Econ 113: February 3, 2015

- Regression interpretation tips
- Transportation
 - Roads
 - Canals
 - Railroads
 - Effect on prices
- · Early Industrialization
- · Population Patterns
- Fertility Decline
 - Modeling Fertility Decisions

PS 1 is available on course website Due Thursday Feb 5 at 11:10 a.m.

Regression tips

- A table is showing you the coefficients for an equation
- · Not always, but usually, a nice equation like this

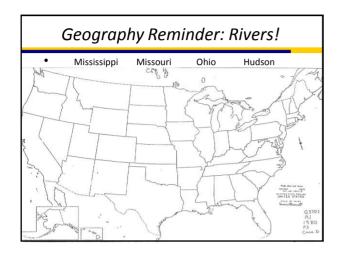
Determinants of spending on cars			
Variable	Coefficient (s.e.)		
Constant	4.3 (1.2)		
Income	100.4 (20.2)		
Wealth	0.004 (0.0001)		
Age	-15.3 (3.1)		

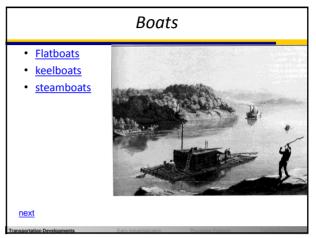
$$Cars = 4.3 + 100.4 * Income + 0.004 * Wealth - 15.3 * Age$$

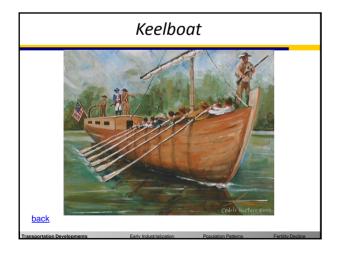
So if you know Income, Wealth, and Age for a person, you can predict how much s/he would spend on cars. Plug in the values for Income, Wealth, and Age, and calculate value for Cars.

Regression tips, 2

- Sometimes the relationship between 2 variables (e.g., income & cars) is a "linear" relationship – when you draw it, it's a straight line
- But sometimes the relationship between 2 variables is not "linear" – it's not a straight line when you draw it

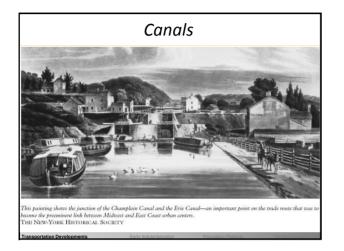

Regression tips, 3

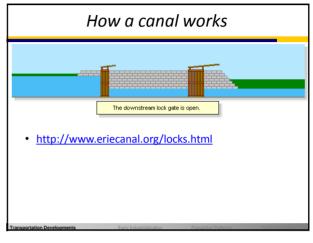

Determinants of spending on cars			
Coefficient (s.e.)			
4.3 (1.2)			
100.4 (20.2)			
-2.5 (0.6)			
0.004 (0.0001)			
-15.3 (3.1)			

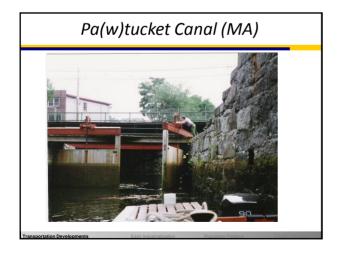

 One way to capture a non-linear relationship is using both the variable (income) and its square (income²).
 That's called "a quadratic."

$$Cars = 4.3 + 100.4 * Income$$

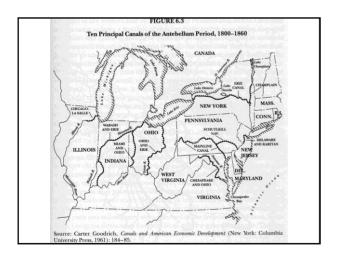
- 2.5 * $Income^2$
+ 0.004 * $Wealth$
- 15.3 * Age

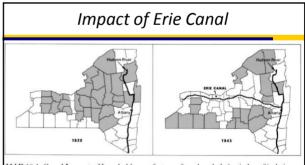

 Predicting how much s/he would spend on cars: same process. Plug in the values for Income, Income², Wealth, and Age, and calculate value for Cars.

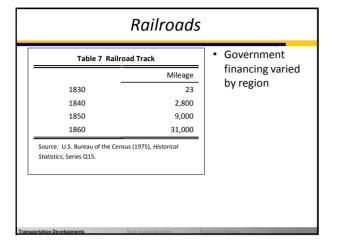


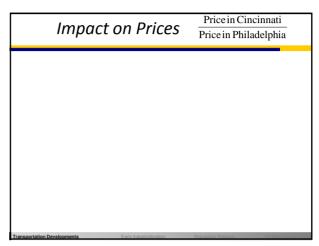


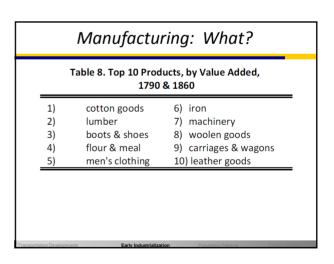









Table 6 Canal Cycles \$ spent % financed with period (millions) government money 1815-43 \$31 m. 75 % 1844-60 \$66 m. 66 % Source: Walton & Rockoff, p. 156



MAP 10.1 Canal Impact Household manufacture of woolen cloth (an index of isolation from commercial routes) underwent a drastic change between 1820 and 1845 along the Eric Canal. The shaded areas indicate the one-third of the counties with the highest home production of woolen goods during this period. (Source: Arthur H. Cole, American Wool Manufacture [Cambridge, Mass.: Harvard University Press, 1926], vol. 1.)

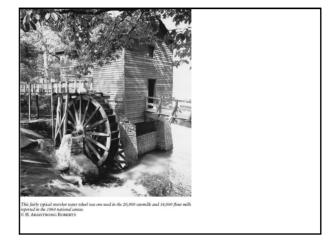
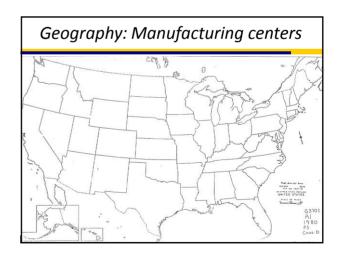
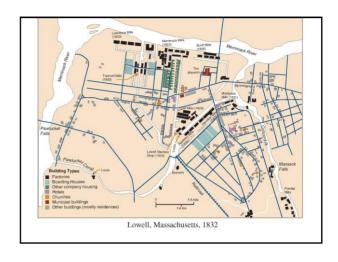


Table 8.		ncinnati ladelphi	– × 100 a
	Flour	Corn	Whiskey
1816-20	63	51	
1821-25	52	38	68
1826-30	68	49	80
1831-35	73	55	89
1836-40	73	56	91
1841-45	77	53	80
1846-50	78	51	74
1851-55	82	61	78
1856-60	88	70	85


Primary Forms of Manufacturing

- Household Manufactures
- Craft Shops & Artisans
- Mill Industries

Primary Forms of Manufacturing


- Household Manufactures
- Craft Shops & Artisans
- Mill Industries
- Factory Production

Factory Production: Characteristics

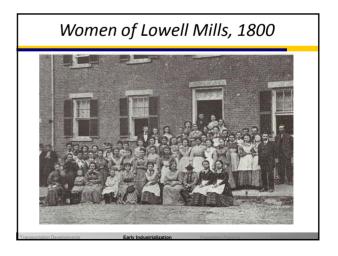
- Lots of standardized output for wide market
- Complex operations in one or more buildings
- Assembly of workers, under organizational discipline

Early Industrialization

**TIME TABLE OF THE LOWELL MILLS,

To take effect on and after Oct. 21st, 1851.

**To baid the life is life to f its that a listed, a dawn is nowith did 4 2007 LINES.

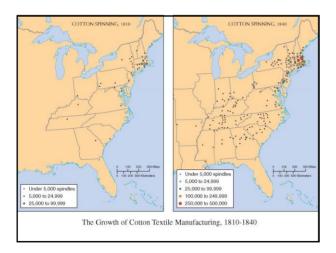

**To baid the life is life to f its that a listed, a dawn is nowith did 4 2007 LINES.

**To baid the life is life to f its that a listed, a dawn is nowith did 4 2007 LINES.

**To baid the life is life to f its that a listed, a dawn is nowith did 4 2007 LINES.

**To baid the life is life to f its that a listed, a dawn is nowith did 4 2007 LINES.

**To baid the life is life to first the life is life is life to first the life is life is

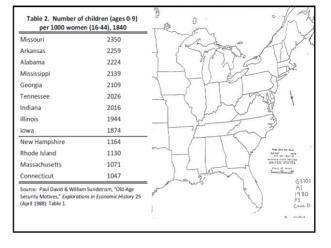

Why women in the mills?

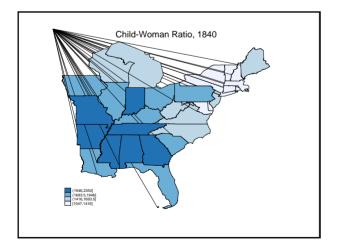
• Concepts: [1] Opportunity cost and [2] reservation wage

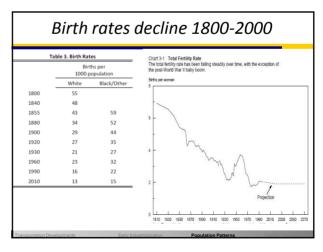
Three Stages of Industrialization

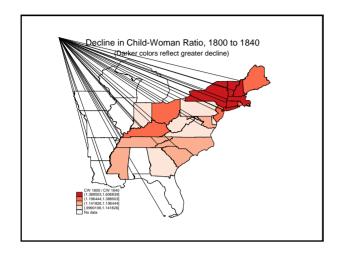
- 1790-1815
 - New England textiles
- 1815-1840

 Diffusion throughout NorthEast
- 1840-1860 Rapid Productivity Gains


Population Growth


Growth rate: about 3% annually
 Table 1. Population Size


	Table 1. Population Size					
	Total population	Percent Rural	Percent Nonwhite			
1790	3.9 m	94.9 %	17.9 %			
1820	9.6 m	93.2 %	18.8 %			
1850	23.3 m	84.3 %	15.5 %			
1860	31.5 m	80.0 %	14.5 %			
	<u> </u>					


Natural increase - fertility (births) - nuptuality (marriages) - mortality (deaths)

Immigration

Modeling Fertility

- Models
 - Question, simplifications, assumptions
- Question: What determines number of children?
- Simplifications: One model "fits" all.
- Building a model:
 - $\boldsymbol{-}$ What $\underline{\boldsymbol{\mathsf{goal}}}$ are people trying to achieve?
 - What factors influence behavior? (Prices? Income? Other?)
 - What assumptions should we make about behavior?

Fertility Declin