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A Small-Sample Estimator for the Sample-Selection Model

1. INTRODUCTION

The problem of sample selection arises frequently in econometric studies of indivi-

duals’ wages or labor supply and other topics. When sample sizes are small, existing

parametric (full and limited information maximum likelihood, Heckman 1976, 1979) and

semiparametric estimators (Manski, 1975, 1985; Cosslett, 1981; Han, 1987; Ahn and Powell,

1993) have difficulties.

We have three objectives. First, we develop a semiparametric estimator for the

sample-selection problem that performs well when the sample is small. This estimator has its

roots in information theory and is based on the generalized maximum entropy (GME)

approach of Golan, Judge, and Miller (1996) and Golan, Judge, and Perloff (1997). Second,

we use Monte Carlo experiments to compare and contrast the small-sample behavior of our

GME estimator with other parametric and semiparametric estimators. Third, we apply this

method to examine the wage-participation of several groups of females where the data sets

are small.

Section 2 discusses the sample-selection model. Section 3 reviews GME and develops

a GME sample-selection estimator with the relevant inferential statistics. Section 4 lays out

the experimental design and discusses the sampling results. Section 5 applies the various

methods to the wage-participation model for female teenage heads of households, immigrants,

and Native Americans, all of which involve relatively small samples. Section 6 briefly

summarizes the results.
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2. THE MODEL

Many sample-selection models exist. For specificity, we consider a common labor

model (see, e.g., Maddala, 1983). Suppose the ith person values staying home (working in

the home) at y*1i and can earn y*2i in the marketplace. If y*2i > y*1i, the individual chooses to

work in the marketplace, y1i = 1, and we observe the market value, y2i = y*2i. Otherwise, y1i

= 0 and y2i = 0.

The individual’s value at home and in the marketplace depends on education,

experience, and other demographic characteristics:

(2.1)y1i x
1
β

1
e1i

(2.2)y2i x
2
β

2
e2 i ,

where x1 = (1, x12,..., x1L)′, x2 = (1, x22,..., x2K)′, β1 and β2 are L and K-dimensional vectors

of unknowns. We observe

(2.3)
y1i









1 if y2 i > y1 i

0 if y2 i ≤ y1 i .

(2.4)
y2i









x
2
β

2
e2 i if y2 i > y1 i

0 if y2 i ≤ y1 i .

Our objective is to estimate β1 and β2. Typically in these types of studies, the researcher is

interested primarily in β2.
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3. ESTIMATION APPROACH

We use a GME approach to estimate the sample-selection model. We start by provid-

ing some background as to how the generalized maximum entropy approach works, and then

develop the GME sample-selection estimator.

3.1 Review of Maximum Entropy and Generalized Maximum Entropy Estimators

The GME estimator is based on the classic maximum entropy (ME) approach of

Jaynes (1957a, 1957b, 1984), which uses the entropy-information measure of Shannon (1948)

to recover the unknown probability distribution of underdetermined problems. Shannon’s

(1948) entropy measure reflects the uncertainty (state of knowledge) we have about the

occurrence of a collection of events. Letting x be a random variable with possible outcomes

xs, s = 1, 2, …, n, with probabilities ps such that Σs ps = 1, Shannon (1948) developed the

information criterion, entropy, as

(3.1)H ≡
s

ps ln ps ,

with xln(x) → 0 as x → 0. The function H, is a unique function of the distribution p =

(p1, p2, ..., pn)’ and measures the amount of information in x. It reaches a maximum of ln(n)

when p1 = p2 = … = pn = 1⁄n, and it is zero when ps = 1 for one value of s. To recover the

unknown probabilities p that characterize a given data set, Jaynes (1957a, 1957b) proposed

maximizing entropy, subject to available sample-moment information and adding up con-

straints on the probabilities. For an axiomatic development of ME and a review of its proper-
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ties, see Kullback (1959), Levine (1980), Shore and Johnson (1980), Skilling (1989), and

Csisźar (1991).

Unlike the ME method, where the observed moments are assumed to be exact, under

the GME approach, the observed sample moments, or similarly each data point, are assumed

to be noisy. As such, the GME is a generalization of the ME approach and uses a dual-

objective (precision and prediction) function. To illustrate the GME approach, we examine

the linear model

(3.2)y Xβ e ,

where β is a K-dimensional vector of unobserved parameters, y = (y1, y2, ..., yT)’ is a T-

dimensional vector of observed data, and X is a (T × K) design matrix. Our objective is to

recover the unknown vector β using as few assumption as possible. Consistent with our goal,

we impose no distributional assumptions and no assumptions regarding the exact relationship

between sample and population moments. That is, our objective is to simultaneously recover

the signal β and the noise (unknown error distribution) e where both are unknown.

In order to relax the distributional assumptions, we need to provide some bounds on

the solutions. In this way, the GME approach (developed by Golan, Judge, and Miller, 1996)

is related to regularization methods. As a first step to setting these bounds, the parameters of

Equation 3.2 are reparameterized as

(3.3)y Xβ e XZp Vw.

In this reformulation, the coefficient βk on the kth variable in X is defined as
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where

(3.4)βk ≡
m

zkmpkm

(3.5)
m

pkm 1

and zk = (zk1, zk2, ..., zkM)’ is an M ≥ 2 dimensional vector. This vector serves as a discrete

support space for each one of the K unknowns and is specified to span the possible (un-

known) values of βk. This reformulation converts the unknown elements of the vector β from

the real line to the [0, 1] interval with the properties of K proper probability distributions pk

defined over the K support spaces zk.

How should we specify Z? If we possess no knowledge as to the possible values of

βk, we specify zk to be symmetric around zero, with large negative and positive boundaries.

For example, zk1 = -zkM = -106. Often, however, we have some knowledge regarding the

possible values of β and use that information to specify Z.1

Similarly, we transform each et into T proper probability distributions. Define a

discrete support space v of dimension J ≥ 2, equally spaced and symmetric around zero and

associate with it a set of weights wt such that

and

(3.6)et ≡
j

vj wtj

(3.7)
j

wtj 1,

and V is a T*J matrix of the T identical vectors v. The end points, v1 and vJ, are chosen to

be -3σy and 3σy where σy is the empirical standard deviation of y.

1 We can specify zk to be continuous and without bounds (see Golan and Gzyl, 2002),
but here we use a discrete support space.



6

Having converted the two sets of unknowns into probability distributions, the

estimation problem is to maximize a dual-loss function where emphasis is placed on both

prediction and precision (smoothness) of the estimates:

(3.8)max
p,w

H (p,w)
k m

pkm ln pkm
t j

wtj ln wtj

subject to

This estimator shrinks all unknown parameters to the center of the support given the data.

(3.9)yt
k m

xtk zkm pkm
j

vj wtj

(3.10)
m

pkm 1

(3.11)
j

wtj 1.

The ME estimator is a special case of the GME, in which no weight is placed on the noise

component and the T observations (3.4) are represented as K zero moments.

Letting λ̂t be the estimate of the Lagrange multiplier associate with constraints (3.9),

the optimal solution is

and

(3.12)p̂km

exp




t

λ̂ t xtk zkm

m
exp




t

λ̂ t xtk zkm

≡
exp




t

λ̂ t xtk zkm

Ωk (λ̂ )
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(3.13)ŵt j

exp λ̂t vj

j
exp λ̂ t vj

≡
exp λ̂ t vj

Ψt (λ̂ )
.

The resulting point estimates are β̂ ≡ Σm zkm p̂km and êt ≡ Σj vj ŵtj.

Golan, Judge, and Miller (1996) show that a dual, concentrated model can be

constructed. Substituting into the first element of the right-hand side of the Lagrangean

corresponding to Equations 3.8 - 3.9, the post-data p̂ and ŵ, yields

(3.14)L (λ)
t

ytλt
k

ln Ωk (λ)
t

ln Ψt (λ) .

Setting the derivative of L(λ) with respect to λ equal to zero yields λ̂, from which we can

derive β̂ and ê.

3.2 A GME Sample-Selection Estimator

We now apply the same approach to the sample-selection problem. We start by

reparameterizing the signals β1 and β2 to be proper probability distributions that are defined

over some support. We start by choosing a support space with M ≥ 2 of discrete points z1l =

[z1l1, z1l2, ..., z1lM]’ and z2k = [z2k1, z2k2, ..., z2kM]’ that span the possible range of the

unknowns β1 and β2.

Then we let

and

(3.15a)β1 l
m

p1 lmz1 lm , l 1, ,L ,

(3.15b)β2k
m

p2km z 2km , k 1 , ,K ,
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where p1l and p2k are proper probability vectors that correspond to the M-dimensional support

vectors of weights. As the dimension of M increases, we recover more moments for each

point estimate β1 and β2. However, for all practical purposes, the results are not sensitive to

M as long as M is at least of dimension 3.

Similarly, we treat the errors as unknowns and use the following parametrization. Let

each e1 and e2 be specified as

(3.16)e1i
j

w1i j vj and e2 i
j

w2 i j vj

where w1 and w2 are proper probability vectors and v is a support space of dimension greater

than or equal to two that is symmetric about zero. The lower and upper bounds of the

support space v are - and respectively where is the empirical standard deviation3σy2
3σy2

σy2

of the observed non-zero left-hand side variables.

Having parameterized the unknowns, we now wish to maximize the dual loss

(objective) function, which is the sum of the joint entropies of the signal and noise in the

system, subject to the sample-selection model, Equations 2.3 and 2.4:

subject to

(3.17)

max
p
1
,p

2
,w

1
,w

2

H (p
1
,p

2
,w

1
,w

2
)

l m
p1 lm ln p1 lm

k m
p2km ln p2km

i j
w1 i j ln w1 i j

i j
w2 i j ln w2 i j

(3.18)
k m

x2 ik z2km p2km
j

vjw2 i j y2 i , if y2i > 0 ,



9

(3.19)k m
x2 ik z2kmp2km

j
vjw2 i j >

l m
x1 i l z1 lmp1 lm

j
vjw1 i j ,

if y2i > 0 ,

(3.20)k m
x2 ik z2kmp2km

j
vjw2 i j ≤

l m
x1 i l z1 lmp1 lm

j
vjw1 i j ,

if y2i 0,

(3.21)
m

p1 lm 1 ;
m

p2km 1 ;

(3.22)
j

w1 i j 1 ;
j

w2 i j 1.

The optimization yields estimates of p̂1, p̂2, ŵ1, and ŵ2, from which we obtain estimates β̂1,

β̂2, ê1, and ê2 using Equations 3.15 and 3.16.

The following conditions ensure consistency and asymptotic normality of our sample-

selection GME estimator:

(i) The errors’ supports v for each equation are symmetric around zero.

(ii) The support space Z spans the true values for each one of the unknown parameters

β = (β1, β2)’ and has finite lower and upper bounds (z1l1 and z1lM for β1 and z2k1

and z2kM for β2).

(iii) The errors are independently and identically distributed. [Note: this assumption

does not restrict the errors to be uncorrelated across equations.]

(iv) Plim (1/T)X’X exists and is nonsingular, where X is a block diagonal matrix

consisting of X1 and X2.

The proofs of consistency and asymptotic normality follow immediately from those in

Golan, Judge, and Miller (1996), Golan, Judge, and Perloff (1997), Golan, Perloff, and Shen
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(2001), and Mittelhammer and Cardell (1996). These asymptotic properties can also be estab-

lished via the empirical likelihood approach (Owen 1990, 1991, Qin and Lawless 1994, and

Golan and Judge 1996).

In general given the four conditions

where

T ( β̂ β ) →
d

N(0, QGME ) ,

QGME plim T 1 X (Σ̂ 1 IT )X
1

is the asymptotic covariance matrix for the GME. Since β is a continuous function of λ (the

Lagrange multipliers), this statement follows immediately from Qin and Lawless (1994,

Lemma 1 and Theorem 1). The asymptotic variances are

for δ = 1, 2, where and Kδ = L where δ = 1 or K where δ = 2.

σ̂2
δ

1
T Kδ t

ê
2
δ i ,

êδ i ≡
j

vj ŵδ i j

The solution to the GME estimation problem is unique and therefore allows us to

identify all the estimates. By using the GME model (3.17)-(3.22), we convert an ill-posed or

under-determined problem into a well-posed problem where the number of unknowns equals

the number of first-order equations. Further, by using equations (3.19)-(3.20), we are able to

specify the economic model in a more natural way and gain efficiency (as we demonstrate

below).
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Unlike the likelihood approaches, the GME method requires no assumption about the

distribution or the covariance between the two equations. The GME differs from other

models in how it handles identification. Most previous approaches use an exclusion restric-

tion to identify the outcome equation in the sample selection model. On the other hand, the

GME approach achieves identification from the inequality structure of Equations 3.19-3.20,

which allows the covariance elements to be nonzero.

GME’s only disadvantage is that the computation time increases markedly as the

number of observations increases. However, if one is analyzing a single data set (rather than

running simulations), the increase in time is not a major consideration.2

4. SAMPLING EXPERIMENTS

In recent years, there have been several Monte Carlo studies of sample selection

estimators for relatively large data sets. These studies include Hay, Leu, and Rohrer (1987),

Manning, Duan, and Rogers (1987), Hartman (1991), and Leung and Yu (1996). Their results

differ because of differences in their experimental designs.

4.1 Experimental Designs

Leung and Yu (1996) argue that several of the earlier studies that found superior

performance of ordinary least squares (OLS) over maximum likelihood (ME) sample-selection

estimators was due to unusual experimental designs. In particular, they argue that studies

2 For example with a Pentium 4 1.7 GHz PC with 256 MB of RAM, it takes 0.109
seconds of execution time to solve the system of equations with
K = L = 4 and 100 observations, 0.938 seconds to solve a system with K = L = 7 and 500
observations, and 3.25 seconds to solve K = L = 7 and 1,000 observations.
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such as Manning, Duan, and Rogers (1987) got their results because they drew regressors

from a uniform distribution with a range of [0, 3]. Because this range is narrow, the

covariates are highly collinear and the Mills’ ratio term used in two-stage estimators is highly

correlated with the regressor. Leung and Yu find that the ME sample-selection estimators

perform better than OLS when they draw regressors from a larger range, [0, 10]. In order to

give maximum likelihood estimators the greatest possible advantage, we use Leung and Yu’s

larger range for the right-hand-side variables.

Following Leung and Yu, most of our experiments involve only a single regressor (in

addition to the intercept) in both the choice and level equations, so L = K = 2. In all designs,

β12 = β22. We vary β11, β21, and the intercepts to control the level of censoring. The

support spaces for z1 and z2 are all specified to be symmetric about zero with large negative

and positive bands, z1m = z2m = (-100, -50, 0, 50, 100)’ for all the unknown β1 and β2.

These supports reflect our state of ignorance relative to the unknown β’s in the range

[-100, 100]. The support spaces for the errors e1 and e2 are based on the empirical standard

deviations of the observed y2i, σ*2, such that v1 = v2 = (-3σ*2, 0, 3σ*2)′ for all i = 1,2, ..., T.

We used the computer program GAMS to generate the data. We repeated each

experiment 1,000 times. To show the robustness of the GME estimator, we repeated the

experiments for different right-hand-side variables, different number of observations, different

number of regressors, normal and non-normal distributions, and for correlations between e1

and e2 of ρ = 0 and ρ = 0.5. Table 1 describes the various designs.

We use the performance criteria of Leung and Yu (1996) to summarize the perfor-

mance of each experiment. The first measure is the mean square error (MSE) for the relevant
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equation. We also use the slope parameter bias and its mean square error, where Bias(β̂22) ≡

β̂22 – β22 (and the subscript "22" indicates the second coefficient in the β2 vector from the

wage equation). The final criterion is the mean square prediction error (MSPE) for the

second equation where

(4.1)MSPE ≡ 1
1000

1000

i 1
Ê (y2 i ) E (y2 i )

2
.

4.2 Alternative Estimators

We compare our new estimator to alternative parametric and semiparametric estima-

tors. The alternative estimators include OLS, Heckman’s two-step approach (2-Step) method,

full-information maximum likelihood (FIML), and a semiparametric estimator with a nonpar-

ametric selection mechanism (AP) due to Ahn and Powell (1993).

The simplest alternative is to estimate the second equation using ordinary least

squares, ignoring the sample-selection problem. We used GAMS to estimate both the GME

and OLS models.

The two most commonly used likelihood-based, parametric approaches are the

Heckman two-step and maximum likelihood estimators. We estimated these models using the

computer program Limdep. Because of the relatively small sample sizes, these parametric

estimation methods often failed to produce plausible estimates. Indeed, as Nawata and

Nagase (1996) show, the FIML estimator may not converge or may converge to a local

optimum. They use Monte Carlo experiments to show that FIML may not be a proper

estimator when there is a high degree of multicollinearity between the estimated indicator
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value of the first equation and the right-hand-side variable in the second equation. For these

two estimators, we reject an estimate if Limdep reports a failure to converge or if the esti-

mated correlation coefficient between the two errors does not lie within the range (-1, 1). In

our experiments, these failures are due primarily to small sample sizes. This failure virtually

disappears with samples of 500 or 1,000 observations.

As the GME estimator can be viewed as an estimator from the class of semiparametric

estimators, we also compare the sampling experiments with the Ahn and Powell (1993)

estimator. The AP approach is designed to deal with a well-known problem of the parametric

likelihood estimator, which assumes that the errors in the two equations are jointly normally

distributed. If the joint distribution of the error terms is misspecified, these parametric

estimators are inconsistent. Ahn and Powell (1993) propose a two-step approach where both

the joint distribution of the error term and the functional form of the selection equation is

unknown.

The AP estimator is robust to misspecification of the distribution of residuals and the

form of the selection equation. When the distribution of residuals is not normal and the

sample size is large, we expect the AP estimator to perform better than FIML and 2-Step

estimators. However, when the sample size is small, it is not clear whether AP would

dominate FIML and 2-Step estimators, as the large sample size requirement for the AP

estimator is not met. So far as we know, no previous study has examined the small-sample

performance of the AP estimator.3

3 We use Matlab to obtain the AP estimates in our experiments, where the kernel
functions are taken to be normal density functions. Following Ahn and Powell (1993), in the
first-step kernel regression, the data were first linearly transformed so that the components of
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Although it is possible to estimate the structural form of the selection equation using

Heckman s method, the AP method only identifies the outcome equation. Moreover, since

the outcome equation is estimated by regressing differences in dependent variables on

corresponding differences in explanatory variables in the AP method, the intercept term is not

identified. Hence, not all statistics reported for the other estimators are reported for the

AP method in our tables.

In the GME model, the structural form of the selection model and β1 are estimated

and there is no need for any weighing procedure.4 The unknown Lagrangean multipliers

(one for each observation) in the GME are the implicit and natural weight of each observation

(Golan and Judge, 1996).

the vector of exogenous variables were orthogonal in the sample, with variances that were
equal one for each component. The first-step bandwidth parameter h1 was selected in each
iteration by least-square cross validation over a crude grid of possible values. The choice of
the second-step kernel bandwidths, h2, is less straightforward.
Cross validation does not necessarily produces the best bandwidths (Powell and Stoker, 1996).
We set h2 = 0.7. We experimented with different values of h 2 between 0.0005 and 1. For
each of these values between 0.0005 to 1, the point estimates were equal to the ones
presented here up to the third decimal point. When selection depends on one variable only,
the first step is not needed. The second step weights can be obtained by conditioning on the
selection equation regressor. The one-step estimator is asymptotically identical to the two-step
estimator. For those experiment designs where selection depends on only one variable, we
calculated both one- and two-step estimators and got similar results. To be consistent across
designs, we report the two-step estimates in all tables.

4 The coefficient β1 can be identified in the AP method if the symmetry restriction of
the GME approach is imposed along with a restriction on the selection equation of a single
index. For example, Chen (1999) assumes that the joint distribution of the residuals is
symmetric around the origin and depends via a linear index on the exogenous variables of the
model. Chen shows that under these symmetry and single index assumptions the intercept
term for the outcome equation can be estimated. Thus, one could estimate a single index first
stage (e.g., Heckman’s probit) and then estimates the second stage using AP with a symmetry
assumption. Unlike the original AP estimator, this one is not semiparametric in all stages.
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4.3 Discussion of Results

In all experiments, the 2-Step and FIML approaches failed to estimate a large propor-

tion of the samples while the OLS, AP, and GME models always produced estimates.5

When we compare various measures of fit in the following discussion, we discuss only the

"plausible" 2-Step and FIML repetitions, which favors these two approaches substantially.

The summary statistics for the other approaches include the difficult samples that the 2-Step

and FIML approaches could not handle.

Tables 2-5 report results for the five experimental designs. The first column shows

the technique. The number in the parentheses following the FIML or 2-Step label is the

percent of the 1,000 repetition where that estimator failed to converge and produce plausible

values (the estimated correlation lies within the plausible range: |ρ| < 1). The next two

columns show the number of observations and the proportion of censored observations. The

next two columns report the sum of the mean square errors for all the coefficients in the

second equation including the constant, MSE(β̂2), and for just the second coefficient in the

second equation, MSE(β̂22). The following column shows the bias for this coefficient. The

last column shows the mean squared prediction error, MSPE. We cannot report the MSE(β̂2)

and MSPE for the AP approach because it does not produce an estimate of the constant term.

Because of the problem of obtaining convergence with the Heckman two-step and full-

information estimators, we tried Nawata and Nagase’s (1996) alternative method (which we

estimated using Matlab). This estimator is labeled "NN" in Table 2. With this technique, we

5 The problem of lack of convergence with the FIML approach is well known. The
same problem occurs with the 2-Step procedure where there are relatively few observations
with inadequate variation.
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were more likely to find convergence or "plausible" estimates, though many estimates have |ρ|

=.99 for small samples. Moreover, the bias increased. Presumably the reported bias

increased because we calculated the bias of the traditional techniques conditioned on dropping

"implausible" estimates. Because the NN approach does not solve the problems with the

likelihood approach for small samples, we do not report the estimates for subsequent tables.

In all the sampling experiments reported in Tables 2-5, the GME strictly dominates the

OLS (hence we do not discuss this comparison further). In virtually all of the sampling

results, the GME has smaller MSE(β̃2) and MSE(β̃22), indicating the stability of the GME

estimator relative to the other estimators for both the whole vector of estimated parameters

and of the slope parameter β22 (β21 is the intercept). Further, the bias of the GME estimator

is smaller than for the other estimators in many cases.

In general, the GME dominates the AP. The AP method is designed to provide robust

estimates with large samples and has been shown to perform well with large samples.

However, it performs relatively poorly in our small-sample experiments, presumably because

it imposes very little structure on the data (particularly linearity of the selection equation

function). The AP bias is lower than OLS bias in all designs, but does not otherwise provide

significantly better results than OLS.

The objective of the 2-Step and FIML estimators is to maximize prediction within the

sample. It is, therefore, not surprising that the likelihood methods produce the best results in

terms of the MSPE in most experiments (where we compare just the successful likelihood

estimates to all the estimates for the alternative approaches). The fraction of repetitions for

which the 2-Step and FIML estimators fail to provide plausible estimates is very large,
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ranging from 11% to 99%. In samples of 20 and 50 observations, both the 2-Step and FIML

estimators fail to provide plausible estimates in more than half of the repetitions. As the

sample size increases, the percentage of implausible estimates decreases.

We now discuss each of the different experiments in more detail. Table 2 reports the

effect of sample size on the estimates in Experimental Design 1. The GME approach

dominates the AP method on all criteria except bias in the single case where T = 20. For the

smallest sample size, T = 20, the GME estimator is superior to the likelihood methods based

on all criteria. For T = 50, GME is superior on all criteria except MSPE. For sample sizes

of T = 75 and larger, the GME is superior in terms of MSE while the likelihood estimators

(where they work at all) have smaller bias and better MSPE.

Table 3 reports the effect of the level of censoring on the estimates. In general, the

performance of the estimators, as measured by MSPE, gets worse as the proportion of

censored observations increases. The results are similar to Table 1 where the GME always

has the lowest MSE, thus exhibiting the highest level of stability from sample to sample. We

view this result as a strong one because the GME is superior even for a small proportion of

censored observations.

In Table 4, we investigate the robustness of the estimators to various distribution or

ill-posed specifications. The first row reports results based on the χ2
(4) distribution normal-

ized to have a unit of variance. Again the GME is the most stable estimator while the two

likelihood estimators have the smallest MSPE. Surprisingly, where they work, the likelihood

approaches often perform better than the AP method in terms of bias (though not in terms of

the MSE) even when the distribution is misspecified. This result may be due to the small
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sample size. In small samples, the first-step, AP nonparametric regression estimator is likely

to be imprecise. Because they impose "less structure" on data, nonparametric estimators

typically need many observations to achieve good precision levels (Silverman, 1986).

Hartman (1991), using a different experiment with a sample of a thousand, found that maxi-

mum likelihood performed badly with a misspecified error distribution, particularly with

respect to the MSE.

The second row of Table 4 shows results based on x1 = x2. In this case the GME is

superior to all other estimators under all the different statistics reported. Further, both the

FIML and 2-Step estimators "work" only for a very small proportion of the samples. This

last result is not surprising because the likelihood estimators are not identified (or are

identified only by the nonlinearity of the inverse Mills ratio). As the AP estimator does not

impose any restriction on the form of the selection equation, it is not identified in the limit.

We report results for AP for completeness.

In Table 5, we compare estimators where K = 3, ρ = 0 or 0.5, and T = 50 or 100.

The GME dominates the other methods in terms of mean square error (except in the ρ = 0, T

= 100 case), while the maximum likelihood (in the relatively few repetition where it produces

plausible estimates) is superior in terms of prediction.

5. EMPIRICAL APPLICATIONS

We used each approach on three empirical applications with small data sets drawn

from the March 1996 Current Population Survey (CPS). In each application, we estimated

the wage-participation model (Equation 2.3 and 2.4) for the subset of respondents in the labor
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market. In all three application, we exclude from the sample workers who are self-em-

ployed.6 In no case did the normal maximum likelihood estimator converge, so we report

results for only the OLS, Heckman two-step, AP, and GME models.

5.1 Teenage Heads of Households

We first examine the labor market behavior of female teenagers who are heads of

households. Recently, political debates concern the relationship between the increasing

number of teen-age pregnancies and the generosity of welfare payments. Knowing which

teenagers choose to work and how much they earn may help inform such a debate.

The wage equation covariates include years of education, a dummy for currently

enrolled in school, potential experience (age - education - 6) and potential experience squared,

a dummy for Black, a dummy for rural location, a dummy for central city location, and a

dummy for U.S. citizenship. The covariates in the selection equation include all the variables

in the wage equation and the amount of welfare payments received in the previous year, a

dummy equal one for married teenagers, and the number of children. The March 1996 CPS

has 43 female teenagers who are head of an household for whom all the relevant variables are

available. Of these, 29 are employees.

6 There are 24,740 observations in the original March 1996 CPS sample. For Tables 6
through 8, we dropped (in order) 1,886 self-employed people and the 10,447 men. Then, to
obtain the sample for Table 6, we also dropped (in order) 11,485 people who were 18 or
younger, 866 who were not heads of households, and 13 people for whom relevant variables
were missing. To obtain the sample for Table 7, we also dropped (in order) 12,298 people
who had not immigrated to the United States within the last 5 years and 2 people who had
missing relevant variables. To obtain the sample for Table 8, we also dropped (in order)
12,252 non-Native Americans and 5 people who had missing relevant variables.
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Table 6 shows the estimated wage equation coefficients and asymptotic standard errors

and an selection outcome table representing the probability of correct prediction. Except for

the GME, in all models, an individual is assigned to a category if the fitted probability of

being in that category is greater than 0.5. With the GME, we determine the category directly

from the inequalities. GME predicts selection substantially better than the probit model and

AP. As was discussed above, the intercept is not identified for AP (consequently, the MSPE

is not identified either). Heckman’s two-step estimator failed to yield an estimated correlation

coefficient, ρ, between -1 and 1, so the table reports a ρ that is censored at 1.

None of the estimators finds a positive return to education that is statistically signifi-

cantly larger than zero using the 0.05 criterion. Only the AP and GME methods find

statistically significant experience effects. All find a large positive, statistically significant

central city effect. The coefficient on Black is positive and surprisingly large, however only

the GME estimate is statistically significantly different than zero at the 0.05 level. Only the

AP and GME methods find a statistically significant positive return to U.S. citizenship.

5.2 Recent Immigrants

Next we analyze a sample of 107 female immigrants who entered the United States in

the five years preceding the interview (27 of whom are in the labor force). Although there is

now a significant literature on labor market performance of recent immigrants, most of the

research has been conducted on men rather than women. Table 7 reports estimates for the

same model as for the teenagers. Return to education are positive (though only the GME

estimates is statistically significant) and smaller than the 8 to 10% returns usually reported in
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the literature for U.S.-born workers. Once again, the GME methods predicts selection better

than do the Heckman two-step and AP models.

5.3 Native Americans

Finally, we analyze a sample of 151 Native American females, of whom 65 are in the

labor force. We are unaware of any previous study of wages and participation by Native

American females. We dropped the (irrelevant) race and U.S. citizenship dummy variables.

The estimated return to education is around 5% across estimation methods, but only statisti-

cally significantly different from 0 for the OLS and GME estimators. All estimators show a

positive rural effect, a negative center city effect, and a negative enrolled in school effect, but

only the GME estimates are statistically significant. Again, the GME does a superior job of

predicting selection.

5.4 Summary

In all three of these applications based on small samples, we obtain fairly similar

coefficients estimates (though the GME estimates tend to be slightly closer to the OLS

estimates than to the other two sets), the GME does a better job of predicting labor force

participation, and we cannot estimate Heckman’s full-information maximum likelihood model.

In one of these cases, Heckman’s two-step model fails to produce a plausible estimate of the

correlation coefficient, which brings the entire estimate into question. In each case, the

GME’s estimated asymptotic standard errors are much smaller than those of the other

methods (followed by those of the OLS and AP).
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6. CONCLUSION

In a large number of empirical economic analysis, the data sets are relatively small

and there is a need for a stable and consistent estimator that converges to an optimal solution

and performs well under these circumstances. Our new generalized maximum entropy (GME)

estimator meets this objective. For small samples, the GME approach has smaller mean

square error measures than other well-known estimators such as ordinary least squares,

Heckman’s 2-step method, full-information maximum likelihood, and Ahn and Powell’s

method.

We compared GME to these alternative estimators in small sample experiments. All

but one of our experimental designs uses a normal distribution, which favors the likelihood

approaches. In these small samples, the OLS, Ahn and Powell, and GME methods always

work, but the 2-Step and FIML methods frequently fail to converge or provide estimates of

the correlation coefficient that do not lie within the plausible range.

Under all scenarios, the GME proved to be the most stable estimator (had the lowest

variance and mean square errors), while the likelihood approaches predicted within the sample

better when it worked at all (except for small sample sizes where the GME out-performed the

other estimators under all criteria). The GME approach performed better than the OLS in all

cases and better than the AP estimator in most cases. Finally, the GME works where the

right-hand-side variables are identical in both equations, a situation where the likelihood

methods cannot work at all and the AP method does not perform as well. Thus, if precision

and stability of the estimates of a sample-selection model based on a relatively small data set

are the objective, the GME estimator appears to be the appropriate choice.
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Table 2
Sample Results for Experimental Design 1

Estimation Method Number
of Obs.

Proportion of
Censored Obs. MSE(β̂2) MSE(β̂22) Bias(β̂22) MSPE

FIML (0.956)*

2-Step (0.960)*

NN (0.089/0.223)#

OLS
AP
GME

20 44.86 1.624
3.515
0.670
0.594

0.558

0.056
0.711
0.019
0.120
0.012
0.011

–0.075
–0.212
-0.018
–0.026
–0.011
–0.013

1.518
1.562
1.140
1.009

1.001

FIML (0.538)*

2-Step (0.305)*

NN (0.002/0.043)#

OLS
AP
GME

50 42.20 0.359
0.361
0.373
0.339

0.297

0.0072
0.0072
0.0120
0.0069
0.0069
0.0063

–0.014
–0.013
-0.047
–0.026
–0.025
–0.013

0.638
0.642
1.064
1.021

1.008

FIML (0.411)*

2-Step (0.224)*

NN (0.003/0.003)#

OLS
AP
GME

75 51.41 0.462
0.453
0.474
0.454

0.373

0.0085
0.0083
0.0131
0.0082
0.0080
0.0071

–0.011
–0.012
-0.064
–0.036
–0.034
–0.020

0.543
0.545
1.089
1.076

1.054

FIML (0.208)*

2-Step (0.117)*

NN (0.003/0.002)#

OLS
AP
GME

100 51.37 0.294
0.266
0.290
0.309

0.230

0.0047
0.0045
0.0071
0.0049
0.0049
0.0040

–0.005
–0.007
-0.053
–0.036
–0.035
–0.022

0.366
0.367
1.042
1.055

1.030

FIML (0.164)*

2-Step (0.092)*

NN (0.000/0.000)#

OLS
AP
GME

125 51.41 0.205
0.196
0.241
0.228

0.193

0.0035
0.0034
0.0081
0.0038
0.0037
0.0035

–0.005
–0.004
-0.056
–0.023
–0.022
–0.015

0.307
0.306
1.077
1.036

1.023

* The fraction in parentheses indicates the share of repetitions for which this estimator failed to converge
and produce "plausible" results.

# The first fraction is the share of repetition that did not converge, the section fraction is the share for
which |ρ| = 0.99.
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Table 3
Sample Results for Experimental Design 2

Estimation
Method

Number
of Obs.

Proportion of
Censored Obs. MSE(β̂2) MSE(β̂22) Bias(β̂22) MSPE

FIML (0.685)*

2-Step (0.830)*

OLS
AP
GME

100 26.06 0.0932
0.0883
0.0939

0.0808

0.00194
0.00186
0.00197
0.00190
0.00178

–0.0071
–0.0059
–0.0179
–0.0172
–0.0112

0.2848
0.2860
0.9877

0.9839

FIML (0.792)*

2-Step (0.883)*

OLS
AP
GME

100 51.37 0.2939
0.2663
0.3091

0.2301

0.00472
0.00445
0.00487
0.00487
0.00397

–0.0052
–0.0065
–0.0361
–0.0348
–0.0215

0.3662
0.3670
1.0550

1.0300

FIML (0.661)*

2-Step (0.823)*

OLS
AP
GME

100 75.11 1.1321
1.1422
1.1177

0.9500

0.01679
0.01669
0.01611
0.01613
0.01440

–0.0073
–0.0062
–0.0356
–0.0351
–0.0177

0.3312
0.3309
1.3045

1.2480

* The fraction in parentheses indicates the share of repetitions for which this estimator converged and
produced "plausible" results.
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Table 4
Sample Results for Experimental Designs 3 and 4

Design
Estimation
Method

Number
of Obs.

Proportion
of Cen-

sored Obs.
MSE(β̂2) MSE(β̂22) Bias(β̂22) MSPE

3
χ2

(4)

FIML (0.759)*

2-Step (0.898)*

OLS
AP
GME

100 51.29% 0.377
0.283
0.252

0.192

0.0051
0.0042
0.0039
0.0039
0.0033

–0.0077
–0.0088
–0.0273
–0.0266
–0.0161

0.3698
0.3699
1.0476

1.0275

4 FIML (0.123)*

2-Step (0.015)*

OLS
AP
GME

100 49.92 9217.590
0.777
0.234

0.127

9193.80
0.00401
0.00227
0.00233
0.00234

30.9090
0.0303

–0.0019
–0.0019
0.0003

116.370
0.6106
1.1448

1.0419

* The fraction in parentheses indicates the share of repetitions for which this estimator converged and
produced "plausible" results.
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Table 5
Sample Results for Experimental Design 5

Estimation
Method Correlation

Number of
Obs.

Proportion of
Censored Obs. MSE(β̂2) MSE(β̂22) Bias(β̂22) MSPE

FIML (0.313)*

2-Step (0.538)*

OLS
AP‘
GME

ρ = 0 50 49.79 0.43298
0.46207
0.44895

0.41531

0.00626
0.00727
0.00716
0.00710
0.00680

–0.0022
–0.0108
–0.0156
–0.0149
–0.0128

0.19302
0.19694
1.11194

1.07460

FIML (0.252)*

2-Step (0.411)*

OLS
AP
GME

ρ = .5 50 49.52 0.45369
0.42840
0.43692

0.40531

0.01187
0.00649
0.00671
0.00673
0.00635

–0.0072
–0.0005
–0.0023
–0.0018
0.0004

0.37473
0.18853
1.05764

1.04195

FIML (0.583)*

2-Step (0.789)*

OLS
AP
GME

ρ = 0 100 49.40 0.19493
0.19040
0.24461

0.19992

0.00333
0.00322
0.00442
0.00434
0.00371

–0.0093
–0.0124
–0.0383
–0.0370
–0.0300

0.09365
0.09459
1.09071

1.05963

FIML (0.569)*

2-Step (0.793)*

OLS
AP
GME

ρ = .5 100 49.40 0.20378
0.20240
0.20345

0.17967

0.00348
0.00339
0.00357
0.00357
0.00319

–0.0077
–0.0097
–0.0218
–0.0210
–0.0155

0.09351
0.09379
1.03300

1.02113

* The fraction in parentheses indicates the share of repetitions for which this estimator converged and
produced "plausible" results.
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Table 6
Wage Equation for Female Teen Heads of Households

(N = 43; 29 in the labor force)

OLS 2-Step AP GME

Constant 1.181 -0.165 NA 1.091

(1.070) (1.828) NA (0.002)

Education 0.017 0.115 0.016 0.0187

(0.085) (0.143) (0.044) (0.0119)

Black 0.203 0.256 0.202 0.192

(0.186) (0.241) (0.135) (0.074)

Experience 0.206 0.103 0.198 0.180

(0.141) (0.207) (0.123) (0.068)

Experience Squared -0.091 -0.062 -0.089 -0.085

(0.041) (0.059) (0.032) (0.017)

Rural 0.085 0.149 0.080 0.080

(0.114) (0.168) (0.082) (0.067)

Central City 0.324 0.411 0.323 0.332

(0.117) (0.176) (0.079) (0.062)

Enrolled in School -0.033 -0.197 -0.037 -0.043

(0.128) (0.225) (0.112) (0.060)

U.S. Citizen 0.264 0.304 0.260 0.277

(0.186) (0.259) (0.086) (0.109)

λ 0.443

(0.409)

ρ 1

R2 0.458 0.504 0.454

MSPE 0.058 0.043 0.039

Predicted

2-Step’s Probit AP GME

Actual 0 1 0 1 0 1

0 9 5 0 14 12 2

1 2 27 0 29 3 26
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Table 7
Wage Equation for Female Immigrants

(N = 107; 27 in the labor force)

OLS 2-Step AP GME

Constant 1.131 0.750 - 1.190

(0.648) (1.350) - (0.001)

Education 0.052 0.061 0.058 0.045

(0.034) (0.042) (0.056) (0.010)

Black 0.051 0.210 0.080 0.051

(0.452) (0.644) (0.239) (0.010)

Experience 0.014 0.025 0.027 0.021

(0.058) (0.060) (0.080) (0.018)

Experience Squared -0.0005 -0.001 -0.0009 -0.0008

(0.001) (0.002) (0.003) (0.0005)

Rural 0.364 0.045 0.419 0.365

(0.709) (0.272) (0.301) (0.292)

Central City 0.051 0.061 0.070 0.059

(0.319) (0.272) (0.356) (0.049)

Enrolled in School -0.080 -0.026 0.014 -0.065

(0.626) (0.559) (0.545) (0.112)

λ 0.166

(0.536)

ρ 0.290

R2 0.165 0.168 0.155

MSPE 0.300 0.228 0.313

Predicted

2-Step’s Probit AP GME

Actual 0 1 0 1 0 1

0 75 5 80 0 75 5

1 19 8 27 0 0 27
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Table 8
Wage Equation for Native Americans Females

(N = 151; 65 in the labor force)

OLS 2-Step AP GME

Constant 1.073 1.771 NA 1.128

(0.394) (0.677) NA (0.0003)

Education 0.055 0.043 0.044 0.052

(0.028) (0.031) (0.043) (0.008)

Experience 0.038 0.023 0.038 0.037

(0.016) (0.020) (0.027) (0.009)

Experience Squared -0.001 -0.0005 -0.001 -0.001

(0.0003) (0.0005) (0.001) (0.0002)

Rural 0.214 0.268 0.332 0.221

(0.130) (0.196) (0.175) (0.072)

Central City -0.170 -0.091 -0.171 -0.172

(0.183) (0.200) (0.124) (0.052)

Enrolled in School -0.290 -0.471 -0.190 -0.319

(0.216) (0.279) (0.242) (0.085)

λ -0.461

(0.344)

ρ -0.894

R2 0.355 0.376 0.354

MSPE 0.157 0.135 0.144

Predicted

2-Step’s Probit AP GME

Actual 0 1 0 1 0 1

0 66 20 68 18 60 26

1 24 41 23 42 0 65


