Econ 240B Spring 2009 Optional Problem Set 6

This problem set is due in class on Monday May 4th, 2009

1. Consider the structural equation

$$y_{1t} = y_{2t}^2 \gamma + x_{1t}' \beta + \epsilon_t$$

where $\epsilon_t \sim i.i.d$ $(0, \sigma^2)$, y_{2t} is a scalar endogenous variable, and x_{1t} is a vector of exogenous variables. Suppose we have a set of instruments x_t such that x_t contains all the elements of x_{1t} plus several other variables. ϵ_t is independent of x_t . Evaluate the following statements:

- Regressing y_{2t} on x_t and substituting the predicted values $\hat{y}_{2t} = x_t'\hat{\pi}$ (where $\hat{\pi}$ is the LS estimate of π) for y_{2t} in the structural equation and applying LS to the resulting equation yields consistent estimates for γ and β , but it produces the wrong standard errors for these estimates.
- 2. True or False, explain. Consider the two-equation system

$$y_1(t) = x_1(t) \beta + y_2(t) \gamma + e(t)$$

 $y_2(t) = x_2(t) \pi + u(t)$

where $x_1(t)$ and $x_2(t)$ are exogenous variables and

$$(e(t), u(t)) \sim iid\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{pmatrix}\right)$$
 (1)

- (a) Even though $y_2(t)$ is endogenous in this model, LS applied to the first equation yields consistent estimates of all coefficients.
- (b) Applying three stage least square to this system of equation yields estimators that are numerically identical to those obtained by applying LS to each equation individually.
- (c) Applying three stage least square to this system of equation yields estimators that are asymptotically equivalent to those obtained by applying LS to each equation individually.
- 3. Consider the following simultaneous equation model of the price elasticity of electricity:

$$\log Q = \alpha_1 + \alpha_2 \log P + \alpha_3 \log Y + \alpha_4 \log J + \epsilon$$
$$\log P = \beta_1 + \beta_2 \log Q + \beta_3 \log L + \beta_4 \log F + u$$

where

Q =average annual residential electricity sales per customer

P = marginal price of residential electricity

Y =annual per capita income

J =average July temperature

(2)

 $L = \cos t$ of labor

 $F = \cos t$ of fuel per kilowatt-hour of generation

- (a) Which equation is the supply equation and which equation is the demand equation? What do you expect to be the signs of α_2 and β_2 ?
- (b) Assume that Y, J, L, F are exogenous variables that are independent of the error terms ϵ and u. You want to use $\log L$ and $\log F$ as instrument variables in a 2SLS estimation of the first equation. What conditions do you need to impose on β_3 and β_4 in order for $\log L$ and $\log F$ to be valid instruments? How can you test these conditions statistically? (Write down the stata command that you will use to test these conditions.)
- (c) Suppose the conditions you impose on β_3 and β_4 are satisfied, but you are not entirely sure whether L and F are both uncorrelated with ϵ . How would you test this statistically? (Describe the stata commands you will use to perform the test. State the null and the alternative hypotheses clearly.)
- (d) What are the reduced form equations for this simultaneous equation system? Can you give a set of conditions under which ordinary least square estimation of the first equation will give consistent estimates of α_2 ? You can impose your conditions on the β coefficients and on the relation between ϵ and u.

4. Consider the model

$$q_t = \alpha + \beta p_t + u_t$$
 Demand Equation
 $q_t = \gamma + \delta (p_t + s_t) + v_t$ Supply Equation

where q_t is the amount of the commodity produced and sold in year t, p_t is the average price of the commodity in year t and s_t is the rate of subsidy in the year t. u_t and v_t are random disturbances which are serially independent and are distributed with zero mean and finite second moments. The variables s_t is assumed to have finite mean and variance.

- (a) Which of the parameters α , β , γ and δ are identified?
- (b) Obtain consistent estimates of the identified parameters from the sample means $\bar{p} = 4$, $\bar{q} = 5$, $\bar{s} = 1/3$ and the following sample moments:

$$\frac{1}{n}\sum_{t=1}^{n} p_t^2 = 6, \ \frac{1}{n}\sum_{t=1}^{n} p_t q_t = 1, \ \frac{1}{n}\sum_{t=1}^{n} p_t s_t = 0,$$
$$\frac{1}{n}\sum_{t=1}^{n} q_t^2 = 5, \ \frac{1}{n}\sum_{t=1}^{n} q_t s_t = 2, \ \frac{1}{n}\sum_{t=1}^{n} s_t^2 = 4.$$