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Abstract

Economists often rely on estimates of linear fixed effects models developed by other teams of re-

searchers. Assessing the uncertainty in these estimates can be challenging. I propose a form of sample

splitting for network data that breaks two-way fixed effects estimates into statistically independent

“branches,” each of which provides an unbiased estimate of the parameters of interest. These branches

facilitate uncertainty quantification, moment estimation, and shrinkage. Algorithms are developed for ef-

ficiently extracting branches from large datasets. I illustrate these techniques using a benchmark dataset

from Veneto, Italy that has been widely used to study firm wage effects.

∗This paper was prepared for the Econometric Society World Congress 2025. I thank Kevin Chen, Raffaele Saggio, Andres
Santos, and Chris Walters for helpful comments. This paper makes use of the Veneto Work Histories dataset developed by the
Economics Department in Università Ca’ Foscari Venezia under the supervision of Giuseppe Tattara.
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1 Introduction

Fixed effects methods have emerged as an important tool for scientific communication in empirical economics,

allowing researchers to summarize complex empirical patterns found in vast administrative databases with

minimal loss of fidelity. A single research team can rarely envision, much less exploit, all of the potential

uses of such granular summaries. It has therefore become routine for estimates to be publicly posted online

or hosted by statistical agencies for use by other researchers.

For instance, the Opportunity Insights (OI) group provides public estimates of intergenerational mobility

at the census tract level derived from fitting complex fixed effects models to US tax records (Chetty and

Hendren, 2018). Likewise, estimates of firm wage fixed effects derived from German social security records

have been developed for secondary use by research teams in partnership with the Institute for Employment

Research (Card, Heining, and Kline, 2015; Bellmann et al., 2020). Estimates enabling secondary analysis of

teacher and school value added have also been shared between research teams (e.g., Chamberlain, 2013).

In each of these literatures, the workhorse models are linear and involve two (or more) high-dimensional

sets of fixed effects. Least squares estimates of these parameters are unbiased but will inevitably be noisy.

Unfortunately, the properties of this noise are often poorly documented. It is typically infeasible to release

full covariance matrices for more than a few thousand estimated effects, as the number of distinct entries in

such matrices grows quadratically. Moreover, when the number of parameters being estimated is proportional

to the underlying sample size, the noise in the estimates may not be normally distributed, in which case

variance matrices provide incomplete guides to uncertainty.

This ambiguity regarding the stochastic properties of published fixed effects estimates presents difficulties

for secondary analysis. For example, Mogstad et al. (2024) note that lack of information on the covariance of

the quasi-experimental place fixed effects developed by Chetty and Hendren (2018) is one factor that leads

them to focus their analysis on simpler cross-sectional estimates of intergenerational mobility. In contrast to

the OI place effects, estimates of firm wage fixed effects are almost always provided without standard errors.

As discussed in Kline (2025), researchers often treat these estimated firm effects as outcomes in second-step

regressions, reporting (downstream) standard errors that may be severely biased by the implicit assumption

that the estimated effects are mutually independent.

This paper proposes breaking two-way fixed effects estimates into statistically independent “branches”

as a means of transparently communicating uncertainty. Each branch corresponds to a distinct subsample

of the micro-data within which unbiased estimates of all target parameters can be constructed. Building on

a graph-theoretic interpretation of two-way fixed effects models developed in Kline (2025), the branches are

constructed from edge-disjoint spanning trees of the “mobility network” – a graph representing the evolution
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of group memberships in the data. Though I will focus on a setting where this network captures the structure

of worker moves between firms, the spanning tree construction applies broadly to contexts involving two-

dimensional heterogeneity, including student-teacher, patient-doctor, and judge-district pairings. Edges not

included in any spanning tree are appended to the final branch, which ensures the full-sample fixed effects

estimator decomposes linearly into branch-specific estimates.

Publicly releasing branches allows outside researchers to transparently assess uncertainty in published

fixed effect estimates and in projections of those estimates onto observable covariates. Branches also simplify

more advanced tasks such as estimating moments of the fixed effects and shrinkage, tasks that have proved

challenging to extend to high-dimensional fixed effects settings with heteroscedasticity (Kwon, 2023; Cheng,

Ho, and Schorfheide, 2025; He and Robin, 2025). I illustrate these ideas using as an example the estimation

of firm fixed effects in a benchmark dataset from the Italian province of Veneto.

The idea of releasing branches of fixed effects has several precedents in the literature. First, it mirrors

the common practice among statistical agencies of releasing “replicates” to assess uncertainty in published

estimates derived from surveys. For example, the US Bureau of Labor Statistics uses two independent

replicates of inflation measures in each geographic area to evaluate the sampling variance of inflation measures

reported in the Consumer Price Index (U.S. Bureau of Labor Statistics, 2025). Likewise, the American

Community Survey uses 80 replicates to assess margins of error in published estimates (U.S. Census Bureau,

2025). While replicates are designed to be independent and identically distributed, the branched estimates

considered here will generally not be identically distributed, as different subsamples will tend to exhibit

different noise levels.

A second precedent comes from recent empirical work with two-way fixed effects models exploiting random

splits of the micro-data. Sorkin (2018), Goldschmidt and Schmieder (2017), Drenik et al. (2023), and Jäger et

al. (2024) all randomly split worker-firm datasets into half-samples in order to obtain independent estimates

of the subset of firm fixed effects identified in both samples. Likewise, Silver (2021) uses a split-sample

approach to estimate the variance of physician value added, while Card, Rothstein, and Yi (2024) use a

similar approach to estimate the variance of industry wage effects. The popularity of random splitting in

these contexts derives from the simplicity of the covariance-based methods that can be employed to account

for estimation error. However, an important limitation of random splitting approaches is that cross-split

covariances can only be computed among the random subset of parameters for which multiple estimates turn

out to be available.

Rather than consider a random estimand, the branching approach deterministically partitions the data in

a way that preserves the estimability of all target parameters in each split. The partitioning strategy builds

on results from the graph theory literature on so-called “tree packing” problems (Nash-Williams, 1961;
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Tutte, 1961; Roskind and Tarjan, 1985). First, the micro-data are pruned to the largest k-edge-connected-

component (k-ECC): a subgraph that remains connected if any k edges are removed. In the worker-firm

setting, restricting to a k-ECC with k > 1 is a natural refinement of the ubiquitous practice of pruning

to the largest connected component (Abowd, Creecy, and Kramarz, 2002). After pruning, the k-ECC is

“packed” with edge-disjoint spanning trees. These trees are then used to build branches that fully partition

the micro-data.

In addition to yielding a deterministic estimand, this “prune and pack” approach ensures that each fixed

effect corresponding to a node in the k-ECC has as many independent estimates as there are branches of

the graph. I show that the pooled two-way fixed effects estimator can be written as a linear combination of

branch-specific estimates. These linear combinations can be released alongside the branch-specific estimates

to simplify the quantification of uncertainty in the full-sample estimates.

The Veneto data provide a challenging test case for the branching approach, as many firms are connected

by a single worker move. In this low connectivity environment, constructing even two branches requires

limiting attention to 39% of the firms in the largest connected set. However, the estimates turn out to be

remarkably insensitive to further pruning of the sample despite the fact that larger firms tend to be better

connected. Among other interesting findings, the analysis reveals that the distribution of firm wage effects in

these pruned samples are skew left and exhibit heavy tails. In other empirical literatures where the relevant

graphs tend to exhibit higher edge-connectivity – e.g., work on teacher value added or models of place effects

– it may be feasible to extract dozens of branches without meaningfully narrowing the scope of investigation.

The rest of the paper is structured as follows. The next section previews the basic properties of branches

and describes their potential uses in greater detail. Section 3 reviews the algebra of two-way fixed effects

estimators. Section 4 introduces a graph-theoretic interpretation of the model. Section 5 defines branches

algebraically and derives a representation of the fixed effects estimator as a linear combination of branch-

specific estimators. Section 6 reviews the theory underlying tree packing problems and outlines the prune

and pack algorithm. Section 7 illustrates the use of branches for quantifying uncertainty, moment estimation,

and shrinkage via exercises involving firm wage fixed effects derived from administrative data in Veneto, Italy.

2 The blessings of branches

Before getting into the weeds of how to build branches, it is useful to preview how they can simplify many

modern estimation tasks. Suppose that we are interested in some J × 1 parameter vector ψ and have

constructed a least squares estimator ψ̂ ∈ RJ of ψ that is unbiased.

Branches are formed by partitioning the micro-data in a way that allows the construction of M mutually
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independent estimates
{
ψ̂b

}M

b=1
, each of which obeys E

[
ψ̂b

]
= ψ. While each branch has the same mean,

their sampling distributions may differ. In particular, we do not assume that the J × J variance matrix

V
[
ψ̂b

]
is diagonal or identical across branches.

Another important property of branches is that the full-sample estimator can be decomposed as the sum

ψ̂ =

M∑
b=1

Cbψ̂b ≡
M∑
b=1

φb, (1)

where Cb is a known J × J matrix that obeys
∑M

b=1 Cb = I. Note that each element of φb ∈ RJ is a linear

combination of the unbiased estimates in ψ̂b ∈ RJ . Thus, the full-sample fixed effects estimator effectively

utilizes each branch to estimate a different linear combination of ψ.

Finally, note that both ψ̂b and φb are J × 1 vectors that can be stored as columns in a spreadsheet

alongside the full-sample estimate ψ̂. As detailed in Section 5, after the data have been partitioned into

branches, computing each φb is no more difficult than computing ψ̂. By the decomposition property in (1),

releasing the full-sample estimate is redundant once columns corresponding to the {φb}Mb=1 vectors have been

provided.

Having outlined what branches are, I now preview how they can facilitate three common empirical tasks:

1. Quantifying uncertainty

Since the branches are independent, the J × J covariance matrix of ψ̂ can be written

V
[
ψ̂
]
=

M∑
b=1

V [φb] =

M∑
b=1

CbV
[
ψ̂b

]
C ′

b ≡ Σ.

Independence also guarantees that for any two branches b and ℓ,

E
[
(φb − φℓ) (φb − φℓ)

′]
= CbV

[
ψ̂b

]
C ′

b +CℓV
[
ψ̂ℓ

]
C ′

ℓ.

Summing across all
(
M
2

)
= M (M − 1) /2 pairs of branches, and rescaling to account for the fact that each

branch appears exactly M − 1 times, yields the variance estimator

Σ̂ =
1

M − 1

M∑
b=1

∑
ℓ<b

(φb − φℓ) (φb − φℓ)
′
.

While this estimator is unbiased
(
E
[
Σ̂
]
= Σ

)
, the individual entries in Σ̂ will tend to be imprecise when M

is small. Fortunately, interest often centers on low-dimensional quadratic functions of Σ, which are easier to

estimate than any particular entry in this matrix.
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Suppose, for example, that one wishes to estimate the coefficient vector γ from a projection of ψ onto

the column space of a matrix of covariates X. Treating X as fixed and assuming that Sxx = X ′X is full

rank, we can write the estimand γ = S−1
xxX

′ψ and the corresponding estimator γ̂ = S−1
xxX

′ψ̂. It follows that

E [γ̂] = γ and V [γ̂] = S−1
xxX

′ΣXS−1
xx . Hence, an unbiased estimate of the variance of a second-step linear

projection is V̂ [γ̂] = S−1
xxX

′Σ̂XS−1
xx . The entries of V̂ [γ̂] will tend to be significantly more precise than the

entries of Σ̂ when J is large relative to dim (Sxx).
1

2. Moment estimation

Let ⊙ denote the element-wise product operator. For any two branches b and ℓ, independence implies

E
[
ψ̂b ⊙ ψ̂ℓ

]
= ψ ⊙ ψ. Hence, an unbiased estimate of the average squared entry in ψ (i.e., the second

uncentered moment of ψ) is 1
J 1

′
(
ψ̂b ⊙ ψ̂ℓ

)
, where 1 is a J × 1 vector of ones. A more precise estimator can

be had by averaging across all
(
M
2

)
distinct pairs of branches:

1

J
1′

[
2

M (M − 1)

M∑
b=1

∑
ℓ<b

ψ̂b ⊙ ψ̂ℓ

]
.

Likewise, third moments can be estimated by averaging over all
(
M
3

)
distinct triples of branches:

1

J
1′

((
M

3

)−1 M∑
b1=1

∑
b2<b1

∑
b3<b2

ψ̂b1 ⊙ ψ̂b2 ⊙ ψ̂b3

)
.

By induction, moments up to order M can be estimated via leveraging moment conditions of the form:

E
[
ψ̂1 ⊙ ψ̂2 ⊙ · · · ⊙ ψ̂M

]
= ψ1 ⊙ ψ2 ⊙ · · · ⊙ ψM .

3. Shrinkage

Standard empirical bayes shrinkage arguments are predicated on the assumption that the distribution of

noise is known ex-ante (Walters, 2024). A recent paper by Ignatiadis et al. (2023) proposes a best predictor

based on independent and identically distributed replicates that adapts to the unknown noise distribution.

I show that important insights from this paper carry over to the problem of predicting the elements of ψ

given independent branch estimates
{
ψ̂b

}M

b=1
that are not identically distributed. The proposed procedure

consists of running a series of regressions of each entry of ψ̂b against the values of that entry in the other

branches. This process is repeated for each choice of b. Finally, the predicted values, which generally shrink

the noisy branch-specific estimates, are averaged.

1Assume that λmin (Sxx) > κ > 0, where λmin (Sxx) gives the smallest eigenvalue of Sxx. Then, as J → ∞ (with dim (Sxx)

fixed), the noise in V̂ [γ̂] will become negligible relative to the noise in Σ̂.
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3 The algebra of two-way fixed effects

Constructing branches involves carefully splitting the sample so as to preserve estimability of the model. It

is useful to review the basic algebra of two-way fixed effects estimators using as our running example the

worker-firm setting of Abowd, Kramarz, and Margolis (1999), henceforth “the AKM model.” The treatment

here will depart minimally from the setup in Kline (2025). Suppose we have N workers and J firms. For

simplicity, we assume there are only 2 time periods, that all workers switch employers between these periods,

and that there are no time varying covariates.2 The AKM model can be written:

yit = αi + ψj(i,t) + εit

where yit is the log wage of worker i ∈ {1, 2, . . . , N} ≡ [N ] in period t ∈ {1, 2} and the function j :

[N ]× {1, 2} → {1, 2, . . . , J} ≡ [J ] gives the identity of the firm that worker i is paired with in period t. The

{αi}Ni=1 are person effects that can be ported from one employer to another, whereas the {ψj}Jj=1 capture

firm effects that must be forfeited when leaving employer j. Both the person and firm effects are parameters

– i.e., they are “fixed effects.” In contrast, the time-varying errors {εit}N,2
i=1,t=1 are stochastic. Following the

convention in the literature, the errors are assumed to be mutually independent and to each have mean zero,

which amounts to a strict exogeneity requirement.

Interest often centers on the firm effects, which, under assumptions described in Kline (2025), can be

thought of as capturing average treatment effects on wages of moving between particular firm pairs. Adopting

this perspective, we can eliminate the person effects with a first differencing transformation

yi2 − yi1 = ψj(i,2) − ψj(i,1) + εi2 − εi1. (2)

Thus, each worker’s wage change offers a noisy estimate of the difference in firm effects between an origin

firm j (i, 1) and a destination firm j (i, 2). Denote the set of origin-destination pairs traversed by workers

between the two periods as

P =
{
(o, d) ∈ [J ]

2
: j (i, 1) = o, j (i, 2) = d for some i ∈ [N ] and o ̸= d

}
.

The number of ordered pairs in this set is |P| and we denote the p’th pair in the set by (op, dp).

2Adjustments for covariates can be conducted in a first step, in which case the relevant outcomes, yit, becomes an estimated
residual. The AKM model has no implications for wage dynamics within a worker-firm match. Therefore, when additional time
periods are available, nothing is lost by collapsing yit down to worker-firm match means.
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3.1 The least squares estimator

We can now rewrite (2) in matrix notation as

y2 − y1 = (F 2 − F 1)ψ + ε2 − ε1

≡ PB′ψ + u, (3)

where F t is an N × J matrix of firm indicators with i’th row and j’th column entry 1 {j (i, t) = j}, ψ is a

J × 1 vector of firm effects, and ε2, ε1, and u = ε2 − ε1 are each N × 1 vectors of errors.

The J × |P| matrix B is known in the graph theory literature as the (signed) incidence matrix. Each

row of B corresponds to a particular firm, while each column corresponds to an ordered pair p. The entry

in the j’th row and p’th column of B can be written 1 {dp = j} − 1 {op = j}. Note that each column of B

has exactly two non-zero entries, one of which takes the value −1, representing departure from some origin

firm, and one of which takes the value +1, representing arrival at a destination firm.

The N × |P| matrix P is comprised of origin-destination pair indicators. The entry in the i’th row and

p’th column of P can be written 1 {j (i, 1) = op} · 1 {j (i, 2) = dp}. Thus,

∆̂ =
(
P ′P

)−1
P ′ (y2 − y1)

gives the |P| × 1 vector of mean wage changes between each origin-destination pair. Note that P ′P ≡ W

is a diagonal |P| × |P| matrix giving the number of workers who move from each origin to each destination

firm. Hence, P ′ (y2 − y1) = W ∆̂.

The identity F 2 − F 1 = PB′ provides a useful way to separate the sorts of moves present in the data

from how many workers move between each firm pair. Premultiplying the system in (3) by BP ′ yields

BW ∆̂ = BWB′ψ +BP ′u.

Strict exogeneity of the errors implies E [u | B,P ] = 0. Hence, we have the moment condition

E
[
BW ∆̂

]
= BWB′ψ ≡ Lψ.

The J × J matrix L = BWB′ is known in graph theory as the (weighted) Laplacian matrix. When the

mobility network is connected – a concept we will review in more detail below – the Laplacian will have rank

J − 1, implying ψ is identified up to a constant. It is common to resolve this indeterminacy by normalizing
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one of the firm effects to zero. We will do so by setting the first entry of ψ to zero, which yields the reduced

system

E
[
B(1)W ∆̂

]
= L(1)ψ(1),

where B(1) is the submatrix generated by removing the first row from B, L(1) = B(1)WB′
(1), and ψ(1) is a

vector of length J −1 formed by removing the first entry from ψ. Solving this reduced system for ψ(1) yields

the least squares estimator

ψ̂(1) = L−1
(1)B(1)W ∆̂. (4)

Thus, the estimated firm effects are a Laplacian normalized linear combination of the average wage changes

of movers along all origin-destination pairs.

3.2 Pooling data on firm pairs

When worker moves are present in both directions between a pair of firms, some columns of the incidence

matrix B will be mirror images of each other. In such cases, it is possible to further simplify (4) by expressing

the estimated firm effects as a linear combination of oriented average wage changes
−→
∆ that difference the

entries of ∆̂ along opposite directions of worker flow. In addition to simplifying computation of ψ̂, this pooled

representation will provide a foundation for the next section, which develops an interpretation of the AKM

model as an undirected graph. As detailed in Section 5, each branch-specific estimate ψ̂b will ultimately

correspond to a linear combination of a mutually exclusive subset of the entries of
−→
∆.

To illustrate the basic idea, suppose that our data only measure moves between two firms. In such

a case, we can write ∆̂ =
(
∆̂+, ∆̂−

)′
, where ∆̂+ is the average wage change of workers moving from

firm 2 to firm 1, and ∆̂− is the average wage change of workers moving from firm 1 to firm 2. Since

E
[
∆̂+

]
= ψ1 − ψ2 and E

[
∆̂−

]
= ψ2 − ψ1, it is natural to pool this information. Letting n+ be the

number of movers from firm 2 to firm 1 and n− the number of movers from firm 1 to firm 2, we can define

−→
∆ =

(
n+∆̂+ − n−∆̂−

)
/ (n+ + n−), which provides an unbiased estimate of ψ1 − ψ2. This mover-weighted

average provides an efficient pooling of the information in ∆̂+ and ∆̂− under the auxiliary assumption that

the worker level errors u are homoscedastic.

When Q ≤ |P| firm pairs have worker flows in both directions, the incidence matrix can be partitioned

as

B︸︷︷︸
J×|P|

=

 D︸︷︷︸
J×Q

,−D︸︷︷︸
J×Q

, R︸︷︷︸
J×(|P|−2Q)

 ,
where the matrices (D,−D) capture moves in opposite directions between firm pairs and the “residual”

incidence matrix R represents moves between firm pairs that only experience flows in one direction. Note
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that this representation is not unique: there are 2Q possible choices of D, each of which amounts to treating

one member of the firm pair as the origin and the other as the destination.

Given any orientation D, the vector of wage changes between origin-destination pairs can be partitioned

∆̂︸︷︷︸
|P|×1

=

 ∆̂′
+︸︷︷︸

1×Q

, ∆̂′
−︸︷︷︸

1×Q

, ∆̂′
R︸︷︷︸

1×(|P|−2Q)


′

,

where ∆̂+ gives the average wage changes of workers moving from origins to destinations dictated by D, ∆̂−

gives the average wage changes workers moving between those same firms in the opposite direction, and ∆̂′
R

gives the average wage changes associated with R. The corresponding weight matrix can be partitioned

W︸︷︷︸
|P|×|P|

=



W+︸︷︷︸
Q×Q

0 0

0 W−︸︷︷︸
Q×Q

0

0 0 WR︸︷︷︸
(|P|−2Q)×(|P|−2Q)


,

where W+ captures the number of workers moving in one direction between a pair and W− the number mov-

ing in the opposite direction. Hence,B(1) =
[
D(1),−D(1),R(1)

]
andB(1)W ∆̂ = D(1)

(
W+∆̂+ −W−∆̂−

)
+

R(1)WR∆̂R.

Plugging the latter expression into (4) reveals that the OLS estimator can be written

ψ̂(1) = L−1
(1)

[
D(1)

(
W+∆̂+ −W−∆̂−

)
+R(1)WR∆̂R

]
= L−1

(1)

[
D(1) R(1)

] WD 0

0 WR


 ∆̂D

∆̂R


≡ L−1

(1) B̄(1)︸︷︷︸
(J−1)×(|P|−Q)

W̄︸︷︷︸
(|P|−Q)×(|P|−Q)

−→
∆︸︷︷︸

(|P|−Q)×1

, (5)

where WD = W−+W+ records the total number of workers moving between each of the Q firm pairs with

flows in both directions and ∆̂D = W−1
D

(
W+∆̂+ −W−∆̂−

)
gives the average wage change between these

firm pairs across an orientation D.

Equation (5) reveals that no information is lost by collapsing the vector ∆̂ of average wage changes

between origin-destination pairs down to a shorter vector
−→
∆ of oriented average wage changes between firm

pairs. Importantly, this representation holds for any choice of D. The Laplacian is likewise invariant to the
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choice of orientation D as:

L(1) = B(1)WB′
(1) = D(1) (W+ +W−)D

′
(1) +R(1)WRR

′
(1) = B̄(1)W̄ B̄

′
(1).

The next section details how the Laplacian can be used to construct an undirected graphical representation

of worker mobility patterns.

4 A graph-theoretic interpretation

I will now introduce a graph-theoretic interpretation of the AKM model and the Laplacian L, which we have

already seen plays a key role in determining estimability of the firm effects. By clarifying when the least

squares estimator ψ̂(1) can be computed, this discussion will provide a principled approach to partitioning

the sample into branches.

Define the mobility graph G = (V,E) of a two-way fixed effects model as a finite set of vertices V and a

collection of edges E = {(s, v) ∈ V ×V : s ̸= v} that connect pairs of vertices. I will refer to individual edges

by esv. In contrast to the treatment in Kline (2025), the edges will be viewed here as undirected, which

implies that esv = evs.

1

2

3

4

5e23
e24

e25

e35

e45

e34

e12

Tree 1 (dashed)

Tree 2 (dotted)

3-ECC nodes

Figure 1: A connected mobility graph with J = 5 and |E| = 7

In the AKM model, the vertices are firms. Hence, V = [J ] and |V | = J . An edge joins a pair of firms s

and v whenever at least one worker moves between the pair in either direction. That is, in our earlier panel
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notation,

E = {(s, v) ∈ [J ]
2
: j (i, 1) = s, j (i, 2) = v or j (i, 1) = v, j (i, 2) = s for some i ∈ [N ] and s ̸= v}.

Thus, the mobility graph has |E| = |P| − Q edges, each of which corresponds to a column of B̄ = [D,R]

and can be associated with an entry in
−→
∆.

The graph is represented algebraically by the unweighted Laplacian matrix Lu = B̄B̄
′
. The j’th diagonal

entry of Lu gives firm j’s degree in the network: the total number of edges incident to firm j. If firm j and

k have an edge between them, then the off-diagonal entry Lu
jk will equal -1. Otherwise it will equal zero.

Figure 1 depicts a graph with 5 firms and 7 edges. The unweighted Laplacian of this graph takes the

form:

Lu =



1 −1 0 0 0

−1 4 −1 −1 −1

0 −1 3 −1 −1

0 −1 −1 3 −1

0 −1 −1 −1 3


.

In the figure, firms are depicted with circles and edges by lines. The edge names are displayed to the right

of each edge.

I will now introduce some terms of art that are useful for describing networks. A walk is a sequence of

edges that join a set of firms, a trail is a walk with no repeated edges, and a path is a trail with no repeated

firms. Hence, the sequence {e23, e35, e25} is a trail that is not a path.

A graph is connected if there is a path from any firm to any other firm. The edge connectivity λ (G)

of a graph is the number of edges that need to be removed from the graph for it to become disconnected.

Formally,

λ (G) = min
{
|S| : S ⊆ E, and (V,E \ S) is disconnected

}
.

The graph depicted in Figure 1 has λ (G) = 1 because removing edge e12 severs firm 1 from the network.

A graph is k-edge-connected if λ (G) ≥ k. Equivalently, a k-edge-connected graph has at least k paths

between any two vertices (Menger, 1927). A k-edge-connected component (k-ECC) is a maximal subgraph

– the largest collection of vertices and edges in the original graph – that is k-edge-connected. Figure 1

has a single 3-ECC, the vertices of which are shaded red. Removing any two edges from the 3-ECC fails

to disconnect the graph, while removing the edges {e23, e24, e25} partitions the network into two separate
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connected components. Hence, this 3-ECC is not also a 4-ECC.

A tree is a connected graph for which there is a unique path between any pair of firms. A spanning tree is

any subset of a connected graph that contains all firms and is a tree. Kirchhoff’s matrix tree theorem states

that any cofactor of the unweighted Laplacian equals the number of spanning trees in a graph (Kirchhoff,

1847; Spielman, 2019). An implication of this result is that L(1) is guaranteed to be invertible – and hence,

ψ̂(1) computable – whenever the graph is connected.

The graph depicted in Figure 1 contains 16 spanning trees. One can use the matrix tree theorem to

verify this claim: computing the determinant of the matrix formed by deleting any row and column from

the unweighted Laplacian Lu will yield 16. However, all 16 of these trees contain the edge e12. Thus, we

can only pack a single spanning tree into this graph without having to share an edge.

The 3-ECC in Figure 1 also has 16 spanning trees but we can pack more than one edge-disjoint spanning

tree into this component. Two edge-disjoint trees that span the 3-ECC are depicted by the blue and red

lines. Clearly, we cannot pack a third spanning tree into this component as the two depicted trees consume

all of the available edges. Evidently, it is not always possible to pack k edge-disjoint spanning trees into an

k-ECC. We will return to this insight in Section 6, where tree packing is discussed in greater detail.

5 Trees and branches

Returning to the algebraic representation of the fixed effects estimator in (5), an important simplification

arises when B̄ has dimension J × (J − 1), which implies there are only J − 1 edges connecting the J firms.

An incidence matrix of this form represents a spanning tree. Hence, B̄(1) is a square invertible matrix and

L−1
(1) =

(
B̄

′
(1)

)−1

W̄
−1

B̄
−1
(1). Plugging this expression into (5) and simplifying reveals that the firm effects

estimator reduces in this case to

ψ̂(1) =
(
B̄

′
(1)

)−1 −→
∆.

Note that, relative to (5), the weighting matrix W̄ has disappeared, which reflects that the firm effects are

just-identified in this scenario. This interpretation is pursued at greater length in Kline (2025), where it is

shown that the fundamental restriction of the AKM model is that cycle sums of the average wage changes

−→
∆ ∈ RJ−1 must equal zero.

In general, when the mobility network is connected, B̄ can be partitioned into submatrices capturing

spanning trees and a set of “leftover” edges that fail to connect some of the firms. In particular, if M

spanning trees are capable of being packed into the mobility graph, with corresponding incidence matrices

T 1, . . . ,TM , then we can write B̄ =
[
T 1, . . . ,TM−1,T

+
M

]
, where T+

M appends columns to TM that capture
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any leftover edges. This set of incidence matrices
{
T 1, . . . ,TM−1,T

+
M

}
define our branches: each branch is

a subgraph of the data that connects all firms in the mobility network.

Removing the first row of B̄ yields B̄(1) =
[
T (1),1, . . . ,T (1),M−1,T

+
(1),M

]
. It is useful to also partition

−→
∆ =

(−→
∆ ′

1, . . . ,
−→
∆ ′

M

)′
and W̄ = diag

(
W̄ 1, . . . , W̄M

)
. We can now define branch-specific estimates

ψ̂(1),b =


(
T (1),bT

′
(1),b

)−1

T (1),b
−→
∆b if b < M(

T+
(1),MW̄M

(
T+

(1),M

)′)−1

T+
(1),MW̄M

−→
∆M if b =M

.

This representation reflects the earlier finding that the weights are irrelevant for trees. However, the weights

may matter for the last branch (b =M) because the graph may contain edges that are not a part of any

spanning tree. Including these leftover edges forms cycles – disjoint paths between vertices – on the subgraph

corresponding to the last branch. The inclusion of these cycles will tend to improve the precision of the last

branch relative to the others.

With all the edges assigned to a branch, no information in the microdata data is wasted. The following

proposition formally establishes that the full-sample OLS estimator ψ̂(1)can be written as a linear combination

of the branch-specific estimates
{
ψ̂(1),b

}M

b=1
.

Proposition 1. Suppose the mobility network is connected and contains M edge-disjoint spanning trees.

Then ψ̂(1) =
∑M

b=1 C(1),bψ̂(1),b, where each C(1),b is a (J − 1)× (J − 1) matrix and
∑M

b=1 C(1),b = I.

Proof. We can write

L(1) =

M−1∑
b=1

T (1),bW̄ bT
′
(1),b + T+

(1),MW̄M

(
T+

(1),M

)′
,

B̄(1)W̄
−→
∆ =

M−1∑
b=1

T (1),bW̄ b
−→
∆b + T+

(1),MW̄M
−→
∆M .

Now define

C(1),b =


L−1

(1)T (1),bW̄ bT
′
(1),b if b < M

L−1
(1)T

+
(1),MW̄M

(
T+

(1),M

)′
if b =M.

Hence,
∑M

b=1 C(1),b = L−1
(1)

(∑M−1
b=1 T (1),bW̄ bT

′
(1),b + T+

(1),MW̄M

(
T+

(1),M

)′)
= L−1

(1)L(1) = I.

For each b < M ,

L−1
(1)T (1),bW̄ b

−→
∆b =

[
L−1

(1)T (1),bW̄ bT
′
(1),b

]
ψ̂(1),b = C(1),bψ̂(1),b,
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while, for b =M ,

L−1
(1)T

+
(1),MW̄M

−→
∆M =

[
L−1

(1)T
+
(1),MW̄M

(
T+

(1),M

)′]
ψ̂(1),M = C(1),M ψ̂(1),M .

Hence,

ψ̂(1) = L−1
(1)B̄(1)W̄

−→
∆ =

M∑
b=1

C(1),bψ̂(1),b.

The matrix C(1),b can be shown to capture the relative precision of the branch-specific estimates relative

to the full-sample estimate when the wage errors are homoscedastic (Jochmans and Weidner, 2019). Thus,

ψ̂(1) can be thought of as a precision-weighted average of the branch estimates, albeit with the potential for

negative weights, as C(1),b is positive semi-definite but not diagonal.

Now letting

ψ̂ =
(
0, ψ̂′

(1)

)′
, ψ̂b =

(
0, ψ̂′

(1)b

)′
, Cb = diag

(
0,C(1),b

)
, and φb = Cbψ̂b,

Proposition 1 yields the additive decomposition introduced in (1):

ψ̂ =

M∑
b=1

φb.

This representation reveals that each φb measures the influence of a branch on the full-sample estimator. In

fact, one can show that each φb gives the branch sum of observation-level contributions to the recentered

influence function of the full-sample estimator. Since the {φb}Mb=1 are constructed from disjoint sets of

microdata, they are statistically independent, providing a transparent foundation for assessing uncertainty

in ψ̂.

Computation of φb =
(
0, φ′

(1),b

)′
is greatly aided by the observation that

φ(1),b =


L−1

(1)T (1),bW̄ b
−→
∆b if b < M

L−1
(1)T

+
(1),MW̄M

−→
∆M if b =M .

Each of these expressions is simply a least squares regression that is no more computationally expensive to

solve than the weighted least squares problem in (5).
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6 Building branches

The key challenge in constructing branch-specific estimates is building the incidence matrices T 1, . . . ,TM

corresponding to the graph’s spanning trees. Doing so requires first determining how many spanning trees

can be packed into the graph. The following result due to Nash-Williams (1961) and Tutte (1961) provides

a useful foundation for answering this question.

Theorem (Nash-Williams-Tutte, 1961). A graph G = (V,E) can pack M spanning trees if and only if, for

every partition {V1, . . . , Vr} of V into r ≥ 2 blocks, the number of edges connecting vertices in different blocks

is at least M (r − 1).

Intuitively, a spanning tree must cross any partition of the vertices to span the graph. The Nash-Williams-

Tutte theorem establishes that if there is a partition of the vertices that yields fewer thanM (r − 1) crossings,

then there must be fewer than M spanning trees capable of being packed into the graph. Conversely, if M

spanning trees can be packed into the graph, then the number of edges crossing any partition must be at

least M (r − 1)

The following corollary of the Nash-Williams-Tutte theorem provides us with bounds on the number

τ (G) of spanning trees capable of being packed into a graph in terms of its edge connectivity λ (G).

Corollary. The number τ (G) ∈ N of spanning trees that can be packed into a connected graph G = (V,E)

obeys ⌊λ (G) /2⌋ ≤ τ (G) ≤ λ (G), where ⌊·⌋ denotes the floor operator.

A proof of this corollary can be found in Kundu (1974). The upper bound τ (G) ≤ λ (G) follows

immediately from the theorem by setting the number of blocks r = |V |. The lower bound τ(G) ≥ ⌊λ(G)/2⌋

comes from a double-counting of edges across any r-way partition. Since each of the r blocks has at least

λ(G) edges leaving it, summing over all blocks counts each crossing edge twice. Hence, the total weight

associated with all partition crossings must be at least rλ(G)/2. In the case of Figure 1, this corollary tells

us that τ (G) ∈ [1, 3] in the graph’s 3-ECC. As the Figure illustrates, there are exactly two spanning trees

in that component.

In the prototypical worker-firm dataset, the edge connectivity is zero: there are usually multiple connected

components of firms. Since the work of Abowd, Creecy, and Kramarz (2002), the convention in the literature

has been to focus on the largest connected component of the mobility graph (i.e., the largest 1-ECC). Since

many of firms in the largest 1-ECC are connected by only a single edge, no more than one edge-disjoint

spanning tree can be packed into such graphs. The Nash-Williams-Tutte theorem suggests a reasonable way

to find multiple disjoint spanning trees is to narrow the scope of investigation from the largest 1-ECC to the

largest k-ECC for k > 1. Doing so requires first finding the largest k-ECC and then packing this subgraph.
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6.1 Finding the largest k-ECC

A key tool that facilitates finding a k-ECC is theGomory-Hu tree (Gomory and Hu, 1961), which is a weighted

tree on V . The edge weights of this tree provide the number of edges removals required to disconnect a pair of

vertices. Figure 2 provides the Gomory-Hu tree associated with the graph in Figure 1. The edge connecting

Firm 1 to Firm 2 has a weight of 1, reflecting that Firm 1 can be disconnected from the network by removing

e12. In contrast, disconnecting Firm 2 from Firm 3 would require removing three edges {e23, e24, e25}, which

is why the Gomory-Hu edge between these vertices has a weight of 3.

2

1 3

45

1 3

33

Figure 2: Gomory-Hu Tree of graph in Figure 1

A useful feature of Gomory-Hu trees is that the minimal edge weight on the path between any pair of

vertices (s, v) ∈ V × V gives the number of edge removals required to disconnect those vertices. As a result,

dropping all edges with weight less than k reveals the set of all k-ECCs.

For example, if we threshold the tree in Figure 2 at m = 2, we are left with a single 2-ECC formed

by the vertex set {2, 3, 4, 5}. Several algorithms exist for rapidly building the Gomory-Hu tree associated

with a graph. I will use an algorithm due to Gusfield (1990), implemented in the igraph package (Csárdi

and Nepusz, 2023), which has worst-case computational complexity of O
(
J4
)
.3 Once we have pruned the

Gomory-Hu tree, we can select the k-ECC with the most vertices.

6.2 Packing a k-ECC

Once the largest k-ECC has been found, we would like to extract as many edge-disjoint spanning trees from

the graph as possible. This is known as the tree-packing problem. Formally, the tree packing problem is an

integer linear programming (ILP) problem that can be expressed as follows:

3For very large graphs, building the full Gomory-Hu tree will be excessively costly. In those settings, one can work with
an approach due to Nagamochi and Ibaraki (1992a) and Nagamochi and Ibaraki (1992b) that avoids computing the entire tree
and directly finds the k-ECC.
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max
x

∑
T∈T

xT

s.t.
∑
T∋e

xT ≤ 1 ∀ e ∈ E,

xT ∈ {0, 1} ∀T ∈ T ,

where T is the collection of all trees in the graph and xT is an indicator for whether tree T ∈ T is chosen.

The matrix tree theorem tells us that |T | can grow exponentially with the scale of the graph, making direct

enumeration infeasible.

Rather than tackle the ILP directly, I rely on an iterative approach proposed by Roskind and Tarjan

(1985). Their algorithm requires pre-specifying the number M > 1 of edge-disjoint spanning trees that one

is seeking to extract from a k-ECC. When M ≤ τ (G), the procedure is guaranteed to exactly M trees. In

contrast, greedily extracting trees sequentially (e.g., via Kruskal’s algorithm) may fail to find τ (G) trees.

An example is provided in Appendix A:.

The Roskind-Tarjan algorithm, which is implemented in SageMath, is well suited to large graphs, ex-

hibiting computational complexity O
(
J2M2

)
. If we apply the algorithm to a k-ECC, then the Corollary

assures us that we will be able to find at least ⌊k/2⌋ trees.

6.3 A “prune and pack” algorithm

Algorithm 1 provides a sketch of the composite procedure for pruning to the k-ECC and extracting the

disjoint spanning trees.

Algorithm 1: Pack k-ECC

1 Fix a k ∈ N
2 Drop all vertices with degree <k. Drop all but largest connected component. Repeat until no more

vertices dropped.
3 Build a Gomory-Hu tree. Remove all tree edges with weight < k, then take the largest connected

component.
4 Initialize M = ⌊k/2⌋. While Roskind-Tarjan returns M disjoint spanning trees, increment M ,

stopping when no more spanning trees can be found.

Step 2 of this algorithm is a screen that exploits the fact that a vertex with degree < k cannot be a

member of the k-ECC. The graph’s connected subgraph of a network with degree ≥ k is known as the

“k-core.” Step 3 searches within the k-core for the k-ECC. In step 4, we first try M = ⌊k/2⌋, and then

explore higher values of M until no more trees can be found or we reach the upper bound of k.
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7 Empirical application

I now turn to analyzing an extract of the benchmark Veneto dataset that was also studied in Kline, Saggio,

and Sølvsten (2020) and Kline (2025). The extract is comprised of 1,859,459 person-year observations

from the years 1999 and 2001. The largest connected component contains 73,933 firms and 747,205 workers,

197,572 of whom switch employers between the two years. The worker moves between these two years involve

150,417 ordered origin-destination pairs |P|. Exactly 1,500 pairs of firms have flows in both directions. Hence,

the mobility network formed by these pairs is compromised of |E| =150,417-1,500=148,917 undirected edges.

Note that the average number of movers per edge is quite low as 197,572/148,917≈1.3. Thus, branching

firm effect estimates based upon undirected edges is likely to provide a reasonable approximation to what is

possible when treating each individual worker move as an edge. This is fortunate, as packing spanning trees

into multi-edge graphs turns out to be significantly more complex than packing them into simple graphs

(Barahona, 1995).

Table 1 reports the results of pruning the mobility graph to the largest k-ECC for different choices of k

as in Algorithm 1.

k 1 2 3 4 5 6

Firms in k-core 73,933 41,093 21,570 11,145 5,682 3,128
Firms in k-ECC (J) 73,933 41,054 21,565 11,145 5,682 3,128
Edges in k-ECC (|E|) 148,917 116,026 80,561 51,824 31,677 19,796
Movers in k-ECC (N) 197,572 158,149 114,717 78,908 53,131 36,903
Spanning Trees (M) 1 1 2 3 3 4

Table 1: Network properties of k-ECCs

The size of the k-core contracts rapidly with k, reflecting that most firms have low degree. To some

extent this phenomenon is an artifact of studying mobility over only a 2-year horizon. However, adding

further years of mobility data may introduce new firms that only contain a single edge, which could actually

lower the average degree of the network. An interesting approach for future work would be to fix a set of

firms of interest in a base year and “infill” the edges between them with additional years of mobility data.

The sparse nature of the Veneto network makes the k-core a very close approximation to the largest

k-ECC. While this finding need not generalize to larger, or more densely connected, networks, these patterns

suggest the k-core is likely to provide a useful starting guess for the k-ECC in larger graphs where full

computation of a Gomory-Hu tree would be impractical. In truly massive graphs, it may be advisable to

simply pack spanning trees into the k-core via the Roskind-Tarjan algorithm rather than refining to the

largest k-ECC.

In the Veneto data, pruning the sample to the 2-ECC leads to the loss of about 44% of the firms but
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fails to yield a second spanning tree. The Nash-Williams-Tutte theorem suggests we should not be surprised

by this finding as a 2-ECC can have at most 2 spanning trees. The 3-ECC, which retains about 29% of

the firms but 58% of the movers in the original graph, does contain a second spanning tree. A third tree is

found in the 4-ECC, which has 15% of the firms and 39% of the movers in the original graph. A fourth tree

emerges with the 6-ECC, which contains only 4% of firms but 17% of the movers in the original graph.

It is interesting to compare these sample dimensions to what one would obtain by randomly splitting the

sample at the mover level. To build this benchmark, I randomly assign each worker to one of M splits with

equal probability, varying M from one to four. In each split, I calculate the largest connected component

and then intersect the vertex set of those components across splits to arrive at the number of firms for which

M independent unbiased estimates can be computed. Table 2 reports the results of repeating this process

500 times.

Splits (M) 1 2 3 4

Number of firms
25th Percentile 73,933 28,680 13,034 6,537

Median 73,933 28,737 13,077 6,576
75th Percentile 73,933 28,797 13,127 6,607

Overlap across simulations
25th Percentile 73,933 22,745 9,328 4,482

Median 73,933 22,804 9,366 4,509
75th Percentile 73,933 22,861 9,406 4,536

Table 2: Firm effects estimable in each of M random splits (500 simulations)

Splitting the sample in half yields a pair of independent estimates for roughly one third of the firms. A

three-way split yields three estimates for roughly 18% of firms. A four-way split yields four estimates for

about 9% of firms. While little variability emerges across the 500 simulation draws in the number of firms

for which M estimates can be computed, the composition of these sets of firms varies considerably. The

bottom panel of the table reports quantiles of the degree of overlap in the sets of firms for whichM estimates

can be computed across all
(
500
2

)
pairs of simulations. The table reveals that reshuffling a split into M = 2

groups would yield less than 22,804 firms in common with the previous split half of the time. Likewise,

re-randomizing a three-way split would yield less than 9,366 of the firms present in a previous random split

half of the time.

Comparing these findings to Table 1 reveals that randomly splitting workers into M groups yields more

firms withM estimates than does pruning to the largest k-ECC withM trees. For example, the largest 3-ECC

has 21,565 firms, while randomly assigning workers to one of two splits yields a median of 28,737 firms with

two independent estimates. This discrepancy suggests that there exist subgraphs of the largest 2-ECC that

strictly nest the largest 3-ECC yet contain two edge-disjoint spanning trees. How to systematically explore
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the space of such intermediate subgraphs is an interesting question. For example, one could potentially

append pruned edges to the branches of the 3-ECC, growing the size of the network in way that ensures

each branch connects the same set of vertices. I leave such investigations to future research.

While random splitting delivers independent estimates for more firms, a major advantage of the pruning

and packing strategy is that the target population is deterministic. Another advantage is that the full sample

estimator decomposes linearly into M branch-specific estimates, which facilitates uncertainty quantification.

In contrast, the random splitting approach yields a full-sample estimator that includes a fixed effect for every

firm in the union of the M connected sets. While some of these parameters have M independent estimates,

others have may have only a single estimate, which hinders uncertainty quantification even when ignoring

the randomness in the split itself.

The next subsections illustrate how branches constructed from packing k-ECC’s can be put to work. In

what follows, I compute the full-sample estimator ψ̂ for each k-ECC using the adjusted wage changes ∆̂

between origin-destination pairs described in Kline (2025), which only adjust for a year fixed effect. Note

that each of the 197,572 worker moves contribute to at most one of these wage changes, implying the entries

of ∆̂ are mutually independent. To facilitate computation, the vector ∆̂ is collapsed to a shorter vector of

oriented wage changes
−→
∆, which is then used to construct the branch-specific estimates ψ̂b and φb. While

the methods described in the next subsection only apply to branches, the approaches in Sections 7.2 and 7.3

can just as easily be applied to estimates constructed from random splits.

7.1 Quantifying uncertainty

The arguments of Section (2) suggest estimating the variance matrix Σ of the vector ψ̂ of full-sample firm

effect estimates with

Σ̂ =
1

M − 1

M∑
b=1

∑
ℓ<b

(φb − φℓ) (φb − φℓ)
′
.

To illustrate the potential usefulness of this matrix, I consider the projection of ψ onto the matrix

X = [1, ln f ], which consists of an intercept and the logarithm of average firm size across the two time

periods. The second entry of γ = S−1
xxX

′ψ, which I will denote γ(1), approximates the elasticity of firm wage

effects with respect to firm size.

As documented in Bloom et al. (2018) and Kline (2025) firm wage effects do not seem to be linear in log

firm size, instead exhibiting a concave relationship in which the largest firms exhibit wages effects roughly

equivalent to or lower than their slightly smaller peers. Consequently, this linear projection will not coincide

exactly with the conditional expectation function. Nonetheless, the plug-in estimator γ̂ = S−1
xxX

′ψ̂ remains

unbiased for the projection coefficient γ conditional on the covariates X, which we treat as fixed.
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The branch-based estimator of the variance of the projection coefficients is:

V̂branch [γ̂] = S−1
xxX

′Σ̂XS−1
xx .

It is instructive to compare this unbiased variance estimator to the naive standard errors that come from

treating the entries of ψ̂ as mutually independent in a second-step regression:

V̂HC0 [γ̂] = S−1
xx

(
X ⊙

(
ψ̂ −X γ̂

))′ (
X ⊙

(
ψ̂ −X γ̂

))
S−1

xx .

While V̂HC0 [γ̂] is robust to misspecification of the conditional expectation function, it neglects dependence

between the estimated firm effects, which can lead to large biases in either direction.

Table (3) reports the estimated projection coefficients, the two sets of standard errors, and the mean firm

size in each k-ECC. As k grows larger, the sample is restricted to larger firms, which tend to have greater

degree in the mobility network. The estimated projection coefficient declines substantially with firm size,

reflecting that the relationship between firm wage effects and log firm size is concave.

k 1 2 3 4 5 6

Full-sample estimate (γ̂(1)) 0.0446 0.0329 0.0235 0.0199 0.0191 0.0209

Standard error (V̂branch

[
γ̂(1)

]1/2
) - - 0.0080 0.0045 0.0084 0.0091

Naive std err (V̂HC0

[
γ̂(1)

]1/2
) 0.0009 0.0010 0.0013 0.0018 0.0023 0.0032

Mean firm size 13.6 21.6 34.6 55.1 88.0 131.6

Table 3: Elasticity of firm wage effects with respect to firm size

A researcher relying on naive two-step standard errors might feel quite confident about the likely value

of the projection slope in each sample, with t-ratios ranging from roughly 7 to 50. However, the standard

errors of the projection based on branches are several times larger, yielding t-ratios ranging from 2.3 to 2.9.

Some of the increase in the branch-based standard errors over their naive counterparts may reflect mis-

specification of the AKM model. If each branch estimator ψ̂b is unbiased for a slightly different target

parameter ψ + ξb, then one can show that Σ̂ measures the composite variance in ψ̂ one would face if

the branches were themselves randomly sampled with equal probability. Though branches have not been

randomly sampled here, this heuristic may nonetheless be helpful for assessing which results are likely to

generalize to other environments. I leave the study of branch-based estimators under misspecification to

future work.
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7.2 Moment estimation

Moments of firm effects are a common summary statistic that have long played an important role in the

literature. Since the firm effects ψ are only identified up to a location shift, it is traditional to report centered

moments as in Abowd, Kramarz, and Margolis (1999). Researchers typically weight these central moments

by activity measures such as firm size.

Let ω ∈ RJ
≥0 be a vector of firm weights that sums to one (1′ω = 1). For any ℓ ≥ 2, we can write the

plug-in estimator of the ℓ’th central weighted moment of firm effects as

µ̂ℓ,PI = ω′
(
ψ̂ − ω′ψ̂1

)◦ℓ
,

where the ◦ℓ superscript denotes raising the entries in a vector to the ℓ’th power element-wise. Generalizing

the approach suggested in Section 2, I use branches to construct the corresponding unbiased estimator:

µ̂ℓ =

(
M

ℓ

)−1 ∑
(b1,...,bℓ)∈B

ω′
(
ψ̂b1 − ω′ψ̂b11

)
⊙ · · · ⊙

(
ψ̂bℓ − ω′ψ̂bℓ1

)
,

where B =
{
(b1, . . . , bℓ) : 1 ≤ b1 < · · · < bℓ ≤ M

}
is the set of all combinations of ℓ distinct branches.

Note that, when M = 2, µ̂2 is the covariance estimator used in split sample approaches. When M > 2, µ̂2

averages across covariance matrices formed by all possible sample splits. When ℓ > 2, higher-order products

are taken.

k 1 2 3 4 5 6

Std dev (σ =
√
µ2)

Plug-in 0.2215 0.1951 0.1841 0.1794 0.1751 0.1756
Branches - - 0.1591 0.1669 0.1917 0.1555

Skew
(
µ3/σ

3
)

Plug-in -0.8332 -0.7403 -0.8223 -0.8507 -0.7198 -0.6998
Branches - - - -1.217 -0.7911 -0.7368

Kurtosis
(
µ4/σ

4
)

Plug-in 7.309 5.824 6.137 6.191 5.776 5.416
Branches - - - - - 6.617

Table 4: Moments of firm effects (size-weighted)

Table 4 reports plug-in and branch-based estimates of moments of the firm effects weighting by total

firm size across the two periods. The plug-in estimates of the standard deviation are upward biased due

to sampling error (Andrews et al., 2008). The branch-based estimates suggest this bias is fairly mild. For

example, in the 3-ECC, we find
√
µ̂2,PI −

√
µ̂2 = .025. This finding is broadly in line with the results of

Kline, Saggio, and Sølvsten (2020) who report a plug-in standard deviation of 0.189 and a bias-corrected
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standard deviation of 0.155 in a closely related sample.4

Note that for k = 5 we find µ̂2 > µ̂2,PI , which may reflect noise in both the plug-in and covariance based

estimates. In general, the unbiased branch-based estimators need not respect logical constraints on the pa-

rameter space. For instance, µ̂2 can take on negative values. To rule such behavior out, one can impose con-

straints in a second step, for example, by considering biased estimators of the form min {max {0, µ̂2} , µ̂2,PI}.

As described in Appendix B:, when four or more branches are present, it becomes possible to estimate the

variance of the second moment estimator µ̂2 by exploiting the covariance between disjoint pairs of differences

in the branch-specific estimates. Applying this variance estimator to the 6-ECC yields a standard error on

µ̂2 of 0.0014. Thus, the ratio of µ̂2 to its standard error yields a z-score of (.1555)2/.0014 ≈ 17, suggesting

the standard deviation σ is estimated quite precisely. A similar finding was reported by Kline, Saggio, and

Sølvsten (2020, Table IV), who obtained a standard error of 0.0006 on a closely related estimator of µ2,

yielding a z-score of roughly 40.

The precision with which µ̂2 is estimated suggests that it can safely be used to scale the estimates of

higher-order moments without inducing weak identification problems. The scaled higher moment estimates in

Table 4 suggest that the size-weighted distribution of firm effects exhibits a mild left skew. The four branches

of the 6-ECC allow us to estimate the sized-weighted fourth moment. While a normal distribution would

exhibit a kurtosis of 3, the branch-based estimate of kurtosis is 6.2, indicating heavy tails. Evidently, there

are more very low and very high paying firms than one would surmise based upon a Gaussian benchmark.

Table 5 reports moment estimates that weight all firms equally (i.e., ω = 1/J). While the results are quite

similar, the discrepancies between the plug-in and branch-based estimates are somewhat larger, reflecting

that greater weight is being put on small firms that are less connected in the mobility network.

k 1 2 3 4 5 6

Std dev (σ =
√
µ2)

Plug-in 0.3088 0.2223 0.188 0.1774 0.175 0.1792
Branches - - 0.1315 0.1325 0.1696 0.1642

Skew
(
µ3/σ

3
)

Plug-in -0.573 -0.5504 -0.6029 -0.8343 -0.9726 -1.077
Branches - - - -1.873 -1.255 -1.856

Kurtosis
(
µ4/σ

4
)

Plug-in 6.156 5.171 5.43 5.771 5.899 5.663
Branches - - - - - 5.164

Table 5: Moments of firm effects (equally weighted)

In the 6-ECC, the discrepancy
√
µ̂2,PI −

√
µ̂2 remains small because this set of large firms exhibits

4The Kline, Saggio, and Sølvsten (2020) estimates pertain to a sample under which the mobility graph remains connected
whenever any individual mover is removed. This sample should be thought of as lying between the 1-ECC and the 2-ECC as
each undirected edge may involve one or more movers.
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degree of at least six, leading to precise estimates. Confirming this impression, the variance estimator

described in Appendix B: yields a standard error for µ̂2 under this weighting scheme of 0.0015, which differs

negligibly from the standard error found for the earlier estimator utilizing firm-size weights. The z-score of

(.1642)
2
/.0015 ≈ 18 again suggests the standard deviation σ is estimated with great precision. Relative to

the firm size weighted results, the left skew in the equally weighted distribution of firm effects is stronger

but the kurtosis is less pronounced. These discrepancies may indicate that the right tail of the firm effect

distribution is populated by very large firms.

7.3 Shrinkage

It is often of interest, either for forecasting or policy targeting purposes, to construct a best predictor of

the firm effects ψ based upon the full-sample estimates ψ̂. Standard empirical bayes shrinkage arguments

are predicated on the assumption that the distribution of noise is known ex-ante (Walters, 2024). Given

that the number of movers per edge is only 1.3, we cannot appeal to a central limit theorem to defend

a Gaussian approximation to the noise in the branch-specific estimates
{
ψ̂b

}M

b=1
. It turns out, however,

that independence across branches facilitates the construction of optimal predictors via standard regression

methods that remain valid regardless of the noise distribution.

To understand the basic logic of this argument, consider the case where M = 2. Let ψ̂bj denote the

j’th entry of ψ̂b and ψj the j’th entry of ψ. Now consider a random effects model wherein ψj
i.i.d∼ G and

ψ̂b | ψ ∼ Fb, with Fb obeying EFb

[
ψ̂b

]
= ψ. By iterated expectations,

E
[
ψ̂2j | ψ̂1j

]
= E

[
E
[
ψ̂2j | ψj , ψ̂1j

]
| ψ̂1j

]
= E

[
E
[
ψ̂2j | ψj

]
| ψ̂1j

]
= E

[
ψj | ψ̂1j

]
,

where the second equality follows by independence of the branch measurement errors. Thus, a regression of

the estimates in one branch on those from another yields a minimum mean squared error optimal predictor

of the latent firm effect regardless of the noise distributions {F1, F2}. Importantly, this result holds under

arbitrary patterns of heteroscedasticity, both across and within branches.

Figure 3 illustrates this idea using the two branches in the 3-ECC. Each panel depicts estimates of

E
[
ψ̂bj | ψ̂ℓj = x

]
≡ mb (x) via the binscatter methods described in Cattaneo et al. (2024). In both panels,

a second-order global polynomial approximation m̂b (x) to mb (x) appears to fit well. Note that the scale of

the x-axis differs across the two sub-panels, reflecting that the entries of ψ̂2 are generally less variable than

the corresponding entries of ψ̂1. This is an artifact of the second branch utilizing leftover edges that add

additional information about the firm effects.
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(a) E
[
ψ̂2j | ψ̂1j

]
(b) E

[
ψ̂1j | ψ̂2j

]

Figure 3: Binscatters of polynomial fit to opposite branch

It is clear from the figure that the slope d
dxm̂b (x) is less than one for both branches b ∈ {1, 2}, which

is an example of the usual shrinkage phenomenon in optimal prediction with noisy measurements. Rather

than rely on one predictor or the other, it makes sense to average them. For any j, an improved predictor

of ψj is the average m̄
(
ψ̂1j , ψ̂2j

)
= 1

2m̂1

(
ψ̂2j

)
+ 1

2m̂2

(
ψ̂1j

)
.

This idea generalizes to the case with more than two branches by regressing the elements of each branch

estimate on the corresponding entries of all remaining branches. For example, with M = 3, one would esti-

mate the functions E
[
ψ̂b1j | ψ̂b2j = x2, ψ̂b3j = x3

]
≡ mb1 (x2, x3) across all three distinct triples of branches

(b1, b2, b3) ∈ {1, 2, 3} : b1 ̸= b2 ̸= b3. The resulting average prediction across branches can be written

m̄
(
ψ̂1j , ψ̂2j , ψ̂3j

)
=

1

3
m̂1

(
ψ̂2j , ψ̂3j

)
+

1

3
m̂2

(
ψ̂1j , ψ̂3j

)
+

1

3
m̂3

(
ψ̂1j , ψ̂2j

)
.

Note that if the noise in the branches were identically distributed it would necessarily be the case that

m1 (x2, x3) = m2 (x2, x3) = m3 (x2, x3), in which case one might as well collapse the left out branch estimates

down to their mean, and estimate the pooled leave-out conditional expectation function E
[
ψ̂b1j | ψ̂b2j + ψ̂b3j = x

]
.

A recent paper by Ignatiadis et al. (2023) establishes that it is possible to improve on such collapsed

estimators when the noise in each branch is identically distributed and non-Gaussian. Their proposal involves

regressing the estimates in each branch b on sorted values of the estimates in all other branches. In the case of

M = 3 branches, one would first regress ψ̂1j on min
{
ψ̂2j , ψ̂3j

}
and max

{
ψ̂2j , ψ̂3j

}
to estimate the function

E
[
ψj | min

{
ψ̂2j , ψ̂3j

}
= x,max

{
ψ̂2j , ψ̂3j

}
= x̄

]
≡ h1 (x, x̄). Next, ψ̂2j is regressed on min

{
ψ̂1j , ψ̂3j

}
and

max
{
ψ̂1j , ψ̂3j

}
to estimate h2 (x, x̄). Finally, ψ̂3j is regressed on min

{
ψ̂2j , ψ̂3j

}
and max

{
ψ̂2j , ψ̂3j

}
to

estimate h3 (x, x̄). Averaging these three cross-branch fits
(
ĥ1, ĥ2, ĥ3

)
yields the AURORA estimator h̄,

which Ignatiadis et al. (2023) show performs nearly as well as an oracle that knows the noise distribution.
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The rationale for using sorted values as regressors stems from the observation that order statistics are

sufficient for iid samples. In the present setting, the noise distribution likely differs across branches, which

may undermine the advantages of relying on order statistics.

Table 6 summarizes the results of a forecasting exercise in which the first three branch estimates(
ψ̂1, ψ̂2, ψ̂3

)
of the 6-ECC are used to form best predictors of ψ. I compute both the AURORA esti-

mator and the simpler regression based estimator m̄
(
ψ̂1j , ψ̂2j , ψ̂3j

)
that ignores the order of the estimates.

The conditional expectation functions {m̂b}3b=1 and
{
ĥb

}3

b=1
underlying these approaches are computed via

non-parametric series regressions on B-spline bases tuned by cross-validation using Stata’s npregress func-

tion. For comparison, I also report the naive predictor ψ̄ =
(
ψ̂1 + ψ̂2 + ψ̂3

)
/3, which serves as an unshrunk

benchmark. To assess the quality of these forecasts, the predictions are compared to ψ̂4, which should be

unbiased for ψ. For each predictor ψ̇ ∈
{
ψ̄, m̄, h̄

}
, the mean squared error of the prediction is computed as

MSE
(
ψ̂4, m̂

)
=
(
ψ̂4 − ψ̇

)′ (
ψ̂4 − ψ̇

)
/J .

Naive
(
ψ̄
)

Ignore order (m̄) AURORA
(
h̄
)

MSE 0.129 0.041 0.042

Table 6: Predicting ψ̂4 using
(
ψ̂1, ψ̂2, ψ̂3

)

As expected, the naive predictor incurs a large MSE because of the noise in the branches. Relative

to this benchmark, both the AURORA estimator and its alternative that ignores order yield dramatic

improvements due to shrinkage. However, the order statistic approach does not appear to convey any

advantage over the simpler approach based on levels. Whether the disappointing performance of AURORA

is primarily attributable to heteroscedasticity across branches or other factors (e.g., nearly Gaussian noise)

is an interesting question for future research.

8 Conclusion

As these examples illustrate, branches can dramatically simplify the work of parsing signal from noise in

fixed effects estimates. By quantifying uncertainty, branches also enable advanced downstream tasks such

as moment estimation and shrinkage that form key aspects of the empirical bayes toolkit (Walters, 2024).

More generally, breaking over-identified estimates down into simpler branches is appealing on trans-

parency grounds. In this analysis, the branches corresponding to trees of the mobility graph are simple

linear transformations of the cell means. In addition to demystifying the origin of the full-sample estimates

being reported, branches may be useful for assessing the degree to which over-identifying restrictions are

violated in practice, a topic that I leave for future work.
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As our discussion of the Nash-Williams-Tutte theorem revealed, the number of branches that can be

extracted from a dataset depends crucially on the edge connectivity of the mobility network. The findings

reported here suggest that a useful approximation to a k-ECC can be had from a networks’ k-core. In

many settings (e.g., studies of migration, bilateral trade, or friendship networks) the average degree of graph

vertices is very high, which should enable the extraction of dozens of branches without substantial pruning of

the network. The development of algorithms capable of rapidly extracting all spanning trees from enormous

datasets with high degree is an interesting area for future research.
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Appendix A: An example where greedy extraction fails

This appendix gives an example of how the order in which spanning trees are extracted from a graph can

influence the total number of trees packed. The graph depicted in Figure A.1 has 6 vertices and 30 edges.

Note that every vertex has degree 5. Hence, this is a 5-ECC. By the Nash-Williams-Tutte theorem, the graph

must contain at least ⌊5/2⌋ = 2 trees. As we will see, however, this graph’s actual tree packing number,

τ (G), is 3.

(a) A greedy packing

1

2

3

4

5

6

(b) A complete packing

1

2

3

4

5

6

Figure A.1: Two attempts to pack the same graph

The perils of greedy sequential extraction are depicted in panel (a), which shows a possible choice of two

initial spanning trees that have been colored blue and red. The remaining edges fail to connect vertex 1,

implying no remaining trees can be extracted after these two have been removed. Panel (b) demonstrates

that, in fact, three edge-disjoint spanning trees that can be packed into the graph. While the three shaded

trees depicted are not unique, applying the Roskind-Tarjan algorithm to this 5-ECC with M = 3 would

ensure that three spanning trees are found.
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Appendix B: Estimating the variance of µ̂2

The unbiased second central moment estimator described in Section 7.2 can be written

µ̂2 =

(
M

2

)−1

ω′

(
M∑
b=1

∑
ℓ<b

µ̂2,b,ℓ

)
,

µ̂2,b,ℓ =
(
ψ̂b − ω′ψ̂b1

)
⊙
(
ψ̂ℓ − ω′ψ̂ℓ1

)
.

From independence across branches we have

V [µ̂2] =

(
M

2

)−2

ω′V

[
M∑
b=1

∑
ℓ<b

µ̂2,b,ℓ

]
ω

=

(
M

2

)−2

ω′

{
M∑
b=1

∑
ℓ<b

V [µ̂2,b,ℓ] + 2

M∑
b1=1

∑
b2<b1

∑
b3<b2

(
E
[
µ̂2,b1,b2 µ̂

′
2,b1,b3

]
+ E

[
µ̂2,b1,b2 µ̂

′
2,b2,b3

])}
ω.

Because each of the
(
M
2

)
terms µ̂2,b,ℓ is independent except when they share a branch, this variance expression

separates into two parts: the variance of any single µ̂2,b,ℓ, and the covariance of two such terms when they

overlap in exactly one branch. The first sort of term can be estimated by examining the covariance of disjoint

pairs (b1, b2) and (b3, b4) as

E
[
(µ̂2,b1,b2 − µ̂2,b3,b4) (µ̂2,b1,b2 − µ̂2,b3,b4)

′]
= V [µ̂2,b1,b2 ] + V [µ̂2,b3,b4 ] .

The covariance terms can be estimated directly by their sample counterparts.

Averaging these estimated terms together yields an unbiased estimator for the variance of µ̂2:

V̂ [µ̂2] =

(
M

2

)−2

ω′V̂ ω,

V̂ =
1

3
(
M
4

) ∑
b1>b2, b3>b4

(b1,b2)∩(b3,b4)=∅

(µ̂2,b1,b2 − µ̂2,b3,b4) (µ̂2,b1,b2 − µ̂2,b3,b4)
′

+
2

J

∑
1≤b3<b2<b1≤M

(
µ̂2,b1,b2 µ̂

′
2,b1,b3 + µ̂2,b1,b2 µ̂

′
2,b2,b3

)
.

As the
(
M
4

)
term in this formula reveals, constructing V̂ [µ̂2] requires M ≥ 4.
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