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Abstract

Strategic interaction parameters characterize the impact of actions of one economic
agent on the payoff of another economic agent. In this paper we study how the in-
formation available to economic agents regarding other economic agents can influence
the ability of an econometrician to recover strategic information parameters from the
observed actions. We consider two extreme cases: the complete information case where
the information sets of participating economic agents coinside, and the incomplete in-
formation case where each agent has a privately observable type. We find that in
models with complete information the statistical (Fisher) information for the interac-
tion parameters is zero, implying that estimation and inference become nonstandard.
In contrast, in the incomplete information models with any non-zero variance of player
types, the statistical information is positive, implying the existence of regular estima-
tors for these parameters converging at the parametric rate. This finding is illustrated
in two cases: treatment effect models (expressed as a triangular system of equations),
and the static game models. In both types of models the observed discrete outcomes
are driven by continuously distributed errors with an unknown distribution (unob-
served heterogeneity). We find that the key factor driving the result in these models is
the relative tail behavior of the distribution of unobserved heterogeneity of economic
agents’ payoffs and the distribution of covariates. Our result has important impli-
cations for experimental design in economic systems where unobserved heterogeneity
plays a major role: a failure to provide sufficient independent randomization of the
payoffs of participating agents may lead to non-robustness of estimated parameters to
the distribution of unobserved heterogeneity.
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1 Introduction

Endogenous regressors are frequently encountered in econometric models, and failure to

correct for endogeneity can result in incorrect inference. Correcting for endogeneity can be

particularly difficult in nonlinear models and in the models where endogenous variables are

discrete. While two-stage least squares (2SLS) yields consistent estimates in linear models

without the need for parametric assumptions on the error disturbances that is not the case

for nonlinear models, as the consistency of 2SLS depends critically upon the orthogonality

conditions that arise in the linear regression context. For nonlinear models with continuous

endogenous regressors, a “control function approach” has been proposed by Blundell and

Powell (2004) and Imbens and Newey (2009) provide a counterpart for the models without

linear-index and separability restrictions.

The control function approach, however, requires the endogenous regressors to be con-

tinuously distributed, and in models where they are discretely distributed, controlling for

endogeneity can be difficult. Consequently, existing approaches are not applicable to the

models we study in this paper, which focuses on simultaneous discrete response models with

discrete endogenous variables. Identification and inference in these models becomes much

more complicated than in the continuous case, which is exhibited in the important work

in Chesher (2003), Chesher (2007), and Chesher (2010), who considers general classes of

nonlinear, nonseparable models. He finds that the discrete model is not point identified

under endogeneity and adopts a partial identification approach. It turns out, that with more

support points the endogenous variable one can construct tighter bounds for the parameter

of interest.

The class of models we consider in this paper includes many important special cases

that have received a great deal of attention in both theoretical and empirical work. Im-

portant examples include strategic compliance models, models of social interactions, and

the simultaneous move discrete game models. In these models we are specifically interested

in estimation of the coefficient of the discrete endogenous variable(s). In the case of the

triangular binary response model, this parameter is directly related to the treatment effect.

In the other class we study, which nests social interaction and static game models, such a

parameter characterizes the degree of strategic interaction or a peer effect. In this paper we

are interested in identification of these parameters and their Fisher information. The Fisher

information can be considered an important indicator of the “quality” of identification.

We find that analysis of the endogenous discrete response model as a model of strategic

response of an economic agent leads to insights regarding the quality of identification of

coefficients of discrete endogenous regressors. There is a fundamental relationship between

the choice-theoretic information of the economic agents (reflecting their knowledge regarding
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their opponents’ types) and the Fisher information of the strategic interaction parameters.

To demonstrate our finding, we consider a complete information model where the agents have

perfect knowledge regarding payoffs and then we consider a incomplete information model

by introducing economic agents’ types as additive random shocks to their payoffs. The

payoff shocks in this setting are the private information (types) of the agents and cannot

be observed by other agents. In this setting the incomplete information model embeds1 the

complete information model, given that the payoffs of agents in the incomplete information

model converge to their payoffs in the complete information model as the variance of their

types approaches zero. The payoff components in the complete information model that are

commonly observed by the participating agents but not observed by the econometrician

can be associated with the unobserved heterogeneity. In this case the complete information

model is a limiting case of the incomplete information model with unobserved heterogeneity.

Grieco (2010) focuses on a similar model where the distribution of unobserved heterogeneity

and private shocks are assumed to be normal and the payoffs are parametric linear functions

with the goal of testing for the presense of unobserved heterogeneity. In our paper we

allow the distribution of unobserved heterogenity and the distribution of covariates to be

nonparametric. As a result, we are considering a semiparametric strategic response model

with unknown distribution of unobserved heterogeneity.

In the incomplete information setting, the private information of economic agents can

be treated as an additional source of uncertainty in the model. Unlike the unobserved

heterogeneity that is commonly observed by the economic agents but not observed by the

econometrician, private information is not observed by the competing agents. As we show,

the parameter of interest (i.e. the treatment effect or the strategic interaction parameter) has

a positive Fisher information in the incomplete information model, whereas in the complete

information model with zero variance of player types Fisher information is zero.

Recent econometrics work on inference in static game models (see, for instance, Ba-

jari, Hong, Krainer, and Nekipelov (2010b), Aradillas-Lopez (2010) and de Paula and Tang

(2011)) demonstrates that identification of strategic interaction parameters can be easier

in games with incomplete information because one can find regions of the support of state

variables where a unique equilibrium exists. However, in this paper we argue that positive

Fisher information for strategic interaction parameters in the incomplete information models

is not a result of an equilibrium refinement. This fundamental point is demonstrated in two

ways.

First, we consider a triangular system of discrete response models, which is often used to

model treatment effects in policy evaluation programs. These models, which are generally

1In the terminology of Fudenberg, Kreps, and Levine (1988), Tirole (1988), Kajii and Morris (1997).
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coherent, in the sense that they do not suffer from multiple equilibria. Nonetheless, we

find a stark contrast in cases of complete and incomplete information. For the complete

information model, which has been studied in many papers, including Vytlacil and Yildiz

(2007), Klein, Shan, and Vella (2011), Abrevaya, Hausman, and Khan (2011), and Jun,

Pinkse, and Xu (2011), we establish zero information for the treatment effect parameter.

This result implies that inference is nonstandard for the treatment effect. Therefore, for

the triangular system, we can approach to the analysis of optimal estimators in terms of

optimal rates of convergence (as opposed to efficiency). This approach to analysis of optimal

estimators is often used for nonstandard models such as those in Stone (1982), Horowitz

(1993), and more recently, Menzel and Morganti (2009) and Komarova, Linton, and Srisuma

(2011). As we show, the optimal convergence rates will be directly related to the relative

tail behavior of unobservable and observable variables.

We next consider a triangular binary response model and introduce incomplete infor-

mation as an additive random shock in the second equation. This is a new model, and

it represents the environment where the agent decides whether or not to comply with the

treatment before the treatment is assigned. The treatment assignment remains uncertain to

the agent until after he or she makes the decision to comply. As a result, the additional

noise plays a loosely analogous role to what a “placebo” usually plays in the natural sciences

in aiding with inference on treatment effects.2 In the game-theoretic terms, this model can

be described as a game between the two players, where player 1 is the treated individual

and player 2 is the one assigning the treatment. The “type” of player 2 is not known to

player 1. Then the decision problem of player 1 can be considered in the same strategic

framework as in the standard static game of incomplete information. Our main finding is

that the strategic interaction parameter has positive Fisher information in the incomplete

information setting, and we derive the semiparametric efficiency bound for this parameter.

Considering the incomplete information model with unobserved heterogeneity demonstrates

that the complete information model can be viewed as a limiting case of the incomplete

information model, where the variance of the random private shock converges to zero. We

demonstrate this result by showing that the Fisher information of the incomplete informa-

tion model, when expressed as a function of this variance, converges to zero as the variance

of the random shock decreases.

Consideration of the triangular model naturally leads us to the strategic interaction

models, which are represented by nontriangular systems, and argue that our result regard-

ing Fisher information for strategic interaction parameters is not an artifact of equilibrium

refinement. These models, which include the simultaneous move static game models as the

2With the difference that we do not need an unconfoundedness assumption that is frequently required in
randomized studies with a placebo.
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leading example, (e.g. Bjorn and Vuong (1985), Bresnahan and Reiss (1990), Bresnahan and

Reiss (1991b), Bresnahan and Reiss (1991a), Tamer (2003), Andrews, Berry, and Jia (2004),

Berry and Tamer (2006), Pakes, Ostrovsky, and Berry (2007), Ciliberto and Tamer (2009),

Bajari, Hong, and Ryan (2010), Beresteanu, Molchanov, and Molinari (2011)), are known to

suffer from problems of incoherency and multiple equilibria.

The behavior of the set of equilibria in games with vanishing uncertainty regarding the

player types has been studied in the game theory literature, e.g. Fudenberg, Kreps, and

Levine (1988), Dekel and Fudenberg (1990), Kajii and Morris (1997), and Chassang and

Takahashi (2011). In the limiting case with no uncertainty regarding the player types, the

model becomes a game of complete information. The literature has established that only

particular equilibria of the complete information game are robust to adding noise to the

players’ payoffs.3 As a result, the introduction of uncertain player types (by adding private

noise to their payoffs) may result in equilibrium refinement.

We find that while strategic interaction parameters have zero Fisher information in the

complete information model and positive Fisher information in the incomplete information

model, it is not due to equilibrium refinement. We do so by assuming a simple equilibrium

selection rule, so that the model is coherent and not indeterminate with point identified

strategic interaction parameters in both the complete and incomplete information models.

A striking fact is that the zero Fisher information result is driven by the relative tail behavior

of unobserved heterogeneity and payoff-relevant covariates rather than the structure of the

equilibrium set. It has been previously observed in Bajari, Hahn, Hong, and Ridder (2010)

that including the equilibrium selection rule in the set of estimated parameters may lead to

the zero Fisher information for the estimated payoffs due to the failure of the rank condition.

Our result states that even if the equilibrium selection mechanism is known, the Fisher

information for strategic interaction parameters in the players payoffs is still zero. Those

parameters are, therefore, irregularly identified even in complete information oligopolistic

competition models that assume simple equilbrium selection rules such as an incumbent

firm’s advantage or risk dominance. We emphasize that zero statistical information does

not automatically imply the absence of point identification of the parameters of interest:

in our problem it means that regular estimators for these parameters converging at the

parametric rate may not exist. We derive the optimal convergence rate for estimation of

strategic interaction parameters. This rate can be used to evaluate optimality of estimators

for strategic interaction parameters in the complete information game.4

3Kajii and Morris (1997), for instance, find that the so-called p-dominant equilibria where mixed strategies
select actions with a probability exceeding a certain threshold, are robust to adding noise to payoffs.

4Another alternative in this case is not even consider identifying the strategic interaction parameters
and instead identify bounds for those parameters such as their signs. Such an alternative for incomplete
information models has been proposed by de Paula and Tang (2011).
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The incomplete information model contains both private payoff shocks and shocks that

are commonly observed by the players but not observed by the econometrician (unobserved

heterogeneity). We derive a semiparametric efficiency bound for the strategic interaction

parameters when the joint distributon of the commonly observed shocks is unknown. This

is a new result and distinct from existing efficiency calculations in Bajari, Hong, Krainer,

and Nekipelov (2010b) and Aradillas-Lopez (2010) who do not allow for the presence of the

unobserved heterogeneity. Furthermore, we show that the Fisher information in the com-

plete information model can be viewed as the limiting case of the Fisher information in the

incomplete information models. We recognize that this result does not imply the convergence

of equilibria in the incomplete information game to those in the complete information games.

Our results indicate the importance of independent randomization in economic exper-

iments where experimental subjects are strategic and unobserved heterogeneity plays an

important role. Based on our results, if the agent is strategic about treatment compliance,

the estimated treatment effect will not be robust to the unobserved heterogeneity. The con-

vergence rate and the limiting distribution of the estimated parameter will both be strongly

affected by the properties of the relative tail behavior of the distribution of unobserved het-

erogeneity and the observable individual-specific covariates. However, if the subject’s payoff

is independently randomized, the parameter of interest can be regularly estimated at the

parametric rate. The experimental randomization in this has the effect of smoothing the

strategic responses of experimental subjects.

The rest of the paper is organized as follows. In the following section we introduce a

basic binary choice model with a binary endogenous variable determined by a reduced-form

model. We find that the coefficient for the endogenous variable has zero Fisher information,

which is a result similar to that in Khan and Tamer (2010) for the binary choice model

with endogeneity in Lewbel (1998), and related to that in Chamberlain (1986) and Chen

and Khan (1999) for heteroskedastic binary choice models (see also Graham and Powell

(2009) for an example in panel data models). As this result implies the difficulties with

inference for the parameter of interest, we further explore possible asymptotic properties for

conducting inference in this model. We then consider the triangular system with incomplete

information, which is the strategic behavior model with the agent playing against nature

where nature has a type that is not observed by the agent. For the incomplete information

framework we show in Section 3 that the Fisher information for the parameter of interest is

positive, such that inference becomes standard. We then derive the semiparametric efficiency

bound for the interaction parameter. In Section 4 we explore non-triangular systems using

the example of a two-player simultaneous move game in which the incoherency is resolved

by a choice randomization in cases of multiple equilibria or where pure strategy equilibria

do not exist. We show the this “simplified” model has zero information for parameters
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of interest. As with the triangular system, inference becomes complicated, even though

the strategic interaction parameters are point identified, so we explore this issue further

by finding their optimal convergence rates. In Section 5 we consider a game of incomplete

information in which each player has a type, represented by a random shock to her payoff

and players cannot observe the types of their opponents. This incomplete information game

embeds the complete information game in Section 4, provided that types of players are

represented by additive shocks to the payoffs of players in the incomplete information game.

The presence of random payoff perturbations does not completely resolve the problem of

multiple equilibria, but by introducing an equilibrium selection mechanism (as we did for

the complete information game), we can now attain positive information for the strategic

interaction parameters. The contrast illustrates that the positive (Fisher) information is not

a result of equilibrium refinement, as both of the models are endowed with an equilibrium

selection rule. Finally, Section 6 concludes the paper by summarizing and suggesting areas

for future research. An appendix collects all the proofs of the theorems and additional results

regarding the optimal rates and estimators attaining optimal rates.

2 Discrete response model

2.1 Information in discrete response model

Let Y1 denote the dependent variable of interest, which is assumed to depend upon a vector

of covariates Z1 and a single endogenous variable Y2.5

For the binary choice model with with a binary endogenous regressor in linear-index form

with an additively separable endogenous variable, the specification is given by

Y1 = 1{Z ′1γ0 + α0Y2 − U > 0}. (2.1)

Turning to the model for the endogenous regressor, the binary endogenous variable Y2 is

assumed to be determined by the following reduced-form model:

Y2 = 1{Z ′δ0 − V > 0}, (2.2)

where Z ≡ (Z1, Z2) is the vector of “instruments” and (U, V ) is a pair of random shocks.

The subcomponent Z2 provides the exclusion restrictions in the model and is required to be

nondegenerate conditional on Z ′1γ0. We assume that the error terms U and V are jointly

independent of Z. The endogeneity of Y2 in (2.1) arises when U and V are not indepen-

dent, while the estimation of the model in (2.2) is standard. When dealing with a binary

5We use capital letters to denote random variables and small letters to indicate regular arguments.
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endogenous regressor, we will use the common terminology “treatment effect” rather then

referring to the “causal effect of Y2 on Y1”. Thus, for example, a positive treatment effect

would correspond to the case of equation (2.1) where Y2 can take on only two values.

This type of model fits into the class of models considered in Vytlacil and Yildiz (2007).

In this paper we are interested in the parameter α0, which is related to a treatment effect. To

simplify exposition, we will assume the parameters δ0 and γ0 are known. What this part of

the paper will focus on is the information for α0 (see, e.g., Ibragimov and Has’minskii (1981),

Chamberlain (1986), Newey (1990) for the relevant definitions). To simplify the notation,

we introduce single indices x1 = z′1γ0 and x = z′δ0.6 The discrete response model can then

be written as

Y1 = 1{X1 + α0Y2 − U ≥ 0},
Y2 = 1{X − V ≥ 0}.

(2.3)

To give a full characterization of the class of distributions of errors and covariates that we

consider, we introduce the following assumption:

Assumption 1 (i) Single indices X1 and X have a joint distribution with the full support

on R2 which is not contained in any proper one-dimensional subspace;

(ii) (U, V ) are independent of X1 and X and have an absolutely continuous density with

full support on R2 and joint cdf G(·, ·). The partial derivative ∂G(u,v)
∂u

exists and strictly

positive on R2;

(iii) For each t ∈ R and fixed γ0 and δ0, there exists function q(·, ·) with E[q(X1, X)2] <∞
which dominates ∂G(x1+t, x)

∂t

We recognize that this assumption is stronger than many assumptions that are used to

identify semiparametric models with endogenous binary variables. We do so with an explicit

intent to demonstrate that our (negative) results regarding the quality of identification of

parameter of interest α0 occur even in this simple setup.

We begin our analysis by noticing that we can construct examples of parametric distri-

butions for the errors and covariates in the triangular model in which the variance of the

score for parameter α0 is infinite. The simplest way to construct such examples is to consider

cases of high correlation between errors U and V . This can reflect the situation where both

equations in the triangular system are driven by common shocks that are not observed by

6 Although additional complications may arise if covariates Z are not truly exogenous, under our as-
sumptions one can regularly identify parameters γ0 and δ0. The issues of inference for these parameters are
discussed, for instance in Abrevaya, Hausman, and Khan (2011).
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the econometrician. The infinite variance of the score in the parametric example which we

give in Appendix D is driven by the large support of covariates and the thin tails of the

normal distribution. We observe that one cannot construct a similar example for estimation

of the constant in the single equation binary choice model. This result indicates that the

information in the triangular model may have a different nature: while in the single equation

model the information is determined by the smoothness of the joint distribution of errors and

covariates, in the triangular model it is determined by the relative tail behavior of the distri-

butions of errors and covariates. The zero information result can be “repaired” in parametric

models by assuming that covariates have bounded support with density bounded away from

zero on that support. This assumption may not be suitable in semiparametric models: when

the distributions of covariates and the unobserved shocks are unknown, the restriction on

the covariate support often leads to a loss of point identification of the parameter of interest.

As a result, when we allow the model to be semiparametric with unknown distributions

of errors and covariates, we can find parametric submodels that have zero information. It

turns out that these submodels can be constructed for each smooth distribution of errors

U and V . The structure of the least favorable submodel is such that the shocks U and V

are highly correlated eveywhere on the support. The single indices, on the other hand are

highly correlated at the tails. As a result, the parameter of interest is nearly not identified.

We formally state this result in the following theorem7:

Theorem 2.1 Under Assumption 1, the Fisher information associated with parameter α0

in model (2.3) is zero.

We find that under our conditions the parameter α0 cannot be estimated at the para-

metric rate. Even though this result has similar structure to the impossibility theorems in

Chamberlain (1986) and Cosslett (1987), the issue of irregular identification of payoff pa-

rameters in strategic models was not well understood so far. We argue that the intercept

in the semiparametric binary choice model and the coefficient of the endogenous dummy

variable are different in terms of elements of the data distribution that identify them. While

the intercept is identified from the location of the mean or the median of the marginal distri-

bution of the errors, the coefficient of the endogenous dummy is identified from the mutual

dependence between the error terms in two equations of the binary system. Hence, even

if one imposes sufficient restrictions on the marginal distribution to regularly identify the

intercept, the coefficient of the endogenous dummy may still be irregularly identified. In the

subsequent sections we show that a similar result applies to the information of the strategic

interaction parameter in static game models. The conditions of the theorem imply that for

7The proof of this and all subsequent theorems is provided in Appendix A
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any distribution of errors we can find a parametric submodel for which the score will have

an infinite variance. This does not mean that all parametric submodels will have the infinite

variance of the score; for instance, if the class of densities of U and V covers all joint logistic

densities, then normal distributions of covariates can deliver finite scores, and hence positive

information. The assumption of the theorem rules out the cases when one only considers

such distributions.

Remark 2.1 This result, first shown in Khan and Nekipelov (2010), was alluded to in Abre-

vaya, Hausman, and Khan (2011), where they conducted inference on the sign of α0, and

indicated why the positive information found in Vytlacil and Yildiz (2007) was due to a rela-

tive support condition on unknown parameters. The delicacy of point identification was also

made apparent in Shaikh and Vytlacil (2011), who partially identified this parameter. As we

will see later in this paper, this zero information result can be overturned by introducing a

little more uncertainty in the model (e.g. by reducing the information available to the treated

agent (Player 1 in the game) regarding the treatment).

2.2 Optimal rate for estimation of the interaction parameter

The fact that the information associated with the “interaction” parameter is zero does not

imply that the parameter cannot be estimated consistently. We now describe the set of

results regarding the convergence rates of the semiparametric estimator for α0.

We take a constructive approach to establish the optimal convergence rate for the es-

timator for α0. We begin with a definition of the optimal rate following Ibragimov and

Has’minskii (1978). Let G characterize a class of joint densities of error terms (U, V ) and

single indices X1 and X. First, we recall that for the class of distributions G, we define the

risk using a positive (rate) sequence rn and a constant L as

R(α̂, rn, L) = sup
f,g∈G

Pf,g (rn|α̂− α0| ≥ L) .

Using this notion of the risk, we introduce the definition of the convergence rates for the

estimator of the parameter of interest.

Definition 2.1 (i) We call the positive sequence rn the lower rate of convergence for the

class of densities G if there exists L > 0 such that

lim inf
n→∞

inf
α̂
R(α̂, rn, L) ≥ p0 > 0.

(ii) We call the positive sequence rn the upper rate of convergence if there exists an esti-

mator α̂n such that

lim
L→∞

lim sup
n→∞

R(α̂n, rn, L) = 0.
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(iii) The positive sequence rn is the minimax (or optimal) rate of convergence if it is both

a lower and an upper rate.

We make a constructive argument to derive the upper convergence rate by providing an

estimator that attains the upper rate of convergence in Definition 2.1(ii). The convergence

rate of the resulting estimator relies on the tail behavior of the joint density of the error

distribution. To be more specific about the class of considered error densities, we formulate

assumptions that restrict the “thickness” of tails of the error distribution in addition to

Assumption 1, which requires that the density of this distribution is smooth and the random

shocks U and V are independent from the covariates X1 and X. These assumptions are

satisfied by many distributions that are conventional in applied research.8

Assumption 2 Denote the joint cdf of unobserved payoff components U and V as G(·, ·),

where Gv(·) is the marginal cdf of V . Let G be the class of distributions of errors g(·, ·) and

covariates f(·, ·) which satisfy the assumptions of Theorem 2.1 and the following additional

conditions:

(i) There exists a non-decreasing function9 ν(·) such that for any |t| <∞

lim
c→+∞

1

ν(c)
sup
f,g∈G

Ef,g

[(
∂G(X1 + t,X)

∂t

)2

G(X1 + t,X)−1

(Gv(X)−G(X1 + t,X))−1
∣∣ |X1|, |X| < c

]
<∞

(ii) There exists a non-increasing function β(·) such that for any |t| <∞

lim
c→+∞

β(c) sup
f,g∈G

Ef,g

[
log

(
G(X1 + t,X)

(Gv(X)−G(X1 + t,X))

)∣∣ |X1|, |X| > c

]−1

<∞

This assumption allows the inverse joint cumulative distribution function to be non-integrable

in the R2 plane (its improper integral diverges). It is, however, integrable on any square with

finite edge and its integral can be expressed as a function of the length of the edge. A rough

evaluation for such a function ν(·), can come from evaluating the highest value attained by

the inverse cumulative distribution of errors on [−c, c]× [−c, c]. If the distribution of single

indices decays sufficiently fast at the tails, this evaluation can be improved.

8We give concrete examples of such distributions including normal and logistic in Appendix C
9We use the same c to trim the support of covariates X and X1 for notational and algebraic convenience

only. Our analysis has a straightforward extension to the case where the relative tail behaviors of X1 and
X are different. In that case ν(·) will be a function of two arguments.
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The imposed assumptions play two roles. First, they require that for each finite c the

expectation of inverse joint cdf and the logarithm of the joint cdf of the error terms are

finite. Second, provided that those quantities are finite, they essentially allow the researcher

to define functions ν(·) and β(·) to offset the divergence of the corresponding conditional

expectations to infinity. Assumption 2(ii) requires the population likelihood function of the

model to be finite (provided that β(·) is a non-increasing function). In addition, if the

support of the indices x1 and x is restricted to a square with the edge of some large length c,

the resulting restricted likelihood will be sufficiently close to the true population likelihood.

We maintain our Assumption 1 ensuring smoothness and measurability of the density of

error terms U and V . We also need to add a technical assumption regarding the complexity

of the class of considered densities of error terms to make sure that this density is estimable

at a sufficiently fast rate. Following Kim and Pollard (1990), we refer to the class of densities

satisfying our assumptions as uniformly manageable. We give the formal definition of this

class in Appendix A.2.

The class of uniformly manageable densities of errors satisfying Assumptions 1 and 2

characterizes the class of error distributions that we will consider in our analysis. This is a

large class of functions admitting many classes of distributions commonly used in applied

research. We use a constructive approach to derive the optimal rates and first propose the

estimator that attains the upper convergence rate.

We consider the following procedure to estimate α0.10 First, we look at the probability of

the outcome (0, 0) conditional on linear indices x1 and x. This probability does not depend

on the interaction parameter, and its derivative with respect to the linear indices will be

equal to the joint error density. Therefore we estimate the joint probability of the outcome

(0, 0) and then differentiate it with respect to the arguments. The estimated density will be

approximated by K terms in an orthogonal expansion.

Second, when the estimate of the error density is available, it can be substituted into the

expression for the probabilities of outcomes (1, 1) and (0, 1) which depend on the interaction

parameter. We then form the trimmed quasi-likelihood using the trimming sequence cn. We

need to trim the sample likelihood to avoid the divergence of its Hessian when covariates

take large values. We define the estimator as the maximizer of the trimmed quasi-likelihood

α̂∗0,n = argmaxα
1

n

n∑
i=1

l̂K,cn (α; y1i, y2i, x1i, xi) . (2.4)

where the subscript K, cn denotes that the likelihood depends on the the tuning parameters

K, cn. The estimator will have a convergence rate that depends on the tail behavior of the

error terms and the selected trimming sequence cn. In Appendix A.2 we demonstrate that

10 We provide a formal exposition of this estimator in Appendix B.1.
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we can select the trimming sequence cn such that the rate of the estimator α̂∗0,n attains the

upper convergence rate for estimation of α0.

The next question that must be addressed is whether the sequence cn that makes the

particular estimator α̂∗0,n attain the upper convergence rate is also the optimal rate of esti-

mator α̂0,n. The answer to this question involves combining our results with a fundamental

result regarding the lower rate for semiparametric estimators provided in Koroselev and Tsy-

bakov (1993) The following theorem outlies our main result regarding the optimal rate for

the interaction parameter in the triangular model.

Theorem 2.2 Suppose that Assumptions 1 and 2 hold. Suppose that cn →∞ is a sequence

such that nβ2(cn)
ν(cn)

= O(1) with n/ν(cn) → ∞. Then for this sequence
√

n
ν(cn)

is the optimal

rate for the estimator for parameter α0 in model (2.3).

Remark 2.2 We note that the stated conditions on cn in the statement of the theorem

resemble the usual bias variance tradeoff in nonparametric estimation. For the problem at

hand, cn converging to infinity will ensure the bias shrinks to 0, but unfortunately this can

also cause the variance to explode. As in nonparametric estimation, there will be an optimal

rate of cn that balances this tradeoff to minimize mean squared error.

This theorem shows that the majorant ν(·) for the expectation of the inverse cumulative

distribution of errors plays the role of the pivotizing sequence. Similar to the construction

of the t-statistics where the de-meaned estimator is normalized by the standard deviation,

we normalize the estimator by a function of the trimming sequence.

The above result reveals how widely the optimal rates vary, depending on the tail prop-

erties of the observed indices. Appendix C illustrates by considering widely used parametric

distributions such as the normal and logistic distributions.

3 Triangular model with incomplete information

3.1 Identification and information of the model

In the previous section, we considered a classical triangular discrete response model and

demonstrated that in general, that model has zero Fisher information for the interaction

parameter α0. Our results suggested that the optimal convergence rate for the estimator

of the interaction parameter will be sub-parametric and will depend on the relative tail be-

havior of the error terms (U, V ) and covariates. In this section, we set up a model which
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can be arbitrarily “close” to the classical triangular model but have positive information.11

We construct this model by adding a small noise to the second equation in the triangular

system. Adding arbitrarily small but positive noise to this equation discontinuously changes

the optimal rate to the standard parametric rate. One example of this approach is adding

artificial noise to the treatment assignment in a controlled experiment, such that the exper-

imental subjects do not know the specific realizations of the experimental noise but know

its distribution. As a result, they will be responding to the expected treatment instead of

the actual treatment. This model provides a strategic flavor to the conventional triangular

model. As we emphasize it further, this model structure is interesting as it can be considered

a special case of the static game of incomplete information.

Consider the model where the endogenous variable Y2 defined as

Y2 = 1{X − V − ση > 0}.

We express our assumption regarding the additional noise component η formally:

Assumption 3 Suppose that η ⊥ (U, V ) and η ⊥ (X1, X). The distribution of η has a

differentiable density with the full support on R and a cdf Φ(·) which is known by the economic

agent and the econometrician.12

Variable Y1 reflects the response of agent who does not observe the realization of noise

η but observes the error term V . As a result, the response in the first equation can be

characterized as:

Y1 = 1{X1 + α0Eη[Y2|X, V ]− U > 0}

where the parameter of interest is α0 for which we wish to derive the information.13 We can

express the conditional expectation in the above term as Eη[Y2|x, v] = Φ((x − v)/σ). The

constructed discrete response model can the be written as

Y1 = 1{X1 − U + α0E[Y2|X, V ] > 0},
Y2 = 1{X − V + ση > 0}.

(3.1)

11An alternative approach to address the zero information issue is to change the object of interest to some
non-invertible function of the interaction parameter as in Abrevaya, Hausman, and Khan (2011), which
focused on the sign of the treatment effect.

12We show further in the paper that this choice is a normalization
13We note that here α0 may denote a different treatment parameter than before. Specifically, it now

measures the response to probability of treatment, as opposed to treatment itself. We argue that it is still a
useful parameter to conduct inference on, for two reasons: First, as the amount of noise becomes arbitrarily
small, the probability of treatment becomes arbitrarily close to the standard treatment status indicator, and
the new parameter approximates the standard parameter (the remainder of this section elaborates on this
argument with more precision). Second, even if the amount of noise (quantified by σ) is not small, the new
parameter will have the same sign as the old one.
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Incorporating expectations as explanatory models is similar in spirit to work considered in

Ahn and Manski (1993). In doing so, we are able to place the triangular binary model into

the framework of modeling responses of economic agents to their expectations such as in

Manski (1991), Manski (1993) and Manski (2000).

This model also has features of the continuous treatment model considered in Hirano and

Imbens (2004), Florens, Heckman, Meghir, and Vytlacil (2008) and Imbens and Wooldridge

(2009). While in the latter cases the economic agent responds to an intrinsically contin-

uous quantity (such as dosage), in our case the continuity of treatment is associated with

uncertainty of the agent regarding the treatment. Notably, even the triangular model in the

previous section has a discrete response interpretation characterizing the optimal choice of

an economic agent. This approach has been proven useful in the modern treatment effect

literature, such as in Abadie, Angrist, and Imbens (2002), Heckman and Navarro (2004),

Carneiro, Heckman, and Vytlacil (2010). Outside of the treatment effect setting, analysis of

binary choice models with a continuous endogenous variable is also studied in Blundell and

Powell (2004), who demonstrate the attainability of positive information for the coefficient

on the endogenous variable.

The incomplete information triangular model presented here also places the standard

triangular model considered in the previous section in the context of the models with strategic

compliance of the treated subjects, as in Chassang and Snowberg (2010). The complete

information triangular model will characterize the compliance behavior in the LATE model

of Angrist and Imbens (1995), Abadie, Angrist, and Imbens (2002), and Imbens (2009) as

a special case: the orthogonality assumption of LATE will be satisfied if the error terms

U and V , in our terminology, are independent. Variable Y2 corresponds to the “treatment

assignment” (i.e. the binary instrument of the LATE model) and the variable y1 corresponds

to the compliance decision. The complete information model represents the case where

the treated subject knows all of the inputs into the treatment decision. As a result, the

compliance decision will be correlated with the treatment decision unless the unobservables

in the two decisions are orthogonal. Once the treatment decision contains noise, which may

come from the deliberate treatment randomization (e.g. through a placebo) or can suffer

from the measurement error, the treated subject may only react to the expected treatment.

This setting motivates the triangular model with treatment uncertainty.

We can illustrate the structure of the model using Figure 1. Panel (a) in Figure 1

corresponds to the classical binary triangular system and panels (b)-(d) correspond to the

triangular system with incomplete information. The panels show the areas of joint support

of U and V corresponding to the observable outcomes y1 and y2. When there is no noise in

the second equation of the triangular system, the error terms U and V completely determine

the outcome. On the other hand, when the noise with unbounded support is added to the
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second equation, one can only determine the probability that the second indicator is equal

to zero or one. Figures 1.b-1.d show the area where, for a given quantile q, the probability

of Y2 equal zero or one exceeds 1− q. The noise in the second equation decreases from panel

(d) to panel (b), which in the limit will approach to to the figure on panel (a).

Figure 1.a Figure 1.b

Figure 1.c Figure 1.d

This discrete response model is related to game theory models with random payoff per-

turbations. If we associate discrete variable Y1 with a discrete response, then the linear index

in the first equation corresponds to the economic agent’s payoff. As a result, this model is

not a payoff perturbation model but rather a treatment perturbation model. The treatment

perturbation can be considered in the experimental settings where the subjects are exposed

to the placebo treatment with some fixed probability but they do not observe whether or not

they get the placebo. In this case they will respond to the expected treatment. The error

terms U and V in this setup can be interpreted as unobserved heterogeneity in the economic

agent’s payoff (determining Y1) and in the treatment assignment rule (determining Y2).
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Given that this is a new model, we will need to establish first that the model is iden-

tified from the data. The following theorem considers the identification of the interaction

parameter α0.

Theorem 3.1 Under Assumptions 1 and 3, the interaction parameter α0 in model (3.1) is

identified.

We note that parameter α0 is identified under conditions that are weaker than those

that we needed to estiablish the optimal rate of convergence in the complete information

triangular model (2.3). This becomes possible due to the presense of additional noise η

which “smoothes out” the response of the economic agent. There is also a tradeoff between

identification of the marginal distribution of the error term V and the distribution of noise

η. The observable conditional probability of the indicator of the second equation equal to

one can be written as

P1(x) =

∫
Φ

(
x− v
σ

)
gv(v) dv, (3.2)

where gv(·) is the marginal density of v. This expression represents a convolution of the

marginal density and Φ(·), the cdf of the noise distribution. Given that the Fourier trans-

form of the convolution is equal to the product of Fourier transforms, the transform of the

(observable) left-hand side is equal to the product of the Fourier transform of the cdf of the

noise distribution and the marginal characteristic function of the distribution of V . If the

distribution of V is known, then the cdf of the noise is identified via its Fourier transform.

When the cdf of the noise is fixed, we can identify the marginal distribution of V .

The deconvolution argument provides a simple and convenient method to explicitly ex-

press the strategic interaction parameter α0 using the observed conditional expectations of

dummy variables Y1 and Y2, along with their interaction, conditional on covariates X1 and

X. In Appendix E we demonstrate how one can use the deconvolution argument along

with the techniques for operating with generalized functions to identify the distribution of

unobserved heterogeneity (U, V ) along with the parameter of interest.

After establishing identification of the parameter of interest, we analyze its Fisher infor-

mation. We find that for any finite variance σ2 (which can be arbitrarily small) the infor-

mation for α0 in the incomplete information triangular model is strictly positive. Moreover,

the Fisher information of the strategic interaction parameter α0 approaches zero when the

variance of noise shrinks to zero. In other words, the smaller the informational asymmetry

between agents, the smaller the Fisher information of the interaction parameter α0.

We state this in the following theorem:
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Theorem 3.2 Suppose that Assumptions 1 and 3 are satisfied.

(i) For any σ > 0 the information in the triangular model of incomplete information (3.1)

is strictly positive.

(ii) As σ → 0 the information in the triangular model of incomplete information (3.1)

converges to zero.

We note that this theorem also suggests an alternative estimator for the strategic interaction

parameter in the complete information model. One can consider estimation of the complete

information model assuming that it is “sufficiently” close to the incomplete information

model and then for a fixed distribution of η choose a sequence of standard deviations σn → 0

as n → ∞. This approach is essentially a kernel smoothing-based estimator for parameter

α0.

3.2 Convergence rate for the interaction parameter

The previous subsection proved that the triangular model with incomplete information has

positive Fisher information for any amount of noise added to the second equation. Our

results, therefore, guarantee that the semiparametric efficiency bound is finite. We note

that the analyzed model has two unknown nonparametric components: the distribution of

covariates and the distribution of unobserved heterogeneity. Due to the independence of

the unobserved heterogeneity and the observed covariates and the fact that the distribution

of covariates does not depend on parameter α0, this parameter is fully characterized by

the expectations of and the covariance between the observed binary variables Y1 and Y2

conditional on covariates. In other words, the parameter of interest is characterized by

a system of conditional moment equations. We explicitly compute the efficiency bound

in Appendix F.1 and our results are based on the result for the semiparametric efficiency

bound in conditional moment systems provided in Ai and Chen (2003). Our efficiency result

provides the semiparametric efficiency bound for the new discrete response model.

Our final result expresses to the optimal convergence rate for the interaction parameter

in the triangular model of incomplete information. Our result states that the optimal rate

of convergence is parametric and the minimum variance of the estimator converging at a

parametric rate corresponds to the semiparametric efficiency bound. Formally this result is

formulated in the statement of the following theorem which combines the result of Theorem

3.2 and Theorem IV.1.1 in Ibragimov and Has’minskii (1981).
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Theorem 3.3 Under Assumptions 1 and 3 for any sub-convex loss function w(·) and stan-

dard normal random variable ξ:

lim inf
n→∞

inf
α̂0,n

sup
(f,g)∈G

Ef,g
[
w
(√

n(α̂0,n − α0(f, g))
)]
≥ E[w

(
Ω1/2ξ

)
],

where g(·, ·) is the distribution of errors U and V , f(·, ·) is the distribution of covariates,

α̂0,n is the estimator for the strategic interaction parameter and Ω is the semiparametric

efficiency bound.14

4 Nontriangular Systems: A Static game of complete

information

4.1 The Fisher information in the complete information game

In this section we consider the information of parameters of interest in a simultaneous discrete

system of equations where we no longer impose the triangular structure of the previous

sections. A leading example of this type of system is a 2-player discrete game with complete

information (e.g. Bjorn and Vuong (1985) and Tamer (2003)). We will later extend this

model to one with incomplete information in a manner analogous to our approach to the

triangular system.

A simple binary game of complete information is characterized by the players’ deter-

ministic payoffs, strategic interaction coefficients, and random payoff components u and v.

There are two players i = 1, 2 and the action space of each player consists of two points

Ai = {0, 1} with the actions denoted yi ∈ Ai. The payoff of player 1 from choosing action

y1 = 1 can be characterized as a function of player 2’s action:

y∗1 = z′1γ0 + α1y2 − u,

and the payoff of player 2 from choosing action y2 = 1 is characterized as

y∗2 = z′2δ0 + α2y1 − v.

For convenience of analysis we change notation to x1 = z′1γ0 and x2 = z′2δ0. We normalize

the payoff from action yi = 0 to zero and we assume that realizations of covariates X1 and X2

are commonly observed by the players along with realizations of the errors U and V , which

are not observed by the econometrician and thus characterize the unobserved heterogeneity

in the players’ payoffs. Under this information structure the pure strategy of each player

14 We provide an explicit expression for Ω in terms of the primitives of the model in Appendix F.1.
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is the mapping from the observable variables into actions: (u, v, x1, x2) 7→ 0, 1. A pair of

pure strategies constitute a Nash equilibrium if they reflect the best responses to the rival’s

equilibrium actions. The observed equilibrium actions are described by random variables

(from the viewpoint of the econometrician) characterized by a pair of binary equations:

Y1 = 1{X1 + α1Y2 − U > 0},
Y2 = 1{X2 + α2Y1 − V > 0},

(4.1)

where errors U and V are correlated with each other with an unknown distribution. In

particular, we are interested in determining when the strategic interaction parameters α1, α2

can or cannot be estimated at the parametric rate. We formalize our restriction on the joint

distribution of U and V in the following assumption, which is analogous to Assumption 1 in

the triangular model.

Assumption 4 Suppose that

(i) X1 and X2 have a continuous distribution with full support on R2 (which is not con-

tained in any proper one-dimensional linear subspace);

(ii) (U, V ) are independent of (X1, X2) and have a continuously differentiable density with

the full support on R2 and joint cdf G(·, ·). Partial derivatives ∂G(u,v)
∂u

∂G(u,v)
∂v

exist and

strictly positive on R2;

(iii) For each t1, t2 ∈ R, there exist functions q1(·) and q2(·) with E[q1(X1, X2)2] < ∞
E[q2(X1, X2)2] <∞ which dominate ∂G(x1+t1, x2+t2)

∂u
and ∂G(x1+t1, x2+t2)

∂v
, respectively.

As noted in Tamer (2003), the system of simultaneous discrete response equations (4.1)

has a fundamental problem of indeterminacy. To resolve this problem we impose the following

additional assumption which is similar to the assumption of the existence of an equilibrium

selection mechanism in game theory:

Assumption 5 Denote S1 = [α1 + x1, x1]× [α2 + x2, x2], S2 = [x1, α1 + x1]× [x2, α2 + x2],

S3 = [α1 + x1, x1] × [x2, x2 + α2], and S4 = [x1, x1 + α1] × [α2 + x2, x2]. Note that S1 = ∅
iff α1 > 0, α2 > 0 and S2 = ∅ iff α1 < 0, α2 < 0.

(i) If S1 6= ∅ or S2 6= ∅ then Pr (y1 = y2 = 1|(u, v) ∈ Sk) ≡ 1
2

for k = 1, 2.

(ii) If S3 6= ∅ or S4 6= ∅ then Pr (y1 = (1− y2) = 1|(u, v) ∈ Sk) ≡ 1
2

for k = 3, 4.
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Assumption 5 requires that when the system of binary responses has multiple solutions, then

the realization of a particular solution is resolved over a symmetric coin flip. In regions where

the system may have no solutions (corresponding to a unique mixed strategy equilibrium),

we impose solutions via randomization. This assumption addresses the incoherency in the

model. We select this simple setup to emphasize that the complete information model has

zero information even when there is no incoherency. In principle, one can generalize this

condition to cases where the distribution over multiple outcomes depends on additional

covariates. However, given that the structure of results under this generalization remains

the same, we do not consider it in this paper.

We now prove identification of strategic interaction parameters, arguing that the zero

information result is not a consequence of poor identifiability. Our identification result,

generally speaking, is new. We leave the distribution of unobserved payoff components to

be fully non-parametric (and non-independent, unlike Bajari, Hong, and Ryan (2010), who

assume independence and normality of unobserved components U and V , and Grieco (2010),

who drops independence by keeps the assumption of normality) while imposing a linear index

structure on the payoffs.15

Theorem 4.1 Suppose that Assumptions 4 and 5 are satisfied. Then the interaction param-

eters α1 and α2 in model (4.1) are identified.

Having established the identifiability of the parameters of interest, we now study the

information associated with the strategic interaction parameters. The following result es-

tablishes that the information associated with the interaction parameters in the static game

of complete information is zero. The important takeaway is that in the light of the identifi-

cation result in Theorem 4.1, this result is not related to the incoherency of the static game

and is a reflection of discontinuity of equilibrium strategies.

Theorem 4.2 Suppose that Assumptions 4 and 5 are satisfied. Then the Fisher information

associated with parameters α1 and α2 in model (4.1) is zero.

Our result fully illustrates why the zero Fisher information of the interaction parameter

is a problem that is not related to the multiplicity of equilibria. We have explicitly com-

pleted the model using randomization of oucomes so that it is coherent, yet we still cannot

attain positive information. The estimation and inference of the interaction parameters are

nonstandard even in a simplified model - a result analogous to that found for the triangular

system in the previous sections. Here we aim to address the optimality of estimators of

15The proof of identification can be found in the companion paper “Information Bounds and Impossibility
Theorems for Simultaneous Discrete Response Models”.
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the interaction parameters by deriving their optimal convergence rates. As we show in the

next section, the convergence rate for the estimators of strategic interaction parameters will

be affected by the considered class of distributions of unobserved heterogeneity. Provided

that identification in this case relies on the full support of linear indices, the optimal rate

of convergence for the estimator of the interaction parameters will be sub-parametric and

reflect the relative tail behavior of the distribution of the unobserved payoff components.

The parameter estimates will therefore be non-robust to the distribution of the unobserved

heterogeneity.

4.2 Optimal rate for estimation of strategic interaction parame-

ters

To analyze the optimal rates of convergence for the strategic interaction parameters we need

to modify Assumption 2 to account for the presence of the interaction between both discrete

response equations.

Assumption 6 Denote the joint cdf of unobserved payoff components u and v as G(·, ·)
and the joint density of single indices f(·, ·). Then assume that the following conditions are

satisfied for these distributions.

(i) There exists a non-decreasing function ν(·) such that for any |t| <∞ and |s| <∞

lim
c→∞

1

ν(c)
sup
f,g∈G

Ef,g

[
max

{(
∂G(X1 + t,X2 + s)

∂t

)2

,

(
∂G(X1 + t,X2 + s)

∂s

)2
}

G(X1 + t,X2 + s)−1 (1−G(X1 + t,X2 + s))−1
∣∣ |X1|, |X2| < c

]
<∞

(ii) There exists a non-increasing function β(·) such that for any given |t| <∞ and |s| <∞

lim
c→∞

β(c) sup
f,g∈G

∣∣∣∣Ef,g[ log
(
G(X1 + t,X2 + s)

(1−G(X1 + t,X2 + s))
) ∣∣ |X1|, |X2| > c

]∣∣∣∣−1

<∞

In principle, we can consider a generalized version of Assumption 6 where we allow different

behavior of the distribution tails in the strategic responses of different players. In that case

we will need to select the trimming sequences differently for each equation. This will come

at a cost of more tedious algebra. However, the conceptual result will be very similar.

We will use the assumption regarding the class of distributions of unobserved hetero-

geneity components U and V with minimal modifications and we will not reproduce it from
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Section 1. We require that the density belongs to a“uniformly manageable” class of func-

tions (as per the definition in Kim and Pollard (1990)). Assumptions 4, 6 and “uniform

manageability” characterize the distributions of unobserved heterogeneity that we consider

in our analysis. The error distributions commonly used in empirical analysis of games such

as normal and logistic satisfy these assumptions.16

As in the case of the triangular model, we propose a constructive approach to analyz-

ing the optimal rate for the estimators of the interaction parameters. The idea behind the

estimation procedure in the case of triangular system was to use the case where both in-

dicators are equal to zero, which allows one to directly observe the cumulative distribution

of errors. This approach will not be immediately available for the complete information

game. The outcome probability P00(x1, x2;α1, α2) depends on the unknown parameters α1

and α2. We modify the estimator by replacing the two-step procedure with an iterative

procedure where one can “profile out” the unknown density of errors at each iteration of

likelihood maximization with respect to the strategic interaction parameters. Defining the

sample log-likelihood

l̂p(α1, α2) = sup
a11,...,aKK

1

n

n∑
i=1

l (α1, α2; y1i, y2i, x1i, x2i) ,

where K is the number of terms in the orthogonal expansion of the density of U and V , we

obtain the estimator as the maximizer of the profile log-likelihood:

(α̂∗1n, α̂
∗
2n) = argmaxα1,α2

l̂p(α1, α2). (4.2)

For an appropriately chosen sequence of cutoff points, this estimator attains the upper rate of

convergence for the estimators of the strategic interaction parameters.17 This property of the

estimator based on the trimmed likelihood function is analogous to the result regarding the

rate of the semiparametric two-stage estimator that we propose for the triangular system.

Provided that we assume identical tail behavior for both error terms, the resulting rates

for the interaction parameters are the same. As previously discussed, if the tails of the

error distributions are different, the optimal rate result can established by choosing different

trimming sequences for the support of covariates X1 and X2.

We can use the arguments employed in the case of the triangular system to show that

that sequence cn of trimming points that assures that estimator (α̂∗1n, α̂
∗
2n) attains the upper

rate also delivers the optimal rate in the class of all regular estimators for the strategic in-

teraction parameters. The following theorem formally expresses the structure of the optimal

convergence rate and echoes the argument of Theorem 2.2.

16We give concrete distribution examples in Appendix C.
17 We provide the formal discussion of this estimator in Appendix B.1.1 and in Appendix A.7 we prove

that this estimator attains the upper convergence rate.
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Theorem 4.3 Consider the model of the game of complete information in which the error

distribution satisfies Assumptions 6 and 9. Suppose that cn → ∞ is a sequence such that
nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→∞. Then for this sequence
√

n
ν(cn)

is the optimal rate for the

estimator for strategic interaction parameters α1 and α2.

One of the important takeaways from this result is that the optimal rate for estimating

strategic interaction parameters is, generally speaking, sub-parametric and depends on the

tail behavior of the error terms even in cases with a fixed equilibrium selection mechanism.

5 Static game of incomplete information

5.1 Information in the game of incomplete information

Our triangular model with treatment uncertainty can be considered a special case of a

static game of incomplete information. Theoretical results demonstrate that introduction

of payoff perturbations leads to a reduction in the number of equilibria.18 Here we attain

regular identification for the interaction parameter as well, but our argument is not one

of equilibrium refinement; as with the complete information game, we assume the simplest

equilibrium selection rule, but in contrast, we now are able to attain positive information

for the interaction parameter.

In this case we interpret the realizations of binary variables Y1 and Y2 as actions of player

1 and player 2. Each player is characterized by the deterministic payoff (corresponding to

linear indices x1 and x2), interaction parameter, unobserved heterogeneity terms u and v,

and the payoff perturbations η1 and η2. The payoff of player 1 from action y1 = 1 can be

represented as y∗1 = x1 + α1 y2 − u− ση1, while the payoff from action y1 = 0 is normalized

to 0. We impose the following informational assumptions.

Assumption 7 Suppose that η1 and η2 are privately observed by the two players, where

η1 ⊥ η2 and both satisfy Assumption 3.

This model is a generalization of the incomplete information model usually considered

in empirical applications because we allow for the presence of unobserved heterogeneity

components u and v. This is an empirically relevant assumption if one considers the case

where the same two players participate in repeated realizations of the static game. If initially

18Multiplicity of equilibria can still be an important issue in games of incomplete information as noted in
Sweeting (2009) and de Paula and Tang (2011). Alternative approaches to estimation of games of incomplete
information with multiple equilibria have been proposed in Lewbel and Tang (2011) and Sweeting (2009).
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the unobserved utility components of players are correlated, then after sufficiently many

replications of the game the players can learn about the structure of the component of

the payoff shock that is correlated with their shock. The remaining elements that cannot be

learned from replications of the game are the noise components η1 and η2, whose distributions

are normalized. An alternative interpretation for this information structure is the that payoff

components u and v are a priori known to the players but not to the econonometrician. The

interaction of the players is considered in the experimental settings where the payoff noise

(η1, η2) is introduced artificially by the experiment designer. For this reason its distribution

is known both to the players and to the econometrician.

Assumption 7 lays the groundwork for the coherent characterization of the structure

of equilibrium in this game of incomplete information. First, the strategy of player i is a

mapping from the observable variables into actions: (x1, x2, u, v, ηi) 7→ {0, 1}. Second, player

i forms the beliefs regarding the action of the rival. Provided that η1 and η2 are independent,

the beliefs will be functions only of u, v and linear indices. Thus, if Pi(x1, x2, u, v) are players’

beliefs regarding actions of opponent players, then the strategy, for instance, of player 1 can

be characterized as a random variable

Y1 = 1{E [Y ∗1 | X1, X2, U, V, η1] > 0}
= 1{X1 − U + α1P2(X1, X2, U, V )− ση1 > 0}.

(5.1)

Similarly, the strategy of player 2 can be written as

Y2 = 1{X2 − V + α2P1(X1, X2, U, V )− ση2 > 0}. (5.2)

We note the resemblence of equations (5.1) and (5.2) with the first equation of the triangular

system with treatment uncertainty.

To characterize the Bayes-Nash equilibrium in the simultaneous move game of incomplete

information we consider a pair of strategies defined by (5.1) and (5.2). Moreover, the beliefs

of players have to be consistent with their action probabilities conditional on the information

set of the rival. Taking into consideration the independence of player types η and the fact

that their cdf is known, we can characterize the pair of equilibrium beliefs as a solution to

the system of nonlinear equations:

σΦ−1(P1) = x1 − u+ α1P2

σΦ−1(P2) = x2 − v + α2P1.
(5.3)

Our informational assumption regarding the independence of the unobserved heterogeneity

components U and V from payoff perturbations η1 and η2 is to define the game with a coher-

ent equilibrium structure. If we allow correlation between the payoff-relevant unobservable

variables of two players, then their actions should reflect such correlation and the equilibrium
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beliefs should also be functions of the noise components. This structure would not support

an elegant form of the equilibrium correspondence (5.3). On the other hand, given that

the unobserved heterogeneity components U and V are correlated, the econometrician will

observe the individual actions to be correlated. In other words, we consider the structure of

the game where actions of players are correlated without having to analyze a complicated

equilibrium structure due to correlated unobserved player types.

The system of equations (5.3) can have multiple solutions.19 To resolve the uncertainty

over equilibria and maintain symmetry with our discussion of games of complete informa-

tion, we assume that uncertainty over multiple possible equilibrium beliefs is resolved by

independent coin flips. We formalize this idea in the following assumption.

Assumption 8 If for some point (x1−u, x2− v) the system of equations (5.3) has multiple

solutions, then the uncertainty regarding the realization of an equilibrium is resolved via a

uniform distribution over those solutions.

We note that the incomplete information model that we constructed embeds the complete

information model in the previous section. When σ approaches 0, the payoffs in the incom-

plete information model are identical to those in the complete information model and are

observable by both players. We illustrate the transition from the complete to the incomplete

information environment in Figure 2. When σ = 0, the actions of the players will be deter-

mined by U and V only. Figure 2.a. shows four regions, one for each possible pair of actions

in the complete information model. There is a region in the middle where multiple pairs of

actions are optimal, leading to multiple equilibria. With the introduction of uncertainty, we

can only plot the probabilistic picture of players’ actions (integrating over the payoff noise

η1 and η2). We can then characterize the areas where specific action pairs are chosen with

probability exceeding a given quantile 1− q. A decrease in the variance of payoff noise leads

to the convergence of quantiles to the areas in the illustration of the complete information

game in Figure 2.a.

19Sweeting (2009) considers a 2×2 game of incomplete information and gives examples of multiple equilibria
in that game. Bajari, Hong, Krainer, and Nekipelov (2010a) develop a class of alorithms for efficient
computation of all equilibria in incomplete information games with logistically distributed noise components.
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Figure 2.a Figure 2.b

Figure 2.c Figure 2.d

First, we establish the fact that the strategic interaction parameters α1 and α2 and the

distribution of errors (U, V ) are identified in the considered model. Note that x1, x2, u

and v enter the system of equations (5.1) and (5.2) in a way, such that the equilibrium

beliefs are functions of x1 − u and x2 − v. Conditional on the realizations x1, x2, u, and

v, the choices of the two players are also independent. On the other hand, given that

the realizations of u and v are not observable to the econometrician, conditional on x1

and x2, the choice are correlated. The observed actions are binary and the distribution of

the covariates is directly observed in the data (due to independence of the errors (η1, η2)

and the unobserved heterogeneity (U, V ) from the covariates). Thus, the information that

the data contains regarding the model is fully summarized by the conditional expectations

E [Y1|x1, x2], E [Y2|x1, x2] and E [Y1Y2|x1, x2]. The identification argument will then have

two parts. First, one needs to solve system (5.3) to obtain mappings P1(x1 − u, x2 − v) and

P2(x1 − u, x2 − v). Second, one can relate these mappings to the observable probabilities of
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actions. Althought, with continuous distribution of the noise η1 and η2 the considered model

has an equilibrium, the system of equilibrium choice probabilities can have multiple solutions.

We approach cases of multiple equilibria by resolving the uncertainty via coin flips. Given

our procedure for equilibrium selection, we can associate the observed equilibrium choice

probability with the average value of the mappings P1 and P2 over the set of possible values

for each given x1− u and x2− v. Provided that the system of identifying equations is linear

in the choice probabilities, in case of multiple equilibria the equilibrium choice probability

has to be replaced by a mixture of possible equilibrium choice probabilities. We denote the

“average” choice probabilities P̄1 and P̄2. Then, for instance, the conditional expectation

E [Y1Y2|x1, x2] can be expressed as

E [Y1Y2|x1, x2] =

∫
P̄1(x1 − u, x2 − v)P̄2(x1 − u, x2 − v)g(u, v) du dv

Given strategic interaction parameters, the average probabilities P̄1 and P̄2 are known. We

can use this expression to identify the distribution of unobserved heterogeneity for each

value of the pair of srategic interaction parameters. Using the expectations E [Y1|x1, x2] and

E [Y2|x1, x2], we can then identify the coefficients α1 and α2. In the following theorem we

summarize our identification result.

Theorem 5.1 Suppose that Assumptions 4, 7, and 8 are satisfied. Then the strategic inter-

action terms α1 and α2 in the model defined by (5.1) and (5.2) are identified.

Given that parameters of interest are identified (along with the unobserved distribution

of error terms), we can proceed with establishing the result regarding the information of

the incomplete information game. We find that for any finite variance of noise σ2 (which

can be arbitrarily small) the information in the model of the incomplete information game

is not zero. We also provide a result characterizing the Fisher information for the strategic

interaction parameters as the variance of players’ privately observed payoff shocks approaches

zero. As in the incomplete information triangular model, the Fisher information of those

parameters approaches zero.

Theorem 5.2 Suppose that Assumptions 4, 7, and 8 are satisfied.

(i) For any σ > 0 the information corresponding to parameters (α1, α2) in the incomplete

information game defined by (5.1) and (5.2) is strictly positive.

(ii) As σ → 0 the information corresponding to parameters (α1, α2) in the incomplete

information game defined by (5.1) and (5.2) approaches zero.
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As in the case of the triangular model, this result also suggests an alternative estimator

for the strategic interaction parameters in the complete information game: we can use the

estimates of the strategic interaction parameters from the incomplete information game

with a small variance of the noise to approximate the strategic interaction parameters in the

incomplete information game.

5.2 Convergence rate in the incomplete information game

We conclude the analysis with the following theorem which combines the result of Theorem

5.2 and Theorem IV.1.1 in Ibragimov and Has’minskii (1981). This theorem states that

the optimal convergence rate for the estimator for the strategic interaction parameters in

the incomplete information game is parametric and the minimum variance of the estimator

converging at the parametric rate corresponds to the semiparametric efficiency bound.

Theorem 5.3 Under Assumptions 4, 7, and 8 for any sub-convex loss function w(·) and

standard normal random variable ξ:

lim inf
n→∞

inf
α̂n=(α̂n1 ,α̂

n
2 )′

sup
f,g∈G

Ef,g
[
w
(√

n(α̂n − α(f, g))
)]
≥ E[w

(
Ω1/2ξ

)
],

where g(·) is the distribution of errors U and V , f(·) is the distribution of covariates, α̂n is

the estimator for the strategic interaction parameters, α(f, g) is the true value of the strategic

interaction parameters and Ω is the semiparametric efficiency bound.20

The result of this theorem is not surprising in light of our finding in Theorem 5.2: given

that the information for the strategic interaction parameters is positive, the semiparametric

efficiency bound which is equal to the inverse information matrix will be finite. An important

additional result provided in Appendix F.2 is the explicit derivation of the semiparametric

efficiency bound. This result demonstrates the structure of the variance of the efficient esti-

mator for the strategic interaction parameter in the static game model with a non-parametric

distribution of unobserved heterogeneity. The efficiency bound for a static two-payer game

of incomplete information has been analyzed in Aradillas-Lopez (2010) without allowing for

player-specific unobserved heterogeneity that is commonly observed by the players. Grieco

(2010) allows for the individual-specific heterogeneity, but assumes a specific parametric

form for both the payoff noise distribution and the distribution of unobserved heterogeneity.

We provide the result that parametric inference remains feasible even when the distribution

of unobserved heterogeneity remains fully nonparametric. Our efficiency result provides a

20We provide an explicit result for the semiparametric efficiency bound in Appendix F.2.



30

semiparametric efficiency bound for the generalized class of static games of incomplete infor-

mation in Bajari, Hong, Krainer, and Nekipelov (2010b) as well as in Haile, Hortaçsu, and

Kosenok (2008) for the games with quantal response equilibria considered in Palfrey (1985),

provided that we allow for the presence of unobserved heterogeneity that is correlated across

players and with unknown distribution.

6 Conclusions

This paper considers identification and inference in simultaneous equation models with dis-

crete endogenous variables. We analyze triangular systems where the parameter of interest

is the coefficient of a discrete endogenous variable, which is related to the treatment effect

in certain settings. We also study nontriangular systems, focusing on simultaneous discrete

games, where we are interested in the strategic interaction parameters. We then consider

an incomplete information setting in which there is an additive random payoff disturbance

which is only privately observed by the players. Our main findings are that the complete in-

formation models have zero Fisher information under our conditions, whereas the incomplete

information models can have positive information. Our findings have important implications

for both the triangular and nontriangular systems. In the triangular case, both the zero infor-

mation and the optimal convergence rates we obtain indicate little advantage to estimating

the parameter in this model relative to estimating the model proposed in Lewbel (1998). In

the nontriangular case, zero Fisher information result implies that the difficulty in identifi-

cation of the strategic interaction parameters is not due to incoherency (i.e. the presence of

multiple equilibria or non-existence of the pure strategy equilibria), as we obtain this result

even after introducing an equilibrium selection rule. In the incomplete information models

(both triangular and nontriangular) the support of the endogenous variable is convexified by

the additional payoff uncertainty which leads to the positive Fisher information.

The work here suggests many areas for future research. In the incomplete information

models, with positive information, it would be useful to consider more general equilibrium

selection rules and still attain positive information. Furthermore, we restricted our atten-

tion to static games, and it would be useful to explore information levels in both complete

information and incomplete information in dynamic games. We leave these topics for future

research.
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Appendix

A Proofs

A.1 Proof of Theorem 2.1

To simplify our argument, we assume that coefficients β0 and δ0 are known. We will thus refer
to the indices in each equation as x1 and x, respectively. To derive the information of the model
we follow the approach in Chamberlain (1986) by demonstrating that for each triangular model
generated by a distribution satisfying the conditions of Theorem 2.1 we can construct a parametric
submodel passing through that model for which the information for parameter α is equal to zero.
Suppose that Γ contains all distributions of errors that satisfy the conditions of Theorem 2.1 along
with all distributions of indices x1 = β0 z1 and x = δ0 z for which E[q(Z)2] <∞ for q(·) defined in
the statement of the theorem such that x1 and x have a continuous joint distribution with a full
support on R2. We first construct the likelihood function of the model and introduce the following
notation:

P 11(t1, t) = Pr (U ≤ t1, V ≤ t) = G(t1, t),

P 01(t1, t) = Pr (U > t1, V ≤ t) ,

P 10(t1, t) = Pr (U ≤ t1, V > t) ,

P 00(t1, t) = Pr (U > t1, V > t) .

The likelihood function is determined by the density

r(y1, y2, x1, x;α, P ) = P 11(x1 + α, x)y1y2P 01(x1 + α, x)(1−y1)y2

× P 10(x1, x)y1(1−y2)P 00(x1, x)(1−y1)(1−y2)

with respect to the measure µ defined on Ω = {0, 1}2 × R2 such that for any Borel set A in R2,
µ({1, 1} × A) = µ({1, 0} × A) = µ({0, 1} × A) = µ({0, 0} × A) = ν(A), where P ((X1, X) ∈ A) =∫
A dν. Let h : R2 7→ R be a continuously differentiable function supported on the compact set with

its derivative being continuous in the interior of that compact set such that ∂h(u,v)
∂u ≥ B for some

constant B on that compact set. We define Λ̃ as the collection of paths through the original model
which we design as

λ11(t1, t; δ) = P 11(t1 + δ(h(t1, t) + 1), t),

λ01(t1, t; δ) = P 01(t1 + δ(h(t1, t) + 1), t),

λ10(t1, t; δ) = P 10(t1, t),

λ00(t1, t; δ) = P 00(t1, t),

where we note that these paths maintain the properties of the joint probability distribution (bounded
between 0 and 1, sum up to 1) and, in a sufficiently small neighborhood about the origin containing
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δ, they also maintain the monotonicity of the cdf (as the partial derivative of h(·, ·) is bounded
from below).

We denote the likelihood function corresponding to the perturbed model lλ(y1, y2, x1, x;α, δ).
Provided the assumed dominance condition, it will be mean-square differentiable at (α0, 0). In
other words, we can find functions ψα(x1, x) and ψδ(x1, x) such that

l
1/2
λ (·;α, δ) = ψα(x1, x)(α− α0) + ψλ(x1, x)δ +Rα,δ,

with

E
[
R2
α,δ

]
/ (|α− α0|+ |δ|)2 → 0 as α→ α0, δ → 0.

We can explicitly derive the mean-square derivatives. In particular, the derivative with respect to
the finite-dimensional parameter can be expressed as

ψα(x1, x) =
1
2
{y1y2P

11(x1 + α0, x)−1/2 − (1− y1)y2P
01(x1 + α0, x)−1/2}∂G(x1 + α0, x)

∂u
,

and the derivative with respect to λ can be expressed as

ψλ(x1, x) =
1
2
{y1y2P

11(x1 + α0, x)−1/2 − (1− y1)y2P
01(x1 + α0, x)−1/2}

× ∂G(x1 + α0, x)
∂u

(h(x1 + α0, x) + 1).

We the can use the fact that the Fisher information can be bounded as

Iλ,δ ≤ 4
∫

(ψα − ψλ)2 dµ

=
∫

Gv(x)
G(x1 + α0, x) (Gv(x)−G(x1 + α0, x))

(
∂G(x1 + α0, x)

∂u

)2

h2(x1 + α0, x) dν(x1, x)

We can define the measure on Borel sets in R2 as

π(A) =
∫
A

Gv(x)
G(x1, x) (Gv(x)−G(x1, x))

(
∂G(x1, x)

∂u

)2

dν(x1 − α0, x),

allowing us to characterize

Iλ,δ ≤ 4‖h‖2L2(π)

Chamberlain (1986) demonstrates that the space of differentiable functions with compact support
is dense in L2(π). Moreover, we require the derivative of h to be continuous in the interior of its
support. Let S be the support of h. We take ε∗ > 0 and construct the set Sε∗ to be a compact
subset of S such that the Euclidean distance of the boundary of S from the boundary of Sε∗ is at
least ε∗, where ε∗ is selected such that π(S \ Sε∗) <

√
ε. Since the set of differentiable functions

is dense in L2(π), for any ε > 0 we can find a ∈ C2
c (R2) such that ‖a‖L2(π) <

√
ε. The derivative

∂a(u,v)
∂u is continuous in the interior of S. Provided that Sε∗ ⊂ S, this derivative is continuous on

the entire set Sε∗ and, due to its compactness it is uniformly continuous there. As a result, there
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exists M = sup
Sε∗

∣∣∣∂a(u,v)
∂u

∣∣∣. There also exists M ′ = sup
S
|a|. Then we pick the direction h∗ as function

with support on S such that h∗ = B
2 (a/M) in Sε∗ . Then we note that

‖h∗‖L2(π) ≤
B

2M
‖a‖L2(π) +

BM ′

2M
‖1S\Sε∗‖L2(π) <

B(M ′ + 1)
2M

√
ε.

As a result, Iλ,δ ≤ B2(M ′+1)2

M2 ε. As the choice of ε was arbitrary, this proves that inf
λ∈Λ̃

Iλ,α = 0.

Q.E.D.

A.2 Convergence rate of the two-step estimator

We start with the formal definition of the uniformly manageable class of densities.

Assumption 9 (i) For the class of densities G satisfying Assumptions 4 and 6, there exists a
Hilbert space H with the basis of normalized Hermite polynomials {hl}∞0 such that

(a) For any sufficiently large K ∈ N and HK = {hl}Kl=0 sup
g∈H

inf
µ∈RK

∥∥∥g −∑K
l=0 µ

lhl

∥∥∥
L2

=

O(K−r), for r > 0

(b) |hl(·)| ≤ C and
∫ (·) |hl(z)|2 dz ≤ C

(c) For each l the class of functions Fh,l = {hl(·+ t), t ∈ R} is polynomial, i.e. the covering
number sup

Q
N(ε,Fh,l, L2(Q)) < Aε−γ, for some γ > 0 and probability measures Q.

(ii) Consider functions f(·, t, s) =
∫ ·+t ∫ ·+s

g(u, v) du dv. For each K ∈ N the class of projections
of these functions on each basis vector Fk = {proj (f(·, t, s), hk) , g ∈ G, |t|, |s| < ∞} has
envelope Fk such that E

[
F 2
k

]
<∞ and it has at most exponential covering number, i.e. there

exist constants A′ and γ′ such that :

sup
Q

log N(ε‖F‖,Fk, L2(Q)) < A′ ε−γ
′

Next, we prove the following lemma.

Lemma A.1 Suppose that the choice probability functions are estimated via an orthogonal sequence
H(K)(·, ·) = (Hk(x1, x))Kk=0 and inf

µ∈RK
‖P (y1, y2|x1, x)−µ′H(K)(x1, x)‖ = O(K−r). We assume that

K →∞ as n→∞ such that n/ (K log n)→∞. The estimator is then constructed by defining the
likelihood with support restricted to the set {|x1|, |x| ≤ cn}. Suppose that a sequence cn is selected
such that ν(cn)/n → 0, Kr/ν(cn) → 0, and ν(cn)K2/n → ∞. Then for any sequence α̂n with
the function l̂(α) corresponding to the maximand of (2.4) such that l̂K,cn(α̂0,n) ≥ sup

α
l̂K,cn(α) −

op

(√
ν(cn)
n

)
we have

√
n

ν(cn)
|α̂∗0,n − α0| = Op(1).
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Proof: We introduce the “uncensored” objective function

l (α; y1, y2, x1, x) =y1y2 log P̂11
n (x1 + α, x) + (1− y1)y2 log P̂01

n (x1 + α, x),

withQ(α) = E [l (α; y1, y2, x1, x)], and P̂11
n defined in Appendix B. Denote l̂ (α) = 1

n

∑n
i=1 l (α; y1i, y2i, x1i, xi).

Also denote

` (α; y1, y2, x1, x) =y1y2ωn(x1 + α)ωn(x) log P11(x1 + α, x)

+ (1− y1)y2ωn(x1 + α)ωn(x) log P01(x1 + α, x),

and ˆ̀(α) = 1
n

∑n
i=1 ` (α; y1i, y2i, x1i, xi). Now consider the following decomposition of the objective

function:

l̂(α)− ˆ̀(α0) = R1 +R2 +R3 +R4 +R5 +R6,

where

R1 = l̂(α)− ˆ̀(α)− E
[
l̂(α)

]
+ E

[
ˆ̀(α)

]
,

R2 = ˆ̀(α)− ˆ̀(α0)− E
[
ˆ̀(α)

]
+ E

[
ˆ̀(α0)

]
,

R3 = E
[
l̂(α)

]
− E

[
ˆ̀(α)

]
, R4 = E

[
ˆ̀(α)

]
−Q(α)

R5 = −E
[
ˆ̀(α0)

]
+Q(α0), R6 = Q(α)−Q(α0).

Term R1

For convenience, we introduce new notation denoting

pKk(z) = ωn(x1)ωn(x) [Hl1(cn)−Hl1(x1)] [Hl2(cn)−Hl2(x)]

and introduce vectors pK(z) =
(
pK1(z), . . . , pKK(z)

)′. Also let d00
i = (1 − y1i)(1 − y2i) and d00 =(

d00
1 , . . . , d

00
n

)′. Let ∆(z) = E[d00|z] and ∆ = (∆(z1), . . . ,∆(zn))′. We can project this function of
z on K basis vectors of the sieve space. Let β be the vector of coefficients of this projection. As
demonstrated in Newey (1997), for P =

(
pK(z1), . . . , pK(zn)

)′ and Q̂ = P ′P/n

‖Q̂−Q‖ = Op

(√
K

n

)
, where his ζ0 (K) = C,

and Q is non-singular by assumption with the smallest eigenvalue bounded from below by some
constant λ > 0. Hence the smallest eigenvalue of Q̂ will converge to λ > 0. Following Newey (1997)
we use the indicator 1n to indicate the cases where the smallest eigenvalue of Q̂ is above λ

2 to avoid
singularities. We also introduce

mKk(z) = ωn(x1)ωn(x) [Hl1(x1)−Hl1(−cn)] [Hl2(x)−Hl2(−cn)] .

We then can write the estimator

P̂11(x1, x) = mK(z)′Q̂−1P d00/n
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Note that

mK′(z)
(
β̂ − β

)
= mK′(z)

(
Q̂−1 P ′

(
d00 −∆

)
/n+ Q̂−1 P ′ (∆− Pβ) /n

)
. (A.1)

We can evaluate the component in the second term as

‖P (∆− Pβ) /n‖ =

√√√√ K∑
k=1

(
1
n

n∑
i=1

pKk(zi) (∆(zi)− pK(zi)′β)

)2

≤
√
K CK−2r = O(K

1
2
−r)

provided our assumption regarding the sieve space (Assumption 9 (iii) (a)). As we demonstrate,
this result allows us to concentrate on the first term ignoring the second one. For the first term in
(A.1), we can use the result that smallest eigenvalue of Q̂ is converging to λ > 0. Then application
of the Cauchy-Schwartz inequality leads to∣∣∣∣mK′(z)Q̂−1P ′

(
d00 −∆

) ∣∣∣∣ ≤ ∥∥∥Q̂−1mK(z)
∥∥∥∥∥P ′ (d00 −∆

)∥∥ .
Then

∥∥∥Q̂−1mK(z)
∥∥∥ ≤ C

λ

√
K , and

∥∥P ′ (d00 −∆
)∥∥ =

√√√√ K∑
k=1

(
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

))2

≤
√
K max

k

∣∣∣∣∣
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∣∣∣∣∣
Thus, ∣∣∣∣mK′(z)Q̂−1P ′

(
d00 −∆

)
/n

∣∣∣∣ ≤ CK

λ
max
k

∣∣∣∣∣ 1n
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∣∣∣∣∣ .
Denote µn = µ nδ/2√

nK
= γn/K for any δ ∈ (0, 1]. Next we adapt the arguments for proving Theorem

37 in Pollard (1984) to provide the bound for P
(

sup
z

1
n‖m

K′(z)Q̂−1P ′
(
d00 −∆

)
‖ > Kµn

)
. For

K non-negative random variables Yi we note that

P

(
max
i
Yi > Kc

)
≤

K∑
i=1

P (Yi > c) .

Using this observation, we can find that

P

(
sup
z

1
n
‖mK′(z)Q̂−1P ′

(
d00 −∆

)
‖ > Kµn

)
≤

K∑
k=1

P

(∥∥∥∥ 1
n

n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∥∥∥∥ > γn

)
,

where we used our definition of γn = Kµn. This inequality allows us to substitute the tail bound
for the class of functions P11

n (·, ·) by a tail bound for fixed functions

Pn,k = {pKk(·)
(
d00 −∆(·)

)
}.
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Then we can apply the inequality from Theorem 37 in (Pollard 1984) to obtain

P

(
1
n

∥∥∥∥ n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∥∥∥∥ > γn

)
≤ 2 exp

(
−2nγ2

n

C2
+A′γ−γ

′
n

)
.

As a result, we find that

P

(
sup
z

1
n
‖mK′(z)Q̂−1P ′

(
d00 −∆

)
‖ > Kµn

)
≤ 2K exp

(
−2nγ2

n

C2
+A′γ−γ

′
n

)
.

Then, provided that n/ log K →∞ and γ′ < 1 we prove that the right-hand side of this inequality
converges to zero. This means that

sup
(x1,x)∈X

‖P̂11(x1, x)− proj
(
P11(x1, x) |HK

)
‖ = op

(
n
γ
2
− 1

2

)
.

From the second term we provide the evaluation

sup
P11∈H

sup
x1,x

∥∥proj
(
P11(x1, x) |HK

)
− P11(x1, x)

∥∥ = O(K−r)

Therefore, if Kr/n(1−δ)/2 → ∞, then the “bias” term will be negligible. Next, we note that
similar evaluations can be provided for P01. As the density of (U, V ) is strictly positive on R2, the
probabilities are bounded away from zero on any bounded subset of R2 and we can make the same
evaluations for log P11(·) and log P01(·). As a result, we can deliver the rate

sup
α
|l̂(α)− ˆ̀(α)− E

[
l̂(α)

]
+ E

[
ˆ̀(α)

]
| = op

(
n−(1−δ)/2

)
.

Term R3

Consider the approximation bias term. Note that we can express

E
[
l̂(α)

]
= E

[
ωn(x1 + α)ωn(x)

(
P11(x1 + α, x) log P̂11

n (x1 + α, x)

+ P01(x1 + α, x) log P̂01
n (x1 + α, x)

)]
.

Similarly, we can express

E
[
ˆ̀(α)

]
= E

[
ωn(x1 + α)ωn(x)

(
P11(x1 + α, x) logP11(x1 + α, x)

+ P01(x1 + α, x) logP01(x1 + α, x)
)]
.

One can attain a uniform rate

sup
x1,x

∥∥∥P̂11
n (x1 + α, x)− P11(x1 + α, x)

∥∥∥ = Op

(√
K

n
+K−r

)
,

given the quality of approximation by selected sieves. We can then evaluate the entire term

|R3| = O

(√
K

n
+K1−r

)
.
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Terms R4 and R5

Consider term R4. We can evaluate this term as

|E
[
ˆ̀(α)

]
−Q(α)| ≤ 4

∣∣∣∣∫ cn

−∞

∫ cn

−∞
P11(x1 + α, x) logP11(x1 + α, x)f(x1, x) dx1dx

∣∣∣∣ .
We can then apply the Cauchy-Schwartz inequality and continue evaluation as

|E
[
ˆ̀(α)

]
−Q(α)| ≤ 4E [y1y2]

∣∣∣∣∫ cn

−∞

∫ cn

−∞
logP11(x1 + α, x)f(x1, x) dx1

∣∣∣∣
≤ C β(cn).

from Assumption 2.

Term R2

We use the following assumption regarding the population likelihood function.

Assumption 10 The population likelihood function Q(·) is twice continuously differentiable and
uniquely maximized at α0 with a negative definite Hessian.

Consider the class of functions indexed by α ∈ A such that given

`(α, y1, y2, x1, x) =
[
y1y2 log P11(x1 + α, x) + (1− y1)y2 log P01(x1 + α, x)

]
ωn(x1 + α)ωn(x)

Fn,δ = {f = `(α, ·)− `(α0, ·), |α− α0| ≤ δ}

Provided that the density of errors is twice differentiable in mean square with bounded mean
square derivatives, there exist bounded functions Ṗ11 and Ṗ01 such that functions in class Fn,δ
have envelope

Fn,δ = 1{|x1 + α0| ≤ cn + δ}ωn(x)

×

[
y1y2Ṗ11

P11
+

(1− y1)y2Ṗ01

P01

]
δ.

Then, by Assumption 2, we can evaluate(
E
[
F 2
n,δ

])1/2 = O
(
ν(cn)1/2δ

)
.

Consider the re-parametrization of the model α = α0 + h
rn

for a sequence rn →∞. Take h ∈ [0, ηrn]
for some large η and split the interval [0, ηrn] into “shells” Sn,j = {h : 2j−1 < |h| < 2j}. Suppose
that ĥ is the maximizer for l̂(α0 + h

rn
). Then if |ĥ| > 2M for some M then ĥ belongs to Sn,j with

j ≥M . As a result

P
(
|ĥ| > 2M

)
≤

∑
j≥M,2j<ηrn

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)
.
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We now use the results from the evaluation of the terms R1 and R3toR5, taking into consideration
that

Q(α)−Q(α0) ≤ −H|α− α0|2,

for some H > 0 due to the differentiability of Q(·) and the restriction on its Hessian at α0 in
Assumption 10. We can evaluate

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)

≤ P

(
sup
h∈Sn,j

|R2| ≥ |R1|+ |R3|+ |R4|+ |R5|+ |R6|

)

= P

(
sup
h∈Sn,j

|R2| ≥
22j−2

r2
n

+O

(√
K

n
+K1−r + β(cn)−1

))
,

where we use that the difference of absolute values is smaller than the absolute value of the differ-
ence. Then we use the Markov inequality to obtain that

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0
)

≤
E

[
sup
h∈Sn,j

∣∣∣ˆ̀(α0 + h
rn

)− ˆ̀(α0)− E
[
ˆ̀(α0 + h

rn
)
]

+ E
[
ˆ̀(α0)

]∣∣∣]
22j−2

r2n
+O

(√
K
n +K1−r + β(cn)−1

)
Using the empirical process notation, we define the covering integral as

J(δ, F ) = sup
Q

∫ δ

0

√
1 + log N(ε‖F‖Q,2,F , L2(Q)) dε,

where Q is the probability measure, F is a class of functions with the envelope F , and N(·) is the
covering number of the consider class. Provided the finiteness of the covering integral of the class
Fn,δ, we can use the maximum inequality to evaluate

E

[
sup
h∈Sn,j

√
n

∣∣∣∣ˆ̀(α0 +
h

rn
)− ˆ̀(α0)− E

[
ˆ̀(α0 +

h

rn
)
]

+ E
[
ˆ̀(α0)

] ∣∣∣∣]
≤ J(1, Fn,h/rn)E

[
F 2
n,h/rn

]1/2
= O

(
ν(cn)1/2 2j

rn

)
.

Assuming that rnβ(cn)−1 = o(1), rn
√
K/n = o(1) and rnK

−(d+1)/2 → 0, then

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0
)
≤ O

(
2−j+2rn

√
ν(cn)
n

)
.

This implies that

P
(
|ĥ| > 2M

)
≤ O

(
2−M+3rn

√
ν(cn)
n

)
The right-hand side converges to zero for M →∞ if rn =

√
n

ν(cn) .
Q.E.D.
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A.3 Proof of Theorem 2.2

First, consider the following evaluation from the proof of Lemma A.1

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0
)

≤
E

[
sup
h∈Sn,j

∣∣∣ˆ̀(α0 + h
rn

)− ˆ̀(α0)− E
[
ˆ̀(α0 + h

rn
)
]

+ E
[
ˆ̀(α0)

]∣∣∣]
22j−2

r2n
+O

(√
K
n +K−(d+1)/2 + β(cn)−1

)
Using the maximum inequality as before we can conclude that the ratio can be evaluated as

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0
)
≤ O

(
2−j+1 ν(cn)1/2rn√

n

)

We note that evaluation here is different, because, unlike in Lemma A.1, here we allow rnβ(cn) =
O(1). This allows us to obtain

P

(√
n

ν(cn)
|ĥ| > 2M

)
≤ O

(
2−M+2rn

√
ν(cn)
n

)
.

Thus, if L = 2M ,

P

(√
n

ν(cn)
|ĥ| > L

)
≤ O

(
4
L
rn

√
ν(cn)
n

)
.

Provided that we choose rn
√

ν(cn)
n = 1, we assure that for the maximal risk

lim
L→∞

lim sup
n→∞

R

(
α0 +

ĥ

rn
, rn, L

)
= 0.

This means that rn is the upper rate.

To derive the lower convergence rate we use the result from Koroselev and Tsybakov (1993).
Denote the likelihood ratio Λ(P1,P2) =

dPnP1
dPnP2

. Then the following lemma is the result given in

Koroselev and Tsybakov (1993).

Lemma A.2 Suppose that α1
0 = α(P1) and α2

0 = α(P2), and let λ > 0 be such that

PP2 (Λ(P1,P2) > exp (−λ)) ≥ p > 0,

and |α1
0−α2

0| ≥ 2sn. Then for any estimator α̂0,n we have max
P1,P2

P (|α̂0,n − α0| > sn) ≥ p exp(−λ/2).
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We can now use this lemma to derive the following result regarding the lower rate for the estimator
of interest.

The log-likelihood function of the model is

nL̂(α) = nˆ̀(α) + nê(α)

with

ê(α) =
1
n

n∑
i=1

{y1i logP11(x1i + α, xi) + (1− y1i) logP01(x1i + α, xi)}

y2i1{|x1i| > cn, |xi| > cn}

Note that we use the same distribution of covariates x1 and x. For cn →∞, pick21

P2(·, ·) = P(·, ·), and P1(·, ·) = P(·, ·)ωn(·)ωn(·).

Following from our previous analysis for such choices of P1(·) and P2(·), the corresponding likelihood
maximizers satisfy

|α1 − α2| = O(β(cn)).

We can then express

Λ(P1,P2) = exp
(
nL̂1(α1)− nL̂2(α2)

)
= exp

(
nˆ̀(α1)− nˆ̀(α2)− nê(α2)

)
= exp

(
n
[
ˆ̀(α1)− ˆ̀(α2)− `(α1) + `(α2)

]
− nê(α2)− n (`(α2)− `(α1))

)
We note that ˆ̀(α1) − ˆ̀(α2) − `(α1) + `(α2) = op(1) and ê(α2) = op(1). As a result, the last

term will dominate as n→∞. Then log Λ(P1,P2) is bounded from below as n approaches infinity
if and only if n (`(α2)− `(α1)) is bounded. We note that α1 maximizes `(α). This means that

`(α2)− `(α1) = −1
2
H(cn)(α2 − α1)2 + o(|α2 − α1|).

Invoking the Cauchy-Schwartz inequality, we can evaluate H(cn) = O(ν(cn)−1). As a result, we
find that

n [`(α2)− `(α1)] = O

(
nβ(cn)2

ν(cn)

)
.

This means that nβ(cn)2

ν(cn) = O(1), suggesting that for large n there exists a lower bound on the
likelihood ratio. By invoking Lemma A.2, we obtain the desired result.
Q.E.D.

21 The selected P1 may not be a probability measure; however it bears the properties of the measure, such
that characteristics of the measure such as a Radon-Nykodim derivative are still well-defined.
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A.4 Proof of Theorem 3.1

Our model is generated by two binary variables, Y1 and Y2. As a result, its parametric components
will be fully characterized by conditional probabilities E [Y1|x1, x], E [Y2|x1, x] and E [Y1Y2|x1, x].
In Appendix E we derive the Fourier transformation of each of these probabilities. Consider (E.6)
and (E.8). First, using the limit result (E.4), we can transform (E.6) to

Q(0, t2) =
[
α
χΦ(σt2)
it2

+ 2π2δ(t2)
]
χv(t2),

where Q(·, ·) is the Fourier transform of E [Y1|x1, x] and we use the result that χuv(0, t2) = χv(t2).
Multiplying both sides by it2/χΦ(σt2) and performing deconvolution provides us with

αgv(v) =
1

2π

∫
eit2v

it2Q(0, t2)
χΦ(σt2)

dt2.

Similarly, we note that the Fourier transform of E [Y2|x1, x] can be expressed as

F(t2) =
[
χΦ(σt2)
it2

+ 2π2δ(t2)
]
χv(t2).

Multiplying both sides by it2/χΦ(σt2) and performing deconvolution leads to

gv(v) =
1

2π

∫
eit2v

it2F(t2)
χΦ(σt2)

dt2.

By our assumption the density of the distribution of unobserved heterogeneity is strictly above zero
on R2. Evaluating the ratio of the above expressions, we can find

α =
(∫

eitv
itF(t)
χΦ(σt)

dt

)−1 ∫
eitv

itQ(0, t)
χΦ(σt)

dt. (A.2)

Therefore, parameter α is identified.
Q.E.D.

A.5 Proof of Theorem 3.2

A.5.1 Proof for part (i)

In the proof of Theorem 3.1 we presented an explicit expression for the parameter of interest as
expressed by (A.2). To compute the information corresponding to the parmeter of interest, we
construct the log-likelihood of the model by explicitly expressing the probabilities:

P11(x1, x;α, g) =
∫

1{x1 − u+ αΦ
(
x− v
σ

)
> 0}Φ

(
x− v
σ

)
g(u, v) du dv,

P (x1, x;α, g) =
∫

Φ
(
x− v
σ

)
gv(v) dv,

Q(x1, x;α, g) =
∫

1{x1 − u+ αΦ
(
x− v
σ

)
> 0}g(u, v) du dv.
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We can then express all probabilities of interest as

P01(x1, x;α, g) = P (x1, x;α, g)− P11(x1, x;α, g),

P10(x1, x;α, g) = Q(x1, x;α, g)− P11(x1, x;α, g),

P00(x1, x;α, g) = 1−Q(x1, x;α, g)− P (x1, x;α, g) + P11(x1, x;α, g),

and the derivatives of the probabilities of interest as

∂P11(x1, x;α, g)
∂α

=
∫

Φ
(
x− v
σ

)
g

(
x1 + αΦ

(
x− v
σ

)
, v

)
dv ≡ D1(x1, x;α, g),

∂Q(x1, x;α, g)
∂α

=
∫
g

(
x1 + αΦ

(
x− v
σ

)
, v

)
dv ≡ D2(x1, x;α, g).

We adopt the notation of the proof of zero information in the complete information model. We
consider the square root of the density generating the model:

r(y1, y2, x1, x;α, g)1/2 = y1y2P11(x1, x;α, g)1/2 + y1(1− y1)P10(x1, x;α, g)1/2

+ (1− y1)y2P01(x1, x;α, g)1/2 + (1− y1)(1− y1)P00(x1, x;α, g)1/2.

We can express the mean square derivative with respect to α as

ψα(y1, y2, x1, x) =
1
2

[
y1y2P11(x1, x;α, g)−1/2 − (1− y1)y2P01(x1, x;α, g)−1/2

]
D1(x1, x;α, g)

+
1
2

[
(1− y1)(1− y1)P00(x1, x;α, g)1/2 − y1(1− y1)P10(x1, x;α, g)1/2

]
× (D1(x1, x;α, g)−D2(x1, x;α, g)) .

Thus, we can express the information for parameter α as

Iα = 4
∫

(ψα0)2 dµ.

If ν is the measure on R2 corresponding to the distribution of x1 and x, following the approach in
the derivation of information of the complete information model, we define the measures on Borel
subsets of R2

π1(A) =
∫
A

P1(x1, x;α0, g)
P11(x1, x;α0, g) (P1(x1, x;α0, g)− P11(x1, x;α0, g))

dν(x1, x)

and

π2(A) =
∫
A

1− P1(x1, x;α0, g)
P00(x1, x;α0, g) (1− P1(x1, x;α0, g)− P00(x1, x;α0, g))

dν(x1, x).

We can then express the information of the model as

Iα = ‖D1(x1, x;α0, g)‖2L2(π1) + ‖D1(x1, x;α0, g)−D2(x1, x;α0, g)‖2L2(π2) (A.3)

We construct the measure π∗ which “picks out” for each Borel subset A one of the measures π1

or π2 which gives this set less weight: π∗(A) = min{π1(A), π2(A)}. Based on this structure of the
measure, we can write:

Iα ≥ ‖D1(x1, x;α0, g)‖2L2(π∗) + ‖D2(x1, x;α0, g)−D1(x1, x;α0, g)‖2L2(π∗)
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Denoting w(t) = Φ(t/σ) and t = x− v, we express

D1(x1, x;α0, g) =
∫
w(t)g (x1 + α0w(t), x− t) dt

and

D2(x1, x;α0, g)−D1(x1, x;α0, g) =
∫

(1− w(t))g (x1 + α0w(t), x− t) dt.

Suppose that S ⊂ R2 is a compact set such that π∗(S) > C. Then given that g(·) is continuous
and strictly positive, there exists M(t) = inf

(x1,x)∈S
|g (x1 + αw(t), x− t) | which is not equal to zero

at least for some t ∈ R. We take
√
ε = sup

t∈[−B,B]
|M(t)|, where B is selected such that [−B,B]

contains at least one point where M(t) 6= 0. Suppose that the supremum is attained at point t∗.
By continuity, there exists some neighborhood of t∗ where M(t) >

√
ε/2. Denote the size of this

neighborhood R. Invoking triangle inequality and bounds provided above results in

Iα ≥ ‖D2(x1, x;α0, g)‖2L2(π∗) ≥ ‖D2(x1, x;α0, g)1S‖2L2(π∗)

≥ C
∥∥∥∥∫

R
M(t) dt

∥∥∥∥2

≥ C
∥∥∥∥∫ B

−B
M(t) dt

∥∥∥∥2

≥ 1
2
CR2ε > 0.

Therefore, the information corresponding to parameter α is strictly positive.
Q.E.D.

A.5.2 Proof for part (ii)

Consider the expression for the information in the incomplete information triangular model ex-
pressed in (A.3):

Iα = ‖D1(x1, x;α0, g)‖2L2(π1) + ‖D1(x1, x;α0, g)−D2(x1, x;α0, g)‖2L2(π2)

We construct the measure π∗∗ (it may be not a probability measure) that is constructed as an
integral over: dπ∗∗

d ν = max{dπ1
dν ,

dπ1
dν }, where the maximum is considered in the pointwise sense over

all regular points of measures π1 and π2 and where dπ1
dν is the Radon-Nykodim density with respect

to the σ-finite measure ν. Then we note that π∗∗(R2) < Π <∞, assuming that both measures are
defined on the entire R2. We denote w(t) = Φ(t/σ) and t = x− v and express

D1(x1, x;α0, g) =
∫
w(t)g (x1 + α0w(t), x− t) dt ≤

∫
max
w∈[0,1]

g (x1 + α0w, x− t) dt

and

D2(x1, x;α0, g)−D1(x1, x;α0, g) =
∫

(1− w(t))g (x1 + α0w(t), x− t) dt.

≤
∫

max
w∈[0,1]

g (x1 + α0w, x− t) dt
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As a result, we find that

Iα ≤ ‖D1(x1, x;α0, g)‖2L2(π∗∗) + ‖D1(x1, x;α0, g)−D2(x1, x;α0, g)‖2L2(π∗∗) → 2
∥∥∥∥ max
w∈[0,1]

gu(x1 + α0w)
∥∥∥∥2

L2(π∗∗)

Provided that the class of twice continuously differentiable functions is dense in L2(π∗∗), for each
ε > 0 we can find an element of this class such that its norm in L2(π∗∗) is less than ε. This means
that the limiting information is smaller than 2ε. Since, the choice of ε was arbitrary, we conclude
that the limiting information is zero.
Q.E.D.

A.6 Proof of Theorem 4.2

To derive the information of the model, we follow the approach in Chamberlain (1986) by demon-
strating that for each complete information static game model generated by a distribution satisfying
the conditions of Theorem 4.2 we can construct a parametric submodel passing through that model
for which the information for parameters α1 and α2 is equal to zero.

Suppose that Γ contains all distributions of errors that satisfy the conditions of Theorem 4.2
along with distributions of indices x1 and x2. First we construct the likelihood function of the
model and introduce the following notation:

P 11(t1, t) = Pr (U ≤ t1, V ≤ t) = G(t1, t),

P 01(t1, t) = Pr (U > t1, V ≤ t) ,

P 10(t1, t) = Pr (U ≤ t1, V > t) ,

P 00(t1, t) = Pr (U > t1, V > t) .

Without loss of generality, we focus on the case where the signs of coefficients α1 and α2 coincide.
We construct the probability mass corresponding to the region with multiple equilbria as

∆(t1, t2;α1, α2) = Pr (t1 < U ≤ t1 + α1, t2 < V ≤ t2 + α2)

We write the density of the data as

r(y1, y2, x1, x2;α, P ) =
(
P 11(x1 + α1, x2 + α2)− 1

2
∆(x1, x2;α1, α2)

)y1y2
× P 01(x1 + α1, x2)(1−y1)y2P 10(x1, x2 + α2)y1(1−y2)

×
(
P 00(x1, x)− 1

2
∆(x1, x2;α1, α2)

)(1−y1)(1−y2)

with respect to the measure µ defined on Ω = {0, 1}2 × R2 such that for any Borel set A in R2,
µ({1, 1} × A) = µ({1, 0} × A) = µ({0, 1} × A) = µ({0, 0} × A) = ν(A), where P ((X1, X2) ∈ A) =∫
A dν.
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Let h1 : R2 7→ R and h2 : R2 7→ R be continuously differentiable functions supported on the
compact set with continuous derivatives in the interior of that compact set such that ∂hi(u,v)

∂u ≥ B

and ∂hi(u,v)
∂v ≥ B for some constant B on that compact set and i = 1, 2. Define Λ̃ as the collection

of paths through the original model which we design as

λ11(t1, t2; δ1, δ2) = P 11(t1 + δ1(h1(t1, t2) + 1), t2 + δ2(h2(t1, t2) + 1)),

λ01(t1, t2; δ1, δ2) = P 01(t1 + δ1(h1(t1, t2 + α2) + 1), t2),

λ10(t1, t2; δ1, δ2) = P 11(t1, t2 + δ2(h2(t1 + α1, t2) + 1)),

λ00(t1, t2; δ1, δ2) = P 11(t1, t),

γ(t1, t2;α1, α2, δ1, δ2) = Pr
(
t1 < U ≤ t1 + α1 + δ1(h1(t1 + α1, t2 + α2) + 1),

t2 < V ≤ t2 + α2 + δ2(h2(t1 + α1, t2 + α2) + 1)
)

where we note that these paths maintain the properties of the joint probability distribution (bounded
between 0 and 1, sum up to 1) and, in a sufficiently small neighborhood about the origin containing
δ, they also maintain the monotonicity of the cdf (as the partial derivatives of h1(·, ·) and h2(·, ·)
are bounded from below).

Denote the likelihood function corresponding to the perturbed model lλ(y1, y2, x1, x2;α, δ). Pro-
vided the assumed dominance condition, it will be mean-square differentiable at (α0, 0). In other
words, we can find vector functions ψα(x1, x2) and ψδ(x1, x2) such that

l
1/2
λ (·;α, δ) = ψα(x1, x2)′(α− α0) + ψλ(x1, x2)′δ +Rα,δ,

with

E
[
R2
α,δ

]
/ (|α− α0|+ |δ|)2 → 0 as α→ α0, δ → 0.

We can explicitly derive the mean-square derivatives. For convenience, we introduce notation

P++(x1, x2;α) = P 11(x1 + α1, x2 + α2)− 1
2

∆(x1, x2, α1, α2)

P−+(x1, x2;α) = P 01(x1 + α1, x2)

P+−(x1, x2;α) = P 10(x1, x2 + α2)

P−−(x1, x2;α) = P 00(x1, x2)− 1
2

∆(x1, x2, α1, α2)

In particular, the components of the derivative with respect to the finite-dimensional parameter
can be expressed as

ψα1(x1, x2) =
1
4

{
y1y2P

++(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
× ∂G(x1 + α1, x2 + α2)

∂u

− 1
2

(1− y1)y2P
−+(x1, x2;α)−1/2∂G(x1 + α1, x2)

∂u
,
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and

ψα2(x1, x2) = −1
4

{
y1y2P

++(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
× ∂G(x1 + α1, x2 + α2)

∂v

− 1
2
y1(1− y2)P+−(x1, x2;α)−1/2∂G(x1, x2 + α2)

∂v
.

The derivative with respect to λ can be expressed as

ψλ,1(x1, x2) =
1
4

{
y1y2P

++(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
× ∂G(x1 + α1, x2 + α2)

∂u
(h1(x1 + α1, x2 + α2) + 1)

− 1
2

(1− y1)y2P
−+(x1, x2;α)−1/2∂G(x1 + α1, x2)

∂u
(h1(x1 + α1, x2 + α2) + 1),

and

ψλ,2(x1, x2) = −1
4

{
y1y2P

++(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
× ∂G(x1 + α1, x2 + α2)

∂v
(h2(x1 + α1, x2 + α2) + 1)

− 1
2
y1(1− y2)P+−(x1, x2;α)−1/2∂G(x1, x2 + α2)

∂v
(h2(x1 + α1, x2 + α2) + 1).

We note that the corresponding score has mean zero.

We cuse the fact that the Fisher information can be bounded as

Iλ,δ1 ≤ 4
∫

(ψα1 − ψλ,1)2 dµ

=
∫

1
4

([
P++(x1, x2;α0)−1 + P−−(x1, x2;α0)−1

](∂G(x1 + α1, x2 + α2)
∂u

)2

+ P−+(x1, x2;α0)−1

(
∂G(x1 + α1, x2)

∂u

)2)
h2

1(x1 + α1, x2 + α2) dν(x1, x2)

Define the measure on Borel sets in R2 as

π1(A) =
∫
A

1
4

([
P++(x1, x2;α0)−1 + P−−(x1, x2;α0)−1

](∂G(x1 + α1, x2 + α2)
∂u

)2

+ P−+(x1, x2;α0)−1

(
∂G(x1 + α1, x2)

∂u

)2)
dν(x1 − α1, x2 − α2)

allowing us to characterize

Iλ,α1 ≤ ‖h1‖2L2(π1)

Chamberlain (1986) demonstrates that the space of differentiable functions with compact support
is dense in L2(π). Replicating the argument in the proof of Theorem 2.1, we can demonstrate that
inf
λ∈Λ̃

Iλ,α1 = 0. Similarly, we can also show that inf
λ∈Λ̃

Iλ,α2 = 0.

Q.E.D.
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A.7 Convergence rate for the iterative estimator

We use our previous assumption regarding the uniformly manageable class of functions and establish
the result regarding the convergence rate of the constructed estimator.

Lemma A.3 Suppose that a sequence cn is selected such that ν(cn)/n → 0, Kr/ν(cn) → 0,
ν(cn)K2/n → ∞. Then for any sequence α̂n with the function l̂(α) corresponding to the maxi-

mand of (4.2) such that l̂p(α̂n) ≥ sup
α
l̂p(α)− op

(√
ν(cn)
n

)
we have

√
n

ν(cn)
|α̂∗1n − α1,0| = Op(1), and

√
n

ν(cn)
|α̂∗2n − α2,0| = Op(1).

Proof:
For simplicity of notation, denote y = (y1, y2) and x = (x1, x2). Let P̂ ijK(·;α) be the K-term
approximation of the probability of the outcome y1 = i and y2 = j. The conditional likelihood
function that uses approximate probabilities can be written as

l (α; y, x) =
1∑

i,j=0

1{y1 = i}1{y2 = j} log P̂ ijK(x;α),

with Q(α) = E [l (α; y, x)], and P̂11
n defined in Appendix B.1.1. Denote

l̂ (α) =
1
n

n∑
i=1

l (α; yi, xi) .

Also denote

` (α; y, x) = ωn(|x1|+ |α1|)ωn(|x2|+ |α2|)
1∑

i,j=0

1{y1 = i}1{y2 = j} log P ij(x;α),

and

ˆ̀(α) =
1
n

n∑
i=1

` (α; yi, xi) .

The iterative estimator suggests computing the coefficients of the orthogonal expansion for each
parameter value. For each fixed number of terms K this step is equivalent to running a regression
of the dummy variables y1y2, (1− y1)y2, y1(1− y2), and (1− y1)(1− y2) on the orthogonal terms
pkK(·). We also note that the next steps will replicate the derivation of the rate for the two-step
estimator. In fact, we can perform the following decomposition

l̂(α)− ˆ̀(α0) = R1 +R2 +R3 +R4 +R5 +R6,
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where

R1 = l̂(α)− ˆ̀(α)− E
[
l̂(α)

]
+ E

[
ˆ̀(α)

]
,

R2 = ˆ̀(α)− ˆ̀(α0)− E
[
ˆ̀(α)

]
+ E

[
ˆ̀(α0)

]
,

R3 = E
[
l̂(α)

]
− E

[
ˆ̀(α)

]
,

R4 = E
[
ˆ̀(α)

]
−Q(α),

R5 = −E
[
ˆ̀(α0)

]
+Q(α0),

R6 = Q(α)−Q(α0).

Then the first term uniformly in probability converges to zero with stochastic order op
(
n−(1−δ)/2),

which for sufficiently small δ approaches the parametric rate. The second term is the main “vari-
ance” term. Its stochastic order is determined by the imposed bound ν(cn)/n and the size of
the neighborhood containing parmeters (α1, α2). Terms R3 to R5 are bias terms that converge
to zero under assumptions of the theorem. The last term provides the second-order expansion
for the true objective function at the true parameter, which will maintain the quadratic term in
(α1 − α10, α1 − α10). Equating these two terms delivers the stochastic order for the estimated
parameters and thus produces the rate of convergence.
Q.E.D.

A.8 Proof of Theorem 4.3

In Appendix A.7 we drew a direct parallel between our proof for the rate of the parameter in
the triangular model and the rate that we obtained for the static game of complete information.
Following the same strategy, we can note that the results from the proof of Theorem 2.2 apply with
the same arguments for the rate optimality for the sequence nβ(cn)2/ν(cn) = O(1).
Q.E.D.

A.9 Proof of Theorem 5.1

Step 1 First, we prove that equilibrium belief functions are uniquely determined by parameters α1

and α2. In other words, if (P1(·, ·), P2(·, ·)) correspond to (α1, α2) and (P ′1(·, ·), P ′2(·, ·)) correspond
to (α′1, α

′
2) then (P1(·, ·), P2(·, ·)) = (P ′1(·, ·), P ′2(·, ·)) almost everywhere if and only if (α1, α2) =

(α′1, α
′
2).

Provided the structure of the model, we can characterize the system of equations defining the
equilibrium choice probabilities as

σΦ−1(P1) = q1 + α1P2,

σΦ−1(P2) = q2 + α2P1,
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where q1 = x1−u and q2 = x2−u. In other words, both probabilities are functions of two composite
arguments and parameters α1 and α2. We note that provided the differentiability of the distribution
of perturbations η1 and η2, the solution of this system will also be (locally) differentiable. We can
express the Jacobi matrix as

Jq =
1

1 + a1a2α1α2

(
a1 a1a2α1α2

a1a2α1α2 a2

)
,

where a1 = φ
(
Φ−1(P1)

)
/σ and a2 = φ

(
Φ−1(P2)

)
/σ. We note that this matrix is non-singular if

and only if a1a2 6= 0 and a1a1α1α2 6= 1. As demonstrated in Bajari, Hong, Krainer, and Nekipelov
(2010a), the set of argument values (q1, q2) where the system of equilibrium beliefs has multiple
solutions is compact. Denote this set Sm. Whenever (q1, q2) ∈ Sm, matrix Jq can be constructed
at each solution pair. Provided that we impose a trivial equilibrium selection rule, the effective
Jacobi matrix J̄q is a simple average of Jacobi matrices in all solutions. We note that monotonicity
and differentiability properties apply to matrices J̄q and Jq in the same way. Thus the “effective”
Jacobi matrix can be defined as Jq 1{(q1, q2) 6∈ Sm} + J̄q 1{(q1, q2) ∈ Sm}. The matrix defined
this way is globally non-singular since we replace it with a non-singular matrix at each point where
there are multiple equilibria and thus Jq is rank-defficient.

We note that functions P1(·) and P2(·) are differentiable and strictly monotone if the cdf Φ(·)
is strictly positive on R. Moreover, as the density φ(·) is unimodal, then equation a1a1α1α2 = 1
has at most two solutions. If P ∗1 and P ∗2 is a solution of this equation, then the set of q1 and q2

that lead to equilibrium beliefs correspond to a cut of the graphs of P1(·) and P2(·): {(q1, q2) :
P1(q1, q2) = P ∗1 , P2(q1, q2) = P ∗2 }. Provided that the graph of a differentiable and strictly monotone
function has Lebesque measure zero, its cut also has Lebesque measure zero (due to Caratheodori’s
theorem).

We then analyze the Jacobi matrix of equilibrium beliefs with respect to strategic interaction
parameters. Directly evaluating the Jacobi matrix

Jα =

(
∂P1
∂α1

∂P1
∂α2

∂P2
∂α1

∂P2
∂α2

)
=

a1a2

1 + α1α2a1a2

(
P1/a2 α1P1

α2P2 P2/a1

)
.

This matrix is non-singular whenever a1a2 6= 0 and a1a2α1α2 6= 1. Thus Jα is non-singular if and
only if Jq is non-singular. However, we determined that Jq is non-singular almost everywhere and
at the points of its singularity it is replaced with matrix J̄q. Therefore, Jα is globally non-singular.
Thus taking an arbitrary point in the support of equilibrium beliefs, we can uniquely solve for the
pair of the strategic interaction parameters and for each pair of strategic interaction parameters
there exists a unique pair of equilibrium beliefs.

Step 2 Second, we show that from observed conditional expectations E [Y1|x1, x2], E [Y1|x1, x2],
and E [Y1Y2|x1, x2] we can uniquely recover the corresponding equilbrium choice probabilities. In
Appendix E we demonstrate how one can recover the density of the distribution of unobserved
heterogeneity when strategic interaction parameters are given. The core of the argument was
in defining probability measures that assign to all subsets of R2 of the form S = (−∞, x1] ×
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(−∞, x2] values corresponding to belief probabilities P1(·), P1(·), and P1(·)P2(·) evaluated at point
(x1, x2). By the uniqueness of extension of the measure (see Dunford and Schwartz (1965)), each
measure will be uniquely defined on Borel subsets of R2. Without loss of generality, we assume
that α1, α2 > 0 (otherwise, we “flip” the signs of the derivatives of the belief functions with their
absolute values). Provided that the distribution Φ(·) is twice continuously differentiable, we can
express the characteristic function defined in Appendix E as

χP1(t1, t2) =
∫
e−it1q1−it2q2

∂2P1(q1, q2)
∂q1∂q2

dq1dq2

Then

lim
t1→0

χP1(t1, t2)
it1

= −
∫
e−it2q2q1

∂2P1(q1, q2)
∂q1∂q2

dq1dq2 =
∫
e−it2q2

∂P1(q1, q2)
∂q2

dq1dq2.

Previously we denoted a1 =
φ(Φ−1(P1))

σ and a2 =
φ(Φ−1(P2))

σ . Then

∂P1

∂q2
=

a1a2

1− α1α2a1a2
α2.

Provided our assumption regarding the signs of α1 and α2, we conclude that

a1a2

1− α1α2a1a2
≤
φ
( q1+α1q2

σ

)
φ
( q2+α2q1

σ

)
1− α1α2

2π

The function∫ +∞

−∞
φ

(
q1 + α1q2

σ

)
φ

(
q2 + α2q1

σ

)
dq1

is bounded and decreasing at infinity. Moreover, provided that
∫
t2φ(t) dt < ∞, its Fourier trans-

form exists as a regular complex-valued function. Denote this function

A1(t2) =
∫
e−it2q2

a1a2

1− α1α2a1a2
dq1 dq2.

Similarly, we can conclude that

A2(t1) =
∫
e−it1q1

a1a2

1− α1α2a1a2
dq1 dq2,

is a regular complex-valued function. Thus if Q(t1, t2) is the Fourier transform of E[Y1|x1, x2] and
F(t1, t2) is the Fourier transform of E[Y2|x1, x2] then

Q(0, t2) =
α2

it2
A1(t2)χv(t2) (1 + πit2δ(t2)) ,

F(t1, 0) =
α1

it2
A2(t1)χu(t1) (1 + πit1δ(t1)) .

Performing an inverse Fourier transform, we find that

α2gv(v) =
1

2π

∫
eit2v

it2Q(0, t2)
A1(t2)

dt2,

α1gu(u) =
1

2π

∫
eit1u

it1F(t1, 0)
A2(t1)

dt1,

(A.4)
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In Appendix E we demonstrate how one recovers the density guv(·, ·). This allows us to also recover
the marginal distributions from this density. We thus recover the strategic interaction parameters
from expressions (A.4).
Q.E.D.

A.10 Proof of Theorem 5.2

A.10.1 Proof of result (i)

To compute the information of the static game model with incomplete information, we note that this
game can have multiple equilibria corresponding to multiple solutions of the system of equilibrium
beliefs. Provided the continuous differentiability of the distribution of random perturbations, we
can characterize the boundary of the set of multiple equilibria as the set of points on R2 where the
curves corresponding to the best responses of the players to their beliefs regarding their opponents
touch for the first time. This corresponds to the set of points on R2 where:

σΦ−1(P1) = q1 + α1P2,

σΦ−1(P2) = q2 + α2P1,

α1φ

(
1
σ

(q1 + α1P2)
)

=
(
α2φ

(
Φ−1(P2)

))−1
.

For given parameters α1, α2, this defines a mapping from the set of covariates q1, q2 to the beliefs.
This mapping reduces the dimensionality of the overall mapping by 2, as it incorporates the original
system of equations for the beliefs and the restriction on the derivatives of the belief functions. It
will be a 1-dimensional closed curve e(q1, q2) = 0. This curve will be differentiable in the strategic
interaction parameters due to continuous differentiability of the density of the payoff noise. This
curve represents the boundary of the set of multiple equilibria, which we denote Sm(α1, α2).

The likelihood of the model can then be characterized by four objects:

E [Y1Y2 |x1, x2] = P11(x1, x2;α) =
∫

Φ
(
x1 − u+ α1P2(x1 − u, x2 − v)

σ

)
× Φ

(
x2 − v + α2P2(x1 − u, x2 − v)

σ

)
g(u, v) du dv,

E [Y1 |x1, x2] = Q1(x1, x2;α) =
∫

Φ
(
x1 − u+ α1P2(x1 − u, x2 − v)

σ

)
g(u, v) du dv,

E [Y2 |x1, x2] = P1(x1, x2;α) =
∫

Φ
(
x2 − v + α2P1(x1 − u, x2 − v)

σ

)
g(u, v) du dv,

Pr ((X1 − U, X2 − V ) ∈ Sm(α1, α2) |x1, x2) = ∆(x1, x2;α)

=
∫

1{(x1 − u, x2 − v) ∈ Sm(α1, α2)}g(u, v) du dv.
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We assume that α1α2 > 0 without loss of generality. We construct the probabilities corresponding
to observed equilibrium outcomes as

P++(x1, x2;α) = P11(x1, x2;α)− 1
2

∆(x1, x2;α),

P−+(x1, x2;α) = P1(x1, x2;α)− P11(x1, x2;α) +
1
2

∆(x1, x2;α),

P+−(x1, x2;α) = Q1(x1, x2;α)− P11(x1, x2;α) +
1
2

∆(x1, x2;α),

P−−(x1, x2;α) = 1− P1(x1, x2;α)−Q1(x1, x2;α) + P11(x1, x2;α)− 1
2

∆(x1, x2;α).

Denote the gradientsD1(x1, x2;α) = ∂
∂α′

(
P11(x1, x2;α)− 1

2∆(x1, x2;α)
)
, D2(x1, x2;α) = ∂

∂α′P
−+(x1, x2;α),

and D3(x1, x2;α) = ∂
∂α′P

+−(x1, x2;α).

We focus on the square root of the density corresponding to the likelihood of the model:

r(y1, y2|x1, x2;α)1/2 = y1y2P
++(x1, x2;α)1/2 + (1− y1)y2P

−+(x1, x2;α)1/2

+ y1(1− y2)P+−(x1, x2;α)1/2 + (1− y1)(1− y2)P−−(x1, x2;α)1/2

Then we can express the mean-square gradient of this density as

ψα(x1, x2) =
1
2

{
y1y2P

++(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
×D1(x1, x2;α)

+
1
2

{
(1− y1)y2P

−+(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
×D2(x1, x2;α)

+
1
2

{
y1(1− y2)P+−(x1, x2;α)−1/2 − (1− y1)(1− y2)P−−(x1, x2;α)−1/2

}
×D3(x1, x2;α).

We note that the corresponding score has mean zero and that conditional on the covariates, the
terms in this expression are positively correlated. Then by definition,

Iα = 4
∫
ψα(x1, x2)ψα(x1, x2)′ dµ

Thus, if ν is the measure on R2 corresponding to the distribution of x1 and x, following the approach
in the derivation of information of the complete information model, we define the measures on Borel
subsets of R2

π1(A) =
∫
A

1− P−+(x1, x2;α0)− P+−(x1, x2;α0)
P++(x1, x;α0)P−−(x1, x;α0)

dν(x1, x)

and

π2(A) =
∫
A

1−Q1(x1, x2;α0)
P−+(x1, x;α0)P−−(x1, x;α0)

dν(x1, x),
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and

π3(A) =
∫
A

1− P1(x1, x2;α0)
P−+(x1, x;α0)P−−(x1, x;α0)

dν(x1, x).

Due to discovered positive correlation between the components of the mean-square gradient, we
can evaluate the information as

Iα ≥ ‖D1(x1, x2;α0)‖2L2(π1) + ‖D2(x1, x2;α0)‖2L2(π2) + ‖D3(x1, x2;α0)‖2L2(π3) .

Then we can construct the measure π∗ which “picks out” for each Borel subset A one of the
measures π1 or π2 which gives this set less weight: π∗(A) = min{π1(A), π2(A)}. Based on this
structure of the measure, we can write:

Iα ≥ ‖D1(x1, x2;α0)‖2L2(π∗) + ‖D2(x1, x2;α0)‖2L2(π∗) + ‖D3(x1, x2;α0)‖2L2(π3) .

By combining the triangle inequality and taking into account the non-negativity of the square, we
can evaluate

Iα ≥ ‖D1(x1, x2;α0) +D2(x1, x2;α0)‖2L2(π∗) .

Then we note that

D1(x1, x2;α0) +D2(x1, x2;α0) =
∫
φ

(
1
σ

Φ−1 (P1)
)(

α1
∂P2

∂α
+ (P2, 0)′

)
g(u, v) du dv

We denote t1 = x1 − u and t2 = x− v. Then

D1(x1, x2;α0) +D2(x1, x2;α0) =
∫
φ

(
1
σ

Φ−1 (P1(t1, t2))
)

×
(
α1
∂P2(t1, t2)

∂α
+ (P2(t1, t2), 0)′

)
g(t1 + x1, t2 + x2) dt1 dt2.

Denote w(t1, t2) = φ
(

1
σΦ−1 (P1(t1, t2))

) (
α1

∂P2(t1,t2)
∂α + (P2(t1, t2), 0)′

)
. Then we can express

D1(x1, x2;α0) +D2(x1, x2;α0) =
∫
w(t1, t2)g (x1 + t1, x2 + t2) dt1 dt2.

Suppose that S ⊂ R2 is a compact set such that π∗(S) > C. Then given that g(·, ·) is continuous
and strictly positive, there exists M(t1, t2) = inf

(x1,x2)∈S
|g (x1 + t1, x2 + t2) | which is not equal to

zero for at least some (t1, t2) ∈ R2. We take 4
√
ε = sup

t∈[−B,B]×[−B,B]
|M(t)|, where B is selected

such that [−B,B] × [−B,B] contains at least one point where M(t) 6= 0. Suppose that the
supremum is attained at point (t∗1, t

∗
2). By continuity, there exists some neighborhood of (t∗1, t

∗
2)

where M(t) >
√
ε/2. Denote the size of this neighborhood R. By construction w(t1, t2) is a

continuous function which is not equal to zero (given that we assumed that α1α2 > 0, we have
α1

∂P2
∂α1

> 0). Thus this function attains its lower bound in every compact set and that lower bound
is above zero inf

(t1,t2)∈BR(t∗1,t∗2)
‖w(t1, t2)‖ = A 4

√
ε > 0.
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We substitute our evaluations into the bound for the information:

Iα ≥ ‖D1(x1, x2;α0) +D2(x1, x2;α0)‖2L2(π∗) ≥ ‖(D1(x1, x2;α0) +D2(x1, x2;α0)) 1S‖2L2(π∗)

≥ CA2√ε
∥∥∥∥∫

R
M(t1, t2) dt

∥∥∥∥2

I2×2 ≥
1
2
CA2R2ε I2×2 > 0,

where I2×2 is the identity matrix. Therefore the information corresponding to parameters α1 and
α2 is strictly positive.

A.10.2 Proof of result (ii)

Consider the measures introduced in the proof of Theorem 5.2. Suppose that measure π∗∗(A) picks
out the measure assigning the highest weight to the set A. Then we can see that

Iα ≤ ‖D1(x1, x2;α0)‖2L2(π∗∗) + ‖D2(x1, x2;α0)‖2L2(π∗∗) + ‖D3(x1, x2;α0)‖2L2(π∗∗)

+ 2 ‖D1D2‖2L2(π∗∗) + 2 ‖D1D3‖2L2(π∗∗) + 2 ‖D2D3‖2L2(π∗∗) .

Provided that the complete information game is constructed to be a limit of the incomplete in-
formation game and provided that we use the same equilibrium selection rule, we can conclude
that

P1(u− x1, v − x2)→ 1{u ≤ x1 + α1} −
1
2
1{x1 ≤ u ≤ x1 + α1}

as σ → 0. Therefore, by dominated convergence theorem, we conclude that

D1(x1, x2;α)→
(∫ x2+α2

−∞
g(x1 + α1, v) dv,

∫ x1+α1

−∞
g(u, x2 + α2) du

)′
Therefore, component-wise∫ x2+α2

−∞
g(x1 + α1, v) dv ≤ gu(x1 + α1).

Using a similar evaluation, we can provide the limits for all components leading to

D2(x1, x2;α)→ D̄2(x1, x2;α), and D3(x1, x2;α)→ D̄3(x1, x2;α)

such that

D̄i(x1, x2;α) ≤ (gu(x1 + α1), gv(x2 + α2))′ ,

with i = 1, 2, 3. We evaluate the information as

Iα → Ī ≤ 3I2×2

×
(
‖gu(x1 + α1)‖2L2(π∗∗) + ‖gv(x2 + α2)‖2L2(π∗∗) + 2 ‖gu(x1 + α1)‖L2(π∗∗) ‖gu(x1 + α1)‖L2(π∗∗)

)
,

where I2×2 is a 2 × 2 identity matrix. In this evaluation the marginal densities of the unobserved
heterogeneity can be treated as separate functions. Provided that the space of twice continuously
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differentiable functions is dense in L2(π∗∗), for any ε > 0 we can find an element of this space such
that ‖f‖L2(π∗∗) <

√
ε. As a result, when we select gu = gv = f , the limiting information matrix is

Ī ≤ 9εI2×2.

As the choice of ε was arbitrary, the resulting information converges to zero.
Q.E.D.

B Estimators with optimal rate

B.1 Triangular model: Two-step estimator

Step 1. Consider the family of normalized Hermite polynomials and denote hl(x) = (
√

2πl!)−1/2e−
x2

4 Hl(x),
where Hl(·) is the l-th degree Hermite polynomial. Also denote Hl(x) =

∫ x
−∞ hl(z) dz. We note that

this sequence is orthonormal for the inner product defined as 〈f, g〉 =
∫∞
−∞ f(x)g(x) dx. We take

the sequence cn →∞, and define the function ωn(x) = 1{|x| ≤ cn} and estimate the probability of
both indicators are equal to zero (y1 = y2 = 0) as

P̂00
n (x1, x) =

K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x) [Hl1(cn)−Hl1(x)]

The estimates can be obtained via a regression of ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x) [Hl2(cn)−Hl2(x)]
on the indicators (1−y1)(1−y2). Then the estimator for the joint density of errors can be obtained
from the regression coefficients as

ĝn(x1, x) =
K(n)∑
l1,l2=1

âl1l2ωn(x1)hl1(x1)ωn(x)hl2(x).

Step 2. Using the estimator for the density, we compute the fitted values for conditional
probabilities of y1 = y2 = 1 and y1 = 0, y2 = 1 as

P̂11
n (x1 + α, x) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α) [Hl1(x1 + α)−Hl1(−cn)]ωn(x) [Hl1(x)−Hl1(−cn)] ,

and

P̂01
n (x1 + α, x) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α) [Hl1(cn)−Hl1(x1 + α)]ωn(x) [Hl1(x)−Hl1(−cn)] .

Using these fitted probabilities we can form the conditional log-likelihood function

l (α; y1, y2, x1, x) =y1y2ωn(x1 + α)ωn(x) log P̂11
n (x1 + α, x)

+ (1− y1)y2ωn(x1 + α)ωn(x) log P̂01
n (x1 + α, x).
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Then we can express the empirical score as

s (α; y1, y2, x1, x) =
[

y1y2

P̂11
n (x1 + α, x)

− (1− y1)y2

P̂01
n (x1 + α, x)

]
∂P̂11

n (x1 + α, x)
∂α

ωn(x1 + α)ωn(x)

This expression can be rewritten as

s (α; y1, y2, x1, x) =
ωn(x1 + α)ωn(x)y2

P̂11
n (cn, x)

y1 − P̂
11
n (x1+α,x)

P̂11
n (cn,x)(

1− P̂
11
n (x1+α,x)

P̂11
n (cn,x)

)
P̂11
n (x1+α,x)

P̂11
n (cn,x)

∂P̂11
n (x1 + α, x)

∂α
.

Setting the empirical score equal to zero, we obtain the estimator for α0 as

α̂∗n = argmaxα
1
n

n∑
i=1

l (α; y1i, y2i, x1i, xi) . (B.1)

B.1.1 Iterative estimator

As in the case of the binary triangular system we approximate the error density using normalized
Hermite polynomials. We take a sequence cn → ∞ and define the function ωn(x) = 1{|x| ≤ cn}.
We introduce the function

∆(x1, x2;α1, α2) =
K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(x1 + α1)−Hl1(x1)]ωn(x2) [Hl2(x2 + α2)−Hl2(x2)] .

Then we approximate the probabilities of the indicators taking values y1 = y2 = 0 as

P̂00
n (x1, x2) =

K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x2) [Hl1(cn)−Hl1(x2)]

− 1
2

∆(x1, x2;α1, α2).

Similarly, we approximate the remaining probabilities

P̂11
n (x1, x2) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α1) [Hl1(x1 + α1)−Hl1(−cn)]ωn(x2) [Hl1(x2 + α2)−Hl1(−cn)]

− 1
2

∆(x1, x2;α1, α2)

and

P̂01
n (x1, x2) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α1) [Hl1(cn)−Hl1(x1 + α1)]ωn(x2) [Hl1(x2)−Hl1(−cn)] .



62

Using these approximations to the joint probabilities for the binary indicators we can form the
conditional log-likelihood function

l (α1, α2; y1, y2, x1, x2) =y1y2ωn(x1)ωn(x2) log P̂11
n (x1, x2)

+ (1− y1)y2ωn(x1)ωn(x2) log P̂01
n (x1, x2)

+ y1(1− y2)ωn(x1)ωn(x2) log P̂10
n (x1, x2)

+ (1− y1)(1− y2)ωn(x1)ωn(x2) log P̂00
n (x1, x2).

We can consider thw sample profile log-likelihood

l̂p(α1, α2) = sup
a11,...,aKK

1
n

n∑
i=1

l (α1, α2; y1i, y2i, x1i, x2i) .

The parameter estimates can be obtained as maximizers of the profile log-likelihood:

(α̂∗1n, α̂
∗
2n) = argmaxα1,α2

l̂p(α1, α2). (B.2)

C Examples of convergence rates for common classes

of distributions

Logistic errors with logistic covariates

To evaluate function ν(·) we consider the one dimensional case. Let F (·) be the cdf of interest and
φ(·) be the pdf of the covariates. We evaluate the term of interest as∫ c

0

φ(x)
1− F (x)

dx =
∫ c

0

ex

1 + ex
dx

A change of variables z = ex allows us to re-write this expression as∫ ec

1

dz

1 + z
= O(c)

Given that we have a two-dimensional distribution, we can select ν(c) = c2. Next, we evaluate
function β(·), whose leading term can be represented as∫ ∞

c
log((1 + ex)−1)

ex

(1 + ex)2
dx = O(e−c).

Therefore, we can select β(c) = e−c and the optimal rate will be
√
n/c2

n with cnecn/n = O(1). For
instance, we can select cn = δ

√
log n for some 0 < δ < 1, delivering convergence rate

√
n/log n.
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Logistic errors with normal covariates

Using the same notation as before, we evaluate the leading term for ν(·) as∫ c

0

φ(x)
1− F (x)

dx =
1√
2π

∫ c

0
(1 + ex)e−x

2/2 dx = O(1)

Then we can express the order of the bias term as

β(c) =
1√
2π

∫ ∞
c

log(1 + ex)e−x
2/2 dx = O(e−c

2/2).

As a result, we can use ν(c) ≡ 1 and the bias will vanish. This choice gives the parametric optimal
rate

√
n.

Normal errors with logistic covariates

We will use the same approach as before and try to evaluate the function ν(·) using the leading
term of the representation of the integral∫ c

0

φ(x)
1− F (x)

dx

First note that one can arrive at the asymptotic evaluation for the normal cdf via a change of
variable t = 1/z and subsequent Taylor expansion

1− Φ(x) =
∫ ∞
x

1√
2π
e−z

2/2 dz =
1√
2π

∫ 1/x

0

e−1/(2t2)

t2
dt = O

(
e−x

2/2

x

)

Then we obtain that

φ(x)
1− F (x)

= O(xex
2/2−x),

for sufficiently large x. This means that the leading term for the integral is O(ec
2/2). As a result,

we find that ν(c) = ec
2
. We then evaluate the leading component of the bias term as∫ ∞

c
log

(
e−x

2/2

x

)
ex

(1 + ex)2
dx = O

(
c2e−c

)
.

Therefore, we can select β(c) = c2e−c, and we can determine the optimal trimming sequence by
solving

nc4
ne
−c2n = O(1).

The convergence rate will correspond to
√
ne−c2n . This means that, for instance, selection of cn =

log n1/2 delivers the convergence rate n1/4.
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Normal errors with normal covariates

Using our previous evaluation of the normal cdf, we can provide the representation for the lead
term of the ratio

φ(x)
1− F (x)

= O(x).

Therefore, we can evaluate ν(c) = c4. Then we evaluate the bias term as∫ ∞
c

log

(
e−x

2/2

x

)
e−x

2/2 dx = O(ce−c
2/2)

The optimal rate corresponds to
√
n/c2

n with cn solving c2
ne
−c2n/n = O(1).

D Zero information in a smooth parametric model

Consider the case where u = v with the standard normal distribution, and x1 and x are scalar
covariates such that x1 = x+

√
uφ(x1 +α0)φ(x1)/Φ(x1 +α0)−α0 where u is a uniformly distributed

variable on [0, 1] and x1 is a standard normal random variable. This setting is a threshold crossing
model. The model is determined by two cases:

Case 1: x1 + α0 < x

-

x1 + α0 x

y1 = 1, y2 = 1 y1 = 0, y2 = 1 y1 = 0, y2 = 0
u

Case 2: x1 ≥ x

-

x x1

y1 = 0, y2 = 1 y1 = 0, y2 = 0 y1 = 0, y2 = 0
u

The score will be above zero only in Case 1:

s(α0; y1, y2, x1, x) =
y1 − Φ(x1 + α0)

Φ(x1 + α0) (Φ(x1 + α0)− Φ(x))
y2φ(x1 + α0).

The variance of the score can be expressed as E
[
(Φ(x1 + α0) (Φ(x1 + α0)− Φ(x)))−1 φ(x1 + α0)2

]
.

This expectation does not exist. In fact, as x1 → −∞, Φ(x1 + α0) − Φ(x) = −
√
uφ(x1 +

α0)2φ(x1)/Φ(x1 + α0) + op(1), and

E

[
φ(x1 + α0)2

Φ(x1 + α0) (Φ(x1 + α0)− Φ(x))

]
≥ 2

∫ 1

0

du√
u

∫ 0

−K
dx1 → +∞, as K → +∞,
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provided that the distribution of x approaches the distribution of x1 − α0. Therefore, the score in
this model has infinite variance, and the Fisher information for parameter α0 in this parametric
model is equal to zero.

E Recovering the distribution of the unobserved het-

erogeneity from the observed binary choice proba-

bilities.

We used the Fourier transformation technique to recover the distribution of unobserved hetero-
geneity from the observed choice probabilities. However, it needs to be emphasized that this is a
non-trivial problem and it extends beyond simple functional inversions. The importance of correct
treatment of functional inverse problems is clearly understood in the nonlinear measurement errors
literature, e.g. Schennach (2004), Hu and Schennach (2008) among others. As we demonstrate in
this appendix, the problems of functional inversion from the observed choice probabilities are much
more severe, rather like those noted in Zinde-Walsh (2009), and they require advanced generalized
function techniques, outlined for instance, in Vladimirov (1971). We omit the technical definitions
and introductory results for operations with generalized functions in the context of convolution
problems, as these are expressed in detail in Zinde-Walsh (2009).

We start with a very simple example where one observes a single choice probability P (x) as a
function of the observed covariate x which describes the expected response of the individual to the
realization of the unobserved heterogeneity u. The actual binary decision of the individual can be
expressed as Y = 1{X−U ≥ 0}. The realizations of the unobserved heterogeneity are not observed
by the researcher and probability P (·) corresponds to the expectation of the binary decision with
respect to the distribution of the unobserved heterogeneity:

P (x) =
∫ +∞

−∞
1{x− u ≥ 0}g(u) du.

The density of this distribution g(·) is not known to the researcher. However, it is known that it has
full support on R , as does the distribution of the observed covariate x. We note that the right-hand
side of the expression for the probability is a convolution between the indicator function 1{· ≥ 0}
and the density function g(·). To perform the inversion, one may therefore use an attractive feature
of the convolution with respect to the Fourier transform: the Fourier transform of the convolution
is equal to the product of Fourier transforms of the convolved functions. Note that the Fouier
transform of the density g(·) is a characteristic function of the distribution of U , χu(·). However,
we note that the Fourier image of 1{· ≥ 0} exists only as a generalized function:∫

e−itx1{x ≥ 0} dx =
1
it

+ πδ(t),

where δ(·) is a Dirac δ-function. An important observation is that δ - function is a singular
generalized function and it can only be defined in the way it operates on the test function ϕ(·):
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∫
ϕ(x)δ(x) dx = ϕ(0). Thus one cannot perform non-linear algebraic manipulations on it. If we

perform the Fourier transform of the choice probability (and denote F(t) =
∫
e−itxP (x) dx, then

we can write

F(t) =
(

1
it

+ πδ(t)
)
χ(t),

where the characteristic function of the distribution of unobserved heterogeneity (which is the object
of interest) is multiplied by the generalized function. The irregularity of the Fourier transform is
generated by the fact that the transformed function does not decay at infinity. This problem can
be solved in this particular case using a “trick”: we multiply both sides by it and then make an
inverse Fourier transform. We note that

∫
eitxtδ(t)χ(t) dt = 0, by the property of delta-function

and that

g(u) =
1

2π

∫
eitxitF(t) dt.

This manipulation essentially allows us to mitigate the singularity at zero. One of the objects of
interest in our paper is the behavior of the smoothed choice probabilities. We describe them by
introducing a smooth symmetric distribution with a cdf Φ(·) and a pdf φ(·). Then the smoothed
choice probability can be expressed as

Pσ(x) =
∫

Φ(
x− u
σ

)g(u) du.

We observe that the Fourier transform of the cdf resembles the Fourier transform of the indicator
function (which is a special case of the cdf). First, we represent

Φ(x) =
1
2

+
(

Φ(x)− 1
2

)
.

Due to the symmetry of the distribution about zero, function Φ(x)− 1
2 is odd. Next we note that∫

e−itx
(

Φ(x)− 1
2

)
dx =

∫ (
1{z − x ≤ 0} − 1

2

)
e−itxφ(z) dz dx

=
∫
e−itzφ(z) dz

∫
e−itu

(
1{u ≥ 0} − 1

2

)
du,

where we used a change of variable u = x − z. Then we note that the first integral is equal to
the characteristic function of the distribition Φ(·) and the second integral is evaluated through its
Cauchy principal value and is equal to 1/(it).

The Fourier transform of 1
2 leads to πδ(t). As a result, we can express the Fourier transform of

the constructed cdf as the generalized function∫ +∞

−∞
Φ(x)e−itx dx =

χΦ(t)
it

+ πδ(t).

We then denote the Fourier transform of Pσ(·) by Fσ(·), and we express the Fourier transform of
the convolution as

Fσ(t) =
(
χΦ(σt)
it

+ πδ(t)
)
χu(t).
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Then we can obtain the density of the distribution of unobserved heterogeneity via a deconvo-
lution:

g(u) =
1

2π

∫
eitu

itFσ(t)
χΦ(σt)

dt.

The analysis of two-dimensional cases with partial smoothing poses more challenges. We have
noticed that symmetry is essential to obtaining closed-form expressions for the Fourier transforms
of the observable choice probabilities. We start our analysis with the case of the triangular model
with incomplete information. The triangular incomplete information model is characterized by three
conditional expectations: E [Y1|x1, x], E [Y2|x1, x], and E [Y1Y2|x1, x]. We use the expectation of
the cross-product to characterize the distribution of unobserved heterogeneity for each parameter
value α. We note that

E [Y1Y2 |x1, x] = P11(x1, x) =
∫

1{x1 − u+ αΦ
(
x− v
σ

)
≥ 0}Φ

(
x− v
σ

)
g(u, v) du dv.

As this expression makes clear, an essential component for recovering the distribution of unobserved
heterogeneity is to find the Fourier transform of the indicator. We consider the Fourier transform∫
e−it1y1−it2y21{y1 + αΦ(y2) ≥ 0} dy1 dy2.

We notice that function 1{y1 + αΦ(y2) ≥ 0} − 1
2 is centrally anti-symmetric about the point

(−α
2 , 0). In fact, if z1 = y1 + α

2 and z2 = y2, then

1{z1 + α

(
Φ(z2)− 1

2

)
≥ 0} − 1

2
= −1{−z1 + α

(
Φ(−z2)− 1

2

)
≥ 0}+

1
2
.

Then we can consider the Fourier transform∫
e−it1y1−it2y2

(
1{y1 + αΦ(y2) ≥ 0} − 1

2

)
dy1 dy2

= e−
1
2
it1α

∫
e−it1z1−it2z2

(
1{z1 + α

(
Φ(z2)− 1

2

)
≥ 0} − 1

2

)
dz1 dz2.

Provided that the transformed function is odd, integration over z1 leads to∫
e−it1z1−it2z2

(
1{z1 + α

(
Φ(z2)− 1

2

)
≥ 0} − 1

2

)
dz1 dz2

=
1
it1

∫
eit1α(Φ(z2)− 1

2)−it2z2 dz2.

(E.3)

The generalized function Γ(t1, t2;α) =
∫ +∞
−∞ eit1α(Φ(z)− 1

2)−it2z dz belongs to the class of tempered
distributions (see Vladimirov (1971)) and the integral does not exist in the regular sense. This
generalized function is not separable into singular and regular components. In fact, we note that
if Φ(·) approaches to a uniform distribution on

[
−1

2 ,
1
2

]
, then Γ(t1, t2;α) behaves like δ(t2 − αt1).

When Φ(·) approaches to a degenerate distribution with point mass at the origin, then Γ(t1, t2;α)

approaches
2 sin(α2 t1)

t2
+ 2 cos

(
α
2 t1
)
δ(t2). We note that

lim
t1→0

1
it1

Γ(t1, t2;α) = α

∫ (
Φ(z)− 1

2

)
e−it2z dz = α

χΦ(t2)
it2

. (E.4)
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The last useful property of this generalized function is that∫
t2Γ(t1, t2;α) dt2 = 2πi

∫
eit1α(Φ(z)− 1

2)δ′(z) dz = −2πt1αφ(0), (E.5)

where δ′(·) is the appropriately defined derivative of the δ-function. As a result, if we denote
Q(x1, x) = E [Y1 |x1, x] then its Fourier transformation can be expressed as

Q(t1, t2) =

(
σe−

1
2
it1α

it1
Γ(t1, σt2) + 2π2δ(t1)δ(t2)

)
χuv(t1, t2). (E.6)

Next, we consider the Fourier transform of the product 1{y1 +αΦ(y2) ≥ 0}Φ(y2). We note that the
product 1{y1 +αΦ(y2) ≥ 0}Φ(y2) is a probability distribution and thus we can define the measure
R(·, ·) on R2 that for each subset S = {(−∞, y1]× (−∞, y2]} with |y1|, |y2| <∞ can be defined as

R(S) = 1{y1 + αΦ(y2) ≥ 0}Φ(y2).

Denote as χR(·) the characteristic function of the random variable whose distribution is defined
by R(·). If Φ(·) is defined by a continuous probability distribution with the full support on R, the
corresponding characteristic function exists and does not vanish. If dR(·, ·) is the Radon-Nykodim
density associated with the measure R(·), we can express the Fourier transform∫

e−it1y1−it2y21{y1 + αΦ(y2) ≥ 0}Φ(y2)dy1 dy2

=
∫
e−it1y1−it2y21{z1 ≤ y1}1{z2 ≤ y2}dR(z1, z2) = −χR(t1, t2)

t1t2
(1 + πit1δ(t1))(1 + πit2δ(t2)).

Considering the expectation P11(x1, x) = E [Y1Y2 |x1, x] with the corresponding Fourier transform
F11(t1, t2), we can express

F11(t1, t2) = −χR(t1, σt2)
t1t2

(1 + πit1δ(t1))(1 + πiσt2δ(t2))χuv(t1, t2). (E.7)

Finally, we consider expectation P (x) = E [Y2|x1, x], and using the results derived above, we can
express its Fourier transform F(t2) as

F(t2) =
(
χΦ(σt2)
it2

+ πδ(t2)
)
χv(t2). (E.8)

This concludes our description of the Fourier transformations of the system of identifying equations
for the triangular model with incomplete information.

We also consider a more complicated case of the game of incomplete information. In this case,
we need to use equilibrium belief functions P1(·) and P2(·) to smooth the distribution of unobserved
heterogeneity. As we have seen in the previous discussion, symmetry of the smoothing functions
is an important feature for deriving the closed-form expression for the Fourier transform. We note
that due to the symmetry of the distribution of the experimental noise, Φ(0) = 1

2 . Then we can
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make a transformation of the equilibrium beliefs Pi(q1, q2) = 1
2 −∆i(q1, q2), for i = 1, 2 where we

define functions ∆i(q1, q2) as solutions of the system of equations

∆1(q1, q2) = Φ
(

1
σ

[
(q1 +

α1

2
) + α1∆2(q1, q2)

])
− 1

2
,

∆2(q1, q2) = Φ
(

1
σ

[
(q2 +

α2

2
) + α2∆1(q1, q2)

])
− 1

2
,

We note that functions ∆i(·) are centrally symmetric around the point (−1
2α1, −1

2α2). In fact, if
ti = qi + αi

2 , then the system above can be re-written as

∆1(t1, t2) = Φ
(

1
σ

[t1 + α1∆2(t1, t2)]
)
− 1

2
,

∆2(t1, t2) = Φ
(

1
σ

[t2 + α2∆1(t1, t2)]
)
− 1

2
,

and if for some (t1, t2) the pair (∆1,∆2) solves this system, then given that Φ(·) − 1
2 is an odd

function, (−∆1,−∆2) will be a solution for the pair (−t1,−t2). We consider recovering the density
of the distribution of unobserved heterogeneity from the expectation E [Y1Y2 |x1, x2]. In particular,
we can write

P11(x1, x2) = E [Y1Y2 |x1, x2] =
∫
P1(x1 − u, x2 − v)P2(x1 − u, x2 − v)g(u, v) du dv.

We will use the deconvolution technique to recover the density g(·) for which we need to find an
expression for the Fourier transform of the product of equilibrium beliefs:

M12(t1, t2) =
∫
e−it1q1−it2q2P1(q1, q2)P2(q1, q2) dq1 dq2

Denoting the Fourier transforms of individual beliefs by

M1(t1, t2) =
∫
e−it1q1−it2q2P1(q1, q2) dq1 dq2,

M2(t1, t2) =
∫
e−it1q1−it2q2P2(q1, q2) dq1 dq2,

we can construct the closed-form expression for the Fourier transform of the product in the following
way. First, denote pi(·, ·) a bivariate density associated with the measure Pi(·, ·) defined by the
equilibrium beliefs. Observe that Pi is a probability measure with Pi(R2) = 1 and has an absolutely
continuous density (by differentiability of Φ(·)). Then∫

e−it1q1−it2q2P1(q1, q2), dq1 dq2

=
∫
e−it1q1−it2q21{z1 − q1 ≤ 0}1{z2 − q2 ≤ 0}p1(z1, z2)dz1 dz2 dq1 dq2

= −χP1(t1, t2)
t1t2

(1 + πit1δ(t1)) (1 + πit2δ(t2)) .
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Similarly, we can define the bivariate density associated with the measure P1(·, ·)P2(·, ·) and express∫
e−it1q1−it2q2P1(q1, q2)P2(q1, q2), dq1 dq2

= −χP1P2(t1, t2)
t1t2

(1 + πit1δ(t1)) (1 + πit2δ(t2)) .

We then consider the Fourier transform of the expectation E [Y1Y2 |x1, x], which we denote
F11(t1, t2), leading to the following expression for the density of the distribution of unobserved
heterogeneity:

g(u, v) = − 1
(2π)2

∫
eit1u+it2v t1t2F11(t1, t2)

χP1P2(t1, t2)
dt1 dt2.

F Semiparametric efficiency bounds in incomplete in-

formation models

F.1 Semiparametric efficiency bound in the triangular model with

incomplete information

The semiparametric efficiency bound provides the minimum variance for the finite-dimensional
parameters over admissible sets of non-parametric components of the model. In our case, it will
reflect the minimum variance of the strategic interaction parameter. To find the semiparametric
efficiency bound, we use the result in Ai and Chen (2003). We note that the model is represented
by a system of semiparametric conditional moment equations:

P11(x1, x) = E [y1y2 |x1, x]

=
∫

1{x1 − u+ αΦ
(
x− v
σ

)
> 0}Φ

(
x− v
σ

)
g(u, v) du dv,

P (x1, x) = E [y2 |x1, x] =
∫

Φ
(
x− v
σ

)
gv(v) dv,

Q(x1, x) = E [y1 |x1, x] =
∫

1{x1 − u+ αΦ
(
x− v
σ

)
> 0}g(u, v) du dv.

(F.9)

These equations fully characterize the conditional distribution of the outcome variables, provided
that the outcome variables are binary. Due to independence of the distribution of errors (U, V ) and
covariates (X1, X), the distribution of covariates does not provide any information regarding the
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strategic interaction parameter. We can re-write this system of equations in an equivalent form as

m1(x1, x;α, g) = E

[
y1y2 −

∫
1{x1 − u+ αΦ

(
x− v
σ

)
> 0}

Φ
(
x− v
σ

)
g(u, v) du dv

∣∣∣∣x1, x

]
= E[ρ1(y, x;α, g)|x1, x],

m2(x1, x;α, g) = E

[
y1 −

∫
1{x1 − u+ αΦ

(
x− v
σ

)
> 0}g(u, v) du dv

]
= E[ρ2(y, x;α, g)|x1, x],

m3(x1, x;α, g) = E

[
y2 −

∫
Φ
(
x− v
σ

)
gv(v) dv

∣∣∣∣x1, x

]
= E[ρ3(y, x;α, g)|x1, x],

(F.10)

Consider the derivatives of these moment equations with respect to parameter α:

dm1

dα
= −

∫
Φ
(
x− v
σ

)2 ∂

∂v
G

(
x1 + αΦ

(
x− v
σ

)
, v

)
du dv,

dm2

dα
= −

∫
Φ
(
x− v
σ

)
∂

∂v
G

(
x1 + αΦ

(
x− v
σ

)
, v

)
du dv,

dm3

dα
= 0.

Then considering the space of densities that are uniformly manageable and satisfy Assumption 1,
we take a direction in this space h and

dm1

dg
[h] = −

∫
1{x1 − u+ αΦ

(
x− v
σ

)
> 0}Φ

(
x− v
σ

)
h(u, v) du dv,

dm2

dg
[h] = −

∫
1{x1 − u+ αΦ

(
x− v
σ

)
> 0}h(u, v) du dv,

dm3

dg
[h] = −

∫
Φ
(
x− v
σ

)
hv(v) dv.

We introduce the vector with elements

ψ1(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0}

(
Φ
(
x− v
σ

)
g(u, v)− h(u, v)

)
,

ψ2(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0} (g(u, v)− h(u, v)) ,

ψ3(x1, x, u, v) = −h(u, v),

and denote

ζ1(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0},

ζ2(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0},

ζ3(x1, x, u, v) = 1,
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and

ξ1(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0}Φ

(
x− v
σ

)
,

ξ2(x1, x, u, v) = 1{x1 − u+ αΦ
(
x− v
σ

)
> 0},

ξ3(x1, x, u, v) = 1.

We express

Dh(x1, x) =
dm

dα
− dm

dg
[h] =

∫
Φ
(
x− v
σ

)
ψ(x1, x, u, v) du dv,

which is a linear functional of h(·, ·), in fact

Dh(x1, x) =
∫

Φ
(
x− v
σ

)
ξ(x1, x, u, v)g(u, v) du dv −

∫
Φ
(
x− v
σ

)
ζ(x1, x, u, v)h(u, v) du dv.

Next, we find the conditional covariance matrix

Σ(x1, x) = P11

I −
 P11 Q P

Q 1− Q(1−Q)
P11

PQ
P11

P PQ
P11

1− P (1−P )
P11


 (F.11)

The semiparametric efficiency bound will be associated with the “least favorable” direction h.
To find this direction one needs to solve the minimization problem

min
h∈G−g0

E
[
Dh(X1, X)′Σ−1(X1, X)Dh(X1, X)

]
.

It is convenient to define the least favorable direction as h = q2 to ensure that the solution is positive
and also require that

∫
q2(u, v) du dv = 1. Then the minimization problem becomes a constrained

optimization problem. We have previously noted that Dh(X1, X) is a linear functional. We can thus
find the minimum using the standard calculus of variation for a constrained isoperimetric problem.
The considered minimized functional is quadratic and we can express the necessary condition for
its minimum as

E

[
Φ
(
X − v
σ

)
ζ(X1, X, u, v)′ Σ−1(X1, X)Dh∗(X1, X)

]
+ λ = 0,

where λ is the Lagrange multiplier and h∗ = q∗2 corresponds to the optimal solution. Finally, we
can transform this equation by isolating the terms for h∗ and g and introducing notations

K(u, v, u′, v′) = E

[
Φ
(
X − v
σ

)
Φ
(
X − v′

σ

)
ζ(X1, X, u, v)′ Σ−1(X1, X) ζ(X1, X, u

′, v′)
]

and

R(u, v, u′, v′) = E

[
Φ
(
X − v
σ

)
Φ
(
X − v′

σ

)
ζ(X1, X, u, v)′ Σ−1(X1, X) ξ(X1, X, u

′, v′)
]
.
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Thus, ∫
K(u, v, u′, v′)h∗(u′, v′) du′dv′ = λ+

∫
R(u, v, u′, v′)g(u′, v′) du′dv′

Given that K(u, v, u′, v′) is a non-separable symmetric kernel. Thus it has an infinite coutable set
of eigenfunctions with real eigenvalues. Moreover, provided that K(u, v, u′, v′) is strictly positive
and decays with |u|, |v| → ∞, it satisfies the Picard criterion. Therefore, the Fredholm integral
equation above has a solution. Ths solution to this equation that is strictly positive and normalizes
to 1 yields the semiparametric efficiency bound

Ω = E
[
Dh∗(X1, X)′Σ−1(X1, X)Dh∗(X1, X)

]

F.2 Semiparametric efficiency bound in the static game model

with incomplete information

We note that the observed equilibrium responses are characterized by two binary variables, Y1 and
Y2. Given the independence of the unobserved heterogeneity (U, V ) and the covariates and the
fact that the distribution of covariates does not depend on the parameters of interest, the condi-
tional distribution of observed actions is fully characterized by three expectations: E [Y1|x1, x2],
E [Y2|x1, x2], and E [Y1Y2|x1, x2]. These expectations characterize the conditional moments that
identify the strategic interaction parameters:

P11(x1, x2) = E [Y1Y2|x1, x2] =
∫
P1(x1 − u, x2 − v)P2(x1 − u, x2 − v)g(u, v) du dv,

Q(x1, x2) = E [Y1|x1, x2] =
∫
P1(x1 − u, x2 − v)g(u, v) du dv,

P (x1, x2) = E [Y2|x1, x2] =
∫
P2(x1 − u, x2 − v)g(u, v) du dv,

We can re-write this system of equations in an equivalent form as

m1(x1, x2;α, g) = E

[
Y1Y2−

∫
P1(X1 − u,X2 − v)P2(X1 − u,X2 − v)

× g(u, v) du dv
∣∣x1, x2

]
= E[ρ1(Y,X;α, g)|x1, x],

m2(x1, x2;α, g) = E

[
Y1−

∫
P1(X1 − u,X2 − v)g(u, v) du dv

]
= E[ρ2(Y,X;α, g)|x1, x2],

m3(x1, x2;α, g) = E

[
Y2−

∫
P2(X1 − u,X2 − v)g(u, v) du dv

∣∣∣∣x1, x2

]
= E[ρ3(Y,X;α, g)|x1, x],

(F.12)

Under our assumption regarding the distribution of errors η1 and η2, equilibrium beliefs are mono-
tone functions of the parameters. Previously, we derived the Jacobi matrix corresponding to the
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derivatives of the equilibrium beliefs with respect to the parameters as:

Jα =

(
∂P1
∂α1

∂P1
∂α2

∂P2
∂α1

∂P2
∂α2

)
=

a1a2

1 + α1α2a1a2

(
P1/a2 α1P1

α2P2 P2/a1

)
,

where ai = σ−1φ
(
Φ−1(Pi)

)
.

We can express the Jacobi matrix of the moment vector m(·) with respect to the finite-
dimensional parameters α1 and α2 as:

dm(x1, x2;α, g)
dα′

=
∫
M(x1 − u, x2 − v) Jα(x1 − u, x2 − v)g(u, v) du dv,

where

M =

 P2 P1

1 0
0 1

 = (µ1, µ2) .

Then considering the space of densities that are uniformly manageable and satisfy Assumption 4,
we take a direction in this space h and obtain

dm(x1, x2;α, g)
dg

[h] =
∫
ψ(x1 − u, x2 − v)h(u, v) du dv,

where ψ(q1, q2) = (P1(q1, q2)P1(q1, q2), P1(q1, q2), P2(q1, q2))′. The semiparametric efficiency bound
will be associated with a vector of two least favorable directions h∗1 and h∗2 such that h∗i minimizes

E
[
Dhi(X1, X2) Σ(X1, X2)−1Dhi(X1, X2)

]
,

where Dhi(x1, x2) = dm(x1,x2;α,g)
dαi

− dm(x1,x2;α,g)
dg [hi] and Σ(·, ·) is determined by (F.11). We note that

Dhi(x1, x2) is linear in hi. We can minimize the considered objective function under the constraint
that the solution has to be a density function. This optimization leads us to the expression

E
[
ψ(X1 − u, X2 − v)′Σ(X1, X2)−1Dhi(X1, X2)

]
+ λ = 0,

where λ is the Lagrange multiplier. We introduce notation

K(u, v, u′, v′) = E
[
ψ(X1 − u, X2 − v)′Σ(X1, X2)−1ψ(X1 − u′, X2 − v′)

]
and

Ri(u, v, u′, v′) = E

[
ψ(X1 − u, X2 − v)′Σ(X1, X2)−1

µi(X1 − u′, X2 − v′)Jα(X1 − u′, X2 − v′)
]
.

Then we can find the least favorable direction for i = 1, 2 as a solution to∫
K(u, v, u′, v′)h∗i (u

′, v′) du′ dv′ = λ+
∫
R(u, v, u′, v′) g(u′, v′) du′ dv′.
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The kernel function K(u, v, u′, v′) is positive, symmetric, non-separable, and square-integrable.
Thus, the Hilbert space G has an orthonormal basis consisting of the eigenvectors of the integral
operator with the kernel K(u, v, u′, v′), and the solution for h∗i will be in this basis.

The semiparametric efficiency bound will then be constructed from

Dh∗(x1, x2) =
(
Dh∗1

(x1, x2), Dh∗2
(x1, x2)

)′
.

We can express the bound as

Ω = E
[
Dh∗(X1, X2) Σ(X1, X2)−1Dh∗(X1, X2)

]−1
.
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