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Introduction

Robustness-efficiency tradeoff

Empiricists go to great lengths to obtain precise and credible estimates.

Conventional to report standard errors to provide assessment of variability.

Proliferation of “robustness” checks to assess possible biases.

What to take away from such exercises?

Source: Dobkin et al (2018, AER)
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Introduction

A minimax approach to interpreting robustness exercises

The Terminator scrutinizes the statistical tables in an issue of the
Quarterly Journal of Economics while Cambridge, Mass burns in
the background. 3 / 31



Introduction

Local misspecification framework

Consider two estimates of a scalar target parameter θ

an asymptotically unbiased estimate YU

a restricted estimate YR with asymptotic bias b, but lower variance

Example: long vs short regression

Let YO = YR − YU be an estimate of the bias b

Asymptotic approximation:(
YU

YO

)
∼ N

((
θ
b

)
,Σ

)
, Σ =

(
ΣU ΣUO

ΣUO ΣO

)
Common to report TO = YO/Σ

1/2
O as an over-identification test
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Introduction

Adapting to misspecification

Today: Combine YU and YR into a single optimal estimate

Overview of logic:

If b were known, efficient to use GMM imposing that

E[YR − b] = E[YU ] = θ

If only know |b| ≤ B, minimax estimation attractive

Propose adaptive estimator for setting where B is unknown

“Shrink” YO to estimate b and adjust GMM accordingly

Achieves maximal risk near the minimax level uniformly in B
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Introduction

Related literature

Specification testing: Hausman (1978); Breusch and Pagan (1980); Sargan
(1988); Guggenberger (2010)

Model averaging: Akaike (1973), Mallows (1973), Schwarz (1978), Leamer (1978),
Claeskens and Hjort (2003), Hansen (2007), Hansen and Racine (2012), de
Chaisemartin and D’Haultfœuille (2022)

Robustness-efficiency tradeoffs: Hodges and Lehmann (1952), Bickel (1983, 1984)

Adaptive estimation: Bickel (1982), Tsybakov (1998)

Common to define a procedure to be “adaptive” over a set of parameter
spaces if it is simultaneously near-minimax for all of these parameter spaces.
Armstrong and Kolesar (2018): Impossible to tighten minimax CI and
maintain coverage for all b

Computation: Chamberlain (2000); Elliott, Müller and Watson (2015); Müller and
Wang (2019); Kline and Walters (2021)
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Minimax estimation

Dobkin, Finkelstein, Kluender and Notowidigdo (2018)

θ is effect of unexpected hospitalization on medical spending

The researchers report YU , allowing a linear pre-trend

Omitting trend yields a more precise (but less credible) YR
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Minimax estimation

A minimax approach

If we know |b| ≤ B then reasonable to compute B-minimax estimator δ∗B
that minimizes worst case risk (Wald, 1950; Savage, 1954)

Rmax(B, δ) = sup
(θ,b)∈R×[−B,B]

R(θ, b, δ)

where R(θ, b, δ) gives MSE of an estimator δ.

Choice of B trades off robustness against efficiency

δ∗0 = YU − ΣUO/ΣO · YO (GMM / “least robust”)

δ∗∞ = YU (“most robust”)

Sensitivity analysis: compute δ∗B and Rmax(B, δ
∗
B) for a range of B ∈ B
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Minimax estimation

B-minimax estimates

Note: Oracle risk is Rmax(B, δ∗B) ≤ ΣU
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Adaptive estimation

Which B to choose?

An Oracle that knows a (true) bound B faces maximal risk

R∗(B) = Rmax(B, δ
∗
B)

Define the adaptation regret of any estimator δ as the proportional
increase in worst-case risk over the Oracle

A(B, δ) =
Rmax(B, δ)

R∗(B)

Key idea: mimic the Oracle by minimizing worst case adaptation regret

Amax(B, δ) = sup
B∈B

A(B, δ)

Resulting adaptive estimator gets as close as possible to the Oracle
simultaneously for all B ∈ B = [0,∞]. i.e., it is uniformly near-minimax.
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Adaptive estimation

A scaled risk interpretation

For B = [0,∞], the worst-case adaptation regret is equivalent to the
worst-case scaled risk with scaling R∗(|b|)

Amax(B, δ) = sup
B∈B

sup|b|≤B R(θ, b, δ)

R∗(B)
= sup

b∈R

R(θ, b, δ)

R∗(|b|)

Problem has been reduced to minimax on new objective.

For 0 < ε ≤ ρ2 ≤ 1− ε < 1 the minimax theorem still applies.

Discretize R and solve for π using a convex optimization routine.

Solution will exhibit constant adaptation regret at all points of
support of least favorable prior.
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Adaptive estimation

Adaptive estimate

Note: worst case risk of adaptive estimator is bounded!
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Adaptive estimation

Least favorable priors over b

Adaptive prior works especially well when b ≈ 0 and requires no tuning
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Adaptive estimation

Overview of results

Adaptive estimator takes the form:

ΣUO√
ΣO

δ(TO)︸ ︷︷ ︸
Bias estimator

+YU − ΣUO/ΣO · YO︸ ︷︷ ︸
GMM estimator of θ

Bias estimator δ(·) yields non-linear shrinkage. Shape depends only
on correlation ρ between YU and YO .

Equivalently: a weighted average of YU and GMM, with convex
weighting function w(TO) = δ(TO)/TO .

Tuning free shrinkage with n < 3!

Compute via convex programming and provide a simple “lookup
table” taking as inputs (YU ,YR ,Σ).
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Empirical examples Dobkin et al (2018)

Dobkin et al (2018) original estimates

Omitting pre-trend lowers std errs by 14− 30%

Can’t reject absence of trend (TO ≈ 1.2)

Yrs since hosp. YU YR YO ρ

0 2,217 2,409 192 -0.524
(257) (221) (160)

1 1,268 1,584 316 -0.703
(337) (241) (263)

2 989 1,436 447 -0.784
(430) (270) (373)

3 1,234 1,813 579 -0.813
(530) (313) (482)

Table: Impact of hospitalization on out of pocket (OOP) expenditures for the
non-elderly insured (ages 50 to 59) in the HRS. Standard errors in parentheses. “Yrs
since hosp.” refers to years since hospitalization.
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Empirical examples Dobkin et al (2018)

Dobkin et al (2018) adaptive estimates

Adaptive estimate roughly half way between trend and no trend models.

Figure: Estimates of the impact of hospitalization on OOP spending
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Empirical examples Dobkin et al (2018)

Dobkin et al (2018) risk profiles

Adaptive yields (much) lower worst case risk than pre-test of |TO | > 1.96

Figure: Risk functions for θ0 (ρ = −0.524)
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Empirical examples Berry, Levinsohn, and Pakes (1996)

BLP estimates (as in Andrews, Gentzkow, Shapiro, 2017)

Parameter of interest θ is the average price markup.

YR is GMM estimate using demand and supply side instruments.

YU is GMM using only the demand side instruments.

If the demand side instruments are valid, the bias b is zero.

YU YR YO = Difference ρ

52.95 33.53 -19.42 -0.7
(2.54) (1.81) (1.78)

Table: Average markup (in percent)

Note: YR has much lower std errs but TO ≈ −11!
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Empirical examples Berry, Levinsohn, and Pakes (1996)

BLP adaptive estimates

Huge TO leads both adaptive and soft-threshold estimators to place
nearly all weight on YU .

Soft-threshold (λ = .59) is much lower than 1.96 used by pre-test but
regret is also much lower.

YU YR Adaptive Soft-threshold Pre-test

Estimate 52.95 33.53 49.44 51.89 52.95
Max Regret 96% ∞ 32% 34% 107%
Threshold 0.59 1.96

Table: Adaptive estimates for the average markup (in percent). “Max Regret”
refers to worst-case adaptation regret (Amax(B, δ)− 1)× 100.
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Empirical examples Gentzkow, Shapiro, and Sinkinson (2011)

Negative weights in TWFE specifications

Recent literature emphasizes that TWFE estimators can identify
non-convex weighted averages of treatment effects → potential for
biases large enough to flip sign.

Gentzkow, Shapiro, and Sinkinson (2011) study effect of newspapers
on voter turnout by estimating TWFE model via OLS.

de Chaisemartin and D’Haultfoeuille (2020) estimate that 46% of the
weights underlying their TWFE specification are negative.

We take the GSS TWFE specification as YR .

They propose a convex weighted alternative that identifies a form of
ATT. We take their estimator as YU .
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Empirical examples Gentzkow, Shapiro, and Sinkinson (2011)

Gentzkow, Shapiro, and Sinkinson (2011)

YU exhibits large max regret bc std error ∼ 50% above GMM.

Pre-test chooses non-convex YR but also has large regret.

Adaptive approach puts roughly 60% of weight on YU .

Soft- Pre-
YU YR YO GMM Adaptive threshold test

Estimate 0.0043 0.0026 -0.0017 0.0024 0.0036 0.0036 0.0026
Std Error (0.0014) (0.0009) (0.001) (0.0009)

Max Regret 145% ∞ ∞ 44% 46% 118%
Threshold 0.64 1.96
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Empirical examples LaLonde (1991)

Adapting to non-experimental controls

LaLonde (1991): compare experimental and quasi-experimental
estimates of effects of training

Conclusion: estimates highly sensitive to choice of specification

Heckman and Hotz (1989): pre-tests would have guarded against bias.

But how much bias was there?

Today: estimate bias to refine effects of training

YU – experimental contrast

YR1 – regression adjusted contrast with non-experimental control
(“CPS-1”)

YR2 – regression adjusted contrast with pscore screened
non-experimental control (Angrist and Pischke, 2007)
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Empirical examples LaLonde (1991)

LaLonde (1991) (as in Angrist and Pischke, 2007)

Substantial gains to combining all 3 estimates via GMM (GMM3) but
J-test rejects at 5% level.

J-test fails to reject that YU and YR2 have same probability limit.

Adapt over finite set of bounds B = {(0, 0), (∞, 0), (∞,∞)}
(assumes YR2 less biased than YR1)

Adaptive estimate close to GMM2. Near oracle performance.

YU YR1 YR2 GMM2 GMM3 Adaptive Pre-test

Estimate 1794 794 1362 1629 1210 1597 1629
Std error (668) (618) (741) (619) (595)

Max Regret 26% ∞ ∞ ∞ ∞ 7.77% 47.5%
Risk rel. to YU

when b1 = 0 and b2 = 0 1 0.853 1.23 0.858 0.793 0.855 0.80
when b1 ̸= 0 and b2 = 0 1 ∞ 1.23 0.858 ∞ 0.925 0.993
when b1 ̸= 0 and b2 ̸= 0 1 ∞ ∞ ∞ ∞ 1.077 1.475
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Empirical examples Angrist and Krueger (1991)

Angrist and Krueger (1991) estimates

Suppose parameter of interest θ is return to schooling (presumed constant)

Take YU to be the Wald-IV estimate, and YR to be the OLS estimate

When schooling is exogenous, the bias is zero.

Wald YU OLS YR YO = Difference ρ

0.102 0.071 -0.0311 -0.9998
(0.0239) (0.0003) (0.0239)

Table: Returns to schooling

Note: YR is orders of magnitude more precise than YU → huge adaptation regret.
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Empirical examples Angrist and Krueger (1991)

Angrist and Krueger (1991): limiting max risk

Unconstrained adaptive estimator puts nearly all weight on OLS

Huge (5x) increase in max risk over IV

When limited to ∼ 20% increase in max risk, shrinks half way to IV.

Unconstrained R̄/ΣU ≤ 1.5 R̄/ΣU ≤ 1.2

Estimate (fully nonlinear) 0.071 0.0794 0.0855
Maximum risk 5.55 1.51 1.23

Estimate (soft-threshold) 0.071 0.0836 0.0893
Threshold 2.07 0.7686 0.5283

Maximum risk 5.27 1.59 1.28

Table: Adaptive estimates of returns to schooling with bounds on minimax risk.
Maximum risk is reported relative to ΣU .
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Empirical examples Angrist and Krueger (1991)

Angrist and Krueger (1991) risk profile

Figure: Risk profiles (ρ = −0.9998)
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Conclusion

Conclusion

Economists love models. But models are never quite right.

Consequently, we are asked to report specification tests.

Adaptive estimator uses a specification test to refine estimate of a
parameter by minimizing the worst case “adaptation regret.”

Pre-tabulated solutions → researcher only needs to report correlation
coefficient ρ with specification test. MATLAB / R code at:
https://github.com/lsun20/MissAdapt

Ongoing work: adaptive binary decisions.
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Conclusion

B-minimax estimator

Claim.

The B-minimax estimator δ∗B takes the form:

ΣUO√
ΣO

δBNM(TO)︸ ︷︷ ︸
Scaled bias estimator

+YU − ΣUO/ΣO · YO︸ ︷︷ ︸
GMM estimator of θ

,

where δBNM(TO) solves

inf
δ

sup
|b̃|≤B/

√
ΣO

ETO∼N(b̃,1)

[(
δ(TO)− b̃

)2
]
.

In other words, δBNM(TO) is (MSE) minimax for estimating b̃ = b/
√
ΣO

in the parameter space |b̃| ≤ B/
√
ΣO . Proof
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Conclusion

Computation

Compute δBNM by solving for least favorable prior ala Chamberlain (2000)

The Bayes risk of a decision δ() under prior π on b is

RBayes(π, δ) =

∫
R(b, δ) dπ(b) =

∫ ∫
L(b, δ(y)) dPb(y) dπ(b).

Let Γ be the set of priors supported on a set [−B,B]. By the minimax
theorem, we have

min
δ

max
b∈[−B,B]

R(b, δ) = min
δ

max
π∈Γ

RBayes(π, δ) = max
π∈Γ

min
δ

RBayes(π, δ).

The inner minimization is solved by the Bayes decision δπ. Under squared
loss, δπ given by posterior mean.

Outer problem solved by discretizing prior and convex optimizer.
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Conclusion

Two extensions

1 Adaptive estimator is complex. A simpler soft-thresholding estimator

δ (TO) = 1 {TO > λ} (TO − λ) + 1 {TO < −λ} (TO + λ)

achieves comparable risk performance when λ is chosen to minimize
the worst-case adaptation regret.

2 As ΣR gets smaller, worst-case adaptation regret grows. Possible to
bound the increase in minimax risk by solving the constrained problem

inf
δ

sup
B∈B

Rmax(B, δ)

R∗(B)
s.t. sup

B∈B
Rmax(B, δ) ≤ R

Alternative (not for today) minimize additive notion of worst-case
adaptation regret: supB∈B Rmax(B, δ)− R∗(B)
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Conclusion

Three estimators of bias

Figure: Estimators of scaled bias when ρ = −0.524
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Conclusion

Proof sketches: using invariance

We consider squared loss function L(θ, d) = (θ − d)2

Estimation for θ is (location) invariant because

L(θ + t, d + t) = L(θ, d)
for (θ, b) 7→ (θ + t, b), the same transformation on the data
(YU ,YO) 7→ (YU + t,YO) leads to the same transformation of the
distribution Pθ,b

Hunt-Stein Theorem implies we can search for minimax rules among
equivariant estimators, which in our setting takes the form
δ(YU ,YO) = δ̃(YO) + YU

Note that we can orthogonalize

YU − θ =
ΣUO

ΣO
(YO − b) + V

where V ∼ N
(
0,ΣU − Σ2

UO
ΣO

)
is independent of YO return
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Conclusion

Proof sketches: further simplification

Thus,

Eθ,b

[
L
(
θ, b, δ̃(YO) + YU

)]
= Eθ,b

[
L

(
0, b, δ̃(YO) +

ΣUO

ΣO
(YO − b) + V

)]
The risk function does not depend on θ anymore, so we can evaluate
the minimax problem as

inf
δ̃

sup
|b|≤B

R(0, b, δ̃) = inf
δ̃

sup
|b|≤B

E0,bL(0, δ̃(YO) +
ΣUO

ΣO
(YO − b) + V )

Let L̃(b, d) = EL(0, d +V ) and δ̄(yO) = δ̃(yO)+
ΣUO
ΣO

yO , we can write

E0,b

[
L̃

(
b, δ̄(YO)−

ΣUO

ΣO
b

)]
The modified loss function L̃(b, d) = d2 +ΣU − Σ2

UO
ΣO

is a shifted
squared error loss

31 / 31



Conclusion

Proof sketches: modified minimax problem

It follows that the estimator that solves the original minimax problem

inf
δ

sup
|b|≤B

Eθ,bL(θ, δ(YU ,YO))

is given by

δ̃∗(YO) + YU = δ̄∗(YO) + YU − ΣUO

ΣO
YO

where δ̄∗(YO) solves

inf
δ

sup
|b|≤B

E0,b

[
L̃

(
b, δ̄(YO)−

ΣUO

ΣO
b

)]
.
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Conclusion

Proof sketches: reparameterization

It follows that the estimator that solves the original minimax problem
is given by

δ̄∗(YO) + YU − ΣUO

ΣO
YO

Applying a reparameterization
δ̄(YO) =

ΣUO√
ΣO

δ̄(YO/
√
ΣO) =

ΣUO√
ΣO

δ̄(TO).

δ̄∗(TO) solves

inf
δ

sup
|b|≤B

E0,b
Σ2
UO

ΣO
E0,b

(
δ(TO)−

b√
ΣO

)2

+ΣU −
Σ2
UO

ΣO

inf
δ

sup
|b̃|≤B/

√
ΣO

Σ2
UO

ΣO

(
ETO∼N(b̃,1)

(
δ(TO)− b̃

)2
+ 1/ρ2 − 1

)
In other words, δ̄∗(TO) is minimax for estimating b̃, the mean of a
normal r.v. with s.d. 1, in the parameter space [−B/

√
ΣO ,B/

√
ΣO ]
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