Price Setting in the Corsetti-Pesenti¹ Framework Maurice Obstfeld

There are two cases, PCP (producer-currency pricing, price sticky in home currency of the producer) and LCP (local-currency pricing, price sticky in currency of the buyer, so that a producer must set domestic as well as foreign prices). In both cases, prices are set on date t - 1 to be charged buyers in period t.

PCP case. Worldwide profits of a Home producer (say, in terms of domestic currency) are given by

$$\Pi = \left[p(h) - MC\right] \left[\frac{p(h)}{P_H}\right]^{-\theta} C_H + \left[\mathcal{E}p^*(h) - MC\right] \left[\frac{p^*(h)}{P_H^*}\right]^{-\theta} C_H^*,$$

where $p^*(h)$ is the Foreign-currency price at which goods are sold in Foreign. Under PCP, the Foreign price will simply be $p(h)/\mathcal{E}$, where p(h) is set a period in advance. Thus, ex post nominal profits under sticky prices (once date t variables including the exchange rate \mathcal{E} are realized) will be:

$$\Pi = \left[p(h) - MC\right] \left[\frac{p(h)}{P_H}\right]^{-\theta} C_H + \left[p(h) - MC\right] \left[\frac{p(h)/\mathcal{E}}{P_H^*}\right]^{-\theta} C_H^*.$$
(1)

Because the firm sets the price a period in advance and asset markets are *complete*, the payoff to the firm in a given date-t state of nature s_t , valued in terms of date t - 1 money, will be

$$\frac{\pi(s_t)\beta u'[C(s_t)]/P(s_t)}{u'(C_{t-1})/P_{t-1}}\Pi(s_t),$$

where $\pi(s_t)$ is the probability of occurrence of state s_t . (Recall that the ratio

$$\frac{\pi(s_t)\beta u'[C(s_t)]/P(s_t)}{u'(C_{t-1})/P_{t-1}}$$

is the value of a unit of money delivered on date t contingent on state s_t , measured in terms of money on date t - 1.) The firm maximizes, with respect to its date t-1 choice of $p_t(h)$, the sum of the preceding state-contingent payoffs, and therefore solves the problem

$$\max_{p_t(h)} \mathcal{E}_{t-1} \left\{ \frac{\beta u'(C_t)/P_t}{u'(C_{t-1})/P_{t-1}} \Pi_t \right\} \Leftrightarrow \max_{p_t(h)} \mathcal{E}_{t-1} \left\{ \frac{\beta P_{t-1}C_{t-1}}{P_t C_t} \Pi_t \right\}.$$

(The equivalence is a consequence of log utility.)

Substituting eq. (1) into the preceding maximization, one expresses the firm's problem (after dividing by $P_{t-1}C_{t-1}$, which is exogenous to the individual

¹NBER Working Paper 11341, May 2005.

producer and known as of date t-1, and multiplying by P_H , which also is known as of date t-1), as

$$\max_{p_t(h)} \mathbf{E}_{t-1} \left\{ \left[p_t(h) - MC_t \right] \left[\frac{p_t(h)}{P_{H,t}} \right]^{-\theta} \frac{P_{H,t}C_{H,t}}{P_t C_t} + \left[p_t(h) - MC_t \right] \left[\frac{p_t(h)/\mathcal{E}_t}{P_{H,t}^*} \right]^{-\theta} \frac{\mathcal{E}_t P_{H,t}^* C_{H,t}^*}{P_t C_t} \right\}$$

Above, we have used the fact that, under PCP, P_H will always equal $\mathcal{E}P_H^*$ (since that relationship holds for each individual Home good $h \in [0, 1]$).

Differentiating with respect to $p_t(h)$ yields the first-order condition

$$E_{t-1} \left\{ \left[\frac{p_t(h)}{P_{H,t}} \right]^{-\theta} \frac{P_{H,t}C_{H,t}}{P_tC_t} - \theta \frac{[p_t(h) - MC_t]}{p_t(h)} \left[\frac{p_t(h)}{P_{H,t}} \right]^{-\theta} \frac{P_{H,t}C_{H,t}}{P_tC_t} + \left[\frac{p_t(h)/\mathcal{E}_t}{P_{H,t}^*} \right]^{-\theta} \frac{\mathcal{E}_t P_{H,t}^* C_{H,t}^*}{P_tC_t} - \theta \frac{[p_t(h) - MC_t]}{p_t(h)} \left[\frac{p_t(h)/\mathcal{E}_t}{P_{H,t}^*} \right]^{-\theta} \frac{\mathcal{E}_t P_{H,t}^* C_{H,t}^*}{P_tC_t} \right\}$$

$$0.$$

Under the Corsetti-Pesenti preference assumptions, $\frac{P_{H,t}C_{H,t}}{P_tC_t} = \frac{1}{2}$, and, as we have noted, $P_H = \mathcal{E}P_H^*$ under PCP. Furthermore, $P_{H,t}^*C_{H,t}^* = \frac{1}{2}P_t^*C_t^*$, and under complete markets, $P_t^*C_t^* = P_tC_t/\mathcal{E}_t$, so $\frac{\mathcal{E}_tP_{H,t}^*C_{H,t}^*}{P_tC_t} = \frac{1}{2}$. Thus, the preceding first-order condition reduces to

$$\mathbf{E}_{t-1}\left\{\left[\frac{p_t(h)}{P_{H,t}}\right]^{-\theta} - \theta \frac{\left[p_t(h) - MC_t\right]}{p_t(h)} \left[\frac{p_t(h)}{P_{H,t}}\right]^{-\theta}\right\} = 0.$$

Because, moreover, $p_t(h)$ and $P_{H,t}$ are known as of date t-1, the term $\left[\frac{p_t(h)}{P_{H,t}}\right]^{-\theta}$ may be factored out above, leaving

$$\mathbf{E}_{t-1}\left\{1-\theta\frac{\left[p_t(h)-MC_t\right]}{p_t(h)}\right\}=0,$$

or

=

$$p_t(h) = \frac{\theta}{\theta - 1} \mathbf{E}_{t-1} \{ MC_t \}.$$

LCP case. Following steps analogous to those above, but recognizing that the producer now can choose independently $p_t(h)$ and $p_t^*(h)$, we express the maximization problem of the price-setting firm as

$$\max_{p_t(h), p_t^*(h)} \mathbf{E}_{t-1} \left\{ \left[p_t(h) - MC_t \right] \left[\frac{p_t(h)}{P_{H,t}} \right]^{-\theta} \frac{C_{H,t}}{P_t C_t} + \left[\mathcal{E}_t p_t^*(h) - MC_t \right] \left[\frac{p_t^*(h)}{P_{H,t}^*} \right]^{-\theta} \frac{C_{H,t}^*}{P_t C_t} \right\}$$

The first-order condition with respect to $p_t(h)$ is

$$\mathbf{E}_{t-1}\left\{\left[\frac{p_t(h)}{P_{H,t}}\right]^{-\theta}\frac{C_{H,t}}{P_tC_t} - \theta\frac{\left[p_t(h) - MC_t\right]}{p_t(h)}\left[\frac{p_t(h)}{P_{H,t}}\right]^{-\theta}\frac{C_{H,t}}{P_tC_t}\right\} = 0.$$

Multiplying through by $P_{H,t}$ as above, which is known at date t-1, we get

$$E_{t-1}\left\{1 - \theta \frac{[p_t(h) - MC_t]}{p_t(h)}\right\} = 0,$$

or

$$p_t(h) = \frac{\theta}{\theta - 1} \mathbf{E}_{t-1} \{ MC_t \}.$$

The first-order condition with respect to $p_t^*(h)$ is

$$\mathbf{E}_{t-1}\left\{\mathcal{E}_{t}\left[\frac{p_{t}^{*}(h)}{P_{H,t}^{*}}\right]^{-\theta}\frac{C_{H,t}^{*}}{P_{t}C_{t}}-\theta\frac{[\mathcal{E}_{t}p_{t}^{*}(h)-MC_{t}]}{p_{t}^{*}(h)}\left[\frac{p_{t}^{*}(h)}{P_{H,t}^{*}}\right]^{-\theta}\frac{C_{H,t}^{*}}{P_{t}C_{t}}\right\}=0.$$

Now, $P_{H,t}^*$ also is known with certainty as of date t-1, so we may multiply through the expectations operator in the preceding equation and rearrange terms to get

$$\mathbf{E}_{t-1}\left\{\left[\frac{p_{t}^{*}(h)}{P_{H,t}^{*}}\right]^{-\theta}\frac{\mathcal{E}_{t}P_{H,t}^{*}C_{H,t}^{*}}{P_{t}C_{t}} - \theta\frac{\left[\mathcal{E}_{t}p_{t}^{*}(h) - MC_{t}\right]}{\mathcal{E}_{t}p_{t}^{*}(h)}\left[\frac{p_{t}^{*}(h)}{P_{H,t}^{*}}\right]^{-\theta}\frac{\mathcal{E}_{t}P_{H,t}^{*}C_{H,t}^{*}}{P_{t}C_{t}}\right\} = 0,$$

which reduces to

$$\mathbf{E}_{t-1}\left\{1-\theta\frac{\left[\mathcal{E}_{t}p_{t}^{*}(h)-MC_{t}\right]}{\mathcal{E}_{t}p_{t}^{*}(h)}\right\}=0$$

(because $\frac{\mathcal{E}_t P_{H,t}^* C_{H,t}^*}{P_t C_t} = \frac{1}{2}$ under complete markets). We may multiply $p_t^*(h)$ through the expectations operator to yield

$$\mathbf{E}_{t-1}\left\{p_t^*(h) - \theta\left[p_t^*(h) - \frac{MC_t}{\mathcal{E}_t}\right]\right\} = 0$$

or, solving for $p_t^*(h)$,

$$p_t^*(h) = \frac{\theta}{\theta - 1} \mathbf{E}_{t-1} \left\{ \frac{MC_t}{\mathcal{E}_t} \right\}.$$