
Branching fixed effects: A proposal for

communicating uncertainty

Patrick Kline

UC Berkeley

ESWC 2025

Seoul, Korea

Introduction

Two-way fixed effects methods widely used to summarize complex

causal relationships in administrative data

▶ Firm wage effects (Kline, 2024)

▶ Teacher value added (Angrist, Walters, Hull, 2023)

▶ Location effects (Chyn and Katz, 2021)

Data confidentiality / complexity leads to reliance on published

fixed effects estimates for secondary analysis

Growing reliance on Other Peoples’ Projections (OPP)

Assessing uncertainty in OPP

Assumptions underlying published standard errors often dubious

▶ Usual “robust” standard errors inconsistent in

high-dimensional models (Cattaneo, Jansson, Newey, 2018)

▶ Bootstrap likewise inconsistent (El Karoui and Purdom, 2018)

Generally need full covariance matrix for second-step inference

But challenging to release correlation matrix of estimates

▶ 1M firm effects involve ∼500B pairwise correlations

▶ Stored as floats, requires ∼1.82TB of storage!

Proposal: break estimates into independent “branches”

Branches are disjoint subsamples in which model can be estimated

▶ Each branch (ostensibly) identifies the same parameter

▶ Branch-specific estimates are mutually independent

▶ Enables transparent uncertainty quantification and shrinkage

Precedents

▶ “Replicates” in survey analysis (used in CPI / CPS / ACS to

compute variance)

▶ Random sample-splitting in worker-firm literature (Sorkin, 2018;

Card, Rothstein, Yi, 2024)

Technical contribution: computing maximal branchings

Goal: partition the microdata into as many branches as possible

Constraint: OLS design matrix must be full rank in each branch

Going to consider special case of “AKM model,” where estimability

is known to depend on connectedness (Abowd, Creecy, Kramarz, 2002)

▶ Minimally connected graph is a spanning tree

▶ Enumerate trees using results from graph literature on “tree

packing” (Nash-Williams,1961; Tutte, 1961; Roskind and Tarjan, 1985)

▶ Assign one tree to each branch. Last branch gets “leftovers.”

The blessings of
branches

Preliminaries

Suppose we are interested in parameter vector ψ ∈ RJ

▶ Linear FE estimator ψ̂ is unbiased
(
E
[
ψ̂
]
= ψ

)
▶ Given M branches, can construct M mutually independent

estimates:
{
ψ̂b

}M

b=1

▶ Under linear model assumptions, each branch-specific estimate

is unbiased:

E
[
ψ̂b

]
= E

[
ψ̂
]
= ψ

Linear decomposition

The following linear decomposition property will be shown to hold:

ψ̂ =
M∑
b=1

Cbψ̂b ≡
M∑
b=1

φb,

where Cb is a known J × J matrix that obeys
∑M

b=1 Cb = I

▶ Each φb gives the contribution of branch b to full-sample ψ̂

▶ Influence fn interpretation

Proposal: publish the pairs
{
ψ̂b, φb

}M

b=1

Putting branches to work: variance estimation

Since the branches are independent,

V
[
ψ̂
]
=

M∑
b=1

V [φb] =
M∑
b=1

CbV
[
ψ̂b

]
C ′

b ≡ Σ.

For any two branches b and ℓ,

E
[
(φb − φℓ) (φb − φℓ)

′] = CbV
[
ψ̂b

]
C ′

b︸ ︷︷ ︸
=V[φb]

+C ℓV
[
ψ̂ℓ

]
C ′

ℓ︸ ︷︷ ︸
=V[φℓ]

.

Putting branches to work: variance estimation

Summing across all
(M
2

)
pairs of branches, yields the unbiased

variance estimator

Σ̂ =
1

M − 1

M∑
b=1

∑
ℓ<b

(φb − φℓ) (φb − φℓ)
′

▶ Note: yields estimates of all J (J − 1) /2 off-diagonal terms!

▶ While Σ̂ is noisy, typically interested in low-dimensional

quadratic forms v ′Σv that can be estimated consistently.

▶ High-level conditions for v ′Σ̂v
p→ v ′Σv or can estimate

V
[
v ′Σ̂v

]
when M ≥ 4.

Putting branches to work: moment estimation

Let ⊙ denote the element-wise product operator. For any two

branches b and ℓ,

E
[
ψ̂b ⊙ ψ̂ℓ

]
= ψ ⊙ ψ

▶ Averaging across all
(M
2

)
distinct pairs of branches yields the

second moment estimator:

1

J
1′

[
2

M (M − 1)

M∑
b=1

∑
ℓ<b

ψ̂b ⊙ ψ̂ℓ

]

▶ Higher moments can be estimated with higher-order products

Putting branches to work: shrinkage

Let ψ̂bj denote the j ’th entry of ψ̂b and ψj the j ’th entry of ψ.

Now consider random effects model:

ψ̂b | ψ ∼ Fb, ψj
i .i .d∼ G ,

where EFb

[
ψ̂b

]
= ψ. By iterated expectations (Krutchkoff, 1967),

E
[
ψ̂2j | ψ̂1j

]
= E

[
E
[
ψ̂2j | ψj , ψ̂1j

]
| ψ̂1j

]
= E

[
E
[
ψ̂2j | ψj

]
| ψ̂1j

]
= E

[
ψj | ψ̂1j

]
⇒ a regression of estimates in one branch against the other gives a

best predictor regardless of noise distribution Fb!

AKM basics

The AKM model

TWFE model for log wages of worker i ∈ {1, 2, . . . ,N} ≡ [N] in

period t ∈ {1, 2} (Abowd, Kramarz, Margolis, 1999):

yit = αi︸︷︷︸
worker FE

+ ψj(i ,t)︸ ︷︷ ︸
firm FE

+ εit︸︷︷︸
noise

Function j : [N]× {1, 2} → {1, 2, . . . , J} ≡ [J] gives the firm

employing worker i in period t.

Let P denote set of O/D firm pairs that workers move between:{
(o, d) ∈ [J]2 : o ̸= d , j (i , 1) = o, j (i , 2) = d for some i ∈ [N]

}

First differenced representation

We are interested in the firm effects ψ = (ψ1, . . . , ψJ)
′. Eliminate

worker FE via first differencing and write in matrix notation:

y2 − y1 = (F 2 − F 1)ψ + ε2 − ε1 ≡ PB ′ψ + u (1)

▶ P is N × |P| matrix of origin-destination pair indicators.

▶ B is J × |P| “incidence matrix,” each column of which is

sparse with a single +1 (destination) and a single −1 (origin).

Exogeneity:

E [u | P,B] = 0

Collapsing to mean wage changes

The diagonal matrix W = P ′P gives number of moves and

∆̂ =
(
P ′P

)−1 P ′ (y2 − y1)

is vector of mean wage changes for O/D pairs.

Rearranging (1) yields

BW ∆̂ = BWB ′ψ + BP ′u

Key moment restriction:

E
[
BW ∆̂

]
= BWB ′ψ ≡ Lψ

L is the (weighted) Laplacian of worker mobility graph.

Graphical representation

The mobility graph

Define the mobility graph G = (V ,E)

▶ Vertex set V = [J] corresponds to firms

▶ E is set of edges defined by worker moves:

{(s, v) ∈ [J]2 : s ̸= v , j (i , 1) = s, j (i , 2) = v for some i ∈ [N]}

Treat edges as undirected :

esv = evs

A mobility graph with J = 5 and |E | = 7

1

2

3

4

5e23
e24

e25

e35

e45

e34

e12

Terms of art (#IYKYK)

▶ A path is a sequence of edges that join a set of vertices with

no repeat edges or firms: e.g., {e12, e23, e34}

▶ A graph is connected if there is a path from any firm to any

other firm

▶ A tree is a connected graph in which there is a unique path

between any two firms

▶ A spanning tree is any subset of a connected graph that

contains all firms and is a tree

Two (edge-disjoint) spanning trees of subgraph

1

2

3

4

5e23
e24

e25

e35

e45

e34

e12

Connectivity

The edge connectivity λ (G) of a graph is the number of edges that

need to be removed from the graph for it to become disconnected:

λ (G) = min
{
|S | : S ⊆ E , and (V ,E \ S) is disconnected

}

▶ A graph is k-edge connected if λ(G) ≥ k

▶ A k-edge connected component (k-ECC) is a subgraph that is

k-edge connected

▶ There exist k edge-disjoint paths between any two firms in a

k-ECC (Menger, 1927)

This graph has a single 3-ECC

1

2

3

4

5e23
e24

e25

e35

e45

e34

e12

Back to OLS

Recall that AKM yields the normal equations

BW ∆̂ = Lψ

Theorem (Kirchhoff, 1847; Abowd, Creecy, Kramarz, 2002)

If the mobility graph is connected, then L has rank J − 1 and any

minor of L will have full rank.

Identification: normalize ψ1 = 0

▶ Define ψ(1) = (ψ2, . . . , ψJ)
′

▶ Vector ψ(1) measures expected wage changes associated with

leaving firm #1 for each destination.

Normalization and estimation

Define B(1) as B with first row deleted and

L(1) = B(1)WB(1)

OLS estimator of ψ(1) is:

ψ̂(1) = L−1
(1)B(1)W ∆̂

Firm effects a linear combination of O/D wage changes ∆̂

▶ When moves present in both directions between firms j and k ,

only net change between pair matters

▶ For today, suppose moves in single direction between each

firm pair (general case in the paper)

Building branches

Special case: tree structure

When B(1) is invertible square matrix, we get simplification

ψ̂(1) =
(
B ′

(1)

)−1
∆̂

Mobility pattern is a tree (Kline, 2024)

▶ Unique path between any pair of firms

▶ Each ψ̂j equals sum of (oriented) entries in ∆̂ along path from

firm 1 to firm j

▶ Deleting moves between any pair of firms would render model

under-identified

▶ Weights irrelevant because “just-identified”

Branches from trees

WLOG, can decompose incidence matrix of connected graph as

B(1) =
[
T (1),1, . . . ,T (1),M−1,T+

(1),M

]
▶ T (1),1, . . . ,T (1),M capture edge-disjoint spanning trees

▶ Usually some “leftover” edges that are not connected

▶ T+
(1),M captures the last tree + leftovers

Likewise, partition wage changes and weights as

∆̂ =
(
∆̂′

1, . . . , ∆̂
′
M

)′
, W = diag (W 1, . . . ,WM)

Branch-specific OLS estimates
We can now define branch-specific estimates

ψ̂(1),b =


(
T (1),bT ′

(1),b

)−1

T (1),b∆̂b if b < M(
T+

(1),MWM

(
T+

(1),M

)′
)−1

T+
(1),MWM∆̂M if b = M

Recall that full-sample is related to branch-specific estimates by

ψ̂(1) =
M∑
b=1

C (1),bψ̂(1),b =
M∑
b=1

φ(1),b

Combination matrices are ratio of branch to full-sample Laplacian

C (1),b =

L−1
(1)T (1),bW bT ′

(1),b if b < M

L−1
(1)T

+
(1),MWM

(
T+

(1),M

)′
if b = M

Branch contributions easy to compute

Structure of C (1),b implies branch contributions are

φ(1),b =

L−1
(1)T (1),bW b∆̂b if b < M

L−1
(1)T

+
(1),MWM∆̂M if b = M

▶ Each branch contribution is a regression coefficient with wage

changes as dep var

▶ No harder to compute than branch-specific estimates ψ̂(1),b

Finding the trees

Tree Packing 101

Connectivity λ (G) provides bounds on # of edge-disjoint trees

that can be “packed” into a graph

Theorem (Nash-Williams-Tutte, 1961)

The number τ (G) ∈ N of spanning trees that can be packed into a

connected graph G = (V ,E) obeys

⌊λ (G) /2⌋ ≤ τ (G) ≤ λ (G) ,

where ⌊·⌋ denotes the floor operator.

Hence, a k-ECC must contain at least ⌊k/2⌋ edge-disjoint trees.

But finding these trees is non-trivial...

“Greedy” extraction can miss trees

(a) A greedy packing

1

2

3

4

5

6

(b) A complete packing

1

2

3

4

5

6

Figure: Two attempts to pack the same graph

An iterative solution

Tree packing is an ILP with high-dimensional constraints

max
x

∑
T∈T

xT

s.t.
∑
T∋e

xT ≤ 1 ∀ e ∈ E ,

xT ∈ {0, 1} ∀T ∈ T ,

where T is set of all trees in graph. Infeasible to store constraints.

Roskind and Tarjan (1985) provide iterative algorithm guaranteed

to pack k-ECC with M edge-disjoint spanning trees if M ≤ τ (G)

▶ Highly scalable: computational complexity O
(
M2J2

)
▶ Rely on SageMath implementation

A “prune and pack” strategy

Prune and pack strategy:

1. Prune graph to k-ECC using Gusfield (1990) algorithm

2. Find all edge-disjoint trees via Roskind-Tarjan (1985)

Implement for different choices of k

▶ Useful to release results for multiple choices of k

▶ SageMath Jupyter notebook coming soon..

Results

Application: firm effects in Veneto, Italy

Revisit sample studied in Kline, Saggio, and Solvsten (2020): firm

switchers with wage observations 1999 and 2001

Dimensions:

▶ 73,933 firms

▶ 197,572 movers

▶ 148,917 (undirected) edges

Notes:

▶ Only 1.3 movers per edge ⇒ little scope to gain branches by

packing directed trees

▶ Low degree: 2.7 movers per firm ⇒ extremely low connectivity

Pruning drops small firms

k 1 2 3 4 5 6

Firms in k-core 73,933 41,093 21,570 11,145 5,682 3,128

Firms in k-ECC (J) 73,933 41,054 21,565 11,145 5,682 3,128

Edges in k-ECC (|E |) 148,917 116,026 80,561 51,824 31,677 19,796

Movers in k-ECC (N) 197,572 158,149 114,717 78,908 53,131 36,903

Spanning Trees (M) 1 1 2 3 3 4

Table: Network properties of k-ECCs

Pruning to 3-ECC yields second spanning tree

▶ Loses 61% of the firms but retains 58% of the movers

▶ Can mitigate firm loss by “filling in” graph using additional

yrs of data

Random splits retain slightly more firms

Splits (M) 1 2 3 4

Number of firms

25th Percentile 73,933 28,680 13,034 6,537

Median 73,933 28,737 13,077 6,576

75th Percentile 73,933 28,797 13,127 6,607

Overlap across simulations

25th Percentile 73,933 22,745 9,328 4,482

Median 73,933 22,804 9,366 4,509

75th Percentile 73,933 22,861 9,406 4,536

Table: Firm effects estimable in each of M random splits (500 sims)

▶ Size of largest component stable

▶ But composition highly variable

Use case: firm size wage premium

Define covariate matrix X = [1, ln f], where f is firm size. We are

interested in projection slope

γ =
(
X ′X

)−1 X ′ψ

Estimator is

γ̂ =
(
X ′X

)−1 X ′ψ̂

Variance is

V [γ̂] =
(
X ′X

)−1 X ′ΣX
(
X ′X

)−1

Variance estimator is

V̂branch [γ̂] =
(
X ′X

)−1 X ′Σ̂X
(
X ′X

)−1

Branch-based standard errors 2-4x naive

k 1 2 3 4 5 6

Full-sample estimate (γ̂(1)) 0.0446 0.0329 0.0235 0.0199 0.0191 0.0209

Standard error (V̂branch

[
γ̂(1)

]1/2
) - - 0.0080 0.0045 0.0084 0.0091

Naive std err (V̂HC0

[
γ̂(1)

]1/2
) 0.0009 0.0010 0.0013 0.0018 0.0023 0.0032

Mean firm size 13.6 21.6 34.6 55.1 88.0 131.6

Table: Elasticity of firm wage effects with respect to firm size

▶ Naive t-stats: 7-20

▶ Branch-based t-stats: 2.3-2.9

▶ Some of this decrease likely reflects misspecification

Use case: size-weighted moments of firm effects

Let ω ∈ RJ
≥0 be vector of weights that sums to one

(
1′ω = 1

)
.

Plug-in estimator of the ℓ’th central weighted moment is

µ̂ℓ,PI = ω′
(
ψ̂ − ω′ψ̂1

)◦ℓ
,

where the ◦ℓ superscript denotes raising the entries in a vector to

the ℓ’th power element-wise.

Use branches to construct the corresponding unbiased estimator:

µ̂ℓ =

(
M

ℓ

)−1 ∑
(b1,...,bℓ)∈B

ω′
(
ψ̂b1 − ω′ψ̂b11

)
⊙· · ·⊙

(
ψ̂bℓ − ω′ψ̂bℓ1

)

Firm effects are skew left and heavy tailed

k 1 2 3 4 5 6

Std dev (σ ≡ √
µ2)

Plug-in 0.2215 0.1951 0.1841 0.1794 0.1751 0.1756

Branches - - 0.1591 0.1669 0.1917 0.1555

Skew
(
µ3/σ

3
)

Plug-in -0.8332 -0.7403 -0.8223 -0.8507 -0.7198 -0.6998

Branches - - - -1.217 -0.7911 -0.7368

Kurtosis
(
µ4/σ

4
)

Plug-in 7.309 5.824 6.137 6.191 5.776 5.416

Branches - - - - - 6.617

Table: Moments of firm effects (size-weighted)

▶ Mild upward bias in PI estimate of std dev

▶ Negligible bias in PI skew

▶ Mild downward bias in PI Kurtosis

▶ Miniscule std err on µ̂2 in 6-ECC (z-score ∼30)

Shrinkage: non-linear relationship between branches

(a) E
[
ψ̂2j | ψ̂1j

]
(b) E

[
ψ̂1j | ψ̂2j

]

Figure: Binscatters of polynomial fit to opposite branch

Assessing forecast performance in the 6-ECC

Hold out ψ̂4 as forecast target and shrink
(
ψ̂1, ψ̂2, ψ̂3

)
to

construct predictor

▶ Naive predictor is average across branches:

ψ̄ =
(
ψ̂1 + ψ̂2 + ψ̂3

)
/3

▶ Forecast error is

MSEnaive =
(
ψ̂4 − ψ̄

)′ (
ψ̂4 − ψ̄

)
/J

Shrinkage

Estimate cross-branch conditional expectations

E
[
ψ̂b1j | ψ̂b2j = x2, ψ̂b3j = x3

]
≡ mb1 (x2, x3)

via B-spline series regression.

▶ Shrinkage predictor averages across branch pairs

m̄
(
ψ̂1j , ψ̂2j , ψ̂3j

)
=

1

3
m̂1

(
ψ̂2j , ψ̂3j

)
+

1

3
m̂2

(
ψ̂1j , ψ̂3j

)
+

1

3
m̂3

(
ψ̂1j , ψ̂2j

)
▶ Contrast with Ignatiadus et al (2023) procedure (AURORA)

designed for replicates.

Massive reduction in forecast error via shrinkage

Naive
(
ψ̄
)

Shrinkage (m̄) AURORA

MSE 0.129 0.041 0.042

Table: Predicting ψ̂4 using
(
ψ̂1, ψ̂2, ψ̂3

)
▶ Shrinkage lowers MSE by a factor of 3!

▶ AURORA fails to improve performance, perhaps because of

heteroscedasticity across branches

Conclusion

Sharing estimates is good (Andrews and Shapiro, 2021; Donoho, 2024)

Sharing branches is even better

▶ Transparent uncertainty quantification

▶ Moment estimation

▶ Nonlinear shrinkage

Areas for future work

▶ Beyond AKM: branching more complex models

▶ Misspecification: separating noise from model error

	The blessings of branches
	AKM basics
	Graphical representation
	Building branches
	Finding the trees
	Results

