Price Setting in the Corsetti-Pesenti ${ }^{1}$ Framework Maurice Obstfeld

There are two cases, PCP (producer-currency pricing, price sticky in home currency of the producer) and LCP (local-currency pricing, price sticky in currency of the buyer, so that a producer must set domestic as well as foreign prices). In both cases, prices are set on date $t-1$ to be charged buyers in period t.
$P C P$ case. Worldwide profits of a Home producer (say, in terms of domestic currency) are given by

$$
\Pi=[p(h)-M C]\left[\frac{p(h)}{P_{H}}\right]^{-\theta} C_{H}+\left[\mathcal{E} p^{*}(h)-M C\right]\left[\frac{p^{*}(h)}{P_{H}^{*}}\right]^{-\theta} C_{H}^{*},
$$

where $p^{*}(h)$ is the Foreign-currency price at which goods are sold in Foreign. Under PCP, the Foreign price will simply be $p(h) / \mathcal{E}$, where $p(h)$ is set a period in advance. Thus, ex post nominal profits under sticky prices (once date t variables including the exchange rate \mathcal{E} are realized) will be:

$$
\begin{equation*}
\Pi=[p(h)-M C]\left[\frac{p(h)}{P_{H}}\right]^{-\theta} C_{H}+[p(h)-M C]\left[\frac{p(h) / \mathcal{E}}{P_{H}^{*}}\right]^{-\theta} C_{H}^{*} \tag{1}
\end{equation*}
$$

Because the firm sets the price a period in advance and asset markets are complete, the payoff to the firm in a given date- t state of nature s_{t}, valued in terms of date $t-1$ money, will be

$$
\frac{\pi\left(s_{t}\right) \beta u^{\prime}\left[C\left(s_{t}\right)\right] / P\left(s_{t}\right)}{u^{\prime}\left(C_{t-1}\right) / P_{t-1}} \Pi\left(s_{t}\right)
$$

where $\pi\left(s_{t}\right)$ is the probability of occurrence of state s_{t}. (Recall that the ratio

$$
\frac{\pi\left(s_{t}\right) \beta u^{\prime}\left[C\left(s_{t}\right)\right] / P\left(s_{t}\right)}{u^{\prime}\left(C_{t-1}\right) / P_{t-1}}
$$

is the value of a unit of money delivered on date t contingent on state s_{t}, measured in terms of money on date $t-1$.) The firm maximizes, with respect to its date $t-1$ choice of $p_{t}(h)$, the sum of the preceding state-contingent payoffs, and therefore solves the problem

$$
\max _{p_{t}(h)} \mathrm{E}_{t-1}\left\{\frac{\beta u^{\prime}\left(C_{t}\right) / P_{t}}{u^{\prime}\left(C_{t-1}\right) / P_{t-1}} \Pi_{t}\right\} \Leftrightarrow \max _{p_{t}(h)} \mathrm{E}_{t-1}\left\{\frac{\beta P_{t-1} C_{t-1}}{P_{t} C_{t}} \Pi_{t}\right\}
$$

(The equivalence is a consequence of log utility.)
Substituting eq. (1) into the preceding maximization, one expresses the firm's problem (after dividing by $P_{t-1} C_{t-1}$, which is exogenous to the individual

[^0]producer and known as of date $t-1$, and multiplying by P_{H}, which also is known as of date $t-1$), as
\[

$$
\begin{aligned}
& \max _{p_{t}(h)} \mathrm{E}_{t-1}\left\{\left[p_{t}(h)-M C_{t}\right]\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{P_{H, t} C_{H, t}}{P_{t} C_{t}}\right. \\
&\left.+\left[p_{t}(h)-M C_{t}\right]\left[\frac{p_{t}(h) / \mathcal{E}_{t}}{P_{H, t}^{*}}\right]^{-\theta} \frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}\right\} .
\end{aligned}
$$
\]

Above, we have used the fact that, under PCP, P_{H} will always equal $\mathcal{E} P_{H}^{*}$ (since that relationship holds for each individual Home good $h \in[0,1])$.

Differentiating with respect to $p_{t}(h)$ yields the first-order condition

$$
\begin{aligned}
& \mathrm{E}_{t-1}\left\{\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{P_{H, t} C_{H, t}}{P_{t} C_{t}}-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{P_{H, t} C_{H, t}}{P_{t} C_{t}}\right. \\
& \left.+\left[\frac{p_{t}(h) / \mathcal{E}_{t}}{P_{H, t}^{*}}\right]^{-\theta} \frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\left[\frac{p_{t}(h) / \mathcal{E}_{t}}{P_{H, t}^{*}}\right]^{-\theta} \frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}\right\} \\
& =0 .
\end{aligned}
$$

Under the Corsetti-Pesenti preference assumptions, $\frac{P_{H, t} C_{H, t}}{P_{t} C_{t}}=\frac{1}{2}$, and, as we have noted, $P_{H}=\mathcal{E} P_{H}^{*}$ under PCP. Furthermore, $P_{H, t}^{*} C_{H, t}^{*}=\frac{1}{2} P_{t}^{*} C_{t}^{*}$, and under complete markets, $P_{t}^{*} C_{t}^{*}=P_{t} C_{t} / \mathcal{E}_{t}$, so $\frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}=\frac{1}{2}$. Thus, the preceding first-order condition reduces to

$$
\mathrm{E}_{t-1}\left\{\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta}-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta}\right\}=0
$$

Because, moreover, $p_{t}(h)$ and $P_{H, t}$ are known as of date $t-1$, the term $\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta}$ may be factored out above, leaving

$$
\mathrm{E}_{t-1}\left\{1-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\right\}=0
$$

or

$$
p_{t}(h)=\frac{\theta}{\theta-1} \mathrm{E}_{t-1}\left\{M C_{t}\right\}
$$

$L C P$ case. Following steps analogous to those above, but recognizing that the producer now can choose independently $p_{t}(h)$ and $p_{t}^{*}(h)$, we express the maximization problem of the price-setting firm as

$$
\begin{aligned}
\max _{p_{t}(h), p_{t}^{*}(h)} & \mathrm{E}_{t-1}\left\{\left[p_{t}(h)-M C_{t}\right]\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{C_{H, t}}{P_{t} C_{t}}\right. \\
& \left.+\left[\mathcal{E}_{t} p_{t}^{*}(h)-M C_{t}\right]\left[\frac{p_{t}^{*}(h)}{P_{H, t}^{*}}\right]^{-\theta} \frac{C_{H, t}^{*}}{P_{t} C_{t}}\right\} .
\end{aligned}
$$

The first-order condition with respect to $p_{t}(h)$ is

$$
\mathrm{E}_{t-1}\left\{\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{C_{H, t}}{P_{t} C_{t}}-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\left[\frac{p_{t}(h)}{P_{H, t}}\right]^{-\theta} \frac{C_{H, t}}{P_{t} C_{t}}\right\}=0 .
$$

Multiplying through by $P_{H, t}$ as above, which is known at date $t-1$, we get

$$
\mathrm{E}_{t-1}\left\{1-\theta \frac{\left[p_{t}(h)-M C_{t}\right]}{p_{t}(h)}\right\}=0
$$

or

$$
p_{t}(h)=\frac{\theta}{\theta-1} \mathrm{E}_{t-1}\left\{M C_{t}\right\}
$$

The first-order condition with respect to $p_{t}^{*}(h)$ is

$$
\mathrm{E}_{t-1}\left\{\mathcal{E}_{t}\left[\frac{p_{t}^{*}(h)}{P_{H, t}^{*}}\right]^{-\theta} \frac{C_{H, t}^{*}}{P_{t} C_{t}}-\theta \frac{\left[\mathcal{E}_{t} p_{t}^{*}(h)-M C_{t}\right]}{p_{t}^{*}(h)}\left[\frac{p_{t}^{*}(h)}{P_{H, t}^{*}}\right]^{-\theta} \frac{C_{H, t}^{*}}{P_{t} C_{t}}\right\}=0
$$

Now, $P_{H, t}^{*}$ also is known with certainty as of date $t-1$, so we may multiply through the expectations operator in the preceding equation and rearrange terms to get
$\mathrm{E}_{t-1}\left\{\left[\frac{p_{t}^{*}(h)}{P_{H, t}^{*}}\right]^{-\theta} \frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}-\theta \frac{\left[\mathcal{E}_{t} p_{t}^{*}(h)-M C_{t}\right]}{\mathcal{E}_{t} p_{t}^{*}(h)}\left[\frac{p_{t}^{*}(h)}{P_{H, t}^{*}}\right]^{-\theta} \frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}\right\}=0$,
which reduces to

$$
\mathrm{E}_{t-1}\left\{1-\theta \frac{\left[\mathcal{E}_{t} p_{t}^{*}(h)-M C_{t}\right]}{\mathcal{E}_{t} p_{t}^{*}(h)}\right\}=0
$$

(because $\frac{\mathcal{E}_{t} P_{H, t}^{*} C_{H, t}^{*}}{P_{t} C_{t}}=\frac{1}{2}$ under complete markets). We may multiply $p_{t}^{*}(h)$ through the expectations operator to yield

$$
\mathrm{E}_{t-1}\left\{p_{t}^{*}(h)-\theta\left[p_{t}^{*}(h)-\frac{M C_{t}}{\mathcal{E}_{t}}\right]\right\}=0
$$

or, solving for $p_{t}^{*}(h)$,

$$
p_{t}^{*}(h)=\frac{\theta}{\theta-1} \mathrm{E}_{t-1}\left\{\frac{M C_{t}}{\mathcal{E}_{t}}\right\} .
$$

[^0]: ${ }^{1}$ NBER Working Paper 11341, May 2005.

