem 4.1 and its corollary show that our data-driven choice of tuning parameter

achieves the same rate as the one corresponding to the “infeasible” choice, provided the

monotonicity conditions hold. Hence, this result, Theorem 3.1 and Theorem 4.1 offer a

general road-map for establishing consistency and convergence rates of regularized estimators

based on continuity of the regularization.11

11Without further restriction on Kn there is no guarantee that infk∈Kn
{δk(r−1

n ) + Bk(P )} is of the same
magnitude as infk∈K{δk(r−1

n ) + Bk(P )}. In Appendix D.3, Proposition D.1 gives conditions on Kn that
guarantee this result.
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5 Examples

The following examples illustrate how to apply our results to existing applications and in the

process establish a new result. Example 5.1 considers the case of bootstrapping the mean of

a distribution when it is known to be non-negative, and it is based on Andrews [2000]. In

this paper, the author showed inconsistency of the bootstrap and proposed several consistent

alternatives; we take one — the “k-out-of-n” bootstrap (Bickel and Freedman [1981]) — and

illustrate how our methods can be used to derive the rate of convergence of this procedure

and to choose the tuning parameter k that achieves this rate. To our knowledge this last

result is novel.12 Example 5.2 provides primitive conditions for establishing continuity in

M-estimation problems.

Example 5.1 (Bootstrap when the parameter is on the boundary). Let M be the class of

Borel probability measures over R with non-negative mean, unit variance and finite third

moments; the non-negativity of the mean is a formalization that captures the issue of a

parameter at the boundary. The object of interest is the law of an estimator of the mean,

z 7→ Tn(z, P ) =
√
n(max{n−1

∑n
i=1 zi, 0} −max{EP [Z], 0}). Thus, let, for each k ∈ K = N,

ψk : P(R) → P(R) be defined as

ψk(P )(A) ≡ P ({z : Tk(z, P ) ∈ A}) , ∀A Borel.

In particular, for P = Pn, it follows that

ψk(Pn)(A) = Pn

(

√
k

(

max{k−1
k
∑

i=1

Z∗
i , 0} −max{n−1

n
∑

i=1

Zi, 0}
)

∈ A

)

, ∀A Borel

where (Z∗
i )
n
i=1 is an IID sample drawn from Pn and Pn is the probability over Z∞ induced by

Pn. It is easy to see that ψn(Pn) is the standard bootstrap estimator while ψk(Pn) for k < n

is the k-out-of-n bootstrap estimator. Andrews [2000] showed that the “plug-in estimator”,

ψn(Pn), while well-defined, fails to approximate the law of Tn, ψn(P ), even in the limit; but

he showed that for certain sequences, (kn)n, ψkn(Pn)−ψn(P ) converge to zero as n diverges.

We now recast this result using the tools developed in this paper; by doing so we are able

to provide a data-driven choice of the tuning parameter kn.

To do this, we first show that the (ψk)k∈N is continuous in the sense of Definition 3.1.

Let Θ = P(R) and let || · ||Θ ≡ || · ||LB, where recall LB is the class of real-valued Lipschitz

with constant one function. This norm is one of the notions of distance typically used to

establish validity of the Bootstrap. Also, let W(·, ·) denote the Wassertein distance over

P(Z), that is W(P,Q) ≡ infζ∈H(P,Q)

∫

|z − z′|ζ(dz, dz′), where H(P,Q) is the set of Borel

probabilities over Z2 with marginals P and Q. The following proposition suggests the form

of the modulus of continuity δk.

12Bickel and Li [2006] and Bickel and Sakov [2008] perform a similar exercise but for a different case:
estimation of largest order statistic.
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Proposition 5.1. For any k ∈ N, ||ψk(P ) − ψk(Q)||Θ ≤ 2
√
kW(P,Q) for any P and Q in

M∪D.

Proof. See Appendix D.4.

The previous results suggests W as the natural distance over P(Z). In addition, the

result also indicates that δk(t) = 2
√
kt for all t ∈ R+, which is increasing and continuous as

a function of (t, k).

We now apply the results in Theorem 4.1 to choose the number of draws for the k-out-n

bootstrap. Theorem 1 in Fournier and Guillin [2015] (their results are applied with d = 1,

p = 1 and q = 2) shows that W(Pn, P ) = OP (n
−1/2). Therefore, we take r−1

n = lnn
−1/2

where (ln)n diverges arbitrary slowly. We also take Kn = {1, ..., n}; it is clear that k 7→
B̄k(P ) = Bk(P ) and k 7→ δ̄k(r

−1
n ) = δk(r

−1
n ). Given these choices, for each n ∈ N, let k̃n be

the choice of tuning parameter proposed above. Theorem 4.1 imply the following result.

Proposition 5.2. ||ψk̃n(Pn)− ψn(P )||LB = OP

(

infk∈{1,...,n}{ln
√
kn−1/2 + k−1/2EP [|Z|3]}

)

.

Proof. See Appendix D.4.

The RHS of the expression implies that the rate of convergence is given by
√
lnn

−1/4.

To our knowledge there is no data-driven method to choose the tuning parameter in this

example. Bickel and Sakov [2008] propose a similar method to ours in a different exam-

ple: Inference on the extrema of an IID sample. The authors obtain polynomial rates of

convergence that are slower than ours but for a stronger norm. △

Example 5.2 (Regularized M-Estimators (cont.)). The following proposition shows that

the regularization is continuous and more importantly it provides a “natural” choice of dis-

tance and illustrates the role of the regularization structure 〈(λk,Θk)k, P en〉 and primitives

(Θ, φ) for determining the rate of convergence of the regularized estimator. Henceforth, let

(θ, P, k) 7→ Qk(P, θ) ≡ EP [φ(Z, θ)] + λkPen(θ).

Proposition 5.3. For each k ∈ N and P ∈ M∪D,

||ψk(P )− ψk(P
′)||Lq ≤ Γ−1

k (d(P, P ′)), ∀P ′ ∈ M∪D,
where for all t > 0

Γk(t) = inf
s≥t

{

min
θ∈Θk : ||θ−ψk(P )||Lq≥s

Qk(P, θ)−Qk(P, ψk(P ))

s

}

and d(P, P ′) ≡ maxk∈N ||P − P ′||Sk
, where Sk ≡

{

φ(.,θ)−φ(.,ψk(P ))
||θ−ψk(P )||Θ : θ ∈ Θk

}

.13

Proof. See Appendix D.4

13We define Γk(0) = 0. The “infs≥t” ensures that Γk is non-decreasing; it can be omitted if such property
is not needed. The “maxk∈N” comes from the fact that d cannot depend on k in the definition of continuity.
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Following Shen and Wong [1994], the proof applies the standard arguments due to Wald

— for establishing consistency of estimators — to “strips” of the sieve set Θk; by doing so,

one improves the rates obtained from the standard Wald approach.

The proposition suggests the natural notion of distance over the space of probabilities,

that is defined by the class of “test functions” given by
(

φ(z,θ)−φ(z,ψk(P ))
||θ−ψk(P )||Θ

)

θ∈Θk

. By imposing

additional conditions on φ and Θk one can embed the class Sk into well-known classes

of functions for which one has a bound for the supremum of the empirical process f 7→
n−1

∑n
i=1 f(Zi) − EP [f(Z)], and thus bounds for d(Pn, P ). For instance, if θ 7→ dφ(z,θ)

dz
is

Lipschitz uniformly in z, then by using the mean value theorem and some algebra it follows

that Sk ⊆ LB for every k, and thus d(Pn, P ) = OP (n
−1/2) (see van der Vaart and Wellner

[1996]).

The modulus of continuity, Γ−1
k is non-decreasing and is continuous over t > 0 (see the

proof), and by definition Γk(0) = 0. Its behavior is determined by how well the criterion

separates points in Θk relative to the norm ||.||Lq ; the flatter Qk(P, ·) is around its minimizer,

the larger Γ−1
k . Importantly, even though Γk(t) > 0 for each k (recall that ψk(P ) is assumed

to be unique), as k diverges, Γk(t) may approach zero. This phenomena relates to the

potential ill-posedness of the original problem, and will affect the rate of convergence of the

estimator.

To shed some more light on the behavior of Γk and on the potential ill-posedness, consider

the case where, q = 2, Q(P, ·) is strictly concave and smooth, and Pen(.) = ||.||2L2. Since

ψk(P ) is a minimizer, Qk(P, ·) behaves locally as a quadratic function, in particular Γk(t) ≥
0.5(Ck + λk)t for some non-negative constant Ck related to the Hessian of Q(P, ·), and thus

Γ−1
k (t) - (Ck + λk)

−1t. If Ck ≥ c > 0 then Γ−1
k (t) - t; we deem this case to be well-

posed as ||ψk(P ′) − ψk(P )||Lq - d(P ′, P ).14 On the other hand, if lim infk→∞Ck = 0 then,

while the previous bound for the modulus of continuity is not possible, the following bound

Γ−1
k (t) - λ−1

k t is. This case is deemed to be ill-posed and ||ψk(P ′)−ψk(P )||Lq - λ−1
k d(P ′, P ).

Finally, under the conditions discussed in the previous paragraph, in the ill-posed case,

k 7→ δ̄k(.) = δk(.) if k 7→ λk is chosen to be non-increasing and continuous.15 Thus Theorem

4.1 delivers a choice of tuning parameter that achieves consistency and a rate of mink∈N{λ−1
k ×

r−1
n + inf l≥k ||ψl(P )− ψ(P )||Lq}, where (rn)n is such that maxk∈N ||Pn − P ||Sk

= oP (r
−1
n ). △

14This case relates to the so-called identifiable uniqueness condition (see White and Wooldridge [1991]).
15For the well-posed case the condition holds trivially.
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6 Asymptotic Representations for Regularized Estima-

tors

The goal of this section is to provide “easy-to-interpret” sufficient conditions to obtain a

generalized asymptotic linear (GAL) representation for regularized estimators, assuming

that Pn converges to P in some sense. Throughout this section we assume Θ ⊆ R to simplify

the exposition; the results can be easily be extended to vector-valued parameters.16

We say a regularization, ψ, is asymptotically linear if there exists ν ≡ (νk)k∈K such

that, for all k ∈ K, νk ∈ L2
0(P ) ≡ {f ∈ L2(P ) \ {0} : EP [f(Z)] = 0} and

ψk(Pn) = ψk(P ) + n−1

n
∑

i=1

νk(Zi) + oP (n
−1/2).

In this case, we say ν is the influence of the regularization. It is straightforward to show

that for such regularizations there exists a sequence (kn)n for which the following property

is satisfied:

Definition 6.1 (Generalized Asymptotic Linearity: GAL(k)). A regularization ψ satisfies

generalized asymptotic linearity for k : N → K at P ∈ Dψ with influence ν, if
∣

∣

∣

∣

∣

ψk(n)(Pn)− ψk(n)(P )− n−1
n
∑

i=1

νk(n)(Zi)

∣

∣

∣

∣

∣

= oP (n
−1/2||νk(n)||L2(P )). (5)

If a regularization satisfies GAL(k) then, in order to study its asymptotic behavior, it

suffices to study the behavior of n−1/2
∑n

i=1

νk(n)(Zi)

||νk(n)||L2(P )
. Moreover, this property suggests a

systematic way for how to scale the estimator: Using by
√
n/||νk(n)||L2(P ) as opposed to just√

n. This insight is particularly useful in situations where root-n estimation is not possible.

Thus, this property can be viewed as extending the standard asymptotic linearity one for

root-n estimable parameters to a larger class of problems.

Representations akin to GAL are already present in many examples; our contribution,

as we view it, is to put these insights on a common framework so they can be applied more

generally and to provide primitive properties on the structure of the regularization that

guarantee asymptotic linearity — and consequently, guarantee GAL. Regarding this last

point, it is well known that in cases where the “plug-in” method is used, differentiabilty is the

natural property, the definition of asymptotic linear regularization suggests differentiability

of ψk for each k ∈ K as reasonable starting point. Before presenting the definition of

differentiable regularization we present a classical example that illustrates GAL, the influence

and the scaling when the parameter is not root-n estimable

16In other cases where the parameter of interest is infinite-dimensional GAL is too weak and a stronger
notion is needed; we refer the reader to a previous version of this paper Jansson and Pouzo [2017] for this
case.
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Example 6.1 (Density Evaluation). The parameter of interest is the density function eval-

uated at a point, which can be formally viewed as a mapping from the space of probabil-

ity distributions to R, given by P 7→ ψ(P ) = p(0), where p denotes the pdf of P . It is

well known that this problem needs to be regularized. The standard estimator is given by

n−1
∑n

i=1 κk(Zi) where κk(·) = kκ(k·), κ is a kernel (i.e., a smooth function over R\{0} that

ingrates to one); 1/k acts as the bandwidth of the kernel estimator. This estimator can be

cast as ψk(Pn) where

P 7→ ψk(P ) = (κk ⋆ P )(0) ≡
∫

R

κk (z)P (dz), ∀k ∈ N.

It is well-known that the parameter, p(0) = ψ(P ), is not root-n estimable and thus the

proposed estimator is not asymptotically linear. The following representation, however, does

hold:

ψk(Pn)− ψk(P ) =n
−1

n
∑

i=1

{κk(Zi)− EP [κk(Z)]}

which can be viewed as a generalization of asymptotic linearity in which the estimator ψk(Pn)

is centered at ψk(P ) =
∫

κk(z)p(z)dz instead of ψ(P ) = p(0). Moreover, by drawing an anal-

ogy with the standard approach for root-n estimable parameters (see Hampel et al. [2011],

Bickel et al. [1998], Newey [1990]), for each k, the term in the curly brackets can be thought

as an influence function. This term plays a crucial role on determining the asymptotic distri-

bution of the estimator and on determining the proper way of standardizing it. For general

regularized estimators, exact representations of this form are not always possible; however,

in this section we identify a class of regularizations — satisfying a certain differentiability

notion (see Definition 6.2) — that admit, asymptotically, an analogous representation, with

the influence function being a function of the derivative of the regularization.

It is well-known that the scaling is given by
√

n/kn which is slower (for some kn that

diverges with n) than the “standard”
√
n. The

√
kn correction arises because it is the

correct order of the influence function, i.e.,
√

V arP (n−1/2
∑n

i=1{κkn(Zi)−EP [κkn(Z)]}) =
√

V arP (κkn(Z)) ≍
√
kn. Our results extend this simple observation to a large class of

regularizations, thereby providing a systematic way for “standardizing” the estimator: By

using
√
n divided the standard deviation of the influence function, which it depends on n

through the tuning parameter. △

We now present the definition of differentiable regularization. For this, let TP ≡ {aµ : a ≥
0 and µ ∈ D−{P}} and let τ be any locally convex topology over ca(Z) dominated by ||.||TV .
17

17Since we are working with measures, and not probabilities, it is convenient to allow for (non-metrizable)
topologies. Locally convex topology means that it is constructed in terms of a family of semi-norms; domi-
nated by ||.||TV means that for any semi-norm, ρ, ρ(Q) = O(||Q||TV ) for all Q ∈ ca(Z).
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Definition 6.2 (Differentiable Regularization: DIFF(P, C)). A regularization ψ is differen-

tiable at P ∈ Dψ tangential to TP under the class C ⊆ 2TP , if for any k ∈ K, there exists a

Dψk(P ) : TP → Θ τ -continuous and linear such that for any U ∈ C,
lim
t↓0

sup
Q∈U

|ηk(tQ)|/t = 0, where Q 7→ ηk(Q) ≡ ψk(P +Q)− ψk(P )−Dψk(P )[Q]. (6)

Remark 6.1. The functional Dψk(P ) acts as the gradient of ψk at P . The set TP is

the tangent set, i.e., the set that contains all the directions of the curves at P that we

are considering. It turns out that to obtain an asymptotic linear representation for the

regularization, it is enough to consider curves of the form t 7→ P + t
√
n(Pn − P ). So, the

choice of tangent set seems to be the most natural one. Of course, larger tangent sets will

also deliver the desired results but establishing differentiability under them can be harder.

The definition does not impose any linear structure on TP and t is restricted to be non-

negative. This feature of the definition is analogous to the idea of directional derivative in

Shapiro [1990] which has been shown to be sufficient for showing the validity of the Delta

Method (see Shapiro [1990]), and turns out to be enough to also carry out our analysis. See

also Fang and Santos [2014] and Cho and White [2017] for further references, examples and

discussion. △

Remark 6.2. The class C determines the degree of uniformity of the limit and thus defines

different notions of differentiability. It is known that common notions of differentiability

can be obtained from different choices of C; see Dudley [2010] for a discussion. We now

enumerate a few:

1. τ-Gateaux: C is the class of finite subsets of TP ; denoted by Jτ .

2. τ-Hadamard: C is the class of τ -compact subsets of TP ; denoted by Hτ .

3. τ-Frechet: C is the class of τ -bounded subsets of TP ; denoted by Eτ .

△

The following is the main result of this section.

Theorem 6.1. Suppose there exists a class C ⊆ 2T such that ψ is DIFF (P, C) and 18

For any ǫ > 0, there exists a U ∈ C and a N such that P (
√
n(Pn − P ) ∈ U) ≥ 1 − ǫ

for all n ≥ N .

18Implicit in the differentiability condition lies the assumption that for any Q ∈ TP , t 7→ P + tQ ∈ Dψ.
For this to hold, it is sufficient that P belongs to the algebraic interior of M relative to TP . However, by
inspection of the proof of the Theorem, it can be seen that this assumption is not really needed since we
only consider curves of the form t 7→ P + tnan(Pn − P ) where (tn, an) are such that the curve equals Pn
which is in Dψ.
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Then, there exists a k : N → K for which ψ satisfies GAL(k) and limn→∞ k(n) = ∞.

Proof. See Appendix E.

It is easy to check that the influence of the regularization implied by the theorem is given

by the sequence of L2
0(P ) mappings, (ϕk(P ))k∈N where

z 7→ ϕk(P )(z) ≡ Dψk(P )[δz − P ].

While the theorem shows existence of a sequence of tuning parameters for which general-

ized asymptotic linearity holds, it is silent about how to construct such sequence; we discuss

this in Section 6.2.

Remark 6.3 (Heuristics of the Proof). The proof is straightforward and is comprised of two

steps. First, it is shown that ψ satisfies GAL(k) for any fixed k, i.e., k(n) = k. Showing

this result is analogous to showing that the regularization is asymptotic linear in the sense

defined above, thus, it suffices to show that the reminder of the linear approximation is

asymptotically negligible for each fixed k, i.e.,

ηk(Pn − P ) = oP (n
−1/2). (7)

This is a standard condition for “plug-in” estimators (e.g. Van der Vaart [2000]), and the

restriction over the class C and the definition of differentiability imply it. In some cases,

however, it might be straightforward to verify condition (7) directly or by other means.

Second, a diagonalization argument is used to show existence of a diverging sequence. △

Remark 6.4. A common way of using Theorem 6.1 is by finding a class S that is P-Donsker,

which implies that (
√
n(Pn − P ))n∈N is ||.||S-compact (see Lemma E.1 in Appendix E), and

ensuring ||.||S-Hadamard differentiability; e.g. Van der Vaart [2000] Ch. 20. Dudley [2010]

proposes an alternative way of using this result by showing that
√
n(Pn − P ) belongs, with

high probability, to bounded p-variation sets, so the relevant notion of differentiability is

Frechet differentiability (under the p-variation norm). △

6.1 Examples

We now present a series of examples. The goal here is not to break new ground but to use

classical examples to illustrate the conditions and components of Theorem 6.1.

The following example is the celebrated integrated square density, for which Bickel and Ritov

[1990] showed that even though the efficiency bound is finite, no estimator converges at root-

n rate; thereby illustrating that in some circumstances studying the local shape of ψ can be

quite misleading. Our approach does not suffer from this criticism since it directly captures

the (local) behavior of the estimator at hand. It is also general enough to encompass many

of the proposed estimators in the literature, including “leave-one-out” types.
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Example 6.2 (Integrated Square Density). The parameter of interest in this case is given

by

P 7→ ψ(P ) =

∫

p(x)2dx.

The model is defined as the class of probability measures, P , with Lebesgue density, p, such

that p ∈ L∞(R) and

|p(x+ t)− p(x)| ≤ C(x)|t|̺, ∀t, x ∈ R, (8)

with C ∈ L2(R) and ̺ ∈ (0, 0.5). This restriction is rather mild and is similar to those

used in the literature, e.g. Bickel and Ritov [1988], Hall and Marron [1987] and Powell et al.

[1989]. The mapping ψ is well-defined over the model, but not when evaluated at the

empirical probability distribution, Pn, since Pn does not have a density; it thus needs to be

regularized. We consider a class of regularizations given by

P 7→ ψk(P ) =

∫

(κk ⋆ P )(x)P (dx), ∀k ∈ K, (9)

where κ is a kernel such that
∫

|κ(u)||u|̺du < ∞, and t 7→ κk(t) ≡ kκ(kt). Thus, 1/k acts

as the bandwidth for each k ∈ K which is a tuning set in R++.

Depending on the form of κ this regularization encompasses many estimators proposed

in the literature. For instance, when κ = ρ+ λ(ρ− ρ ⋆ ρ) with some λ ∈ R and some kernel

ρ, and, for any k > 0, z 7→ p̂k(z) =
1
n

∑n
i=1 ρk(Zi − z), it follows that19

1. For λ = 0, the implied estimator is n−1
∑n

i=1 p̂k(Zi) = n−2
∑

i,j ρk(Zi − Zj).

2. For λ = −1, the implied estimator is
∫

(p̂k(z))
2dz = n−2

∑

i,j(ρ ⋆ ρ)k(Zi − Zj).

3. For λ = 1, the implied estimator is 2n−1
∑n

i=1 p̂k(Zi)−
∫

(p̂k(z))
2dz = n−2

∑

i,j(2ρk −
(ρ ⋆ ρ)k)(Zi − Zj).

The first two estimators are standard; the third estimator is inspired by the one considered

in Newey et al. [2004], wherein κ is a twicing kernel. Moreover, the formalization in display

(9) captures commonly used “leave-one-out” estimators by simply imposing κ(0) = 0. For

instance, the “leave-one-out” versions of the estimators 1-3 are given by

1’. For λ = 0, the implied estimator is n−2
∑

i 6=j ρk(Zi − Zj).

2’. For λ = −1, the implied estimator is n−2
∑

i 6=j(ρ ⋆ ρ)k(Zi − Zj).

3’. For λ = 1, the implied estimator is n−2
∑

i 6=j(2ρk − (ρ ⋆ ρ)k)(Zi − Zj)

These estimators are essentially the ones considered by Gine and Nickl [2008] and Hall and Marron

[1987] (see also Powell and Stoker [1996] and references therein); the estimator 3’ is also a

somewhat simplified version of the one considered in Bickel and Ritov [1988].

19Details of the claims 1-3 and 1’-3’ below are shown in the Appendix B.
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We now show that Definition 6.2 is satisfied by our class of regularizations and also

establish a rate for the remainder term, ηk(Pn−P ) which is used to verify for which sequence

of tuning parameter condition 7 holds.

Proposition 6.1. For any P ∈ M, the regularization defined in expression (9) isDIFF (P, E||.||LB
).

For each k ∈ K,

Q 7→ Dψk(P )[Q] = 2

∫

(κk ⋆ P )(z)Q(dz),

and Q 7→ ηk(Q) =
∫

(κk ⋆Q)(z)Q(dz) is such that there exists a Lk <∞ such that |ηk(Q)| ≤
Lk||Q||2LB for all Q ∈ ca(Z).

Proof. See Appendix E.1.

This proposition implies that for each k ∈ K, ψk is ||.||LB-Frechet differentiable, and

since LB is P-Donsker, the conditions in Theorem 6.1 are met. The influence is given

by z 7→ ϕk(P )(z) ≡ 2{(κk ⋆ P )(z) − EP [(κk ⋆ P )(Z)]}, and since supk ||ϕk(P )||L2(P ) ≤
2||p||L∞(R)||κ||L1(R) (see Lemma E.2 in Appendix E.1), the natural scaling for GAL is

√
n. △

Next, we consider the NPIV example. It is not hard to see that the influence of γ

will be given by z 7→
∫

Dψk(P )
∗[π](z) − EP [Dψk(P )

∗[π](Z)] provided Dψk(P ) : T ∗
P →

L2([0, 1]) and its adjoint Dψk(P )
∗ : L2([0, 1]) → T ∗

P exists (T ∗
P is the dual of TP ). For sieve-

based and penalization-based regularization schemes, we characterize Dψk(P )
∗ and show

how its standard deviation can be used to appropriately scale the estimator to obtain a

generalized asymptotic linear representation regardless of whether the parameter is root-n

estimable or not. This last result, illustrates how our method can be used to generalize the

approach proposed in Chen and Pouzo [2015] to general regularizations. As a by-product, we

extend the results in Ackerberg et al. [2014] and link the influence function of the sieve-based

regularization to simpler, fully parametric, misspecified GMM models.

Example 6.3 (NPIV (cont.): The sieve-based Case). We study the sieve-based regulariza-

tion approach, which is constructed using two basis for L2([0, 1]), (uk, vk)k∈N, and two indices

k 7→ (J(k), L(k)) such that

(g, x) 7→ Tk,P [g](x) = (uJ(k)(x))TQ−1
uuEP

[

uJ(k)(X)g(W )
]

,

x 7→ rk,P (x) = (uJ(k)(x))TQ−1
uuEP [u

J(k)(X)Y ],

Rk,P = (Π∗
kT

∗
k,PTk,PΠk)

−1

where uk(x) ≡ (u1(x), ..., uk(x)), v
k(w) ≡ (v1(w), ..., vk(w)), Πk : L2([0, 1]) → lin{vL(k)} ⊆

L2([0, 1]) is the projection operator, g 7→ Πk[g] = (vL(k))TQ−1
vv

∫

vL(k)(w)g(w)dw, and Quu ≡
ELeb[u

k(X)(uk(X))T ], Quv ≡ EP [u
k(X)(vk(W ))T ] and Qvv ≡ ELeb[v

k(W )(vk(W ))T ].

The next proposition proves differentiable of the regularization γ and provides the ex-

pression for the derivative.
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Proposition 6.2. For any P ∈ M, the sieve-based regularization γ is DIFF(P, E||.||LB
). For

each k ∈ N,

Q 7→ Dγk(P )[Q] =

∫

Dψk(P )
∗[π](z)Q(dz)

where

Dψk(P )
∗[π](y, w, x) =(y − ψk(P )(w))(u

J(k)(x))TQ−1
uuQuv(Q

T
uvQ

−1
uuQuv)

−1ELeb[v
L(k)(W )π(W )]

+
{

EP [(ψ(P )(W )− ψk(P )(W ))(uJ(k)(X))T ]Q−1
uuu

J(k)(x)

×(vL(k)(w))T (QT
uvQ

−1
uuQuv)

−1ELeb[v
L(k)(W )π(W )]

}

. (10)

And, for each k ∈ N, the reminder of γk, ηk, is such that |ηk(ζ)| = o(||ζ ||LB) for any ζ ∈ Dψ.
20

Proof. See Appendix E.2.

Even though expression for Dψk(P )
∗[π] may look cumbersome, it has an intuitive inter-

pretation: It is identical to the influence function of the parameter
∫

θTvL(k)(w)π(w)dw where

θ is the estimand of a misspecified linear GMM model where the “endogenous variables” are

vL(k)(W ) and the “instrumental variables” are uJ(k)(X); cf. Hall and Inoue [2003]. The first

term in the RHS of expression 10 also has an intuitive interpretation: It is the influence

function of the parameter
∫

θTvL(k)(w)π(w)dw but in well-specified linear GMM model.

The proposition implies that for the “fix-k” case, expression 10 is the proper influence

function to be considered. However, one can ask whether as k diverges, the second term (the

one in curly brackets) in RHS of expression 10 can be ignored. To shed light on this matter,

it is convenient to use operator notation for expression 10:

Dψ∗
k(P )[π](y, w, x) =Tk,PRk,PΠk[π](x)× (y − ψk(P )(w))

+Rk,PΠk[π](w)× Tk,P [ψ(P )− ψk(P )](x) (11)

(we derive this equality in expression 21 in Appendix E.2). The term Tk,P [ψ(P ) − ψk(P )]

is multiplied by Rk,PΠk[π], which is different to Tk,PRk,PΠk[π] — the factor multiplying

(y − ψk(P )(w)). If π ∈ Range(TP ) both multiplying factors converge to bounded quantities

as k diverges.Thus, since Tk,P [ψ(P ) − ψk(P )] vanishes, the first summand in the RHS of

expression 10 “asymptotically dominates” the second one. This is framework considered in

Ackerberg et al. [2014]. However, if π /∈ Range(TP ) — and thus γ(P ) is not root-estimable

(see Severini and Tripathi [2012]) — the situation is more subtle and without additional

assumptions it is not clear which term in expression 10 dominates. The reason is that

the aforementioned multiplying factors will no longer converge to a bounded quantity, and

moreover, the rate of growth of Tk,PRk,PΠk[π] can can be dominated by the rate ofRk,PΠk[π].

For this last case of π /∈ Range(TP ), the results closest to ours are those in Chen and Pouzo

[2015] wherein the influence function for slower than root-n sieve estimators is derived. Their

expression for the influence function is simpler than ours, but this arises from a different set

20The “o” function may depend on k.
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of assumptions and, more importantly, a different approach that directly focus on expressions

for “diverging k”. △

Example 6.4 (NPIV (cont.): The Penalization-based Case). We study the penalization-

based regularization case given by

(x, g) 7→ Tk,P [g](x) ≡
∫

κk(x
′ − x)

∫

g(w)P (dw, dx′)

x 7→ rk,P (x) ≡
∫

κk(x
′ − x)

∫

yP (dy, dx′)

Rk,P = (T ∗
k,PTk,P + λkI)

−1

where κk(·) = kκ(k·) and κ is a smooth, symmetric around 0 pdf.

As opposed to the previous case, there is no obvious link to a “simpler” problem like

GMM and thus it is not obvious a-priori what the influence function would be and what

the proper scaling should be when γ(P ) is not root-n estimable. Theorem 6.1 suggests

Dψ∗
k(P )[π] and

√

n/V arP (Dψ∗
k(P )[π]) as the influence function and scaling factor resp.; the

next proposition characterizes it.

Proposition 6.3. For any P ∈ M, the Penalization-based regularization γ is DIFF(P, E||.||LB
).

For each k ∈ N, Dγk(P )[ζ ] =
∫

Dψk(P )
∗[π](z)ζ(dz), where

Dψ∗
k(P )[π](y, w, x) =K2

kTP (T
∗
PK2

kTP + λkI)
−1[π](x)× (y − ψk(P )(w)) (12)

+ λk(T
∗
PK2

kTP + λkI)
−1[π](w)×K2

kTP (T
∗
PK2

kTP + λkI)
−1[ψid(P )](x).

where Kk is the convolution operator g 7→ Kk[g] = κk ⋆ g. And, for each k ∈ N, the reminder

of γk, ηk, is such that |ηk(ζ)| = o(||ζ ||LB) for any ζ ∈ Dψ.
21

Proof. See Appendix E.2.

If π ∈ Range(TP ), then the variance term converges to ||TP [v∗](X)(Y−ψ(P )(W ))||2L2(P ) =

EP [(TP (T
∗
PTP )

−1[π](X))2EP [(Y − ψ(P )(W ))2|X ]] as k diverges, where v∗ ≡ (T ∗
PTP )

−1[π].

The function (y, w, x) 7→ TP [v
∗](x)(y−ψ(P )(w)) is the influence function one would obtained

by employing the methods in Ai and Chen [2007a] (with identity weighting) and v∗ is the

Riesz representer of the functional w 7→
∫

π(w)g(w)dw using their weak norm ||TP [·]||L2(P ).

If π /∈ Range(TP ), the variance diverges, and, as in the sieve case, without additional as-

sumptions it is not clear which term dominates the variance term V arP (Dψ
∗
k(P )[π]), as

k diverges. This case illustrates how our results can be used to extend the results in

Chen and Pouzo [2015] for irregular sieve-based estimators to more general regularization

schemes. △
21The “o” function may depend on k.
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6.2 Data-driven Choice of Tuning Parameter and Undersmooth-

ing

Theorem 6.1 implies existence of a n 7→ k(n) such that22√
n(ψk(n)(Pn)− ψ(P ))

||ϕk(n)(P )||L2(P )

− n−1/2

n
∑

i=1

ϕk(n)(P )(Zi)

||ϕk(n)(P )||L2(P )

= O

( √
nBk(n)(P )

||ϕk(n)(P )||L2(P )

)

+ oP (1). (13)

I.e., the asymptotic behavior of the regularized estimator — once scaled and centered —

is characterized by a term due to the approximation error and a stochastic term. For ob-

taining asymptotic distributions, it is common practice to try to find sequences (k(n))n
satisfying Theorem 6.1 for which the approximation term in expression (13) vanishes. Un-

fortunately it is known that such sequences do not always exists at this level of generality;

e.g. Bickel and Ritov [1988] and Hall and Marron [1987]. In view of this remark it is natural

to seek choices of tuning parameter that make the terms in the RHS of expression (13) as

“small as possible”. Such choices will guarantee that GAL and the asymptotic negligibility

of the approximation error both hold when possible, and otherwise, will at least yield good

rates of convergence for ψk(Pn)− ψ(P ).

The result in this section shows that the data-driven way of choosing tuning parameters

described in Section 3 satisfies this property. For each n ∈ N, the data-driven choice of

tuning parameter is of the form k̃n = argmin{k : k ∈ Ln(Λ)} for a suitable chosen function

k 7→ Λ(k). In section 3, the relevant function was k 7→ 4δ̄k(r
−1
n ); in this case, however, the

structure of the problem is different. In particular, in addition to the reminder term (ηk)k
implied by differentiability and the scaled approximation error, there is the additional term

given by n−1/2
∑n

i=1

ϕk(n)(P )(Zi)

||ϕk(n)(P )||
L2(P )

. The following assumption introduces the quantities to

construct (Λk)k. For each n, let Kn be the grid defined as in Section 3.

Assumption 6.1. There exists a (n, k) 7→ δ̄j,k(n) for j ∈ {1, 2} non-decreasing and a N ∈ N

such that

(i) supk∈Kn

|ηk(Pn−P )|
δ̄1,k(n)

≤ 1 wpa1-P .

(ii) |Kn|√
n
supk′≥k in Kn

||ϕk′(P )−ϕk(P )||
L2(P )

δ̄2,k′ (n)
≤ 1 for all n ≥ N .

As the proof of Lemma E.7 in Appendix E.3 suggests, the sequence that defines our

tuning parameter, for each n ∈ N, is given by k 7→ Λ(k) ≡ 4(δ̄1,k(n) + δ̄2,k(n)).

Remark 6.5 (Discussion of Assumption 6.1). Part (ii) implies that (δ̄2,k(n))n,k acts as a

growth rate for an object that, on the hand, involves the complexity of Kn — given by |Kn|
22The display hold provided lim infn→∞ ||ϕk(n)(P )||L2(P ) > 0 For the applications we have in mind, this

restriction is natural and non-binding. Our results are not designed for cases where limk→∞ ||ϕk(P )||L2(P ) =
0; this case can be handled separately — and rather easily — since both the approximation error and the
rate of k 7→ ηk(Pn − P ) decrease as k increases.
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— and on the other hand, involves the “length” of Kn — measured by k 7→ ||ϕk(P )||L2(P ).

In cases where (||ϕk(P )||L2(P ))k is uniformly bounded, the “length” of Kn (measured by k 7→
||ϕk(P )||L2(P )) is also uniformly bounded and part (ii) boils down to |Kn|√

n
≤ infk∈Kn

δ2,k(n)).

Part (i) implies that (δ̄1,k(n))n,k also acts as the growth rate, but of a very different quantity:

The reminder term of GAL, uniformly on k ∈ Kn.

To shed more light on Assumption 6.1, suppose there exists a norm ||.||S such that

C1: There exists, for each k ∈ K a modulus of continuity η̄k : R+ → R+ such that ηk(Q) =

η̄k(||Q||S).

C2: There exists a real-valued positive diverging sequence (rn)n such that ||Pn − P ||S =

oP (r
−1
n ).

Condition C1 states that ηk is continuous with respect to some norm ||.||S and C2 ensure

convergence of Pn to P under this norm. These conditions are analogous to the assumptions

used to show Theorem 4.1.

Under these conditions it is easy to see that Part (i) follows by choosing δ̄1,k(n) = η̄k(r
−1
n ),

which acts as δk(r
−1
n ) in Theorem 4.1, and, in particular, it does not depend on the grid.

Part (ii), however, is not necessarily implied by this choice. If the growth rate of the re-

minder, η̄k(r
−1
n ), is small compared to |Kn|√

n
supk′≥k in Kn

||ϕk′(P )−ϕk(P )||L2(P ) then part (ii)

requires that δ̄2,k(n) to be larger than the latter, i.e., δ̄2,k(n) ≥ |Kn|√
n
supk′≥k in Kn

||ϕk′(P ) −
ϕk(P )||L2(P ).

Below we illustrate how to verify these assumptions in the context of Example 6.2.△

Proposition 6.4. Suppose all the conditions of Theorem 6.1 hold, and Assumption 6.1

holds. Then
∣

∣

∣

∣

∣

√
n(ψk̃n(Pn)− ψ(P ))

||ϕk̃n(P )||L2(P )

− n−1/2
∑n

i=1 ϕk̃n(P )(Zi)

||ϕk̃n(P )||L2(P )

∣

∣

∣

∣

∣

= OP

(

C2
n

√
n inf
k∈Kn

{

δ̄1,k(n) + δ̄2,k(n) + B̄k(P )

||ϕk(P )||L2(P )

})

,

where Cn ≡ supk′,k in Kn

||ϕk(P )||
L2(P )

||ϕk′(P )||
L2(P )

.

Proof. See Appendix E.3.

The rate in the proposition is — up to C2
n factor — the minimum value of the sum

of two terms:
√
n
δ̄1,k(n)+δ̄2,k(n)

||ϕk(P )||
L2(P )

, that controls the reminder term of GAL and another one,
√
n Bk(P )

||ϕk(P )||
L2(P )

, that controls the approximation error term. Therefore, if there exists a

choice of tuning parameter for which both these terms are asymptotically negligible, our

result implies that

√
n
ψk̃n(Pn)− ψ(P )

||ϕk̃n(P )||L2(P )

= n−1/2
n
∑

i=1

ϕk̃n(P )(Zi)

||ϕk̃n(P )||L2(P )

+ oP (1).

25



That is, the asymptotic distribution of
√
n
ψ
k̃n

(Pn)−ψ(P )

||ϕ
k̃n

(P )||
L2(P )

is given that of n−1/2
∑n

i=1

ϕ
k̃n

(P )(Zi)

||ϕ
k̃n

(P )||
L2(P )

.

On the other hand, if no such sequence exists, the proposition readily implies a rate of con-

vergence of the form
∣

∣

∣

ψ
k̃n

(Pn)−ψ(P )

||ϕ
k̃n

(P )||
L2(P )

∣

∣

∣
= OP

(

n−1/2 + C2
n infk∈Kn

{

δ̄1,k(n)+δ̄2,k(n)+B̄k(P )

||ϕk(P )||
L2(P )

})

.

The sequence (Cn)n quantifies the discrepancy of k 7→ ||ϕk(P )||L2(P ) within the grid. In

cases where Assumption 6.1(ii) holds for all k′ and k in Kn, it readily follows that Cn =

1 + |Kn|−1 supk∈Kn
δ̄2,k(n)/||ϕk(P )||L2(P ).

In order to shed more light on these expressions and the assumptions, we applied our

results to the estimation of the integrated square PDF (example 6.2). In this setting,

Gine and Nickl [2008] already provide a data-driven method to choose the bandwidth which

is akin to ours. In fact, our method can be viewed as generalization of theirs to general

regularizations, and the example illustrates that, at least in their setup, we do not have to

pay an extra price for the added generality.

Example 6.5 (Integrated Square Density (cont.)). In this example the relevant tuning

parameter is the bandwidth of the kernel, so we let k 7→ k−1, and as the grid, Kn, we use the

one proposed by Gine and Nickl (Gine and Nickl [2008]), i.e., Kn = {k : k−1 ∈ Hn} where

Hn =

{

h ∈
[

(logn)4

n2
,

1

n1−δ

]

: h0 =
1

n1−δ , h1 =
logn

n
, h2 =

l−1
n

n
, hk+1 = hk/a, ∀k = 2, 3, ...

}

where a > 1, (ln)n diverges to infinity slower than logn and l−1
n < log n and δ > 0 is arbitrary

close to 1; in particular δ > 0 is such that 2̺ < 1+δ
2(1−δ) . Of importance to our analysis are

the fact that |Kn| = O(logn) and that for sufficiently large n, any two consecutive elements

in Hn are such that hk+1/hk ≤ 1/a.

The following lemma suggests an expression for the functions (n, k) 7→ δ̄i,k(n) for i ∈
{1, 2}.

Lemma 6.1. For any M > 0, there exists a N such that for all n ≥ N ,

sup
h′≤h in Hn

||ϕ1/h(P )− ϕ1/h′(P )||L2(P ) ≤ 4||C||L2(P )h
̺E|κ|[|U |m+̺].

where the function C is the one in expression 8 in Example 6.2, and

P

(

sup
h∈Hn

√
n|η1/h(Pn − P )| ≥M

(

κ(0)√
nh

+
1√
nh

))

≤ |Hn|M−1.

Proof. See Appendix E.3.2.

Therefore, {(n, k) 7→ δ̄i,k(n)}i=1,2 can be chosen as

(n, k) 7→ δ̄1,k ≡ (log n)3
kκ(0) +

√
k

n
, and (n, k) 7→ δ̄2,k ≡

(logn)3k−(m+̺)

√
n

.

The lemma and this display illustrate the different nature of Assumptions 6.1(i)(ii). Part (i)

bounds the reminder of the linear approximation and it increases with k and decreases with

n; this is reflected in the term
(kκ(0)+

√
k)

n
in the display. Part (ii) on the other hand essentially
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requires that the bandwidths in the gridHn are not “too far apart”. In particular, it depends

on the size of the bandwidths in Hn; this is reflected in the term k−̺ in the display.

It follows that supn∈N Cn < ∞ because there exists a constant C > 1 such that k 7→
||ϕk(P )||L2(P ) ∈ [C−1, C] and is continuous for all k ≥ 1.

We verified that all assumptions of Proposition 6.4 hold. Moreover, Proposition B.1 in

Appendix B implies that h 7→ B̄1/h(P ) = O(h2̺). Thus, the rate of Proposition 6.4 is given

by

infh∈Hn
{(log n)3

(

κ(0)/h+1/
√
h√

n
+ h̺

)

+
√
nh2̺}. In fact, given our choice of Hn and δ, some

straightforward algebra shows that, at least for large n, the infimum over Kn and be replaced

by the infimum over R+. Therefore,

∣

∣

∣

∣

∣

√
n(ψk̃n(Pn)− ψ(P ))

||ϕk̃n(P )||L2(P )

− n−1/2
∑n

i=1 ϕk̃n(P )(Zi)

||ϕk̃n(P )||L2(P )

∣

∣

∣

∣

∣

=















OP

(

(

logn
n

)

4̺
1+4̺

−0.5
)

if κ(0) = 0

OP

(

(

logn
n

)

2̺
1+2̺

−0.5
)

if κ(0) > 0

For the case κ(0) = 0, we replicate the results by Gine and Nickl [2008]: if ̺ > 0.25, the

reminder is negligible and root-n consistency follows, otherwise the optimal convergence rate

is achieved. △

7 Conclusion

We propose an unifying framework to study the large sample properties of regularized esti-

mators that extends the scope of the existing large sample theory for “plug-in” estimators

to a large class containing regularized estimators. Our results suggest that the large sample

theory for regularized estimators does not constitute a large departure from the existing large

sample theory for “plug-in” estimators, in the sense that both are based on local properties

of the mappings used for constructing the estimator. This last observation indicates that

other large sample results developed for “plug-in” estimators can also be extended to the

more general setting of regularized estimators; e.g., estimation of the asymptotic variance of

the estimator and, more generally, inference procedure like the bootstrap. We view this as

a potentially worthwhile avenue for future research.
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W. Härdle and O. Linton. Applied nonparametric methods. Handbook of econometrics Chapter 38,
4:2295–2339, 1994.

Michael Jansson and Demian Pouzo. Towards a general large sample theory for regularized esti-
mators, 2017.

O. V. Lepski and V. G. Spokoiny. Optimal pointwise adaptive methods in nonparametric estimation.
The Annals of Statistics, 25(6):2512–2546, 12 1997.

W. K. Newey. Semiparametric efficiency bounds. Journal of applied econometrics, 5(2):99–135,
1990.

W. K. Newey. Kernel estimation of partial means and a general variance estimator. Econometric

Theory, 10(2):233–253, 1994.

W K Newey and J L Powell. Instrumental variable estimation of nonparametric models. Econo-

metrica, 71(5):1565–1578, 2003.

W. K. Newey, F. Hsieh, and J. M. Robins. Twicing kernels and a small bias property of semipara-
metric estimators. Econometrica, 72(3):947–962, 2004.

S. Pereverzev and E. Schock. On the adaptive selection of the parameter in regularization of
ill-posed problems. SIAM Journal on Numerical Analysis, 43(5):2060–2076, 2006.

D. Pouzo. On the Non-Asymptotic Properties of Regularized M-estimators. ArXiv pre-print

1512.06290, 2015.

J. L. Powell and T. M. Stoker. Optimal bandwidth choice for density-weighted averages. Journal

of Econometrics, 75(2):291 – 316, 1996.

J. L. Powell, J. H. Stock, and T. M. Stoker. Semiparametric estimation of index coefficients.
Econometrica, pages 1403–1430, 1989.

T. A. Severini and G. Tripathi. Efficiency bounds for estimating linear functionals of nonparametric
regression models with endogenous regressors. Journal of Econometrics, 170(2):491 – 498, 2012.

A Shapiro. On concepts of directional differentiability. Journal of optimization theory and applica-

tions, 66(3):477–487, 1990.

30



X Shen and W H Wong. Convergence rate of sieve estimates. The Annals of Statistics, 22(2):
580–615, 1994.

C. Stein. Efficient nonparametric testing and estimation. In Proceedings of the Third Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory

of Statistics, 1956.

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

A. W. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes: With Applications

to Statistics. Springer Science & Business Media, 1996.

C Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

H. White and J. Wooldridge. Some results on sieve estimation with dependent observations. In
W.A. Barnett, J. Powell, and G. Tauchen, editors, Non-parametric and Semi-parametric Methods

in Econometrics and Statistics. 1991.

J. Wolfowitz. The minimum distance method. The Annals of Statistics, 28(1):75–88, 1957.

31



Table of Contents of the Appendix

A Extensions of our Setup 32

A.1 Sample-Splitting Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Extension to General Stationary Models . . . . . . . . . . . . . . . . . . . . 34

B Appendix for Section 2 36

B.1 Some Remarks on the Regularization Structure in the NPIV Example. . . . 38

C Appendix for Section 3 42

D Appendix for Section 4 43

D.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
D.2 Proof of Proposition D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
D.3 Extensions of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
D.4 Appendix for Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

E Appendix for Section 6 56

E.1 Appendix for Example 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.2 Appendix for Examples 6.3 and 6.4 . . . . . . . . . . . . . . . . . . . . . . . 59

E.2.1 Proofs of Supplementary Lemmas. . . . . . . . . . . . . . . . . . . . . 63
E.3 Appendix for Section 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

E.3.1 Proof of Proposition 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . 66
E.3.2 Appendix for Example 6.5 . . . . . . . . . . . . . . . . . . . . . . . . 70

Notation: Recall that ca(X) for some set X is the Banach space of all Borel measures
over X endowed with the the total variation norm, ||µ||TV = |µ|(X) where |.| is the total
variation. For a real-valued sequence (xn)n, xn ↑ a ∈ R ∪ {∞} means that the sequence is
non-decreasing and its limit is a; xn ↓ a is defined analogously.

A Extensions of our Setup

In this Appendix we briefly discuss how to extend our theory to general stationary models
(Section A.2), we also discuss how to extend our setup to capture some sample splitting
procedure commonly used in the literature (Section A.1).

A.1 Sample-Splitting Procedures

Our regularized estimator — like the plug-in one — is defined in terms of Pn, and as such is
permutation invariant. Thus, estimators that do not enjoy this property are not covered by
our setup; perhaps the most notable class of estimators that falls in this category are esti-
mators that rely on sample splitting procedures. We now argue that a slight generalization
of our framework can encompass some splitting-sample procedures.
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In order to illustrate the challenges and proposed solutions that arise from these pro-
cedures, we present the problem in a simple canonical example. Suppose the parameter of
interest is comprised of two quantities: a vector, denoted as h ∈ H (H being some subset of
a Euclidean space), and a real number, denoted as θ ∈ R. The former should be treated as
a so-called “nuisance parameter” and the latter as the parameter of interest. Moreover the
following “triangular structure” holds:

P 7→ ψ(P ) = (θ(P, h(P )), h(P )), (14)

where P 7→ h(P ) ∈ H is the mapping identifying the nuisance parameter and (P, h) 7→
θ(P, h) ∈ R is the mapping identifying the parameter of interest. The “triangular structure”
means that h only depends on P whereas θ depends on both P and h(P ). An example of
this structure is one where θ(P, h) = EP [φ(Z, h)] where φ is a known function that depends
on the data Z but also the nuisance parameter.

Suppose the following estimator is considered. The data is divided in halves (for simplicity
we assume the sample size to be even). An estimator, denoted as ψ̂1, is constructed by using
the first half to construct an estimator of h and using this estimator and the second half of the
sample to construct the estimator for θ. Another estimator, denoted as ψ̂2, is constructed by
reversing the role of the first and second halves of the sample. The final estimator is simply
ψ̂ = 0.5ψ̂1 + 0.5ψ̂2. To keep the setup as simple as possible, we assume, for now, that the
plug-in estimator is used (within each sub-sample) for estimating both θ and h, i.e., there is
no need to regularized the problem.

It is easy to see that ψ̂ is not permutation invariant and thus does not fall in our frame-
work. We now propose an alternative formulation of the original problem that, while seem-
ingly redundant and even contrive at first glance, will allow us to extend our framework
to this problem. This formulation entails thinking of ψ as a function of two probability
distributions over Z. Formally, ψ̄ : M×M → R×H, where

ψ̄(P1, P2) = (θ(P1, h(P2)), h(P2)). (15)

At the population level this distinction is superfluous because, if the true probability is
given by P , then ψ(P ) = ψ̄(P, P ). However, by taking ψ̄ as the parameter mapping, the

split-sample estimator can be formulated as follows. Let P
(1)
n be the empirical distribution

generated by the first half of the sample and P
(2)
n be the empirical distribution generated by

the second half of the sample. It follows that

ψ̂ = 0.5ψ̄(P (1)
n , P (2)

n ) + 0.5ψ̄(P (2)
n , P (1)

n ).

That is, the split-sample estimator can be seen as weighted average of two plug in estimators
using the parameter mapping ψ̄. Since the estimators (P

(1)
n , P

(2)
n ) will converge to (P, P )

under the same conditions that ensure convergence of Pn to P (except in the former case
the relevant sample size is n/2 not n), then one can establish consistency and asymptotic
linearity by using the typical results for plug-in estimators, but using ψ̄ as the original
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parameter mapping, and not ψ.
The formulation using ψ̄ allow us to tackle the case in which the estimation problem for

h or θ needs to be regularized; e.g. if h is a function or a high-dimensional vector. We do
this by proposing a regularization — in the sense of Definition 2.1 — for ψ̄ as opposed to ψ,
and construct the regularized estimator as

0.5ψ̄k(P
(1)
n , P (2)

n ) + 0.5ψ̄k(P
(2)
n , P (1)

n ), ∀k ∈ N.

Thus our results can be applied to this case, by taking the regularization to be (ψ̄k)k. For
instance, to establish consistency, following Theorem 3.1, it suffices to verify continuity of
(ψ̄k)k.

The example given by expression (14) has 3 features that we believe are key in order
to extend our general theory for regularized estimators to encompass sample-splitting pro-
cedures. We now extrapolate these feature from this simple canonical example to a more
general setup

1. The number of splits in the sample is fixed, in the example was 2, in general it can be
s ∈ N but s is assumed not to grow with n. Following the insight in expression 15,
the new parameter is given by ψ̄(P1, ..., Ps) where P1, ..., Ps belong to the model M.
Moreover, assuming, for simplicity, that n = sm for some m ∈ N, it also follows that
one can construct a vector P

(1)
n , ..., P

(s)
n of empirical probability distributions, one for

each sub-sample.

2. The estimation procedure within each sub-sample admits a regularization as defined
in our paper. That is, there exists a sequence (ψ̄k)k such that ψ̄k(P

(π1)
n , ..., P

(πs)
n ) is

well-defined for each permutation π1, ..., πs of {1, ..., s}, and ψ̄k(P, ..., P ) converges to
ψ̄(P, ..., P ) = ψ(P ) for each P ∈ M.

3. The final estimator is a convex combination of the estimators ψ̄k(P
(π1)
n , ..., P

(πs)
n ). For

instance, if s = 3, then the final estimator is of the form
∑

i,j,k∈{1,..,3}wi,j,kψ̄k(P
(i)
n , P

(j)
n , P

(k)
n )

where (wi,j,k)i,j,k are given weights. This last assumption is, in our opinion, less critical
than the other two since we conjecture the convex combination can be replaces by a
“smooth” operator.

We believe these features are general enough to encompass the sample-splitting proce-
dures commonly used in applications They, however, do rule out cases where the sample
splitting procedure demands number of splits that grow with the sample size.

A.2 Extension to General Stationary Models

We now briefly discuss how to extend our theory to general stationary models. In this case
a model is a family of stationary probability distributions over Z∞, i.e., a subset of P(Z∞)
(the set of stationary Borel probability distributions over Z∞).
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Let P denote the marginal distribution over Z0 corresponding to P ∈ P(Z∞) (by sta-
tionarity, the time dimension is irrelevant). For a given model M∞, let M denote the set of
marginal probability distribution over Z0 corresponding to M∞. A parameter on model

M∞ is a mapping fromM to Θ. That is, we restrict attention to mappings that depend only
on the marginal distribution. Our theory can also be extended to cases where ψ depends on
the joint distribution of a finite sub-collections of Z∞. Allowing for the mapping to depend
on the entire P is mathematical possible, but such object is of little relevance since it cannot
be estimated from the data.

A regularization of a parameter ψ is defined analogously and the (relevant) empirical
distribution is given, for each z ∈ Z∞, by Pn(A) ≡ n−1

∑n
i=1 1{z : Zi(z) ∈ A} for any Borel

set A ⊆ Z.
Theorem 3.1 can be applied to this setup essentially without change, the difference with

the i.i.d. setup lies on how to establish converges of Pn to P under d. Similarly, the notion of
differentiability (Definition 6.2) can also be applied without change. The influence function
will also be given by z 7→ Dψk(P)[δz − P ]. The scaling, however, will be different, since

EP

[

(√
nDψk(P)[Pn − P ]

)2
]

=EP





(

n−1/2
n
∑

i=1

Dψk(P)[δZi
− P ]

)2




=||ϕk(P)||2L2(P )

+ 2n−1
∑

i<j

EP

[

(Dψk(P)[δZi
− P ])

(

Dψk(P)[δZj
− P ]

)]

=||ϕk(P)||2L2(P ) + 2n−1

n−1
∑

i=1

n
∑

j=i+1

γj−i,k(P)

≡||ϕk(P)||2L2(P )(1 + 2Φn,k(P))

where γj,k(P) ≡ EP

[

(Dψk(P)[δZ0 − P ])
(

Dψk(P)[δZj
− P ]

)]

and

Φn,k(P) ≡
n−1
∑

i=1

(

1− i

n

)

γi,k(P)

γi,0(P)
.

Hence, the natural scaling is ||ϕk(P)||L2(P )

√

(1 + 2Φn,k(P)) and not ||ϕk(P)||L2(P ) as in
the IID case. We note that our theory, a priori, does not require lim supn→∞Φn,k(P) = ∞.

In view of the previous discussion, the relevant restriction in Theorem 6.1 is

√
n

ηk(Pn − P )

||ϕk(P)||L2(P )

√

(1 + 2Φn,k(P))
= oP(1).

An analogous amendment applies to Theorem ??.
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B Appendix for Section 2

The next lemma formalize verifies Claims 1-3 and 1’-3’ in the text. Throughout, let ρk(·) =
kρ(k·) for any k ∈ K.

Lemma B.1. For all h > 0, t 7→ (ρ1/h ⋆ ρ1/h)(t) = (ρ ⋆ ρ)1/h(t).

Proof. For all t ∈ R,

(ρ1/h ⋆ ρ1/h)(t) =

∫

ρ1/h(t− x)ρ1/h(x)dx =h−2

∫

ρ((t− x)/h)ρ(x/h)dx = h−1

∫

ρ(u)ρ(t/h− u)du

=h−1(ρ ⋆ ρ)(t/h)

where the last line follows from symmetry of ρ.

Lemma B.2. Claims 1-3 and 1’-3’ in the text hold.

Proof. For each case 1-3 and 1’-3’, we show that the κ yields the associated estimators and
that κ is a valid choice in each case.

(1) Follows directly from the fact that ρ1/h ⋆ Pn = p̂1/h.

(2) By Lemma B.1, t 7→ (ρ1/h ⋆ ρ1/h)(t) = h−1(ρ ⋆ ρ)(t/h). Hence, by taking κ = ρ ⋆ ρ
it follows that t 7→ κ1/h(t) = h−1(ρ ⋆ ρ)(t/h) = (ρ1/h ⋆ ρ1/h)(t). Moreover, κ is indeed a pdf,
symmetric and continuously differentiable.

We now show the form of the implied estimator. We use the notation 〈., .〉 to denote the
dual inner product between L∞(R) and ca(R), so

∫

(κ1/h ⋆ P )(x)P (dx) =〈ρ1/h ⋆ ρ1/h ⋆ P, P 〉 =
∫ ∫

ρ1/h(x− y)(ρ1/h ⋆ P )(y)dyP (dx)

=

∫

(ρ1/h ⋆ P )(y)

∫

ρh(y − x)P (dx)dy

=〈ρ1/h ⋆ P, ρ1/h ⋆ P 〉L2

where the second line follows by symmetry of ρ. Since ρ1/h ⋆ Pn = p̂h the result follows.

(3) Take κ(·) ≡ (−ρ⋆ρ(·)+2ρ(·)). It follows that
∫

κ(u)du = −
∫

ρ⋆ρ(u)du+2
∫

ρ(u)du =
1. Smoothness follows from smoothness of ρ. Finally, we note that one can write κ(t) as
{ρ ⋆ ρ(t) + 2(ρ(t)− ρ ⋆ ρ(t))}.

By Lemma B.1 t 7→ κ1/h(t) = h−1(ρ⋆ρ)(t/h)+2h−1(ρ(t/h)−ρ⋆ρ(t/h)) = (ρ1/h⋆ρ1/h)(t)+
2(ρ1/h(t)− ρ1/h ⋆ ρ1/h(t)). So the expression of the estimator follows from simple algebra.

(1’) Since P does not have atoms, Zi = Zj iff i = j a.s.-P. It follows that the estimator is
given by n−2

∑

i,j κ1/h(Zi − Zj) = n−1κ1/h(0) + n−2
∑

i 6=j κ1/h(Zi − Zj) a.s.-P and the result
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follows since κ(0) = 0.

(2’) The expression of the estimator follows from analogous calculations to those in 1’.

(3’) By the calculations in (3)

∫

(p̂h(z))
2dz =

∫

(ρ1/h ⋆ ρ1/h ⋆ Pn)(x)Pn(dx) = n−2
∑

i 6=j
ρ1/h ⋆ ρ1/h(Zi − Zj) + n−1ρ1/h ⋆ ρ1/h(0)

=n−2
∑

i 6=j
ρ1/h ⋆ ρ1/h(Zi − Zj) + n−1

∫

(ρ1/h(z))
2dz

where the last line follows by symmetry. Hence

∫

(p̂h(z))
2dz − 2

∫

(p̂h(z))
2dz + n−1

∫

(ρ1/h(z))
2dz =− n−2

∑

i 6=j
ρ1/h ⋆ ρ1/h(Zi − Zj)

=− n−2
∑

i,j

ρ1/h ⋆ ρ1/h(Zi − Zj)× 1{Zi − Zj 6= 0}

where the last line follows because P does not have atoms, so Zi = Zj iff i = j a.s.-P.
Similarly,

2n−1

n
∑

i=1

p̂h(Zi)− 2ρ1/h(0)/n =2

(

n−2
∑

i,j

ρ1/h(Zi − Zj)− ρ1/h(0)/n

)

=2n−2
∑

i 6=j
ρ1/h(Zi − Zj)

=2n−2
∑

i,j

ρ1/h(Zi − Zj)× 1{Zi − Zj 6= 0}.

The following proposition provides bounds for the approximation error.

Proposition B.1. There exists a finite constant C > 0 such that for any k ∈ K and any
P ∈ M,

Bk(P ) ≤ Ck−2̺E|κ|[|U |2̺].
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Proof of Proposition B.1. Since P ∈ M it admits a smooth pdf, p, it follows that

ψk(P )− ψ(P ) =

∫
(
∫

κk(x− y)p(y)dy − p(x)

)

p(x)dx

=

∫ ∫

κ(u)p(x− u/k)du− p(x)p(x)dx

=

∫

(p̄ ⋆ p(u/k)− p̄ ⋆ p(0)) κ(u)du

where t 7→ p̄(t) ≡ p(−t). Henceforth, let t 7→ g(t) ≡ p̄ ⋆ p(t).
Our condition (8) implies that p and p̄ belong to the Besov space B̺2,∞(R). Lemma

12 in Giné and Nickl [2008] implies that g ∈ B2̺
∞,∞(R), in fact since 2̺ /∈ N, g is Hölder

continuous with parameter 2̺. This implies and the previous display imply that Bk(P ) ≤
Ck−2̺

∫

|u|2̺|κ(u)|du for some universal constant C <∞.

Remark B.1 (Remarks about the Condition 8). Gine and Nickl [2008] imposes p ∈ H̺
2 (R),

whereas our restriction essentially implies that p ∈ B̺2,∞(R). In that paper and in ours the
smoothness coefficient ̺ is less than 0.5, i.e., we have “low” degree of smoothness. Because
of this, whether or not the kernel is a “twicing kernel” does not matter for the control
of the approximation error. For larger levels of smoothness, e.g. ̺ > 1, we expect the
“twicing kernel” — or higher order kernels in general — to yield different bounds for the
approximation error. The goal of this example is to illustrate the scope of our methodology
and thus we decided to stay as closed as possible to the existing literature and omit the case
̺ > 0.5. △

B.1 Some Remarks on the Regularization Structure in the NPIV

Example.

The general regularization structure, (Rk,P , Tk,P , rk,P )k∈N, and conditions 1-2 are taken from
Engl et al. [1996] Ch. 3-4. It is clear from the problem that

Dψ = {µ ∈ ca(R× [0, 1]2) : Eµ[|Y |2] <∞ and Eµ[|h(W )|2] <∞ ∀h ∈ L2([0, 1])}. (16)

The next lemma presents useful properties of Dψ. The proof is straightforward and thus
omitted.

Lemma B.3. (1) Dψ ⊇ M∪D; (2) Dψ is a linear subspace.

We now discuss canonical examples of regularizations methods for the first and second
stage that we consider in this paper.

First Stage Regularization. For any P ∈ Dψ and any k ∈ N, we can generically
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write rk,P as

rk,P (x) ≡
∫

y

∫

Uk(x
′, x)P (dy, dx′), ∀x ∈ [0, 1],

where Uk ∈ L∞([0, 1]2) symmetric. For instance, if

(x′, x) 7→ Uk(x
′, x) = ku(k(x− x′))

where u is a symmetric around 0, smooth pdf, then x 7→ rk,P (x) =
∫

y
∫

ku(k(x−x′))P (dy, dx′),
which is the the so-called kernel-based approach; e.g., for ill-posed inverse problems see
Hall and Horowitz [2005] among others.

In the case one defined rP using conditional probabilities, i.e., rP (x) =
∫

yp(y|x)dy. The
kernel approach becomes

x 7→ rk,P (x) =

∫

y

∫

ku(k(x− x′))P (dy, dx′)
∫

ku(k(x− x′))P (dx′)
;

(e.g. Darolles et al. [2011]). Observe that rP is only defined for probability measures for
which the pdf exists.

Another approach is to directly set

(x′, x) 7→ Uk(x
′, x) = (uk(x))TQ−1

uuu
k(x′),

where (uk)k∈N is some basis function in L2([0, 1]) and Quu ≡ ELeb[(u
k(X))(uk(X))T ]. In this

case, x 7→ rk,P (x) = (uk(x))TQ−1
uuEP [u

k(X)Y ], which is the so-called series-based approach;
e.g., for ill-posed inverse problems see Ai and Chen [2003], Newey and Powell [2003] among
others.

Analogously, one can define Tk,P as

g 7→ Tk,P [g](x) ≡
∫

g(w)

∫

Uk(x
′, x)P (dw, dx′), ∀x ∈ [0, 1],

and the same observations above applied to this case.
The next lemma characterizes the adjoint for any P ∈ M (i.e., P as a pdf p). In this

case, we can view the regularization as an operator acting on TP [g](x) =
∫

g(w)p(w, x)dw,
given by Uk : L2([0, 1]) → L2([0, 1]), where UkTP [g](x) ≡

∫

Uk(x
′, x)

∫

g(w)p(w, x′)dwdx′.

Lemma B.4. For any k ∈ N and any P ∈ M (in particular, it admits a pdf p), the adjoint
of Tk,P is T ∗

k,P : L2([0, 1]) → L2([0, 1]) and is given by

f 7→ T ∗
k,P [f ] = T ∗Uk[f ].
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Proof. For any k ∈ N and any P ∈ M,

〈Tk,P [g], f〉L2([0,1]) =

∫

(UkTP [g](x)) f(x)dx

=

∫

g(w)

∫ ∫

Uk(x
′, x)f(x)dxp(w, x′)dx′dw

=〈g, T ∗
PUk[f ]〉L2([0,1])

for any g, f ∈ L2([0, 1]).

If P /∈ M, in particular if it does not have a pdf (with respect to Lebesgue), the adjoint
operator is different; the reason being that T ∗

P does not map onto a space of functions because
P does not have a pdf. In this case, consider the operator AP : L2([0, 1]) → ca([0, 1])
given by f 7→ AP [f ](B) =

∫

w∈B
∫

f(x)P (dw, dx) for any B ⊆ [0, 1] Borel. Note that
|AP [f ](.)| ≤

∫

|f(x)|P (dx) <∞ provided that f ∈ L2(P ), which is the case for any P ∈ Dψ.
The next lemma characterizes the adjoint in this case.

Lemma B.5. For any k ∈ N and any P ∈ Dψ, the adjoint of Tk,P is given by

f 7→ T ∗
k,P [f ] = APUk[f ].

Since Uk ∈ L2([0, 1]2), T ∗
k,P [f ]([0, 1]) - ||f ||L2(P )||Uk||L2([0,1]2) which is finite for P ∈ Dψ.

So T ∗
k,P [f ] in fact maps to ca([0, 1]).

Proof. For any k ∈ N and any P ∈ Dψ,

〈Tk,P [g], f〉L2([0,1]) =

∫ ∫

g(w)

∫

Uk(x
′, x)P (dw, dx′)f(x)dx

=

∫

g(w)

(
∫

Uk(x
′, x)f(x)dx

)

P (dw, dx′)

=

∫

g(w)

∫

Uk[f ](x′)P (dw, dx′),

for any g, f ∈ L2([0, 1]).

One possibility to avoid the aforementioned technical issue with the adjoint operator is
to define a regularization given by

g 7→ Tk,P [g](x) ≡
∫

g(w)

{
∫

Uk(x
′, x)Vk(w

′, w)P (dw′, dx′)

}

dw, ∀x ∈ [0, 1],

where Uk ∈ L∞([0, 1]2) symmetric. For example, if Vk(w
′, w) = h−1

k v((w′ − w)/hk (and
Uk is also given by the kernel-based approach), then in this case (x, w) 7→ Wk[P ](x, w) ≡
∫

Uk(x
′, x)Vk(w

′, w)P (dw′, dx′) is a pdf over [0, 1]2 (regardless of whether P has a pdf or
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not), and thus

f 7→ T ∗
k,P [f ](w) =

∫

f(x)Wk[P ](x, w)dx.

For instance, Hall and Horowitz [2005] considered a method akin to this.
In the case TP is defined as a conditional operator, one can consider the sieve-based

approach for Uk and Vk(w
′, w) = (vk(w))TQ−1

vv v
k(w′) for some (vk)k∈N basis function in

L2([0, 1]). Then, in this case,

Tk,P [g](x) =(uk(x))TQ−1
uuEP [u

k(X)(vk(W ))TQ−1
vv ELeb[v

k(W )g(W )]]

=(uk(x))TQ−1
uuQuvQ

−1
vv ELeb[v

k(W )g(W )]

=

∫

g(w)

{∫

(uk(x))TQ−1
uuu

k(x′)(vk(w′))TQ−1
vv v

k(w)P (dw′, dx′)

}

dw

where Qvv ≡ ELeb[(v
k(W ))(vk(W ))T ] and Quv ≡ EP [u

k(X)(vk(W ))T ], and

f 7→ T ∗
k,P [f ](w) =(vk(w))TQ−1

vv Q
T
uvQ

−1
uuELeb[u

k(X)f(X)]

=

∫

f(x)Wk[P ](x, w)dx

where Wk[P ](x, w) =
∫

(uk(x))TQ−1
uuu

k(x′)(vk(w′))TQ−1
vv v

k(w)P (dw′, dx′).

Second Stage Regularization. For the second stage regularization, one widely used
approach is the so-called Tikhonov- or Penalization-based approach, given by solving

argmin
θ∈Θ

{EP
[

(rk,P (X)− Tk,P [θ](X))2
]

+ λk||θ||2L2([0,1])}

which is non-empty and a singleton. This specification implies that

Rk,P = (T ∗
k,PTk,P + λkI)

−1,

which is well-known to be well-defined, i.e., 1-to-1 and bounded for any λk > 0.
Another widely used approach is the sieve-based approach that consists on setting up

arg min
θ∈Θk

EP
[

(rk,P (X)− Tk,P [θ](X))2
]

and specifie the (Θk)k such that (1) ∪kΘk is dense in Θ and Θk has dimension k, and (2)
argmin exists and is a singleton. For instance if Θk is convex, then a solution exists and is
unique provided that Kernel(Tk,P |Θk) = {0}. In this case

Rk,P = (Π∗
kT

∗
k,PTk,PΠk)

−1,

where Πk is the projection onto Θk.

41



Verification of Definition 2.1. The next Lemma shows that given Conditions 1-2
listed in Example 2.1, (ψk(P ))k∈N (and hence (γk(P ))k∈N) is in fact a regularization.

Lemma B.6. Suppose Conditions 1-2 listed in Example 2.1 hold. Then (ψk(P ))k∈N (and
hence (γk(P ))k∈N) is a regularization with Dψ given in 16.

Proof. Condition 1 in Definition 2.1 is satisfied by Lemma B.3. Regarding condition 2 in
Definition 2.1, note that

||ψk(P )− ψ(P )||L2([0,1]) ≤ ||Rk,PT
∗
k,P [rk,P − rP ]||L2([0,1]) + ||(Rk,PT

∗
k,P − (T ∗

PTP )
−1T ∗

P )[rP ]||L2([0,1]),

which vanishes as k diverges by our conditions 1-2.

C Appendix for Section 3

The next lemma provides an useful “diagonalization argument” that is used throughout the
paper.

Lemma C.1. Let S = {k1, k2, ...} with ki < ki+1 for all i ∈ N. Take a real-valued sequence
(xk,n)k∈S,n∈N such that, for each k ∈ N, limn→∞ |xk,n| = 0. Then, there exists a mapping
n 7→ k(n) ∈ S such that (a) limn→∞ |xk(n),n| = 0 and (b) k(n) ↑ ∞.

Proof. By pointwise convergence of the sequence (xk,n)n, for any l ∈ N, there exists a n(l) ∈ N

such that |xkl,n| ≤ 1/2kl for all n ≥ n(l). WLOG we take n(l + 1) > n(l).
We now construct the mapping n 7→ k(n) as follows: For each l ∈ N, let k(n) ≡ kl for

all n ∈ {n(l) + 1, ..., n(l + 1)}; and k(n) = 0 for n ∈ {0, ..., n(0)}. Since the cutoffs n(.)
are increasing the set {n(l) + 1, ..., n(l + 1)} is non-empty for each l. For integer L > 0,
k(n) > kL for all n ≥ n(L) + 1; since (kl)l diverges, (b) follows.

To show (a), for any ǫ > 0 take lǫ such that 1/2klǫ ≤ ǫ. Observe that for any n ≥ n(lǫ)+1,
|xk(n),n| ≤ 1/2lǫ ≤ ǫ by construction of (n, k(n)). Thus, (a) follows.

As the next lemma shows, when the regularization is continuous, the “sampling error”
term, ||ψk(Pn)− ψk(P )||Θ is of order δk(r

−1
n ) in probability.

Lemma C.2. Suppose a regularization, ψ, is continuous (at P ) with respect to d and there
exists a real-valued positive sequence (rn)n∈N such that d(Pn, P ) = OP (r

−1
n ). Then, for any

ǫ > 0, there exists a M > 0 and a N ∈ N such that

sup
k∈K

P
(

||ψk(Pn)− ψk(P )||Θ > δk(Mr−1
n )
)

≤ ǫ

for all n ≥ N .

Proof of Lemma C.2. For any k ∈ K and any n ∈ N, by continuity it follows ||ψk(Pn(Z))−
ψk(P )||Θ ≤ δk(d(Pn(Z), P )) a.s.-P. In what follows, we omit the dependence on Z.
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So it suffices to show that there exists a diverging (kn)n such that for any ǫ > 0, there
exists a N ∈ N and a M > 0 such that

sup
k∈K

P
(

δk(d(Pn, P )) > δk(Mr−1
n )
)

≤ ǫ

for all n ≥ N .
Since t 7→ δk(t) is non-decreasing for all k ∈ K, it follows thatP (δk(d(Pn, P )) > δk(Mr−1

n )) ≤
P (d(Pn, P ) ≥Mr−1

n ) for any (n, k) ∈ N×K and any M > 0. Hence,

sup
k∈K

P
(

δk(d(Pn, P )) > δk(Mr−1
n )
)

≤ P
(

d(Pn, P ) ≥Mr−1
n

)

for any n ∈ N and any M > 0.
By assumption, rnd(Pn, P ) = OP (1). This fact and the previous inequality imply the

desired result.

Proof of Theorem 3.1. Fix any ǫ > 0. By the triangle inequality and laws of probability, for
any (k, n) ∈ N×K,

P (||ψk(Pn)− ψ(P )||Θ > ǫ) ≤ P (||ψk(Pn)− ψk(P )||Θ > 0.5ǫ) + 1{||ψk(P )− ψ(P )||Θ > 0.5ǫ}.

By assumption, there exists a (rn)n∈N such that r−1
n = o(1) and d(Pn, P ) = OP (r

−1
n ).

Thus, by Lemma C.2, there exists a N ∈ N and a M > 0 such that for all k ∈ K and all
n ≥ N ,

P (||ψk(Pn)− ψ(P )||Θ > ǫ) ≤ ǫ+ 1{δk(Mr−1
n ) > 0.5ǫ}+ 1{||ψk(P )− ψ(P )||Θ > 0.5ǫ}.

Observe that for each k, δk(Mr−1
n ) = o(1). Since K is unbounded it contains a diverging

increasing sequence, therefore, by Lemma C.1, there exists a diverging (kn)n∈N such that
δkn(Mr−1

n ) = o(1). This result, condition 2 in the definition of regularization and the previous
display at k = kn, imply that

lim sup
n→∞

P (||ψkn(Pn)− ψ(P )||Θ > ǫ) ≤ ǫ.

Finally, we show that δkn(d(Pn, P )) = oP (1). Since t 7→ δk(t) is non-decreasing for all
k ∈ K and d(Pn, P ) = OP (r

−1
n ) it follows that P (δkn(d(Pn, P )) ≥ δkn(Mr−1

n )) ≤ ǫ for all
n ≥ N ′ (WLOG we take N ′ = N). Since δkn(Mr−1

n ) = o(1) the result follows.

D Appendix for Section 4

Observe that the set Ln is random. To stress this dependence, with some abuse of notation,
we will sometimes use Ln(z) to denote the set.
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D.1 Proof of Theorem 4.1

The next lemma provides two sufficient conditions that ensure the result in Theorem 4.1.
To do this, for any n ∈ N, let

Dn ≡ {z ∈ Z
∞ : d(Pn(z), P ) ≤ r−1

n }.

Lemma D.1. Suppose there exists a sequence (jn)n∈N such that

1. For any ǫ > 0, there exists a N such that P ({z ∈ Z∞ : jn ∈ Ln(z)} ∩Dn) ≥ 1 − ǫ for
all n ≥ N .

2. There exists a constant L < ∞ such that δ̄jn(r
−1
n ) + B̄jn(P ) ≤ L infk∈Kn

{δ̄k(r−1
n ) +

B̄k(P )}.

Then

||ψk̃n(Pn)− ψ(P )||Θ = OP

(

inf
k∈Kn

{δ̄k(r−1
n ) + B̄k(P )}

)

.

Proof. Let An ≡ {z ∈ Z∞ : jn ∈ Ln(z)}.
For any z ∈ An ∩Dn, it follows that

||ψk̃n(z)(Pn(z))− ψ(P )||Θ ≤||ψk̃n(z)(Pn(z))− ψjn(Pn(z))||Θ + ||ψjn(Pn(z))− ψ(P )||Θ
≤||ψk̃n(z)(Pn(z))− ψjn(Pn(z))||Θ + δ̄jn(r

−1
n ) + B̄jn(P )

≤4δ̄jn(r
−1
n ) + δ̄jn(r

−1
n ) + B̄jn(P ),

where the first linear follows from triangle inequality; the second line follows from the fact
that z ∈ Dn and t 7→ δ̄k(t) is non-decreasing; the third line follows from the fact that z ∈ An
and thus jn ≥ k̃n(z). Thus,

An ∩Dn ⊆
{

z ∈ Z
∞ : ||ψk̃n(z)(Pn(z))− ψ(P )||Θ ≤ 5

(

δ̄jn(r
−1
n ) + B̄jn(P )

)

}

⊆
{

z ∈ Z
∞ : ||ψk̃n(z)(Pn(z))− ψ(P )||Θ ≤ 5L inf

k∈Kn

{δ̄k(r−1
n ) + B̄k(P )}

}

where the last linear follows from the second condition. Since by condition 1, An∩Dn occurs
with high probability, the result follows.

We now construct a sequence (hn)n that satisfies both conditions of the lemma. To do
this, let for each n ∈ N,

K
+
n ≡{k ∈ Kn : δ̄k(r

−1
n ) ≥ B̄k(P )}

K
−
n ≡{k ∈ Kn : δ̄k(r

−1
n ) ≤ B̄k(P )}.

Remark D.1. For any n ∈ N, K+
n or K−

n are non-empty. △
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For each n ∈ N, let

T+
n = δ̄h+n (r

−1
n ) + B̄h+n

(P )

if K+
n is non-empty where

h+n = min{k : k ∈ K
+
n };

and T+
n = +∞, if K+

n is empty. Similarly,

T−
n = δ̄h−n (r

−1
n ) + B̄h−n

(P )

if K−
n is non-empty where

h−n = max{k : k ∈ K
−
n };

and T−
n = +∞, if K−

n is empty.

Remark D.2. (1) Observe that when K+
n (resp. K−

n ) is non-empty, since it is discrete, h+n
(resp. h−n ) is well-defined.

Intuitively, h+n is the “round up” version within Kn of k(n); and h−n is the “round down”
version within Kn of k(n).

(2) By our previous observation and the fact that either K+
n or K−

n is non-empty, it follows
that either T+

n or T−
n is finite. △

Finally, for each n ∈ N, let hn ∈ Kn be such that

hn = h+n 1{T+
n ≤ T−

n }+ h−n 1{T+
n > T−

n }.

Lemma D.2. For each n ∈ N, hn exists and

δ̄hn(r
−1
n ) + B̄hn(P ) = min

{

T−
n , T

+
n

}

.

Proof. For each n, by our previous remark, either T+
n or T−

n is finite.
If T+

n = ∞, then T−
n <∞ = T+

n so h−n exists and hn = h−n .
If T−

n = ∞, then T+
n <∞ = T−

n so h+n exists and hn = h+n .
Finally, if both are finite, then both h+n and h−n exist.
The fact that

δ̄hn(r
−1
n ) + B̄hn(P ) = min

{

T−
n , T

+
n

}

follows by construction.

Lemma D.3. For each n ∈ N,

δ̄hn(r
−1
n ) + B̄hn(P ) ≤ 2 inf

k∈Kn

{δ̄k(r−1
n ) + B̄k(P )}.
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Proof. Observe that

inf
k∈Kn

{δ̄k(r−1
n ) + B̄k(P )} ≥ min{ inf

k∈G+
n

{δ̄k(r−1
n ) + B̄k(P )}, inf

k∈G−

n

{δ̄k(r−1
n ) + B̄k(P )}}

where the infimum is defined as +∞ if the corresponding set is empty.
Fix any n ∈ N, if G+

n 6= {∅},

inf
k∈G+

n

{δ̄k(r−1
n ) + B̄k(P )} ≥ inf

k∈G+
n

{δ̄k(r−1
n )} = δ̄h+n (r

−1
n ) ≥ 0.5

(

δ̄h+n (r
−1
n ) + B̄h+n

(P )
)

where the first inequality follows from the fact that B̄k(P ) ≥ 0; the second one (the equality)
follows from the fact that k 7→ δ̄k(r

−1
n ) is non-decreasing and that h+n is minimal over G+

n ;
the third inequality follows from the fact that δ̄h+n (r

−1
n ) ≥ B̄h+n

(P ).
Similarly, if G−

n 6= {∅},

inf
k∈G−

n

{δ̄k(r−1
n ) + B̄k(P )} ≥ inf

k∈G−

n

{B̄k(P )} = B̄h−n
(P ) ≥ 0.5

(

δ̄h−n (r
−1
n ) + B̄h−n

(P )
)

.

Observe that here we use monotonicity of k 7→ B̄k(P ).
Thus,

inf
k∈Kn

{δ̄k(r−1
n ) + B̄k(P )} ≥ 0.5min{T−

n , T
+
n },

and by Lemma D.2 the desired result follows.

Lemma D.4. For any n ∈ N, P({z ∈ Z∞ : hn /∈ Ln(z)}) ≤ P(DC
n ).

Proof. For any n ∈ N,

P({z ∈ Z
∞ : hn /∈ Ln(z)}) ≤ P({z ∈ Z

∞ : hn /∈ Ln(z)} ∩Dn) +P(DC
n ).

By definition of Ln (omitting the dependence on Z),

{hn /∈ Ln} ⊆
{

∃k ∈ Kn : k > hn and ||ψk(Pn)− ψhn(Pn)||Θ > 4δ̄k(r
−1
n )
}

.

By triangle inequality and the fact that t 7→ δ̄k(t) is non-decreasing,

{hn /∈ Ln} ∩Dn ⊆
{

∃k ∈ Kn : k > hn and δ̄k(r
−1
n ) + B̄k(P ) + δ̄hn(r

−1
n ) + B̄hn(P ) > 4δ̄k(r

−1
n )
}

.
(17)

We now derive a series of useful claims.

Claim 1: If there exists k ∈ Kn such that k > hn and hn = h−n , then k ∈ G+
n . Proof: If

hn = h−n , then hn is the largest element of G−
n and thus k /∈ G−

n , which means that k ∈ G+
n .

�
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A corollary of this claim is that if there exists k ∈ Kn such that k > hn and hn = h−n ,
then G+

n is non-empty. From this claim, we derive the following two claims.

Claim 2: If there exists a k > hn, then δ̄hn(r
−1
n ) + B̄hn(P ) ≤ 2δ̄h+n (r

−1
n ). Proof:

If hn = h+n , then δ̄hn(r
−1
n ) + B̄hn(P ) ≤ δ̄h+n (r

−1
n ) + B̄h+n

(P ) ≤ 2δ̄h+n (r
−1
n ). If hn = h−n ,

by the previous claim it follows that G+
n is non-empty and thus h+n is well-defined, thus

δ̄hn(r
−1
n ) + B̄hn(P ) ≤ δ̄h+n (r

−1
n ) + B̄h+n

(P ) ≤ 2δ̄h+n (r
−1
n ). �

Claim 3: For any k > hn, δ̄k(r
−1
n ) ≥ B̄k(P ). Proof: If hn = h+n then the claim follows

because k 7→ δ̄k(r
−1
n ) − B̄k(P ) is non-decreasing. If hn = h−n , then k ∈ G+

n by Claim 1 and
thus δ̄k(r

−1
n ) ≥ B̄k(P ). �

By Claims 2 and 3, it follows that if there exists k ∈ Kn such that k ≥ hn, then
δ̄k(r

−1
n ) + B̄k(P ) + δ̄hn(r

−1
n ) + B̄hn(P ) ≤ 2δ̄k(r

−1
n ) + 2δ̄h+n (r

−1
n ) ≤ 4δ̄k(r

−1
n ) where the last

inequality follows monotonicity of k 7→ δ̄k(r
−1
n ) and the fact that k > h+n because k > hn

and so by Claim 1 k ∈ K
+
n and h+n is minimal in this set. Applying this to expression 17, it

follows that

{hn /∈ Ln} ∩Dn ⊆
{

∃k ∈ Kn : k ≥ hn and 4δ̄k(r
−1
n ) > 4δ̄k(r

−1
n )
}

, (18)

which is empty. Hence, P({z ∈ Z∞ : hn /∈ Ln(z)}) ≤ P(DC
n ) as desired.

Proof of Theorem 4.1. We verify that (hn)n∈N satisfies both conditions in Lemma D.1. By
Lemma D.3 condition 2 in the Lemma D.1 holds with L = 2. To check condition 1 in the
Lemma D.1, observe that

P (Z∞ \ {{z ∈ Z
∞ : hn ∈ Ln(z)} ∩Dn}) ≤ P ({z ∈ Z

∞ : hn /∈ Ln(z)}) +P
(

DC
n

)

.

Thus, by Lemma D.4 and the fact limn→∞P(DC
n ) = 0, (hn)n∈N condition 2 is satisfied.

D.2 Proof of Proposition D.1

For any n ∈ N, let

k(n) = min{k ∈ R+ : δ̄k(r
−1
n ) ≥ B̄k(P )}.

Lemma D.5. For each n ∈ N, k(n) exists and solves

δ̄k(n)(r
−1
n ) = B̄k(n)(P ) = min

k∈R+

max{δ̄k(r−1
n ), B̄k(P )}.

Proof. For each n consider the set {k ∈ R+ : δ̄k(r
−1
n ) ≥ B̄k(P )}. The set is closed since

k 7→ B̄k(P ) and k 7→ δ̄k(r
−1
n ) are continuous. Since δ̄k(r

−1
n ) > 0 and B̄k(P ) = o(1), if follows

that there exists a K(n) < ∞ such that δ̄k(r
−1
n ) ≥ B̄k(P ) for any k ≥ K(n). Thus the set

is non-empty and since we are minimizing the identity function, the minimizer exists and
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uniquely determined by

δ̄k(n)(r
−1
n ) = B̄k(n)(P ).

The second equality is obvious.

The next lemma shows that balancing the sampling and approximation error yields the
same rate as the “optimal” choice.

Lemma D.6. For any n ∈ N,

δ̄k(n)(r
−1
n ) ≤ inf

k∈R+

{δ̄k(r−1
n ) + B̄k(P )} ≤ 2δ̄k(n)(r

−1
n ).

Proof. Observe that for any n ∈ N and any ǫ > 0, there exists k∗(n) such that

δ̄k∗(n)(r
−1
n ) + B̄k∗(n)(P )− ǫ ≤ inf

k∈R+

{δ̄k(r−1
n ) + B̄k(P )} ≤ 2δ̄k(n)(r

−1
n ).

The upper bound follows from the fact that infk∈R+{δ̄k(r−1
n )+B̄k(P )} ≤ δ̄k(n)(r

−1
n )+B̄k(n)(P )

and definition of k(n).
If k∗(n) ≥ k(n), then δ̄k∗(n)(r

−1
n ) ≥ δ̄k(n)(r

−1
n ) since k 7→ δ̄k(t) is non-decreasing for any

t ≥ 0 On the other hand, if k∗(n) < k(n), then B̄k∗(n)(P ) ≥ B̄k(n)(P ) = δ̄k(n)(r
−1
n ) where the

last equality follows from Lemma D.5. Therefore, for any n ∈ N and any ǫ > 0,

δ̄k(n)(r
−1
n )− ǫ ≤ inf

k∈R
{δ̄k(r−1

n ) + B̄k(P )} ≤ 2δ̄k(n)(r
−1
n ).

Since ǫ > 0 is arbitrary the result follows.

D.3 Extensions of Theorem 4.1

In this section we show that Theorem 4.1 can be extended to whole when Kn is any closed
set of K. The extension is merely technical as one needs to ensure that some minimizers are
attained over Kn when this set is not finite.

First, one needs to ensure that k̃n exists with probability approaching 1. Lemma D.4
shows that with probability approaching one, the set Ln is non-empty. Thus, it suffices to
argue that Ln is closed. It is easy to see that the following assumption is sufficient for this.

Assumption D.1. For each P ∈ D and each t ≥ 0, the mapping k 7→ ψk(P ) is continuous
over Kn.

Observe that when Kn is finite this condition is trivially satisfied and that is why it is
not imposed in the text.

The following theorem is an extension of Theorem 4.1 to the case where Kn is a closed
set (not necessarily finite) of K.
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Theorem D.1. Suppose all assumptions in Theorem 4.1 hold. And suppose further that
Kn is a closed set (not necessarily finite) of K and that Assumptions D.1 holds. Then

||ψk̃n(Pn)− ψ(P )||Θ = OP

(

inf
k∈Kn

{δ̄k(r−1
n ) + B̄k(P )}

)

.

Proof. The proof is identical to the one of Theorem 4.1. Assumption D.1 and the fact that
K is closed ensure that the quantities defined in the proof exist.

The following proposition extends the result in Theorem 4.1 to an un-restricted one —
where the infimum is not restricted to the set Kn but is taken over the whole K. Unsurpris-
ingly, in order to obtain this result, additional conditions are needed.

Proposition D.1. Suppose all conditions in Theorem 4.1 hold, and that k 7→ δ̄k(t) and
k 7→ B̄k(P ) are continuous and

mink∈K+
n
δ̄k(r

−1
n )

maxk∈K−

n
δ̄k(r−1

n )
= O(1) (19)

where K+
n ≡ {k ∈ Kn : δ̄k(r

−1
n ) ≥ B̄k(P )} and K−

n ≡ {k ∈ Kn : δ̄k(r
−1
n ) ≤ B̄k(P )} are

non-empty. Then

||ψk̃n(Pn)− ψ(P )||Θ = OP

(

inf
k∈K

{δ̄k(r−1
n ) + B̄k(P )}

)

.

Proof of Proposition D.1. By inspection of the proof of Lemma D.1 it suffices to show exis-
tence of a sequence (jn)n for which Condition 1 and the following strengthening of condition
2 holds:

Condition 2’: There exists a constant L <∞ such that δ̄jn(r
−1
n )+B̄jn(P ) ≤ L infk∈R+{δ̄k(r−1

n )+
B̄k(P )} for any n ∈ N.

As for the proof of Theorem 4.1, we propose jn = hn for all n ∈ N. By Lemma D.4
condition 1 holds, so it only remains to show that Condition 2’ holds.

Under the conditions in the proposition, h+n and h−n are well-defined for all n ∈ N.
Moreover, they are either the same or consecutive elements in Kn. Thus, under the conditions
in the proposition, there exists a C < ∞ and a N ∈ N such that δ̄h+n (r

−1
n ) ≤ Cδ̄h−n (r

−1
n ) for

all n ≥ N . Therefore, for all n ≥ N ,

δ̄hn(r
−1
n ) + B̄hn(P ) =min{δ̄h−n (r

−1
n ) + B̄h−n

(P ), δ̄h+n (r
−1
n ) + B̄h+n

(P )}
≤min{δ̄h−n (r

−1
n ) + B̄h−n

(P ), 2δ̄h+n (r
−1
n )}

≤min{δ̄h−n (r
−1
n ) + B̄h−n

(P ), 2Cδ̄h−n (r
−1
n )}

≤2Cδ̄h−n (r
−1
n ).

Observe that h−n ≤ k(n) because, by definition δ̄h−n (r
−1
n ) ≤ B̄h−n

(P ) but k(n) satisfies
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δ̄k(n)(r
−1
n ) ≥ B̄k(n)(P ), so under the fact that k 7→ B̄k(P ) is non-increasing it must follow

that h−n ≤ k(n). Thus, δ̄h−n (r
−1
n ) ≤ δ̄k(n)(r

−1
n ) and the result follows from Lemma D.6.

Remark D.3 (Sufficient conditions for K+
n and K−

n to be non-empty in the proposition).
The condition that δ̄j(r

−1
n ) < B̄j(P ) for some j ∈ Kn is easy to satisfy as any fix j (e.g.

j = 1) will satisfy this condition eventually. The other inequality is more delicate but the
next lemma provides the basis for its verification.

Lemma D.7. lim supn→∞ δ̄k(n)(r
−1
n ) = 0.

Proof. Suppose not. Then there exists a sub-sequence (n(j))j and a c > 0 such that
δ̄k(n(j))(r

−1
n(j)) ≥ c for all j. Clearly (k(n(j)))j must diverge, so B̄k(n(j))(P ) = o(1), but

then k(n(j)) cannot be balancing both terms.

Let (j(n))n be such that lim infn→∞ δ̄j(n)(r
−1
n ) > 0. Since lim supn→∞ δ̄k(n)(r

−1
n ) = 0, it

follows that j(n) > k(n) eventually and thus δ̄j(n)(r
−1
n ) > B̄j(n)(P ).

Thus, any set Kn such that Kn ∋ {1, j(n)} will satisfy that K+
n and K−

n are non-empty,
at least for sufficiently large n. △

Remark D.4 (On the conditions in the proposition). The continuity condition is technical
and it ensures that certain minimizers/maximizers are well-defined. Condition 19 imply the
following two restrictions that are used in the proof:

(1) The fact that both K
+
n and K

−
n are non-empty ensures that the set Kn surrounds the

choice of tuning parameter that balances the sampling error and the monotone envelope of
the approximation error. If this condition fails, the minimal value of k 7→ {δ̄k(r−1

n )+ B̄k(P )}
over Kn cannot be expected to be close to the value achieved when balancing both terms and
thus close to the minimal value over R+. In Appendix D.2 we argue that Kn = {1, ...., j(n)}
where (j(n))n is such that lim infn→∞ δ̄j(n)(r

−1
n ) > 0 satisfies this assumption, at least for

large n.
(2) The second role is more subtle. It essentially restricts — uniformly — the coarseness

of the set Kn in terms of k 7→ δ̄k(t). If δ̄k(t) = a(t) × Ck and Kn = N, then the condition
essentially imposes that lim supk→∞Ck+1/Ck < ∞; thus it allows for Ck ≍ Poly(k) and
logCk ≍ k but not for logCk ≍ k2. △

D.4 Appendix for Section 5

For any probability P over a set A and any k ∈ N, let
⊗k

i=1 P be the product probability

measure over
∏k

i=1A induced by P . Also, recal that the Wasserstein distance for p ≥ 1 over

P(
∏k

i=1Z) for some k ≥ 1 is defined as

Wp(P,Q) ≡
(

inf
µ∈H(P,Q)

∫

||x− y||pµ(dx, dy)
)1/p
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for any P,Q in P(
∏k

i=1 Z), where H(P,Q) is the class of Borel probability measures over
Z2k with marginals P and Q. It is well-known that

(P,Q) 7→ ||P −Q||Lip(∏k
i=1 Z)

= W1(P,Q)

where for any set A, let LB(A) to denote the class of bounded Lipschitz (with constant 1)
real-valued functions on A; see Villani [2008] p. 60.

The following lemma is used in the proof

Lemma D.8. For any P,Q in P(Z), any k ∈ N and any µ ∈ H(P,Q),
⊗k

i=1 µ ∈ H
(

⊗k
i=1 P,

⊗k
i=1Q

)

.

Proof of Lemma D.8. It is clear that the marginal of
⊗k

i=1 µ of a pair (xi, yi) is µ. Therefore,
for any A1, ..., Ak Borel subsets on Z,

k
⊗

i=1

µ ((A1 × Z), ..., (Ak × Z)) =

k
∏

i=1

µ(Ai × Z) =∗
k
∏

i=1

P (Ai)

where ∗ follows because µ ∈ H(P,Q). Equivalently,

∫

g(~x)
k
⊗

i=1

µ(d~x, d~y) =

∫

g(~x)
k
⊗

i=1

P (d~x)

for any g belonging to the class of “simple” functions on
∏k

i=1 Z: The class of functions of the

form g(~x) =
∑k

i=1 1Ai
(xi) for any A1, ..., Ak Borel subsets on Z. Since the class of “simple”

functions is dense in C(Zk,R) (the class of continuous and bounded functions over Z), by
taking limits and using the previous display one can show that

∫

f(~x)

k
⊗

i=1

µ(d~x, d~y) =

∫

f(~x)

k
⊗

i=1

P (d~x)

for any f ∈ C(
∏k

i=1 Z,R). That is, the marginal probability of
⊗k

i=1 µ for the first k coordi-

nates is
⊗k

i=1 P . A completely analogous argument shows that the marginal probability of
⊗k

i=1 µ for the last k coordinates is
⊗k

i=1Q.

Proof of Proposition 5.1. First note that, for any f ∈ LB, Eψn(P )[f(Z)] =
∫

ψn(P )(f(Z) ≥
t)dt =

∫

P(f(Tn(z, P )) ≥ t)dt = EP [f (Tn(z, P ))]. Hence, it follows that

||ψk(P )− ψk(Q)||Θ ≤ sup
f∈Lip

|EP [f (Tk(z, P ))]− EQ∞ [f (Tk(z, P ))]|

+ sup
f∈Lip

|EQ∞ [f (Tk(z, P ))− f (Tk(z, Q))]|

≡T1,k(P,Q) + T2,k(P,Q).
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We now show that both terms, T1,k(P,Q) and T2,k(P,Q), are bounded by
√
kW1(P,Q).

For any k ∈ N, f (Tk(z, P )) ≡ fk

(√
kmax{k−1

∑k
i=1 Zi(z), 0}

)

where fk ≡ f(· −
√
kmax{EP [Z], 0}). It is easy to see that for any k, fk ∈ LB (given that f ∈ LB). Moreover,

the mapping t 7→ gk(t) ≡ fk(max{t, 0}) is also in Lip because

|gk(t)− gk(t
′)| ≤ |max{t, 0} −max{t′, 0}| ≤ |t′ − t|, ∀t, t′.

Finally, the mapping t 7→ gk(
√
kt)/

√
k is also in LB since gk ∈ Lip. Hence,

T1,k(P,Q) ≤
√
k sup
f∈Lip

∣

∣

∣

∣

∣

E⊗k
i=1 P

[

f

(

k−1
k
∑

i=1

Zi

)]

− E⊗k
i=1Q

[

f

(

k−1
k
∑

i=1

Zi

)]∣

∣

∣

∣

∣

. (20)

For any g : R → R, let ḡ : Rk → R
k be defined as

~z ≡ (z1, ..., zk) 7→ ḡ(~z) ≡ g

(

k−1
k
∑

i=1

zi

)

.

We now show that for any g ∈ LB(R), kḡ ∈ LB(Rk). This follows because

|ḡ(~z)− ḡ(~z′)| ≤ |k−1
k
∑

i=1

{zi − z′i}| ≤ k−1||~z − ~z′||1.

This result allow us to bound from above the LHS of the expression 20 so that

√
k sup
f∈LB

∣

∣

∣

∣

∣

E⊗k
i=1 P

[

f

(

k−1

k
∑

i=1

Zi

)]

− E⊗k
i=1Q

[

f

(

k−1

k
∑

i=1

Zi

)]∣

∣

∣

∣

∣

≤k−1/2 sup
f∈LB(Rk)

∣

∣

∣
E⊗k

i=1 P
[f(Z)]−E⊗k

i=1Q
[f(Z ′)]

∣

∣

∣

=k−1/2W1

(

k
⊗

i=1

P,

k
⊗

i=1

Q

)

.

For any µ ∈ H(P,Q),
⊗k

i=1 µ ∈ P(Zk × Zk) where Zk ≡ ∏k
i=1 Z. Moreover, by Lemma

D.8,
⊗k

i=1 µ ∈ H
(

⊗k
i=1 P,

⊗k
i=1Q

)

.

For any η > 0, let µ∗ ∈ H(P,Q) be the approximate minimizer of W1(P,Q), i.e.,

∫

|x− y|µ∗(dx, dy) ≤ W1(P,Q) + η,
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as
⊗k

i=1 µ
∗ ∈ H

(

⊗k
i=1 P,

⊗k
i=1Q

)

, it follows that

W1

(

k
⊗

i=1

P,

k
⊗

i=1

Q

)

≤
∫

Z2k

||~x− ~y||1
k
⊗

i=1

µ∗(dxi, dyi)

=

k
∑

i=1

∫

Z2

|xi − yi|
k
⊗

i=1

µ∗(dxi, dyi)

=
k
∑

i=1

∫

Z2

|xi − yi|µ∗(dxi, dyi)

=kW1(P,Q) + kη.

Since η > 0 is arbitrary, it follows that W1(P
k, Qk) ≤ kW1(P,Q). Thus implying

T1,k(P,Q) ≤
√
kW1(P,Q).

Regarding the term T2,k(P,Q), observe that

T2,k(P,Q) ≤|Tk(z, P )− Tk(z, Q)|
=
√
k|max{EP [Z], 0} −max{EQ[Z ′], 0}|

≤
√
k|EP [Z]− EQ[Z

′]|.

Since EP [Z] =
∫

Z2 zµ(dz, dz
′) for any µ ∈ H(P,Q).

T2,k(P,Q) ≤
√
k |Eµ[Z]− Eµ[Z

′]| ≤
√
k

∫

|z − z′|µ(dz, dz′).

Choosing µ as the (approximate) minimizer of W1(P,Q) it follows that

T2,k(P,Q) ≤
√
kW1(P,Q).

To show the proposition 5.2, let ψ(P ) ∈ P(R) be defined as the probability of max{ζ, 0}
if P is such that EP [Z] = 0 and the probability of ζ otherwise, where ζ ∼ N(0, 1). The
following lemma shows that ψ(P ) is the limit of (ψk(P ))k∈N.

Lemma D.9. For any k ∈ N and any P ∈ M,

||ψk(P )− ψ(P )||LB ≤ 6k−1/2EP [|Z|3] + 1{EP [Z] > 0}2Φ(−
√
kEP [Z])

Proof. Since P ∈ M, Tk(z, P ) = max{k−1/2
∑k

i=1(Zi(z) − EP [Z]),−
√
kEP [Z]} for any

k ∈ N.
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By triangle inequality and definition of ||.||LB,

||ψk(P )− ψ(P )||LB ≤ sup
f∈LB

E
[∣

∣

∣
f (Tk(z, P ))− f

(

max{ζ,−
√
kEP [Z]}

)∣

∣

∣

]

+ sup
f∈LB

E
[∣

∣

∣
f
(

max{ζ,−
√
kEP [Z]}

)

− f (sP (ζ))
∣

∣

∣

]

≡Term1(k) + Term2(k),

where ζ ∼ N(0, 1) and t 7→ sP (t) = max{t, 0} × 1{EP [Z] = 0}+ t× 1{EP [Z] > 0}.
We now provide a bound for terms Term1(k). For any f ∈ LB and any k ∈ N, the

mapping t 7→ fk(t) ≡ f(max{t,−
√
kEP [Z]}) satisfies, for any t ≤ t′,

|fk(t′)− fk(t)| ≤ |max{t′,−
√
kEP [Z]} −max{t,−

√
kEP [Z]}|

where the RHS is equal to 0 if t ≤ t′ ≤ −kEP [Z], t′−(−kEP [Z]) ≤ t′−t; if t ≤ −kEP [Z] ≤ t′;
and t′ − t if −kEP [Z] ≤ t ≤ t′. Hence |fk(t′) − fk(t)| ≤ |t′ − t|. The same inequality holds
when t′ ≤ t, so fk is in LB. Therefore,

Term1(k) ≤ sup
f∈LB

∣

∣

∣

∣

∣

EP

[

f

(

k−1/2
k
∑

i=1

(Zi −EP [Z])

)

− f (ζ)

]∣

∣

∣

∣

∣

≤ 6k−1/2EP [|Z|3]

where the last line follows from Berry-Esseen Inequality for Lipschitz functions (see Barbour and Chen
[2005] Thm. 3.2 in Ch. 1).

Regarding Term2(k), we note that if EP [Z] = 0, then Term2(k) = 0, because sP (ζ) =
max{ζ, 0}. So we only need a bound for EP [Z] > 0. Under this condition,

Term2(k) ≤ sup
f∈LB

E
[

1{ζ ≤ −
√
kEP [Z]}

∣

∣

∣
f
(

max{ζ,−
√
kEP [Z]}

)

− f (ζ)
∣

∣

∣

]

.

Since ||f ||L∞ ≤ 1, the inequality further implies that Term2(k) ≤ 2E
[

1{ζ ≤ −
√
kEP [Z]}

]

=

2Φ(−
√
kEP [Z]).

Proof of Proposition 5.2. By the triangle inequality,

||ψk̃n(Pn)− ψn(P )||LB ≤||ψk̃n(Pn)− ψ(P )||LB + ||ψ(P )− ψn(P )||LB

By Lemma D.9, ||ψk(P ) − ψ(P )||LB ≤ 6k−1/2EP [|Z|3] + 1{EP [Z] > 0}2Φ(−
√
kEP [Z]).

Thus, we can invoke Theorem 4.1 and its corollary to show that ||ψk̃n(Pn) − ψ(P )||LB =

OP

(

infk∈{1,...,n}{ln
√
kn−1/2 + 1{EP [Z] > 0}2Φ(−

√
kEP [Z]) + k−1/2EP [|Z|3]}

)

. It is clear

that the choice k that achieves the infimum will diverge with n, so for this choice of
k, 1{EP [Z] > 0}2Φ(−

√
kEP [Z]) will eventually be dominated by k−1/2EP [|Z|3]. Hence

||ψk̃n(Pn)− ψ(P )||LB = OP

(

infk∈{1,...,n}{ln
√
kn−1/2 + k−1/2EP [|Z|3]}

)
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The desired result follows from the fact that for sufficiently large n, ||ψ(P )−ψn(P )||LB ≤
8n−1/2EP [|Z|3] and the fact that there exists a C > 0 such that infk∈{1,...,n}{ln

√
kn−1/2 +

k−1/2EP [|Z|3]} ≥ Cn−1/2 for all n.

Proof of Proposition 5.3. Throughout, fix k and P, P ′ and let ||.||Θ ≡ ||.||Lq . Let Θk(M) ≡
{θ ∈ Θk : ||θ − ψk(P )||Θ ≥ M}. And, let

t 7→ Uk(t) ≡ inf
θ∈Θk(t)

Qk(P, θ)−Qk(P, ψk(P ))

t
.

Towards the end of the proof we show that Uk is continuous. Let t 7→ Γk(t) ≡ infs≥t Uk(s);
it follows that Γk ≤ Uk, Γk is non-decreasing and by the Theorem of the Maximum Γk is
continuous.

We show that ||ψk(P )− ψk(P
′)||Θ ≥ M ≡ Γ−1

k (d(P, P ′)) cannot occur.23 To do this, we
show that 1{||ψk(P )− ψk(P

′)||Θ ≥M} = 0. Observe that

1{||ψk(P )− ψk(P
′)||Θ ≥ M} =1{∪j∈N{2jM ≥ ||ψk(P )− ψk(P

′)||Θ ≥ 2j−1M}}
≤max

j∈N
1{2jM ≥ ||ψk(P )− ψk(P

′)||Θ ≥ 2j−1M}.

For each (j, k) ∈ N
2, let Sj,k ≡ {θ ∈ Θk : 2

jM ≥ ||ψk(P ) − θ||Θ ≥ 2j−1M}. It follows
that, for any j ∈ N,

1{ψk(P ′) ∈ Sj,k} ≤ 1

{

inf
θ∈Sj,k

Q(P ′, θ) ≤ Q(P ′, ψk(P ))

}

because ψk(P ) ∈ Θk \ Sj,k. Observe that, for any θ ∈ Sj,k ∪ {ψk(P )} ⊆ {θ ∈ Θk : ||θ −
ψk(P )||Θ ≤ 2jM}

Q(P ′, θ)−Q(P ′, ψk(P )) ≥Q(P, θ)−Q(P, ψk(P ))

− |Q(P ′, θ)−Q(P ′, ψk(P ))− {Q(P, θ)−Q(P, ψk(P ))}|
≥Q(P, θ)−Q(P, ψk(P ))− 2jM∆j,k(P, P

′)

where

∆j,k(P, P
′) ≡ sup

θ∈Θk : ||θ−ψk(P )||Θ≤2jM

|Q(P ′, θ)−Q(P ′, ψk(P ))− {Q(P, θ)−Q(P, ψk(P ))}|
||θ − ψk(P )||Θ

.

23Note that Ū−1
k (t) ≡ inf{s : Ūk(s) ≥ t}.
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Hence,

1{ψk(P ′) ∈ Sj,k} ≤1

{

inf
θ∈Θk : ||θ−ψk(P )||Θ≥2j−1M

Q(P, θ)−Q(P, ψk(P ))

2j−1M
≤ 0.5∆j,k(P, P

′)

}

≤1

{

inf
θ∈Θk : ||θ−ψk(P )||Θ≥2j−1M

Q(P, θ)−Q(P, ψk(P ))

2j−1M
≤ 0.5max

k∈N
∆∞,k(P, P

′)

}

≤1

{

Γk(2
j−1M) ≤ 0.5max

k∈N
∆∞,k(P, P

′)

}

.

Since Ūk is non-decreasing, the previous display implies that

1{ψk(P ′) ∈ Sj,k} ≤ 1

{

2j−1M ≤ Γ−1
k (0.5max

k∈N
∆∞,k(P, P

′))

}

which equals zero by the definition of M , the fact that Γ−1
k is non-decreasing and 2j−1 ≥ 1.

We now show that t 7→ Uk(t) (and thus Γk) is continuous. Consider the problem
infθ∈Θk(M)Qk(P, θ), and consider the set Lk(M) ≡ {θ ∈ Θk(M) : Pen(θ) ≤ λ−1

k Q(P, θk)}
for some (any) θk ∈ Θk(M) which is non-empty and close. To solve the former minimization
problem it suffices to solve infθ∈Lk(M)Qk(P, θ), because the minimum value cannot be outside
Lk(M). Because Pen is lower-semi-compact, Lk(M) is compact (a closed subset of a compact
set) so this and lower-semi-continuity of Qk(P, ·) ensures that infθ∈Lk(M)Qk(P, θ) is achieved
by an element in Lk(M) and the same is true for the original Vk(M) ≡ infθ∈Θk(M)Qk(P, θ).
We just showed that the correspondence M 7→ Lk(M) is compact-valued, it is also continu-
ous. By virtue of the Theorem of the Maximum, Vk is continuous; it is also non-decreasing.
The function t 7→ Uk(t) = Vk(t)/t is also continuous in t > 0.

E Appendix for Section 6

Proof of Theorem 6.1. We first show the desired result for a fixed k, i.e., k(n) = k for any
n ∈ N.

Let (z, k) 7→ ϕk(P ) ≡ Dψk(P )[δz − P ] which is well-defined because δz − P ∈ TP .
We now show that ϕk(P ) ∈ L2

0(P ). The fact that has mean zero (provided it exists) is
trivial, so we only show that

∫

|ϕk(P )(z)|2P (dz) < ∞. The topology is locally convex
and thus generated by a family of semi-norms. Suppose there exists a L < ∞ such that
|Dψk(P )[δz − P ]| ≤ ρ(δz − P ) where ρ is a member of the family. Because the topology τ is
assumed to be dominated by ||.||TV it follows that ρ(δz −P ) ≤ C||δz−P ||TV ≤ 2C for some
finite C for any z ∈ Z. And thus

∫

|ϕk(P )(z)|2P (dz) ≤ 2CL <∞ as desired.
We now show that there exists a member of the family of semi-norms, ρ, and a L < ∞

such that |Dψk(P )[Q]| ≤ Lρ(Q) for all Q ∈ ca(Z). Suppose not, that is, for any R > 0
and any ρ, there exists a Q such that ρ(Q) = 1 and |Dψk(P )[Q]| > R. Since Dψk(P ) is
continuous with respect to τ , there exists a member, ρ, of the family of semi-norms such that
for any ǫ > 0 there exists δ > 0 such that if Q is such that ρ(Q) ≤ δ, then |Dψk(P )[Q]| < ǫ.
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Let R = ǫ/δ. There exists a Q such that ρ(Q) = 1 and δ|Dψk(P )[Q]| > ǫ. Let ν = δQ, then
ρ(ν) = δ but δ|Dψk(P )[Q]| = |Dψk(P )[δQ]| = |Dψk(P )[ν]| > ǫ but this is a contradiction.

We now show that ηk(Pn − P ) = oP (n
−1/2) for each k ∈ K. Let n 7→ Gn ≡ √

n(Pn − P ).
It follows that, a.s.-P, t 7→ P + tGn is a valid curve because Gn ∈ TP a.s.-P.

Fix any ǫ > 0 and let U ∈ C be as in the condition of the statement of the theorem.
Then, letting Dn ≡ {z ∈ Z

∞ : Gn(z) ∈ U}, it follows that

P
(√

n|ηk(Pn − P )| ≥ ǫ
)

≤ P
(√

n|ηk(Pn − P )| ≥ ǫ | Dn

)

+P(DC
n ).

The second term in the RHS is less than ǫ for all n ≥ N . Regarding the first term in the
RHS it follows that, over Dn,

|ηk (Pn − P ) |/tn ≤ sup
Q∈U

|ηk (tnQ) |/tn

where tn ≡ 1/
√
n. Thus, by definition of differentiability, the first term in the RHS also

vanishes as n→ ∞. So the desired result follows.
Therefore, for any k ∈ K

1

||ϕk(P )||L2(P )

∣

∣

∣

∣

∣

√
n(ψk(Pn)− ψk(P ))− n−1

n
∑

i=1

Dψk(P )[δZi
− P ]

∣

∣

∣

∣

∣

=

√
n|ηk(Pn − P )|
||ϕk(P )||L2(P )

and
√
n|ηk(Pn−P )|

||ϕk(P )||
L2(P )

= oP (1), as desired.

We now shows existence of a diverging sequence by using the first part and the diagonal-
ization lemma C.1.

For any ǫ > 0, k ∈ N and n ∈ N, let T (ǫ, k, n) ≡ P
(√

n |ηk(Pn(z)−P )|
||ϕk(P )||

L2(P )
≥ ǫ
)

. To show

the desired result it suffices to show that there exists a non-decreasing diverging sequence
(j(n))n such that for all ǫ > 0, there exists a N̄ such that

T (ǫ, j(n), n) ≤ ǫ,

for all n ≥ N̄ .
We shows that, for any k ∈ K, limn→∞ T (2−k, k, n) = 0. By Lemma C.1, there exists

a non-decreasing diverging sequence (j(n))n∈N such that limn→∞ T (2−j(n), j(n), n) = 0; i.e.,
for any ǫ > 0, there exists a N(ǫ) such that T (2−j(n), j(n), n) ≤ ǫ for all n ≥ N(ǫ).

Since j(.) diverges, there exists a Nǫ such that 1/2j(n) ≤ ǫ for all n ≥ Nǫ. By these
observations and the fact that ǫ 7→ T (ǫ, k, n) is non-increasing,

T (ǫ, j(n), n) ≤ T (2−j(n), j(n), n) ≤ ǫ

for all n ≥ N̄ǫ ≡ max{Nǫ, N(ǫ)}, and we thus showed the desired result.
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The following result is a well-known representation result (see van der Vaart and Wellner
[1996]) and is stated merely for convenience.

Lemma E.1. Let z 7→ Gn(z) ≡ √
n(Pn(z) − P ). Suppose S is P-Donsker. Then there

exists a tight Borel measurable G ∈ L∞(S) such that for any ǫ > 0, there exists a Borel set
A ⊆ Z∞ such that P(A) ≥ 1− ǫ and ||Gn(z)−G||S = o(1) for all z ∈ A.

In the following proof, almost uniformly means that for any ǫ > 0, there exists a Borel
set A ∈ Z̃∞ such that P̃ (A) ≥ 1− ǫ and supτ∈A ||G̃n(τ)− G̃||L∞(S) = o(1).

Proof of Lemma E.1. It is well-known that the following representation is also valid: Gn :
Z∞ → L∞(S). Since S is a Donsker Class, Gn converges weakly to some G tight Borel
measurable element in L∞(S) (e.g. see van der Vaart and Wellner [1996] Ch. 2.1). By
Theorem 1.10.3 in van der Vaart and Wellner [1996] there exists a probability space (Z̃∞, P̃ )
and a sequence of maps G̃n : Z̃∞ → L∞(S) for all n ∈ N and G̃ : Z̃∞ → L∞(S) such that (i)
||G̃n− G̃||L∞(S) = o(1) almost uniformly; and (ii) G̃n and G̃ have the same law as Gn and G

resp.

E.1 Appendix for Example 6.2

Lemma E.2. For all k ∈ N and P ∈ M,

||ϕk(P )||L2(P ) ≤ ||p||2L∞(R)||κ||2L1(R).

Proof. It suffices to show that EP [|(κk ⋆ P )(Z)|2] ≤ ||p||2L∞

(∫

|κ(u)|du
)2
. To do this, note

that

EP [|(κk ⋆ P )(Z)|2] =
∫
(
∫

kκ((x− z)k)p(x)dx

)2

p(z)dx

=

∫
(
∫

κ(u)p(z + u/k)du

)2

p(z)dz

≤||p||2L∞

(
∫

|κ(u)|du
)2

.

Proof of Proposition 6.1. Consider the curve t 7→ P + tQ for any Q ∈ ca(R). It is a valid
curve because Dψ = ca(R). Therefore

ψk(P + tQ)− ψk(P ) =t

{
∫

(κk ⋆ Q)(x)P (dx) +

∫

(κk ⋆ P )(x)Q(dx)

}

+ t2
∫

(κk ⋆ Q)(x)Q(dx).
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Since κ is symmetric,
∫

(κk ⋆ P )(x)Q(dx) =
∫

(κk ⋆ Q)(x)P (dx). From this display, Q 7→
ηk(Q) =

∫

(κk ⋆ Q)(x)Q(dx) and Q 7→ Dψk(P )[Q] = 2
∫

(κk ⋆ P )(x)Q(dx).
The mapping Q 7→ 2

∫

(κk ⋆ P )(x)Q(dx) is clearly linear. Also, note that for any reals x
and x′

|(κk ⋆ P )(x)− (κk ⋆ P )(x
′)| =k

∣

∣

∣

∣

∫

p(y)(κ(k(y − x))dy − κ(k(y − x′)))dy

∣

∣

∣

∣

≤Ck2|x− x′|

for some C < ∞. The last inequality follows from the fact that x 7→ κ(x) is smooth.
Therefore x 7→ (k2/C)(κk ⋆ P )(x) is in LB. This implies that for any Q′ and Q in ca(Z),

∣

∣

∣

∣

∫

(κk ⋆ P )(x)Q
′(dx)−

∫

(κk ⋆ P )(x)Q(dx)

∣

∣

∣

∣

≤ k2C||Q′ −Q||LB

and thus Q 7→ 2
∫

(κk ⋆ P )(x)Q(dx) is ||.||LB-continuous.
We now bound Q 7→ ηk(Q). For any x

′ > x and any Q ∈ TP , it follows that

κk ⋆ Q(x)− κk ⋆ Q(x
′) =

∫

k(κ(k(y − x))− κ(k(y − x′)))Q(dy)

=

∫

k2
∫ x′

x

κ′(y − t)dtQ(dy)

=k2
∫ x′

x

∫

κ′(y − t)Q(dy)

where the last line follows from the fact that t 7→ κ(t) is bounded. Since κ is smooth,
y 7→ κ′(y − t) is Lipschitz (with some constant L) for any t ∈ R. Hence

|κk ⋆ Q(x)− κk ⋆ Q(x
′)| ≤ L|x′ − x|||Q||LB.

Thus, the mapping x 7→ (κk ⋆ Q)(x) is bounded and Lipschitz with constant L||Q||LB.
Therefore,

|ηk(Q)| ≤ L||Q||2LB.

E.2 Appendix for Examples 6.3 and 6.4

First, note that Dψ ⊆ ca(R × [0, 1]2) (defined in Appendix B.1). For any k ∈ N, let Fk :
L2([0, 1])× Dψ → L2([0, 1]) be such that

Fk(θ,Q) ≡
{

(T ∗
k,QTk,Q + λkI)[θ]− T ∗

k,Q[rk,Q] for Penalization − Based
(Π∗

kT
∗
k,QTk,QΠk)[θ]− Π∗

kT
∗
k,Q[rk,Q] for Sieve− Based
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for any (θ,Q) ∈ L2([0, 1])×Dψ. Note that for any Q ∈ Dψ the integrals defining the operators
are well-defined by assumptions and so is T ∗

k,Q; see Appendix B.1 for a discussion.
Let εP (Y,W ) ≡ Y − ψ(P )(W ) and εk,P (Y,W ) ≡ Y − ψk(P )(W ). Also, throughout this

section we use the notation introduced in Appendix B.1 to denote Tk,P and other quantities.

Lemma E.3. For any P ∈ Dψ and any k ∈ N, ψk is ||.||LB-Frechet differentiable tangential
to Dψ at P with derivative given by:

(1) For the Penalization-Based:

Dψk(P )[Q] =(T ∗
k,PTk,P + λkI)

−1T ∗
k,PTk,Q[εk,P ]

− (T ∗
k,PTk,P + λkI)

−1T ∗
k,QTk,P [ψk(P )− ψ(P )], ∀Q ∈ Dψ

where x 7→ Tk,P [g](x) ≡
∫

κk(x
′ − ·)

∫

(ψk(P )(w)− y)Q(dy, dw, dx′).

(2) For the Sieve-Based:

Dψk(P )[Q] =(Π∗
kT

∗
k,PTk,PΠk)

−1Π∗
kT

∗
k,PTk,Q[εk,P ]

− (Π∗
kT

∗
k,PTk,PΠk)

−1Π∗
kT

∗
k,QTk,P [ψk(P )− ψ(P )], ∀Q ∈ Dψ

where x 7→ Tk,P [g](x) ≡ (uJ(k)(x))TQ−1
uuEP [u

J(k)(X)g(Y,W )] for any g ∈ L2(P ).

Proof. See the end of this Section.

The following corollary trivially follows.

Corollary E.1. For the sieve-based and the penalization-based: For any P ∈ Dψ

(1) The regularization γ is DIFF (P, E||.||LB
).

(2) For each k ∈ N, the reminder of γk, ηk, is such that |ηk(ζ)| = o(||ζ ||LB), for any
ζ ∈ Dψ.

24

Proof. See the end of this Section.

Proof of Proposition 6.2. The result follows from Corollary E.1. Lemma E.3(2) derives the
expression for Dψk(P ); we now expand this expression in terms of the basis functions.

For any g, f ∈ L2([0, 1]),

Tk,PΠk[g](x) =Tk,P
[

(vL(k)(.))TQ−1
vv ELeb[v

L(k)(W )g(W )]
]

(x)

=(uJ(k)(x))TQ−1
uuQuvQ

−1
vv ELeb[v

L(k)(W )g(W )],

24The “o” function may depend on k.
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and

〈Tk,PΠk[g], f〉L2([0,1]) =

∫

(uJ(k)(x))TQ−1
uuQuvQ

−1
vv ELeb[v

L(k)(W )g(W )]f(x)dx

=

∫

ELeb[(u
J(k)(X))Tf(x)]Q−1

uuQuvQ
−1
vv v

L(k)(w)g(w)dw

so Π∗
kT

∗
k,P : L2([0, 1], Leb) → L2([0, 1], Leb) and is given by

f 7→ Π∗
kT

∗
k,P [f ](.) = ELeb[(u

J(k)(X))Tf(X)]Q−1
uuQuvQ

−1
vv v

L(k)(.).

Hence

Π∗
kT

∗
k,PTk,PΠk[g](.) = (vL(k)(.))TQ−1

vv Q
T
uvQ

−1
uuQuvQ

−1
vv ELeb[v

L(k)(W )g(W )].

We now compute the inverse of this operator. Consider solving for g(.) = (vL(k)(.))TQ−1
vv b

for some b ∈ Rk such that

Π∗
kT

∗
k,PTk,PΠk[g](.) = (vL(k)(.))TQ−1

vv b

⇐⇒ QT
uvQ

−1
uuQuvQ

−1
vv ELeb[v

L(k)(W )g(W )] = b

⇐⇒ ELeb[v
L(k)(W )g(W )] = Qvv(Q

T
uvQ

−1
uuQuv)

−1b.

Hence, (Π∗
kT

∗
k,PTk,PΠk)

−1[g](.) = (vL(k)(.))T (QT
uvQ

−1
uuQuv)

−1b. Therefore

(Π∗
kT

∗
k,PTk,PΠk)

−1Π∗
kT

∗
k,PTk,Q[εk,P ] =(vL(k)(.))T (QT

uvQ
−1
uuQuv)

−1QuvQ
−1
uuELeb[u

J(k)(X)Tk,Q[εk,P ]]

=(vL(k)(.))T (QT
uvQ

−1
uuQuv)

−1QuvQ
−1
uuEQ[u

J(k)(X)εk,P (Y,W )].

And

(Π∗
kT

∗
k,PTk,PΠk)

−1Π∗
kT

∗
k,QTk,P [ψk(P )− ψid(P )]

=(vL(k)(.))T (QT
uvQ

−1
uuQuv)

−1ELeb[v
L(k)(W )Π∗

kT
∗
k,QTk,P [ψk(P )− ψid(P )](W )].

It is easy to see that for any Q, Dγk(P )[Q] =
∫

π(w)Dψk(P )(w)[Q]dw, the goal is to cast
this as

∫

Dψ∗
k(P )[π](z)Q(dz). To this end, note that

∫

π(w)Dψk(P )(w)[Q]dw

=

∫

π(w)(vL(k)(w))T (QT
uvQ

−1
uuQuv)

−1QuvQ
−1
uuEQ[u

J(k)(X)εk,P (Y,W )]dw

−
∫

π(w)(vL(k)(w))T (QT
uvQ

−1
uuQuv)

−1ELeb[v
L(k)(W )Π∗

kT
∗
k,QTk,P [ψk(P )− ψid(P )](W )]dw

≡Term1,k + Term2,k.
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Regarding the first term, note that

Term1,k =

∫

ELeb[π(W )(vL(k)(W ))T ](QT
uvQ

−1
uuQuv)

−1QuvQ
−1
uuu

J(k)(x)εk,P (y, w)Q(dy, dw, dx).

We can cast Term2,k = −〈Πk[π], (Π
∗
kT

∗
k,PTk,PΠk)

−1
[

Π∗
kT

∗
k,QTk,P [ψk(P )− ψid(P )]

]

〉L2 , and
thus

Term2,k =− 〈Tk,Q(Π∗
kT

∗
k,PTk,PΠk)

−1Πk[π], Tk,P [ψk(P )− ψid(P )]〉L2

=−
∫

(uJ(k)(x))TQ−1
uuEQ[u

J(k)(X)(Π∗
kT

∗
k,PTk,PΠk)

−1Πk[π](W )]Tk,P [ψk(P )− ψid(P )](x)dx

=

∫

EP [(ψid(P )(W )− ψk(P )(W ))(uJ(k)(X))T ]Q−1
uuu

J(k)(x)(Π∗
kT

∗
k,PTk,PΠk)

−1Πk[π](w)

×Q(dw, dx)

where the second line follows from definition of Tk,P .
Therefore,

Dψ∗
k(P )[π](y, w, x) =ELeb[π(W )(vL(k)(W ))T ](QT

uvQ
−1
uuQuv)

−1QuvQ
−1
uuu

J(k)(x)εk,P (y, w)

+ EP [(ψid(P )(W )− ψk(P )(W ))(uJ(k)(X))T ]Q−1
uuu

J(k)(x)

× (vL(k)(w))T (QT
uvQ

−1
uuQuv)

−1ELeb[v
L(k)(W )π(W )].

In the operator notation this expression equals

Dψ∗
k(P )[π](y, w, x) =Tk,P (Π

∗
kT

∗
k,PTk,PΠk)

−1Πk[π](x)εk,P (y, w)

+ Tk,P [ψid(P )− ψk(P )](x)× (Π∗
kT

∗
k,PTk,PΠk)

−1Πk[π](w). (21)

Proof of Proposition 6.3. The result follows from Corollary E.1. Lemma E.3(1) derives the
expression for Dψk(P ); we now expand this expression in terms of the basis functions.

Note that ψk(P ) = (T ∗
k,PTk,P+λkI)

−1T ∗
k,P rk,P and rk,P (.) =

∫

κk(x
′−·)

∫

ψid(P )(w)p(w, x
′)dwdx′

so that ψk(P ) = (T ∗
k,PTk,P + λkI)

−1T ∗
k,PTk,P [ψid(P )]. Hence

(T ∗
k,PTk,P + λkI)

−1T ∗
k,QTk,P [ψk(P )− ψid(P )]

=(T ∗
k,PTk,P + λkI)

−1T ∗
k,QTk,P [((T

∗
k,PTk,P + λkI)

−1T ∗
k,PTk,P − I)ψid(P )]

=− λk(T
∗
k,PTk,P + λkI)

−1T ∗
k,QTk,P (T

∗
k,PTk,P + λkI)

−1[ψid(P )].
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Thus

Dγk(P )[Q] =〈π,Rk,PT
∗
k,PTk,Q[εk,P ]〉L2

+ λk〈π,Rk,PT
∗
k,QTk,PRk,P [ψid(P )]〉L2

=〈Tk,PRk,P [π],Tk,Q[εk,P ]〉L2

+ λk〈Tk,QRk,P [π], Tk,PRk,P [ψid(P )]〉L2.

Note that

Tk,P [g](x) =

∫

κk(x
′ − x)

∫

g(w)p(w, x′)dw, dx′ =

∫

κk(x
′ − x)TP [g](x

′)dx′ = Kk[TP [g]](x)

and by symmetry of κ, T ∗
k,P = TP [Kk], where Kk is simply the convolution operator.

Therefore,

〈Tk,PRk,P [π],Tk,Q[εk,P ]〉L2 =

∫

Tk,PRk,P [π](x)

∫

κk(x
′ − x)

∫

εk,P (y, w)Q(dy, dw, dx
′)dx

=

∫
(
∫

κk(x− x′)Tk,PRk,P [π](x)dx

)

εk,P (y, w)Q(dy, dw, dx
′)

=

∫

K2
kTPRk,P [π](x)εk,P (y, w)Q(dy, dw, dx).

and

〈Tk,QRk,P [π], Tk,PRk,P [ψid(P )]〉L2 =

∫ ∫

κk(x
′ − x)

∫

Rk,P [π](w)Q(dw, dx
′)Tk,PRk,P [ψid(P )](x)dx

=

∫

Rk,P [π](w)

(∫

κk(x
′ − x)Tk,PRk,P [ψid(P )](x)dx

)

Q(dw, dx′)

=

∫

Rk,P [π](w)K2
kTPRk,P [ψid(P )](x)Q(dw, dx

′).

Therefore

Dψ∗
k(P )[π](y, w, x) =K2

kTPRk,P [π](x)εk,P (y, w) + λkRk,P [π](w)K2
kTPRk,P [ψid(P )](x).

E.2.1 Proofs of Supplementary Lemmas.

Proof of Lemma E.3. The proof follows by the Implicit Function Theorem in Ambrosetti and Prodi
[1995] p. 38 with one minor modification.

First observe that Fk takes values in L
2([0, 1])×Dψ which is a subspace of L2([0, 1])×Dψ

— the closure being taken with respect to ||.||LB. The space L2([0, 1]) × Dψ is a Banach
space under the norm ||.||L2(P ) + ||.||LB.
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We now check the rest of the assumptions of the theorem for each case separately.

(1) Observe that θ 7→ Fk(θ,Q) is linear, so
dFk(ψk(P ),P )

dθ
= (T ∗

k,PTk,P + λkI) : L
2([0, 1]) →

L2([0, 1]). By our conditions (1)-(2) stated in Example 2.1 Kernel((T ∗
k,PTk,P + λkI)) = {0}

and (T ∗
k,PTk,P + λkI) has closed range — the range of an operator A is closed iff 0 is not an

accumulation point of the spectrum of A∗A. Thus dFk(ψk(P ),P )
dθ

is 1-to-1 and onto.
Thus, by the Implicit Function Theorem in Ambrosetti and Prodi [1995] p. 38, there

exists a ||.||LB-open set U of P in Dψ such that Dψk(P ) =
(

dFk(ψk(P ),P )
dθ

)−1 [
dFk(ψk(P ),P )

dP

]

for

any P ∈ U .
We now characterize this expression. For any k ∈ N and any Q ∈ Dψ,

dFk(ψk(P ), P )

dP
[Q] =(T ∗

k,QTk,P + T ∗
k,PTk,Q)[ψk(P )]−

(

T ∗
k,Q[rk,P ] + T ∗

k,P [rk,Q]
)

=− T ∗
k,Q [rk,P − Tk,P [ψk(P )]] + T ∗

k,P [Tk,Q[ψk(P )]− rk,Q]

≡Term1 + Term2.

Note that

rk,P − Tk,P [ψk(P )](.) =

∫

κk(x
′ − ·)(y − ψk(P )(w))p(y, w, x

′)dydwdx′

=Tk,P [ψ(P )− ψk(P )](.)

where the last equality follows because
∫

(y − ψ(P )(w))p(y, w,X)dydw = 0. Thus

Term1 =− T ∗
k,QTk,P [ψ(P )− ψid(P )].

Also

Tk,Q[ψk(P )](.)− rk,Q(.) =

∫

κk(x
′ − ·)

∫

(ψk(P )(w)− y)Q(dy, dw, dx′)

so

Term3 = Tk,PTk,Q[εk,P ]

Thus, the result follows.

(2) The proof is analogous to the one for part (1), so we only present an sketch. By
assumption, Π∗

kT
∗
k,PTk,PΠk is 1-to-1 for each P .

Also, for any k ∈ N and any Q ∈ Dψ,

dFk(ψk(P ), P )

dP
[Q] =(Π∗

kT
∗
k,QTk,PΠk +Π∗

kT
∗
k,PTk,QΠk)[ψk(P )]

−Π∗
k

(

T ∗
k,Q[rk,P ] + T ∗

k,P [rk,Q]
)

=Π∗
k

[

(T ∗
k,QTk,P + T ∗

k,PTk,Q)[ψk(P )]−
(

T ∗
k,Q[rk,P ] + T ∗

k,P [rk,Q]
)]
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where the second line follows because Πk[ψk(P )] = ψk(P ).
We note that

Tk,Q[ψk(P )]− rk,Q =(uJ(k)(X))TQ−1
uu

∫

uJ(k)(x)(ψk(P )(w)− y)Q(dy, dw)

=− Tk,Q[εk,P ]

and

Tk,P [ψk(P )]− rk,P =(uJ(k)(X))TQ−1
uu

∫

uJ(k)(x)(ψk(P )(w)− ψid(P )(w)− εP (y, w))P (dy, dw)

=Tk,P [ψk(P )− ψid(P )]

since
∫

εP (y, w))P (dy, dw) = 0.

Proof of Corollary E.1. (1) By lemma E.3, for each k ∈ N, ψk is ||.||LB-Frechet differentiable,
i.e., for any Q ∈ Dψ,

‖ψk(Q)− ψk(P )−Dψk(P )[Q− P ]‖L2([0,1]) = o(||P −Q||LB).

Since Dψ is linear and Dψ ⊇ lin(D − {P}) (see Lemma B.3), the curve t 7→ P + tζ with
ζ ∈ Dψ maps into Dψ. Therefore, ψ is DIFF (P, E||.||LB

).
By duality

sup
ℓ∈L2([0,1]) : ||ℓ||

L2([0,1])=1

|ℓ[ψk(P + tζ)− ψk(P )− tDψk(P )[ζ ]]| = to(||ζ ||LB)

(here we are abusing notation by using ℓ as both an element of L2([0, 1]) and as the func-
tional). Since γk is linear functional of ψk this display readily implies that γk is ||.||LB-Frechet
differentiable. This in turn implies part (1).

(2) Part (1) implies that,

|ηk(ζ)| = o(||ζ ||LB)

for any ζ ∈ Dψ.

E.3 Appendix for Section 6.2

In this section, with a slight abuse of notation we will use Ln or Ln(z) to denote Ln(Λ) for
a given realization of the data z.
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E.3.1 Proof of Proposition 6.4

In analogy to the proof of Theorem 4.1, let n 7→ k(n) be defined as

k(n) ≡ min
{

k ∈ R+ : δ̄1,k(n) ≥ B̄k(P )
}

.

Also, for each n ∈ N, let

An ≡
{

z ∈ Z
∞ : sup

k∈Kn

|ηk(Pn(z)− P )|
δ̄1,k(n)

≤ 1

}

,

and

Bn ≡
{

z ∈ Z
∞ : sup

k′≥k in Kn

|Dψk′(P )[Pn(z)− P ]−Dψk(P )[Pn(z)− P ]|
δ̄2,k′(n)

≤ 1

}

.

and

k 7→ δ̄k(n) ≡ δ̄1,k(n) + δ̄2,k(n).

Lemma E.4. Suppose there exists a sequence (jn)n such that

1. For any ǫ > 0, there exists a N such that P({z ∈ Z∞ : jn ∈ Ln(z)} ∩An ∩Bn) ≥ 1− ǫ
for all n ≥ N .

2. There exists a L <∞ such that
δ̄jn (n)+B̄jn (P )

||ϕjn (P )||
L2(P )

≤ L infk∈Kn

δ̄k(n)+B̄k(P )
||ϕk(P )||

L2(P )
.

Then for any ǫ > 0, there exists a N such that

P

( √
n

||ϕk̃(n)(P )||L2(P )

∣

∣

∣
ψk̃(n)(Pn)− ψ(P )−Dψk̃(n)(P )[Pn − P ]

∣

∣

∣
≥ 2CnL inf

k∈Kn

δ̄k(n) +
√
nB̄k(P )

||ϕk(P )||L2(P )

)

≤ ǫ

for all n ≥ N , where C is as in Assumption 6.1(iv).

Proof. For any n ∈ N and any z ∈ {z ∈ Z∞ : jn ∈ Ln(z)} ∩An ∩Bn

√
n

||ϕk̃n(z)(P )||L2(P )

∣

∣

∣
ψk̃n(z)(Pn(z))− ψ(P )−Dψk̃n(z)(P )[Pn(z)− P ]

∣

∣

∣

≤√
n
|ηjn(Pn(z)− P )|+ B̄jn(P )

||ϕk̃n(z)(P )||L2(P )

+

√
n

||ϕk̃n(z)(P )||L2(P )

(∣

∣

∣
ψk̃n(z)(Pn(z))− ψjn(Pn(z))

∣

∣

∣
+
∣

∣

∣
Dψk̃n(z)(P )[Pn(z)− P ]−Dψjn(P )[Pn(z)− P ]

∣

∣

∣

)

≤2
√
n
δ̄1,jn(n) + B̄jn(P )

||ϕk̃n(z)(P )||L2(P )

+
√
n

δ̄2,jn(n)

||ϕk̃n(z)(P )||L2(P )
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where the first inequality follows from the definition of differentiability and simple algebra;
the second inequality follows from the fact that z ∈ An∩Bn and from the fact that jn ≥ k̃n(z)
and the definition of Ln(z).

This result and the definition of (Cn)n in the Proposition 6.4 imply

√
n

||ϕk̃n(z)(P )||L2(P )

∣

∣

∣
ψk̃n(z)(Pn(z))− ψ(P )−Dψk̃n(z)(P )[Pn(z)− P ]

∣

∣

∣
≤ 2Cn

√
n
δ̄jn(n) + B̄jn(P )

||ϕjn(P )||L2(P )

.

Thus, by condition 2,

√
n

||ϕk̃n(z)(P )||L2(P )

∣

∣

∣
ψk̃n(z)(Pn(z))− ψ(P )−Dψk̃n(z)(P )[Pn(z)− P ]

∣

∣

∣
≤ 2LCn

√
n inf
k∈Kn

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

.

The result thus follows from condition 1.

We now construct a sequence (hn)n that satisfies both conditions of the lemma. The
construction is completely analogous to the one in the proof of Theorem 4.1 but using
δ̄k(n)/

√
n instead of δk(r

−1
n ).

Let, for each n ∈ N,

K
+
n ≡{k ∈ Kn : δ̄k(n) ≥ B̄k(P )} and

K
−
n ≡{k ∈ Kn : δ̄k(n) ≤ B̄k(P )}.

For each n ∈ N, let

T+
n =

√
n
δ̄h+n (n) + B̄h+n

(P )

||ϕh+n (P )||L2(P )

if K+
n is non-empty where

h+n = min{k : k ∈ K
+
n };

and T+
n = +∞, if K+

n is empty. Similarly,

T−
n =

√
n
δ̄h−n (n) + B̄h−n

(P )

||ϕh−n (P )||L2(P )

if K−
n is non-empty where

h−n = max{k : k ∈ K
−
n };

and T−
n = +∞, if K−

n is empty.
Finally, for each n ∈ N, let hn ∈ Kn be such that

hn = h+n 1{T+
n ≤ T−

n }+ h−n 1{T+
n > T−

n }.
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Lemma E.5. For each n ∈ N, hn exists and

√
n
δ̄hn(n) + B̄hn(P )

||ϕhn(P )||L2(P )

= min
{

T−
n , T

+
n

}

.

Proof. The proof is identical to the one of Lemma D.2.

Lemma E.6. Suppose Assumption 6.1 holds. For each n ∈ N,

√
n
δ̄hn(n) + B̄hn(P )

||ϕhn(P )||L2(P )

≤ 2Cn
√
n inf
k∈Kn

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

where (Cn)n is as in Proposition 6.4.

Proof. Observe that

inf
k∈Kn

√
n
δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

≥ √
nmin

{

inf
k∈G+

n

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

, inf
k∈G−

n

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

}

where the infimum is defined as +∞ if the corresponding set is empty.
Fix any n ∈ N, if G+

n 6= {∅},

inf
k∈G+

n

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

≥ inf
k∈G+

n

δ̄k(n)

||ϕk(P )||L2(P )

≥ C−1
n

δ̄h+n (n)

||ϕh+n (P )||L2(P )

≥ 0.5C−1
n

(

δ̄h+n (n) + B̄h+n
(P )

||ϕh+n (P )||L2(P )

)

where the first inequality follows from the fact that B̄k(P ) ≥ 0; the second one follows from

the fact that h+n is minimal over G+
n and the fact that infk∈G+

n

||ϕ
h
+
n
(P )||

L2(P )

||ϕk(P )||
L2(P )

=

(

supk∈G+
n

||ϕk(P )||
L2(P )

||ϕ
h
+
n
(P )||

L2(P )

)−1

≥
(

supk∈Kn : k≥h+n
||ϕk(P )||

L2(P )

||ϕ
h
+
n
(P )||

L2(P )

)−1

≥ C−1
n .

Similarly, if G−
n 6= {∅},

inf
k∈G−

n

δ̄k(n) + B̄k(P )

||ϕk(P )||L2(P )

≥ inf
k∈G−

n

B̄k(P )

||ϕk(P )||L2(P )

≥ C−1
n

B̄h−n
(P )

||ϕh−n (P )||L2(P )

≥ 0.5C−1
n

(

δ̄h−n (n) + B̄h−n
(P )

||ϕh−n (P )||L2(P )

)

.

Where here we use monotonicity of k 7→ B̄k(P ) and the fact that infk∈G−

n

||ϕ
h
−

n
(P )||

L2(P )

||ϕk(P )||
L2(P )

=
(

supk∈G−

n

||ϕk(P )||
L2(P )

||ϕ
h
−

n
(P )||

L2(P )

)−1

≥
(

supk∈Kn : k≤h−n
||ϕk(P )||

L2(P )

||ϕ
h
−

n
(P )||

L2(P )

)−1

≥ C−1
n .

Thus,

inf
k∈Kn

{δk(r−1
n ) + B̄k(P )} ≥ 0.5min{T−

n , T
+
n },

and by Lemma E.5 the desired result follows.
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Lemma E.7. Suppose Assumption 6.1 holds. For any n ∈ N, P({z ∈ Z∞ : hn /∈ Ln(z)} ∩
An) ≤ P(BC

n ).

Proof. For any n ∈ N,

P({z ∈ Z
∞ : hn /∈ Ln(z)} ∩ An) ≤ P({z ∈ Z

∞ : hn /∈ Ln(z)} ∩An ∩ Bn) +P(BC
n ).

By definition of Ln,

{z ∈ Z
∞ : hn /∈ Ln(z)} ⊆ Cn ≡

{

z ∈ Z
∞ : ∃k ∈ Kn : k > hn and |ψk(Pn(z))− ψhn(Pn(z))| > 4δ̄k(n)

}

,

where (n, k) 7→ δ̄k(n) ≡ δ̄1,k(n) + δ̄2,k(n).
For any k ∈ Kn such that k ≥ hn and any z ∈ Cn ∩ Bn ∩ An (to ease the notational

burden we omit z from the expressions below)

|ψk(Pn)− ψhn(Pn)| ≤ |ψk(Pn)− ψ(P )−Dψk(P )[Pn − P ]|+ |ψhn(Pn)− ψ(P )−Dψhn(P )[Pn − P ]|
+ |Dψk(P )[Pn − P ]−Dψhn(P )[Pn − P ]|
+ |ψk(P )− ψ(P )|+ |ψhn(P )− ψ(P )|

≤|ηk(Pn − P )|+ |ηhn(Pn − P )|+ δ̄2,k(n) + B̄k(P ) + B̄hn(P )

≤δ̄1,k(n) + δ̄1,hn(n) + δ̄2,k(n) + B̄k(P ) + B̄hn(P )

where the second inequality follows from the definition of η, the fact that z ∈ Bn and the
fact that k > hn; the third inequality follows from the fact that z ∈ An. Thus,

{hn /∈ Ln} ∩An ∩ Bn

⊆
{

∃k ∈ Kn : k > hn and δ̄1,k(n) + δ̄1,hn(n) + δ̄2,k(n) + B̄k(P ) + B̄hn(P ) > 4δ̄k(n)
}

. (22)

We now derive a series of useful claims.

Claim 1: If there exists k ∈ Kn such that k > hn and hn = h−n , then k ∈ G+
n . Proof: If

hn = h−n , then hn is the largest element of G−
n and thus k /∈ G−

n , which means that k ∈ G+
n .

�

A corollary of this claim is that if there exists k ∈ Kn such that k > hn and hn = h−n ,
then G+

n is non-empty. From this claim, we derive the following two claims.

Claim 2: If there exists a k > hn, then δ̄1,hn(n) + B̄hn(P ) ≤ 2δ̄h+n (n). Proof: If

hn = h+n , then δ̄hn(n) + B̄hn(P ) ≤ δ̄h+n (n) + B̄h+n
(P ) ≤ 2δ̄h+n (n). If hn = h−n , by the previous

claim it follows that G+
n is non-empty and thus h+n is well-defined, thus δ̄hn(n) + B̄hn(P ) ≤

δ̄h+n (n) + B̄h+n
(P ) ≤ 2δ̄h+n (n). �

Claim 3: For any k > hn, δ̄1,k(n) ≥ B̄k(P ). Proof: If hn = h+n then the claim follows
because k 7→ δ̄k(n) − B̄k(P ) is non-decreasing under Assumption 6.1(i). If hn = h−n , then
k ∈ G+

n by Claim 1 and thus δ̄k(n) ≥ B̄k(P ). �
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By Claims 2 and 3, it follows that if there exists k ∈ Kn such that k ≥ hn, then
δ̄k(n) + B̄k(P ) + δ̄hn(n) + B̄hn(P ) ≤ 2δ̄k(n) + 2δ̄hn(n) ≤ 4δ̄k(n) where the last inequality
follows from the fact that k 7→ δ̄k(n) is non-decreasing by Assumption 6.1(i) and the fact
that k > h+n because k > hn and so by Claim 1 k ∈ K+

n and h+n is minimal in this set.
Hence applying this result to expression 22 and since δ̄k(n) = δ̄1,k(n) + δ̄2,k(n), it follows

that

{hn /∈ Ln} ∩ An ∩Bn ⊆
{

∃k ∈ Kn : k ≥ hn and 4δ̄k(n) > 4δ̄k(n)
}

, (23)

which is empty. Hence, P({hn /∈ Ln} ∩An) ≤ P(BC
n ) as desired.

Proof of Proposition 6.4. We verify that (hn)n∈N satisfies both conditions in Lemma E.4. By
Lemma E.6 condition 2 in the Lemma E.4 holds with L = 2Cn. To check condition 1 in the
Lemma E.4, observe that

P (Z∞ \ {{z ∈ Z
∞ : hn ∈ Ln(z)} ∩An ∩ Bn}) ≤P ({z ∈ Z

∞ : hn /∈ Ln(z)}) +P
(

ACn
)

+P
(

BC
n

)

≤P ({z ∈ Z
∞ : hn /∈ Ln(z)} ∩An) + 2P

(

ACn
)

+P
(

BC
n

)

Thus, by Lemma E.7

P (Z∞ \ {{z ∈ Z
∞ : hn ∈ Ln(z)} ∩ An}) ≤ 2P

(

ACn
)

+ 2P(BC
n ).

Under assumption 6.1(i) the first term in the RHS vanishes. Regarding the second term, by
the union bound and the Markov inequality

P(BC
n ) ≤

|Kn|2
n

sup
k′≥k in Kn

δ̄−2
2,k′(n)EP

[

(Dψk′(P )[Pn − P ]−Dψk(P )[Pn − P ])2
]

=
|Kn|2
n

sup
k′≥k in Kn

δ̄−2
2,k′(n)EP

[

(ϕk′(P )(Z)− ϕk(P )(Z))
2]

=o(1)

where the last line follows from Assumption 6.1(ii).

E.3.2 Appendix for Example 6.5

Next, we provide an explicit characterization of ηk(Pn − P ).

Lemma E.8. For any P ∈ M and any k ∈ N,

ηk(Pn − P ) = OP

(

κk(0)

n
+

2||κ||L2

√
k
√

||p||L∞

n
+

||p||L∞

n
+

2
√
k||κ||L2

√

||p||L∞

n2

)

.

Proof. The proof is relegated to the end of this section.
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Proof of Lemma 6.1. Observe that z 7→ ϕ1/h(P )(z) ≡ (κ1/h ⋆ P )(z)− EP [(κ1/h ⋆ P )(Z)]. So
for any h and h′,

EP

[

(

ϕ1/h(P )(Z)− ϕ1/h′(P )(Z)
)2
]

=EP

[

((

(κ1/h ⋆ P )(Z)− EP [(κ1/h ⋆ P )(Z)]− {(κ1/h′ ⋆ P )(Z)− EP [(κ1/h′ ⋆ P )(Z)]}
))2
]

=EP

[

(

(κ1/h ⋆ P )(Z)− (κ1/h′ ⋆ P )(Z)− {EP [(κ1/h ⋆ P )(Z)]−EP [(κ1/h′ ⋆ P )(Z)]}
)2
]

≤4EP

[

(
∫

κ(u){p(Z + hu)− p(Z + h′u)}du
)2
]

.

By expression (8), it follows that |p(Z+hu)− p(Z +h′u)| ≤ C(z)(|h|̺+ |h′|̺)|u|̺. Thus,
for any z,

∫

κ(u){p(z + hu)− p(z + h′u)}du

≤
∫

κ(u)p′(z)(h + h′)udu+ C(z)(|h|m+̺ + |h′|̺)
∫

|κ(u)||u|̺du.

By symmetry of κ,
∫

κ(u)udu = 0.
Therefore,

EP

[

(

ϕ1/h(P )(Z)− ϕ1/h′(P )(Z)
)2
]

≤ 4EP
[

(C(Z))2
]

(

((h)̺ + (h′)̺)

∫

|κ(u)||u|̺du
)2

.

By the proof of the Lemma E.8, for any h > 0 and any M > 0, there exists a N such
that

P





|η1/h(Pn − P )|
M
(

κ(0)
hn

+ 1
n
√
h

) ≥ 1



 ≤M−1

for all n ≥ N . By the union bound

P



 sup
k∈Kn

|ηk(Pn − P )|
M
n

(

κ(0)k +
√
k
) ≥ 1



 ≤
∑

k∈Kn

P





|ηk(Pn − P )|
M
n

(

κ(0)k +
√
k
) ≥ 1



 ≤ |Kn|M−1.

Proof of Lemma E.8. Consider the curve t 7→ P+tQ. It is a valid curve because Dψ = ca(R).
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Therefore

ψk(P + tQ)− ψk(P ) =t

{∫

(κk ⋆ Q)(x)P (dx) +

∫

(κk ⋆ P )(x)Q(dx)

}

+ t2
∫

(κk ⋆ Q)(x)Q(dx).

Since κ is symmetric,
∫

(κk ⋆ P )(x)Q(dx) =
∫

(κk ⋆Q)(x)P (dx). From this display, ηk(tQ) =
t2
∫

(κk ⋆ Q)(x)Q(dx) and Dψk(P )[Q] = 2
∫

(κk ⋆ P )(x)Q(dx).
The mapping Q 7→ 2

∫

(κk ⋆ P )(x)Q(dx) is clearly linear. Also, note that (κk ⋆ P )(.) =
∫

κ(u)p(·+ ku)du. Hence, for any reals x and x′

|(κk ⋆ P )(x)− (κk ⋆ P )(x
′)| =

∫

κ(u){p(x+ u/k)− p(x′ + u/k)}du.

Thus, under the smoothness condition on p in expression (8), it follows that x 7→ (κk ⋆P )(x)
is uniformly continuous and bounded, so the mapping Q 7→ 2

∫

(κk⋆P )(x)Q(dx) is continuous
with respect to the ||.||LB.

To establish the rate result, we use the Markov inequality. We also introduce the following
notation

∫

(κk ⋆ Q)(x)Q(dx) = 〈κhk ⋆ Q,Q〉 where 〈., .〉 is the inner produce of the dual
(L∞(R), ca(R)).

It follows that
√

E
[

(ηk(Pn − P ))2
]

=
√

E
[

(〈κk ⋆ (Pn − P ), Pn − P 〉)2
]

=
√

E
[

(〈κk ⋆ Pn, Pn〉 − 2〈κk ⋆ P, Pn〉+ 〈κk ⋆ P, P 〉)2
]

where the second line follows from symmetry of κ which implies 〈κk ⋆ Pn, P 〉 = 〈Pn, κk ⋆ P 〉.
We note that

〈κk ⋆ Pn, Pn〉 =
κk(0)

n
+

1

n2

∑

i 6=j
κk(Zi − Zj)

=
κk(0)

n
+

1

n2

(

n−1
∑

i=1

n
∑

j=i+1

κk(Zi − Zj) +
n
∑

i=2

i−1
∑

j=1

κk(Zi − Zj)

)

,
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also

〈κk ⋆ P, Pn〉 =
1

n

n
∑

i=1

(κk ⋆ P )(Zi) =
1

n

n
∑

i=1

EP [κk(Zi − Z)]

=
1

n

n
∑

i=1

EP [κk(Zi − Z)]
i

n
+

1

n

n
∑

i=1

EP [κk(Zi − Z)]
n− i

n

=
1

n

n
∑

i=1

EP [κk(Zi − Z)]
i

n
+

1

n

n−1
∑

i=1

EP [κk(Zi − Z)]
n− i

n

=
1

n2

n
∑

i=2

i−1
∑

j=1

EP [κk(Zi − Zj)] +
1

n2

n−1
∑

i=1

n
∑

j=i+1

EP [κk(Zi − Zj)]

+
1

n2
EP [κk(Z1 − Z)].

where the third line follows because EP [κk(Zn−Z)]n−nn = 0, and the fourth one follows from
the fact that by iid-ness, EP [κk(Zi − Zj)] = EP [κk(Zi − Z)] for all j.

Therefore,

〈κk ⋆ Pn, Pn〉 − 2〈κk ⋆ P, Pn〉 =
κk(0)

n
+

1

n2

(

n−1
∑

i=1

n
∑

j=i+1

κk(Zi − Zj) +

n
∑

i=2

i−1
∑

j=1

κk(Zi − Zj)

)

− 2

n2

n
∑

i=2

i−1
∑

j=1

EP [κk(Zi − Zj)] +
1

n2

n−1
∑

i=1

n
∑

j=i+1

EP [κk(Zi − Zj)]

− 2

n2
EP [κk(Z1 − Z)]

=
1

n2

n−1
∑

i=1

n
∑

j=i+1

{κk(Zi − Zj)− 2EP [κk(Zi − Zj)]}

+
1

n2

n
∑

i=2

i−1
∑

j=1

{κk(Zi − Zj)− 2EP [κk(Zi − Zj)]}

+
κk(0)

n
− 2

n2
EP [κk(Z1 − Z)]

=
2

n2

∑

i<j

{κk(Zi − Zj)− 2EP [κk(Zi − Zj)]}

+
κk(0)

n
− 2

n2
EP [κk(Z1 − Z)],

where the last line follows by symmetry of κ since κ(Zi − Zj) = κ(Zj − Zi) for all i, j.
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Since 〈κk ⋆ P, P 〉 = EP ·P [κk(Z − Z ′)] = 1
n2

∑

i,j EP ·P [κk(Z − Z ′)], it follows that

〈κk ⋆ Pn, Pn〉 − 2〈κk ⋆ P, Pn〉+ 〈κk ⋆ P, P 〉

=
2

n2

∑

i<j

κ̄k(Zi − Zj) +
κk(0)

n
− 2

n2
EP [κk(Z1 − Z)] +

1

n
E[κk(Z − Z ′)]

where (z, z,′ ) 7→ κ̄h(z−z′) ≡ κh(z−z′)−EP [κh(z−Z)]−EP [κh(z′−Z)]+EP ·P [κh(Z−Z ′)].
Therefore,

√

E
[

(ηk(Pn, P ))
2] ≤2

√

√

√

√

√E





(

1

n2

∑

i<j

κ̄k(Zi − Zj)

)2


+
κk(0)

n
+

2

n2

√

E
[

(E[κk(Z1 − Z)])2
]

+
1

n
E[κk(Z − Z ′)].

We now bound each term on the RHS. First note that

1

n
E[κh(Z − Z ′)] =

1

n

∫

kκ(k(z − z′))p(z)p(z′)dzdz′

=
1

n

∫

κ(u)p(z′ + u/k)p(z′)dz′du ≤ n−1||p||L∞,

and
√

E
[

(E[κk(Z1 − Z)])2
]

≤
√

E [(κk(Z ′ − Z))2]

=

√

∫

(kκ(k(z′ − z)))2p(z)p(z′)dzdz′

=

√

k

∫

(κ(u))2p(z + u/k)p(u)dzdu ≤ k1/2
√

||p||L∞||κ||L2.

where the first line follows by Jensen inequality. Finally, by Gine and Nickl [2008] Sec. 2

√

√

√

√

√E





(

1

n2

∑

i<j

κ̄k(Zi − Zj)

)2


 ≤ 2√
n2

√

E[(κ̄k(Z − Z ′))2] ≤ 2||κ||L2

√

||p||L2

n
√

1/k
.
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