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A. Model Extension with Two Types of Workers

Let a fixed proportion π S of the agents be skilled and more productive than their un-

skilled counterparts who constitute the remaining fraction πU = 1−π S of the population.

Write the utility of individual i of skill group g ∈ {S,U } living in community j ∈ N

and working in community k ∈ {∅,N } and sector s ∈ {1, 2} as:
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where w
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jks is the wage a worker of skill group g from neighborhood j receives when

working in sector s of neighborhood k . Define a set of indicator variables
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Suppose that skilled and unskilled workers are perfect substitutes in production so

that firm output may be written Bk (q Sks +Uks) f
(
χ ks

)
where the Sks and Uks refer to

total skilled and unskilled labor inputs respectively, χ ks =
Kks

Bk (q Sks+Uks )
is the capital to

effective labor ratio, and q is the relative efficiency of skilled labor. Now wages will
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where wU
jks is the wage for unskilled workers and wS

jks the wage for skilled workers.

Note that
d lnwU
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d ln Bk

=
d lnwS

jks

d ln Bk

= 1

so that productivity increases may still be detected by examining impacts on the wages

of commuters. However, productivity effects may also shift the skill composition of local

workers and commuters which could lead us to over or understate these effects. For this

reason we adjust our wage impacts in the paper for observable skill characteristics.

Our final modification is that with two skill groups, clearing in the housing market

requires:
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With these features in place the social welfare function may be written:
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It is straightforward then to verify that for some community m :
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deadweight losses attributable to taxes as:
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where in the second line we have assumed a constant semi-elasticity of local employ-

ment ψ =
d ln N

g

jk1

dτ
. This formula is effectively the same as that in equation (10) of the

paper, relying on the total covered wage bill and the elasticity ψ . Were the elasticity to

vary by type we would simply need to compute the deadweight loss separately within

skill group and average across groups using the marginal frequencies π g. Finally, we
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may write the deadweight attributable to the block grants as:
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As before, the deadweight loss computation relies on the parameters λa and λb. Het-

erogeneity provides no essential complication to the exercise since, with knowledge of

these parameters, one only needs to know the total wage bill and population inside of the

zone to compute DW LG .

B. Monte Carlo Experiments

We simulated hierarchical datasets of 64 zones with a random number of tracts Nz

within each zone. The number of tracts per zone was generated according to Nz = 10+η̃z

where η̃z is a Negative Binomial distributed random variable with the first two moments

matching the ones observed in the data (i.e. a mean 21 and a standard deviation of 16

tracts). Hence, each simulated sample was expected to yield approximately 1,344 census

tracts with no zone containing less than 10 tracts in any draw.

Outcomes were generated according to the model:

Yt z = β zTz + α
x
t X t z + α

p
z Pz + ξ z + et z

where Tz is an EZ assignment dummy, X t z is a tract level regressor, Pz is a zone level

regressor, ξ z a random zone effect, and et z an idiosyncratic tract level error. We assume

throughout that:  X t z

Pz

et z

 ∼ N (0, I3)

To build in some correlation between the covariates and EZ designation, and to reflect

the fact that treated zones tend to be larger, we model the EZ assignment mechanism as:

Tz = I
(
rank

(
T ∗z
)
≤ 6

)
(1)

T ∗z = X z + Pz + 0.008× Nz + uz

uz ∼ N (0, 1)

where X z =
1

Nz

∑
t∈z

X t z and the rank (.) function ranks the T ∗z in descending order.

Note that this assignment process imposes that exactly six zones will be treated. Hence,

each simulation sample will face the inference challenges present in our data.
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The nature of the coefficients
(
β z, α

x
t , α

p
z

)
and the random effect ξ z vary across our

Monte Carlo designs as described in the following table. We have two sets of results. In

the first set, which we label symmetric, ξ z follows a normal distribution. In a second set

of results, which we label asymmetric, ξ z follows a χ2 distribution.

Table S1: Data Generating Processes

Symmetric Asymmetric

ξ z ∼ N (0, 1) ξ z ∼ χ
2 (4)

1. Baseline βz = 0, αx
t = α

p
z = 1 βz = 0, αx

t = α
p
z = 1

2. Random Coefficient on X t z Same as 1) but, αx
t ∼ N (1, 1) Same as 1) but, (αx

t +3) ∼ χ2 (4)

3. Random Coefficient on Pz Same as 1) but, α
p
z ∼ N (1, 1) Same as 1) but, (α

p
z +3) ∼ χ2 (4)

4. Random Coefficient on Tz Same as 1) but, βz ∼ N (0, 1) Same as 1) but, (βz +4) ∼ χ2 (4)

5. All deviations from baseline (2)+ (3)+ (4) (2)+ (3)+ (4)

Note that the null of zero average treatment effect among the treated is satisfied in each

simulation design. Specification 1) corresponds to the relatively benign case where our

regression model is properly specified and the errors are homoscedastic. Specification 2)

allows for heteroscedasticity with respect to the tract level regressor, while specification

3) allows some heteroscedasticity in the zone level regressor. Specification 4) allows

heteroscedasticity with respect to the treatment, or alternatively, a heterogeneous but

mean zero treatment effect. Specification 5) combines all of these complications so that

heteroscedasticity exists with respect to all of the regressors.

For each Monte Carlo design we compute three sets of tests of the true null that EZ

designation had no average effect on treated tracts. The first (analytical) uses our ana-

lytical cluster-robust standard error to construct a test statistic t̂ =
∣∣∣ β̂σ̂ ∣∣∣ where and rejects

when t̂ > 1.96 . The second (wild bootstrap-se) uses a clustered wild bootstrap pro-

cedure to construct a bootstrap standard error σ ∗ and rejects when

∣∣∣ β̂σ ∗ ∣∣∣ > 1.96 . The

third approach (wild bootstrap-t) estimates the wild bootstrap distribution F∗t (.) of the

test statistic t̂ =
∣∣∣ β̂σ̂ ∣∣∣ and rejects when t̂ > F∗−1

t (0.95) – where F∗−1
t (0.95) denotes

the 95th percentile of the bootstrap distribution of t statistics. Both the bootstrap-se and

bootstrap-t procedures simulate the bootstrap distribution imposing the null that β = 0

as recommended by Cameron, Gelbach, and Miller (2008). The false rejection rates for

these three tests in each of the five simulation designs are given in the table below.
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Table S2: False Rejection Rates in Monte Carlo Simulations

Tract-level models

Analytical Analytical Wild Wild Wild Wild

s.e. s.e. BS-s.e. BS-s.e. BS-t BS-t

OLS PW OLS PW OLS PW

Symmetric

Baseline 0.126 0.074 0.039 0.111 0.054 0.053

Random Coefficient on X t z 0.125 0.075 0.036 0.113 0.056 0.051

Random Coefficient on Pz 0.124 0.077 0.041 0.110 0.055 0.048

Random Coefficient on Tz 0.123 0.073 0.041 0.110 0.055 0.053

All 0.124 0.080 0.042 0.110 0.059 0.051

Asymmetric

Baseline 0.123 0.106 0.037 0.138 0.055 0.056

Random Coefficient on X t z 0.121 0.109 0.041 0.136 0.047 0.049

Random Coefficient on Pz 0.123 0.111 0.039 0.139 0.054 0.052

Random Coefficient on Tz 0.132 0.111 0.039 0.142 0.053 0.056

All 0.125 0.111 0.038 0.128 0.051 0.051

Standard error based methods tend to overreject in both designs save for in the case

of OLS where the wild bootstrapped standard errors perform well. However the wild

bootstrapped-t procedure yields extremely accurate inferences for both the OLS and PW

estimators across all designs.


