OUTLINE — October 3, 2018

- Externalities, continued
- Coase Theorem
- The Optimal Subsidy or Tax
- Asymmetric Information
- Adverse Selection
- Moral Hazard
- Behavioral Economics

MT\#1 reflection due on bCourses by midnight Thursday PS 2 due October 15/16 in section

Positive Externality

- Benefits accrue to people who are neither the buyer nor the seller
- Education!
- Private Marginal Benefit
- External Benefit (or, marginal external benefit)
- Social Marginal Benefit (or, marginal social benefit)

Positive Externality

Negative Externality

- Marginal Private Cost (or, private marginal cost)
- Marginal Damage Cost (or, external cost)
- Marginal Social Cost (or, social marginal cost)

Negative Externality

Coase Theorem

- Solution without government possible
- Requires
- Well-defined property rights
- No costs to bargaining
- Only a few people
- Otherwise: government intervention

Encourage behavior with subsidy

- Private market produces too little when there are positive externalities
- Encourage with subsidies
- Example: Prof. Olney buys $\$ 48$ Bart ticket each month, paid through pre-tax payroll deduction
- $\$ 3$ paid by Bart
- $\$ 10$ paid by UC Berkeley
- $\$ 10$ paid by federal government
- $\$ 3$ paid by state government
- Which means just $\$ 22$ is paid by Prof. Olney

Positive	
Externality:	

Externalities \& Taxes or Subsidies

- The challenge: what is the right (or, optimal) size of tax (negative externality) or subsidy (positive externality)?
- It's positive (not normative) analysis
- "Right" or "optimal" means generating socially optimal quantity

Externalities \& Taxes or Subsidies

When $\mathrm{q}=0$ is socially optimal

- The challenge: what is the right (or, optimal) size of tax or subsidy?
- It's positive (not normative) analysis
- "Right" or "optimal" means generating socially optimal quantity
- Taxes discourage activity generating negative externalities
- If Tax > MDC, then
- If Tax $<$ MDC, then
- Only if tax = MDC, then
- What should the tax revenue be used for?
- Offset (or, cover) costs represented by MDC

When $\mathrm{q}=0$ is socially optimal

Cigarettes \& cigarette taxes

Adverse Selection

- "Adverse" means harmful or unfavorable
- When the selection of goods offered for sale is not a random selection but is instead an "adverse" (unfavorable) selection
- Applies also to consumers buying insurance
- Occurs before transaction

Market Failure: Asymmetric Info

- When one party to a transaction has relevant info but doesn't share it with the other party
- Effect: markets fail . . .
. . . to produce the quantity where

$$
\mathrm{p}=\mathrm{MC}=\text { minimum } \mathrm{ATC}
$$

- Two examples of asymmetric info
- Adverse Selection
- Moral Hazard

Adverse Selection

Adverse Selection \& Labor Markets

- You are an employer
- Workers are heterogeneous
- A mix of high- and low-quality workers
- You want to hire high-quality workers
- You can't tell from the application who is \& isn't a high-quality worker
- Do you offer an above-market, at-market, or belowmarket wage?
A. Above-market wage
B. At-market wage
C. Below-market wage

Adverse Selection

Adverse Selection

- Car Insurance
- Good drivers or bad drivers?
- State requires everyone to get car insurance
- Health Insurance
- Healthy people or unhealthy people?
- Effect on cost of insurance?
- Affordable Care Act requires everyone to get insurance
- Consumer credit
- Good credit risk or bad credit risk?
- Effect on availability of credit?

Solutions: Screening

- Screening: the employer/insurance company (the party with less information) screens applicants
- Is there a low-cost way to screen applicants?
- Sort applicants based on characteristics
- Note: With perfect screening, there is no asymmetry in information...

Solutions: Signaling

- Signaling: the employee/insured party (the party with more information) offers a clue
- Do signals have biased effects on markets?
- Example: "ban the box"

Solutions: mandatory enrollment

- Mandatory enrollment is another solution
- Require everyone to buy insurance so that pool of applicants/purchasers remains full random sample

Moral Hazard

- When one party to a contract changes behavior after the contract is signed
- Part of a transaction that takes time to complete
- Occurs after contract is signed

Moral Hazard

- Insurance
- More careful or less careful?
- Effect on cost of insurance?
- Bank Bailouts
- More careful or less careful with risk?
- Effect on likelihood of bank failure?
- Mortgage Rescue Plans
- More careful or less careful with \$ commitments?
- Effect on likelihood of mortgage default?
- Monitoring is a solution to moral hazard
- Low-cost way to monitor behavior
- Cancel contracts that are low-quality high-cost
- Maintain contracts that are high-quality low-cost
- Note: With perfect monitoring, there is no asymmetry in information

Behavioral Economics

- Another instance of market failure
- . . . Failure to reach $\mathrm{p}=\mathrm{MC}$ at minimum ATC
- Here, challenge assumptions of
- Utility maximization
- Profit maximization
- Interested?
- Econ 119 (Psych \& Econ)
- Econ 138 (Behavioral Econ)

Example: Loss Aversion

- Two payouts, both with same mean (6.17) \& SD (10).

Die roll	Payout A	Payout B
1	-5	0
2	10	10
3	15	25
4	-8	0
5	10	1
6	15	1

- Which would you prefer? A? B? Click C for "either"

Example: Risk Aversion

- Two payouts, both with same mean (6.50).

Die roll	Payout A	Payout B
1	0	7
2	4	5
3	8	9
4	15	6
5	3	4
6	9	8

- Which would you prefer? A? B? Click C for "either"

Example: Loss Aversion

- Do people hate losses more than they like wins?
- If so, implications for risk-taking behavior.
- You own a stock that you bought for $\$ 50$ / share and it is now selling for $\$ 30$ / share. Will you sell?
- You bought a house for $\$ 800,000$. If you sold it now, you'll only get $\$ 600,000$. You've been offered a new job at a good salary that is 1,000 miles away. Will you sell?
- You declared a major in X and have taken nearly 80% of the classes you need to complete the major. You hate the major. Will you change majors?

