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Introduction

Two-way fixed effects methods widely used to summarize complex

causal relationships in administrative data
> Firm wage effects (Kline, 2024)
» Teacher value added (Angrist, Walters, Hull, 2023)

P Location effects (Chyn and Katz, 2021)

Data confidentiality / complexity leads to reliance on published

fixed effects estimates for secondary analysis
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Assessing uncertainty in OPP

Assumptions underlying published standard errors often dubious

» Usual “robust” standard errors inconsistent in

high—dimensional models (Cattaneo, Jansson, Newey, 2018)

» Bootstrap likewise inconsistent (El Karoui and Purdom, 2018)

Generally need full covariance matrix for second-step inference

But challenging to release correlation matrix of estimates
> 1M firm effects involve ~500B pairwise correlations

» Stored as floats, requires ~1.82TB of storage!



Proposal: break estimates into independent “branches”

Branches are disjoint subsamples in which model can be estimated
» Each branch (ostensibly) identifies the same parameter
» Branch-specific estimates are mutually independent

» Enables transparent uncertainty quantification and shrinkage

Precedents

» “Replicates” in survey analysis (used in CPl / CPS / ACS to

compute variance)

» Random sample-splitting in worker-firm literature (Sorkin, 2018;

Card, Rothstein, Yi, 2024)



Technical contribution: computing maximal branchings

Goal: partition the microdata into as many branches as possible
Constraint: OLS design matrix must be full rank in each branch

Going to consider special case of "AKM model,” where estimability

is known to depend on connectedness (Abowd, Creecy, Kramarz, 2002)
» Minimally connected graph is a spanning tree

» Enumerate trees using results from graph literature on “tree

packing” (Nash-Williams,1961; Tutte, 1961; Roskind and Tarjan, 1985)

> Assign one tree to each branch. Last branch gets “leftovers.”



The blessings of
branches



Preliminaries

Suppose we are interested in parameter vector ¢ € R’
» Linear FE estimator 1/3 is unbiased (E W} = 1/;)

» Given M branches, can construct M mutually independent

] LM
estimates: {I/Jb}

b=1

» Under linear model assumptions, each branch-specific estimate

is unbiased:



Linear decomposition

The following linear decomposition property will be shown to hold:

~ M ~
b= Cuiy
b=1

M

> ob,

b=1

where Cj is a known J x J matrix that obeys S}, Cp =1

» Each ¢, gives the contribution of branch b to full-sample 12

» Influence fn interpretation

M

Proposal: publish the pairs {@/Ajb,cpb}b .



Putting branches to work: variance estimation

Since the branches are independent,

M M
v {1/3] = Vel =) _ CuV [sz} C,=x.
b=1

b=1

For any two branches b and ¢,

E [(b — @0) (b — ¢2)'] = CV [@Zb} L4 CV {124 c,.

=§[pr] =V[pe]




Putting branches to work: variance estimation

Summing across all (’\2/’) pairs of branches, yields the unbiased

variance estimator

M

. 1 )
X = WZZ(%—W)(%—W)
b=1t<b

» Note: yields estimates of all J(J — 1) /2 off-diagonal terms!

> While ¥ is noisy, typically interested in low-dimensional

quadratic forms v/X v that can be estimated consistently.

» High-level conditions for V'SV & V/Sv or can estimate

\% [v’fv} when M > 4.



Putting branches to work: moment estimation

Let ©® denote the element-wise product operator. For any two
branches b and ¢,

E[d?b@zﬁe} =Py

» Averaging across all ( ) distinct pairs of branches yields the

second moment estimator:

e D) ST

b 14<b

» Higher moments can be estimated with higher-order products



Putting branches to work: shrinkage
Let @ZA)bj denote the j'th entry of @gb and ¢; the j'th entry of 1.

Now consider random effects model:

~ ii.d
¢b|¢NFba Tr[}JNGa

where Ef, {1/34 =1). By iterated expectations (Krutchkoff, 1967),
E [1221' \ 1211} = E [E [1;21' \ wjﬂﬁlj] ! 1511']
= E []E [71321' | @Dj] | 1&1,‘]
= K [1/11‘ \ 1/311}

= a regression of estimates in one branch against the other gives a

best predictor regardless of noise distribution Fp!



AKM basics



The AKM model

TWFE model for log wages of worker i € {1,2,..., N} = [N] in

period t € {1,2} (Abowd, Kramarz, Margolis, 1999):

yie= i+ iyt it
—~ AL =~

worker FE  fivm FE noise

Function j: [N] x {1,2} — {1,2,...,J} = [J] gives the firm

employing worker i in period t.
Let P denote set of O/D firm pairs that workers move between:

{(o,d) el :0#d, j(i,1) =0, j(i,2) = d for some i € [N]}



First differenced representation

We are interested in the firm effects 1) = (11, ...,%,)". Eliminate

worker FE via first differencing and write in matrix notation:
Yo—Yy1=(F2—F1)Y+ex—e1=PB¢y+u (1)

» P is N x |P| matrix of origin-destination pair indicators.

» B is J x |P| “incidence matrix,” each column of which is

sparse with a single +1 (destination) and a single —1 (origin).

Exogeneity:
Elu|P,B]=0



Collapsing to mean wage changes

The diagonal matrix W = P’P gives number of moves and

A=(PP) P (y,—y1)

is vector of mean wage changes for O/D pairs.

Rearranging (1) yields

BWA = BWB') + BP'u
Key moment restriction:

E [BWA] — BWB'y = Ly

L is the (weighted) Laplacian of worker mobility graph.



Graphical representation



The mobility graph

Define the mobility graph G = (V, E)
> Vertex set V = [J] corresponds to firms

> E is set of edges defined by worker moves:

{(s,v) e[ :s#v, ji,1)=s, j(i,2) = v for some i € [N]}

Treat edges as undirected:

€sy = €Evs



A mobility graph with J =5 and |E| =7




Terms

of art (#IYKYK)

A path is a sequence of edges that join a set of vertices with

no repeat edges or firms: e.g., {e12, €3, €31}

A graph is connected if there is a path from any firm to any
other firm
A tree is a connected graph in which there is a unique path

between any two firms

A spanning tree is any subset of a connected graph that

contains all firms and is a tree



Two (edge-disjoint) spanning trees of subgraph




Connectivity

The edge connectivity A (G) of a graph is the number of edges that

need to be removed from the graph for it to become disconnected:

AG) = min{|5| :SCE,and (V,E\S)is disconnected}

» A graph is k-edge connected if \(G) > k

» A k-edge connected component (k-ECC) is a subgraph that is

k-edge connected

» There exist k edge-disjoint paths between any two firms in a

k-ECC (Menger, 1927)



This graph has a single 3-ECC




Back to OLS

Recall that AKM yields the normal equations

BWA = Ly

Theorem (Kirchhoff, 1847; Abowd, Creecy, Kramarz, 2002)

If the mobility graph is connected, then L has rank J — 1 and any
minor of L will have full rank.

Identification: normalize 1)1 =0

» Define 1/}(1) = (2,... ﬂﬂJ)/

> Vector ¢(1) measures expected wage changes associated with

leaving firm #1 for each destination.



Normalization and estimation

Define B(1) as B with first row deleted and
Loy =BuyWB,

OLS estimator of 1)y) is:

Firm effects a linear combination of O/D wage changes A

» When moves present in both directions between firms j and k,

only net change between pair matters

» For today, suppose moves in single direction between each

firm pair (general case in the paper)



Building branches



Special case: tree structure

When By is invertible square matrix, we get simplification

7&(1) = (B/(l))il A
Mobility pattern is a tree (Kline, 2024)
» Unique path between any pair of firms
> Each 121- equals sum of (oriented) entries in A along path from
firm 1 to firm j
» Deleting moves between any pair of firms would render model
under-identified

> Weights irrelevant because “just-identified”



Branches from trees
WLOG, can decompose incidence matrix of connected graph as
By = [Tu),b s Taym-1, Ty

» T(1)1:---» T(1),m capture edge-disjoint spanning trees
» Usually some “leftover” edges that are not connected

> Ta) v captures the last tree + leftovers

Likewise, partition wage changes and weights as

~ A~ ~ /
A:( ’1,...,A’M) , W =diag(Wy,...,Wy)



Branch-specific OLS estimates
We can now define branch-specific estimates

-1
~ (T(l),b TEl),b) T(l),bAb fb< M
w(l)’b: + + N + A .
<T(1),MWM (T(l),M> ) T(l)’M WylAy iftb=M

Recall that full-sample is related to branch-specific estimates by

Py = Z Caypdays =

b=1

¥(1),b

M
b=1

Combination matrices are ratio of branch to full-sample Laplacian

L(—1§ Tw.sWsT(y s ifb<M

Caup= /
7 —1 o+ + P
LT W (T(l))M) ifb=M



Branch contributions easy to compute

Structure of C(q) ;, implies branch contributions are
LT WeA, ifb<M
_ '@,

PWb =\, 1yt A
L(l) T(l)’MWMAM ifb=M

» Each branch contribution is a regression coefficient with wage

changes as dep var

» No harder to compute than branch-specific estimates 12(1),,,



Finding the trees



Tree Packing 101

Connectivity A (G) provides bounds on # of edge-disjoint trees
that can be “packed” into a graph

Theorem (Nash-Williams-Tutte, 1961)

The number 7 (G) € N of spanning trees that can be packed into a
connected graph G = (V, E) obeys

[A(6) /2] <7(G) < A(6),
where |-| denotes the floor operator.

Hence, a k-ECC must contain at least | k/2]| edge-disjoint trees.

But finding these trees is non-trivial...



“Greedy” extraction can miss trees

(a) A greedy packing (b) A complete packing

o ‘e N

X ’e XA

Figure: Two attempts to pack the same graph




An iterative solution

Tree packing is an ILP with high-dimensional constraints

maxXx Z XT
*Ter
s.t. ZXT <1 Ve€E,
Toe
xre{0,1} VTeT,

where T is set of all trees in graph. Infeasible to store constraints.

Roskind and Tarjan (1985) provide iterative algorithm guaranteed
to pack k-ECC with M edge-disjoint spanning trees if M < 7(G)

» Highly scalable: computational complexity O (I\/I2J2)

» Rely on SageMath implementation



A “prune and pack” strategy

Prune and pack strategy:
1. Prune graph to k-ECC using Gusfield (1990) algorithm

2. Find all edge-disjoint trees via Roskind-Tarjan (1985)

Implement for different choices of k
» Useful to release results for multiple choices of k

» SageMath Jupyter notebook coming soon..



Results



Application: firm effects in Veneto, ltaly

Revisit sample studied in Kline, Saggio, and Solvsten (2020): firm
switchers with wage observations 1999 and 2001

Dimensions:
» 73,933 firms
» 197,572 movers
> 148,917 (undirected) edges

Notes:

» Only 1.3 movers per edge = little scope to gain branches by

packing directed trees

> Low degree: 2.7 movers per firm = extremely low connectivity



Pruning drops small firms

Spanning Trees (M)

k 1 2 3 4 5 6
Firms in k-core 73,933 | 41,093 | 21,570 | 11,145 | 5,682 | 3,128
Firms in k-ECC (J) 73,933 | 41,054 | 21,565 | 11,145 | 5,682 | 3,128
Edges in k-ECC (|E|) | 148,917 | 116,026 | 80,561 | 51,824 | 31,677 | 19,796
Movers in k-ECC (N) | 197,572 | 158,149 | 114,717 | 78,908 | 53,131 | 36,903
1 1 2 3 3 4

Table: Network properties of k-ECCs

Pruning to 3-ECC yields second spanning tree

> Loses 61% of the firms but retains 58% of the movers

» Can mitigate firm loss by “filling in” graph using additional

yrs of data




Random splits retain slightly more firms

| Splits (M) 1 [ 2 | 3 | 4 |
Number of firms

25th Percentile 73,933 | 28,680 | 13,034 | 6,537

Median 73,933 | 28,737 | 13,077 | 6,576
75th Percentile 73,933 | 28,797 | 13,127 | 6,607

Overlap across simulations

25th Percentile 73,933 | 22,745 | 9,328 | 4,482

Median 73,933 | 22,804 | 9,366 | 4,509
75th Percentile 73,933 | 22,861 | 9,406 | 4,536

Table: Firm effects estimable in each of M random splits (500 sims)

> Size of largest component stable

» But composition highly variable



Use case: firm size wage premium

Define covariate matrix X = [1,In f], where f is firm size. We are

interested in projection slope
v = (X'X)" X'y

Estimator is
A= (X'X)" X"

Variance is
VA = (X'X) T X'EX (X'X)

Variance estimator is

Voranch 3] = (X'X) "1 XX (X' X) 7



Branch-based standard errors 2-4x naive

k [ 1 [ 2] s[4 ][5 |6 ]
Full-sample estimate (9(;)) | 0.0446 | 0.0329 | 0.0235 | 0.0199 | 0.0191 | 0.0209
Standard error (Vyanch [31)] ) | - - | 0.0080 | 0.0045 | 0.0084 | 0.0091
Naive std err (Vo [41y]"/*) | 0.0009 | 0.0010 | 0.0013 | 0.0018 | 0.0023 | 0.0032
Mean firm size 13.6 216 34.6 55.1 88.0 | 131.6

Table: Elasticity of firm wage effects with respect to firm size

» Naive t-stats: 7-20

» Branch-based t-stats: 2.3-2.9

» Some of this decrease likely reflects misspecification



Use case: size-weighted moments of firm effects

Let w € R be vector of weights that sums to one (1'w = 1).

Plug-in estimator of the £'th central weighted moment is
A /(7 !0 of
foo,pr = w (w —w ¢1> ;
where the of superscript denotes raising the entries in a vector to
the ¢'th power element-wise.
Use branches to construct the corresponding unbiased estimator:

fle = (AZ> B oW (@bl - Wlwl\bll) ORNO (1;134 - wlizbzl)

(blw'"bé)elg



Firm effects are skew left and heavy tailed

| K v 12 [ s | e [ s |6
Std dev (0 = \/112)
Plug-in 0.2215 | 0.1951 | 0.1841 | 0.1794 | 0.1751 | 0.1756
Branches - - 0.1591 | 0.1669 | 0.1917 | 0.1555
Skew (u3/0®)
Plug-in -0.8332 | -0.7403 | -0.8223 | -0.8507 | -0.7198 | -0.6998
Branches - - - -1.217 | -0.7911 | -0.7368
Kurtosis (pa/0%)
Plug-in 7.309 5.824 6.137 6.191 5.776 5.416
Branches - - - - - 6.617

Table: Moments of firm effects (size-weighted)
» Mild upward bias in Pl estimate of std dev
> Negligible bias in Pl skew
» Mild downward bias in Pl Kurtosis

» Miniscule std err on fip in 6-ECC (z-score ~30)



Shrinkage: non-linear relationship between branches

(2) E [ | ] (b) E [y | 4]

si2

Figure: Binscatters of polynomial fit to opposite branch



Assessing forecast performance in the 6-ECC

Hold out 1/34 as forecast target and shrink (Qﬁl, &2,1&3) to

construct predictor
» Naive predictor is average across branches:
) = <1/A11+122+123) /3
> Forecast error is

MSEvaive = (B — 0 (B~ ) /4



Shrinkage

Estimate cross-branch conditional expectations
E [szu' | Dbyj = X0, Vbyj = X3| = Mpy (32, %3)
via B-spline series regression.
» Shrinkage predictor averages across branch pairs
m (1211'71&21'71231') =

+

iy <¢21,1/331> + %fﬁz <121j7'$3j>
M3 (%Blj, @21)

Wl W[

» Contrast with Ignatiadus et al (2023) procedure (AURORA)

designed for replicates.



Massive reduction in forecast error via shrinkage

| | Naive () | Shrinkage (i) | AURORA |
] MSE \ 0.129 \ 0.041 \ 0.042 \

Table: Predicting 1[34 using (77/31,7,/32,77/33)

» Shrinkage lowers MSE by a factor of 3!

» AURORA fails to improve performance, perhaps because of

heteroscedasticity across branches



Conclusion

Sharing estimates is good (Andrews and Shapiro, 2021; Donoho, 2024)

Sharing branches is even better
» Transparent uncertainty quantification
» Moment estimation

» Nonlinear shrinkage

Areas for future work
» Beyond AKM: branching more complex models

» Misspecification: separating noise from model error
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