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I. Introduction

The assumption that economic activity takes place

continuously is a convenient abstraction in many applications.

In others, such as the study of financial-market equilibrium, the

assumption of continuous trading corresponds closely to reality.

Regardless of motivation, continuous-time modeling allows

application of a powerful mathematical tool, the theory of

optimal dynamic control.

The basic idea of optimal control theory is easy to grasp--

indeed it follows from elementary principles similar to those

that underlie standard static optimization problems. The purpose

of these notes is twofold. First, I present intuitive

derivations of the first-order necessary conditions that

characterize the solutions of basic continuous-time optimization

problems. Second, I show why very similar conditions apply in

1deterministic and stochastic environments alike.

A simple unified treatment of continuous-time deterministic

and stochastic optimization requires some restrictions on the

form that economic uncertainty takes. The stochastic models I

discuss below will assume that uncertainty evolves continuously

^according to a type of process known as an Ito (or Gaussian

------------------------------------------------------------------------------------------------------------------------------------------------------------
1When the optimization is done over a finite time horizon, the
usual second-order sufficient conditions generalize immediately.
(These second-order conditions will be valid in all problems
examined here.) When the horizon is infinite, however, some
additional "terminal" conditions are needed to ensure optimality.
I make only passing reference to these conditions below, even
though I always assume (for simplicity) that horizons are
infinite. Detailed treatment of such technical questions can be
found in some of the later references.
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diffusion) process. Once mainly the province of finance

^theorists, Ito processes have recently been applied to

interesting and otherwise intractable problems in other areas of

economics, for example, exchange-rate dynamics, the theory of the

firm, and endogenous growth theory. Below, I therefore include a

brief and heuristic introduction to continuous-time stochastic

processes, including the one fundamental tool needed for this

^type of analysis, Ito’s chain rule for stochastic differentials.

^Don’t be intimidated: the intuition behind Ito’s Lemma is not

hard to grasp, and the mileage one gets out of it thereafter

truly is amazing.

II. Deterministic Optimization in Continuous Time

The basic problem to be examined takes the form: Maximize

8

i ------dt(1) 2 e U[c(t),k(t)]dt
j
0

subject to

Q(2) k(t) = G[c(t),k(t)], k(0) given,

where U(c,k) is a strictly concave function and G(c,k) is

concave. In practice there may be some additional inequality

constraints on c and/or k; for example, if c stands for

consumption, c must be nonnegative. While I will not deal in any

detail with such constraints, they are straightforward to
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2incorporate. In general, c and k can be vectors, but I will

concentrate on the notationally simpler scalar case. I call c

the control variable for the optimization problem and k the state

variable. You should think of the control variable as a flow--

for example, consumption per unit time--and the state variable as

a stock--for example, the stock of capital, measured in units of

consumption.

The problem set out above has a special structure that we

can exploit in describing a solution. In the above problem,

planning starts at time t = 0. Since no exogenous variables

enter (1) or (2), the maximized value of (1) depends only on

k(0), the predetermined initial value of the state variable. In

other words, the problem is stationary , i.e., it does not change

3in form with the passage of time. Let’s denote this maximized

value by J[k(0)], and call J(k) the value function for the

8problem. If {c*(t)} stands for the associated optimal path of
t=0

8 4the control and {k*(t)} for that of the state, then by
t=0

definition,

------------------------------------------------------------------------------------------------------------------------------------------------------------
2The best reference work on economic applications of optimal
control is still Kenneth J. Arrow and Mordecai Kurz, Public
Investment, the Rate of Return, and Optimal Fiscal Policy
(Baltimore: Johns Hopkins University Press, 1970).
3Nonstationary problems often can be handled by methods
analogous to those discussed below, but they require additional
notation to keep track of the exogenous factors that are
changing.
4According to (2), these are related by

t

ik*(t) = 2 G[c*(s),k*(s)]ds + k(0).
j
0
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8

i ------dtJ[k(0)] = 2 e U[c*(t),k*(t)]dt.
j
0

The nice structure of this problem relates to the following

property. Suppose that the optimal plan has been followed until

a time T > 0, so that k(T) is equal to the value k*(T) given in

the last footnote. Imagine a new decision maker who maximizes

the discounted flow of utility from time t = T onward,

8

i ------d(t ------T)(3) 2 e U[c(t),k(t)]dt,
j
T

subject to (2), but with the intial value of k given by k(T) =

k*(T). Then the optimal program determined by this new decision

maker will coincide with the continuation, from time T onward, of

the optimal program determined at time 0, given k(0) . You should

construct a proof of this fundamental result, which is intimately

related to the notion of "dynamic consistency."

You should also convince yourself of a key implication

of this result, that

T

i ------dt ------dT(4) J[k(0)] = 2 e U[c*(t),k*(t)]dt + e J[k*(T)],
j
0

where J[k*(T)] denotes the maximized value of (3) given that k(T)

= k*(T) and (2) is respected. Equation (4) implies that we can

think of our original, t = 0, problem as the finite-horizon

problem of maximizing
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T

i ------dt ------dT
e U[c(t),k(t)]dt + e J[k(T)]

j
0

subject to the constraint that (2) holds for 0 < t < T. Of

course, in practice it may not be so easy to determine the

correct functional form for J(k), as we shall see below!

Nonetheless, this way of formulating our problem--which is

known as Bellman’s principle of dynamic programming --leads

directly to a characterization of the optimum. Because this

characterization is derived most conveniently by starting in

discrete time, I first set up a discrete-time analogue of our

basic maximization problem and then proceed to the limit of

continuous time.

Let’s imagine that time is carved up into discrete intervals

of length h. A decision on the control variable c, which is a

flow, sets c at some fixed level per unit time over an entire

period of duration h. Furthemore, we assume that changes in k,

rather than accruing continuously with time, are "credited" only

at the very end of a period, like monthly interest on a bank

account. We thus consider the problem: Maximize

8

s ------dth(5) e U[c(t),k(t)]h
t

t=0

subject to
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(6) k(t+h) ------ k(t) = hG[c(t),k(t)], k(0) given.

Above, c(t) is the fixed rate of consumption over period t while

k(t) is the given level of k that prevails from the very end of

period t ------ 1 until the very end of t. In (5) [resp. (6)] I have

multiplied U(c,k) [resp. G(c,k)] by h because the cumulative flow

of utility [resp. change in k] over a period is the product of a

fixed instantaneous rate of flow [resp. rate of change] and the

period’s length.

Bellman’s principle provides a simple approach to the

preceding problem. It states that the problem’s value function is

given by

( )
------dh(7) J[k(t)] = max {U[c(t),k(t)]h + e J[k(t+h)] },

c ( t ) 9 0

subject to (6), for any initial k(t). It implies, in particular,

that optimal c*(t) must be chosen to maximize the term in braces.

By taking functional relationship (7) to the limit as h L 0, we

5will find a way to characterize the continuous-time optimum.

We will make four changes in (7) to get it into useful form.

First, subtract J[k(t)] from both sides. Second, impose the

------------------------------------------------------------------------------------------------------------------------------------------------------------
5All of this presupposes that a well-defined value function
exists --something which in general requires justification. (See
the extended example in this section for a concrete case.) I
have also not proven that the value function, when it does exist,
is differentiable . We know that it will be for the type of
problem under study here, so I’ll feel free to use the value
function’s first derivative whenever I need it below. With
somewhat less justification, I’ll also use its second and third
derivatives.

6



constraint (6) by substituting for k(t+h), k(t) + hG[c(t),k(t)].

------dhThird, replace e by its power-series representation, 1 ------ dh +

2 2 3 3( d h )/2 ------ ( d h )/6 + .... Finally, divide the whole thing by

h. The result is

& 2(8) 0 = max U(c,k) ------ [ d ------ ( d h/2) + ...]J[k + hG(c,k)]
7

c

*+ {J[k + hG(c,k)] ------ J(k)}/h ,
8

where implicitly all variables are dated t. Notice that

J[k + hG(c,k)] ------ J(k) {J[k + hG(c,k)] ------ J(k)}G(c,k)
------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

h G(c,k)h

It follows that as h L 0, the left-hand side above approaches

J’(k)G(c,k). Accordingly, we have proved the following

PROPOSITION II.1. At each moment, the control c* optimal

for maximizing (1) subject to (2) satisfies the Bellman

equation

(9) 0 = U(c*,k) + J ’(k)G(c*,k) ------ dJ(k)
( )

= max {U(c,k) + J ’(k)G(c,k) ------ dJ(k) }.
c 9 0

This is a very simple and elegant formula. What is its

interpretation? As an intermediate step in interpreting (9),

define the Hamiltonian for this maximization problem as
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(10) H(c,k) _ U(c,k) + J ’(k)G(c,k).

In this model, the intertemporal tradeoff involves a choice

between higher current c and higher future k. If c is

consumption and k wealth, for example, the model is one in which

the utility from consuming now must continuously be traded off

against the utility value of savings. The Hamiltonian H(c,k) can

be thought of as a measure of the flow value, in current utility

terms, of the consumption-savings combination implied by the

consumption choice c, given the predetermined value of k. The

Hamiltonian solves the problem of "pricing" saving in terms of

Qcurrent utility by multiplying the flow of saving, G(c,k) = k, by

J’(k), the effect of an increment to wealth on total lifetime

utility. A corollary of this observation is that J ’(k) has a

natural interpretation as the shadow price (or marginal current

utility) of wealth. More generally, leaving our particular

example aside, J ’(k) is the shadow price one should associate

with the state variable k.

This brings us back to the Bellman equation, equation (9).

Let c* be the value of c that maximizes H(c,k), given k, which is

arbitrarily predetermined and therefore might not have been

6chosen optimally. Then (9) states that

(11) H(c*,k) = max { H(c,k)} = dJ(k).
c

------------------------------------------------------------------------------------------------------------------------------------------------------------
6It is important to understand clearly that at a given point in
time t, k(t) is not an object of choice (which is why we call it
a state variable). Variable c(t) can be chosen freely at time t
(which is why it is called a control variable), but its level
influences the change in k(t) over the next infinitesimal time
interval, k(t + dt) ------ k(t), not the current value k(t).
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In words, the maximized Hamiltonian is a fraction d of an

optimal plan’s total lifetime value. Equivalently, the

instantaneous value flow from following an optimal plan divided

by the plan’s total value--i.e., the plan’s rate of return--must

equal the rate of time preference, d. Notice that if we were to

measure the current payout of the plan by U(c*,k) alone, we would

err by not taking proper account of the value of the current

increase in k. This would be like leaving investment out of our

measure of GNP! The Hamiltonian solves this accounting problem by

valuing the increment to k using the shadow price J ’(k).

To understood the implications of (9) for optimal

consumption we must go ahead and perform the maximization that it

specifies (which amounts to maximizing the Hamiltonian). As a

by-product, we obtain the Pontryagin necessary conditions for

optimal control.

7Maximizing the term in braces in (9) over c, we get

(12) U (c*,k) = ------G (c*,k)J ’(k).c c

The reason this condition is necessary is easy to grasp. At each

moment the decision maker can decide to "consume" a bit more, but

at some cost in terms of the value of current "savings." A unit

of additional consumption yields a marginal payoff of U (c*,k), c

but at the same time, savings change by G (c*,k). The utilityc

------------------------------------------------------------------------------------------------------------------------------------------------------------

7I assume interior solutions throughout.

9



value of a marginal fall in savings thus is ------G (c*,k)J ’(k); andc

if the planner is indeed at an optimum, it must be that this

marginal cost just equals the marginal current utility benefit

from higher consumption. In other words, unless (12) holds,

there will be an incentive to change c from c*, meaning that c*

cannot be optimal.

Let’s get some further insight by exploiting again

the recursive structure of the problem. It is easy to see from

(12) that for any date t the optimal level of the control,

c*(t), depends only on the inherited state k(t) (regardless of

whether k(t) was chosen optimally in the past). Let’s

write this functional relationship between optimal c and k as c*

= c(k), and assume that c(k) is differentiable. (For

example, if c is consumption and k total wealth, c(k) will

be the household’s consumption function.) Functions like c(k)

will be called optimal policy functions , or more simply, policy

functions . Because c(k) is defined as the solution to (9), it

automatically satisfies

0 = U[c(k),k] + J ’(k)G[c(k),k] ------ dJ(k).

Equation (12) informs us as to the optimal relation between c and

k at a point in time. To learn about the implied optimal

behavior of consumption over time, let’s differentiate the

preceding equation with respect to k:
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0 = [U (c*,k) + J ’(k)G (c*,k)]c ’(k) + U (c*,k)c c k

+ [G (c*,k) ------ d]J ’(k) + J "(k)G(c*,k).k

The expression above, far from being a hopeless quagmire, is

actually just what we’re looking for. Notice first that the

left-hand term multiplying c ’(k) drops out entirely thanks to

(12): another example of the envelope theorem. This leaves us

with the rest,

(13) U (c*,k) + J ’(k)[G (c*,k) ------ d] + J "(k)G(c*,k) = 0.k k

Even the preceding simplified expression probably isn’t totally

reassuring. Do not despair, however. A familiar economic

interpretation is again fortunately available.

We saw earlier that J ’(k) could be usefully thought of as

the shadow price of the state variable k. If we think of k as an

asset stock (capital, foreign bonds, whatever), this shadow price

corresponds to an asset price. Furthermore, we know that under

perfect foresight, asset prices adjust so as to equate the

asset’s total instantaneous rate of return to some required or

benchmark rate of return, which in the present context can only

be the time-preference rate, d. As an aid to clear thinking,

let’s introduce a new variable, l, to represent the shadow price

J’(k) of the asset k:

l _ J’(k).
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Our next step will be to rewrite (13) in terms of l. The

key observation allowing us to do this concerns the last term on

the right-hand side of (13), J "(k)G(c*,k). The chain rule of

calculus implies that

dJ’(k) dk d l dk d l QJ"(k)G(c*,k) = ----------------------------------- * ------------ = ------------ * ------------ = ------------ = l;
dk dt dk dt dt

and with this fact in hand, it is only a matter of substitution

to express (13) in the form

QU + lG + lk k
(14) ---------------------------------------------------------------------- = d.

l

This is just the asset-pricing equation promised in the

last paragraph.

Can you see why this last assertion is true? To understand

it, let’s decompose the total return to holding a unit of stock k

into "dividends" and "capital gains." The "dividend" is the sum

of two parts, the direct effect of an extra unit of k on utility,

U , and its effect on the rate of increase of k, lG . (We mustk k

multiply G by the shadow price l in order to express thek
Qphysical effect of k on k in the same terms a s U , that is, ink

terms of utility.) The "capital gain" is just the increase in

Qthe price of k, l. The sum of dividend and capital gain, divided

by the asset price l, is just the rate of return on k, which, by

12



(14) must equal d along an optimal path.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Example

Let’s step back for a moment from this abstract setting to

consolidate what we’ve learned through an example. Consider the

8 ------dtstandard problem of a consumer who maximizes i e U[c(t)]dt
0

Qsubject t o k = f(k) ------ c (where c is consumption, k capital, and

f(k) the production function). Now U = 0, G(c,k) = f(k) ------ c, Gk c

= ------1, and G = f ’(k). In this setting, (14) becomes thek

statement that the rate of time preference should equal the

marginal product of capital plus the rate of accrual of utility

capital gains,

Q
l

d = f ’(k) + ------.
l

Condition (12) becomes U ’(c) = l. Since this last equality

Q Qimplies that l = U"(c)c, we can express the optimal dynamics of c

and k as a nonlinear differential-equation system:

U’(c) q eQ Q(15) c = ------ -----------------------------2f ’(k) ------ d2, k = f(k) ------ c.
U"(c) z c

You can see the phase diagram for this system in figure 1.

(Be sure you can derive it yourself! The diagram assumes that

lim f ’(k) = 0, so that a steady-state capital stock exists.)
kL8

The diagram makes clear that, given k, any positive initial c
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initiates a path along which the two preceding differential

equations for c and k are respected. But not all of these paths

are optimal, since the differential equations specify conditions

that are merely necessary, but not sufficient, for optimality.

Indeed, only one path will be optimal in general: we can

write the associated policy function as as c* = c(k) (it is

graphed in figure 1). For given k, paths with initial

consumption levels exceeding c(k) imply that k becomes negative

after a finite time interval. Since a negative capital stock is

nonsensical, such paths are not even feasible, let alone optimal.

Paths with initial consumption levels below c(k) imply that k

gets to be too large, in the sense that the individual could

raise lifetime utility by eating some capital and never replacing

it. These "overaccumulation" paths violate a sort of terminal

condition stating that the present value of the capital stock

should converge to zero along an optimal path. I shall not take

the time to discuss such terminal conditions here.

If we take

1 ------(1/ e)c ------ 1
U(c) = ----------------------------------------------------------------------- , f(k) = rk,

1 ------ (1/ e)

where e and r are positive constants. we can actually find

an algebraic formula for the policy function c(k).

Let’s conjecture that optimal consumption is proportional to

wealth, that is, that c(k) = hk for some constant h to be

14



determined. If this conjecture is right, the capital stock k

Qwill follow k = (r ------ h)k, or, equivalently,

Qk
------ = r ------ h.
k

This expression gives us the key clue for finding h. If c =

hk, as we’ve guessed, then also

Qc
------ = r ------ h.
c

Qc
But necessary condition (15) requires that ------ = e(r ------ d),

c

which contradicts the last equation unless

(16) h = (1 ------ e)r + ed.

Thus, c(k) = [(1 ------ e)r + ed]k is the optimal policy function. In

the case of log utility ( e = 1), we simply have h = d. We get

the same simple result if it so happens that r and d are equal.

Equation (16) has a nice interpretation. In Milton

Friedman’s permanent-income model, where d = r, people consume

the annuity value of wealth, so that h = r = d. This rule

results in a level consumption path. When d $ r, however, the

optimal consumption path will be tilted, with consumption rising

over time if r > d and falling over time if r < d. By writing
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(16) as

h = r ------ e(r ------ d)

we can see these two effects at work. Why is the deviation from

the Friedman permanent-income path proportional to e? Recall

that e, the elasticity of intertemporal substitution, measures an

individual’s willingness to substitute consumption today for

consumption in the future. If e is high and r > d, for example,

people will be quite willing to forgo present consumption to take

advantage of the relatively high rate of return to saving; and

the larger is e, certeris paribus , the lower will be h. Alert

readers will have noticed a major problem with all this. If r >

d and e is sufficiently large, h, and hence "optimal"

consumption, will be negative . How can this be? Where has our

analysis gone wrong?

The answer is that when h < 0, no optimum consumption plan

exists! After all, nothing we’ve done demonstrates existence:

our arguments merely indicate some properties that an optimum, if

one exists, will need to have.

No optimal consumption path exists when h < 0 for the

following reason. Because optimal consumption growth necessarily

Qsatisfies c/c = e(r ------ d), and e(r - d) > r in this case, optimal

consumption would have to grow at a rate exceeding the rate of

Qreturn on capital, r. Since capital growth obeys k/k = r ------

(c/k), however, and c > 0, the growth rate of capital, and hence
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that of output, is at most r. With consumption positive and

growing at 3 percent per year, say, but with capital growing at a

lower yearly rate, consumption would eventually grow to be

greater than total output--an impossibility in a closed economy.

So the proposed path for consumption is not feasible. This means

that no feasible path--other than the obviously suboptimal path

with c(t) = 0, for all t--satisfies the necessary conditions for

optimality. Hence, no feasible path is optimal: no optimal path

exists.

Let’s take our analysis a step further to see how the value

function J(k) looks. Observe first that at any time t, k(t) =

(r ------h)t e(r ------d)tk(0)e = k(0)e , where k(0) is the starting capital

stock and h is given by (16). Evidently, the value function at t

= 0 is just

8
q e

-1 ( )2 2 11 i ------dt 1 ------(1/ e)J[k(0)] = 2 2 { 2 e [ hk(t)] dt ------ ------ }1 ------ ------ j2 2 de 9 0
z c

0

8
q e

-1 ( )2 2 11 i ------dt e(r ------d)t 1 ------(1/ e)= 2 2 { 2 e [ hk(0)e ] dt ------ ------ }1 ------ ------ j2 2 de 9 0
z c

0

q e 1 ------(1/ e)-1 ( )2 2 [ hk(0)] 11= 2 2 {--------------------------------------------------------------------------------------------------------- ------ ------} .1 ------ ------
2 2 d ------ ( e ------ 1)(r ------ d) de 9 0
z c

So the value function J(k) has the same general form as the

utility function, but with k in place of c. This is not the last
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time we’ll encounter this property. Alert readers will again

notice that to carry out the final step of the last calculation,

I had to assume that the integral in braces above is convergent,

that is, that d ------ ( e ------ 1)(r ------ d) > 0. Notice, however, that d ------

( e ------ 1)(r ------ d) = r ------ e(r ------ d) = h, so the calculation is valid

provided an optimal consumption program exists. If one doesn’t,

the value function clearly doesn’t exist either: we can’t specify

the maximized value of a function that doesn’t attain a maximum.

This counterexample should serve as a warning against blithely

assuming that all problems have well-defined solutions and value

functions.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Return now to the theoretical development. We have seen how

to solve continuous-time determinstic problems using Bellman’s

method of dynamic programming, which is based on the value

function J(k). We have also seen how to interpret the derivative

of the value function, J ’(k), as a sort of shadow asset price,

denoted by l. The last order of business is to show that we have

8actually proved a simple form of Pontryagin’s Maximum Principle :

PROPOSITION II.2. (Maximum Principle) Let c*(t) solve the

problem of maximizing (1) subject to (2). Then there exist

variables l(t) --called costate variables--such that the

Hamiltonian

------------------------------------------------------------------------------------------------------------------------------------------------------------
8First derived in L.S. Pontryagin et al., The Mathematical Theory
of Optimal Processes (New York and London: Interscience
Publishers, 1962).
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H[c,k(t), l(t ) ] _ U[c,k(t ) ] + l(t)G[c,k(t ) ]

is maximized at c = c*(t) given l(t) and k(t) ; that is,

dH
(17) ------------(c*,k, l) = U (c*,k) + lG (c*,k) = 0c cdc

at all times (assuming, as always, an interior

solution). Furthermore, the costate variable obeys the

differential equation

dHQ(18) l = ld ------ ------------(c*,k, l) = ld ------ [U (c*,k) + lG (c*,k)]k kdk

Q 9for k = G(c*,k) and k(0) given .

------------------------------------------------------------------------------------------------------------------------------------------------------------
9You should note that if we integrate differential-equation

(18), we get the general solution

8

dHi ------d(s ------t) dt
l(t) = 2e ------------[c*(s),k(s), l(s)]ds + Ae ,

j dk
t

where A is an arbitrary constant. [To check this claim, just

differentiate the foregoing expression with respect to t: if the
Qintegral in the expression is I(t), we find that l = dI ------ ( dH/ dk)

dt+ dAe = dl ------ ( dH/ dk).] I referred in the prior example to an

additional terminal condition requiring the present value of the

capital stock to converge to zero along an optimal path. Since

l(t) is the price of capital at time t, this terminal condition
------dtusually requires that lim e l(t) = 0, or that A = 0 in the

t L8
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You can verify that if we identify the costate variable with

the derivative of the value function, J ’(k), the Pontryagin

necessary conditions are satisfied by our earlier dynamic-

programming solution. In particular, (17) coincides with (12)

and (18) coincides with (14). So we have shown, in a simple

stationary setting, why the Maximum Principle "works." The

principle is actually more broadly applicable than you might

guess from the foregoing discussion--it easily handles

nonstationary environments, side constraints, etc. And it has a

10stochastic analogue, to which I now turn.

------------------------------------------------------------------------------------------------------------------------------------------------------------

solution above. The particular solution that remains equates the

shadow price of a unit of capital to the discounted stream of its

shadow "marginal products," where the latter are measured by

partial derivatives of the flow of value, H, with respect to k.
10For more details and complications on the deterministic
Maximum Principle, see Arrow and Kurz, op. cit.
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