Firms and Labor Market Inequality: A Review

David Card, Ana Rute Cardoso, Joerg Heining, Patrick Kline

November 2015

Motivation

- Well known that firms exhibit substantial heterogeneity in productivity
 - Syverson (2004): 90-10 TFP ratios in US manufacturing ≈ 2 (within 4-digit industry!)
 - ullet Hseih and Klenow (2009): 90-10 ratios in India/China pprox 4.
- How does that heterogeneity influence wage inequality?
- Facts:
 - Firms/plants exhibit substantial dispersion in average wages (Slichter, 1950; Davis and Haltiwanger, 1991; Groshen, 1991)
 - Between firm/plant dispersion increasing (CHK, 2013; Song et al., 2015)
 - Trends in productivity dispersion track trends in wage inequality (Faggio et al., 2010; Barth et al., 2015)

Figure 1: Trends in Between-Establishment Dispersion in Wages and Productivity

Sorting or Firm Wage Premia?

- Neoclassical models: firm heterogeneity influences who you hire, not what you pay them!
 - Industry wage premium wars (Krueger and Summers, 1989; Katz and Summer, 1988; Murphy and Topel, 1987)
- Can we get to the bottom of this w/ longitudinal E-E data?
- Two literatures address sorting concerns:
 - "Rent sharing" lit: effect of shock to firm on wages of stayers
 - "Firm movers" lit: effect of switching between firms on wages

Today

- Review empirical literatures on rent sharing and firm movers
- Rent-sharing elasticities:
 - "Micro" estimates clustered in range 0.05-0.15
 - But room for more work w/ quasi-experimental design
- Firm movers studies:
 - Wage effects of firm moves surprisingly well characterized by additive model
 - \bullet Firm wage effects explain ${\sim}20\%$ of wage variance
 - Firm effs strongly related to productivity measures
 - But still some outstanding technical problems

Today

- Develop a model of imperfect labor market competition capable of rationalizing findings:
 - Full information about jobs
 - Firms differentiated by TFP and workplace amenities
 - Heterogeneous preferences over amenities lead to upward sloping supply to firm

Main insights:

- AKM-style decomposition into worker and firm heterogeneity within broad skill groups
- Plausible rent-sharing elasticities
- Rising heterogeneity across firms ⇒rising wage inequality
- New predictions regarding relationship between skill group specific wage premia and employment shares
- Also: "SBTC shocks"

Rent Sharing Literature

Basic idea:

$$\Delta \ln w_{it} = \alpha + \beta \Delta \ln Rent_{J(i,t)t} + \varepsilon_{it}$$

- Problems:
 - How to measure "rents"?
 - Want firm- (not industry-) level variation
 - Measurement error and transitory / permanent distinction
 - Mechanical negative relationship between some measures of Rent_{it} (e.g. profits) and wages
 - Stayers non-randomly selected?

Measuring Rents

- Interested in how firm's "ability to pay" affects wages, so treat (revenue-based) TFP as "ideal" forcing variable
- Standard CRTS model:

$$\pi_{j} = VA_{j} - w_{j}N_{j} - r_{j}K_{j},$$

$$VA_{j} \equiv R_{j} - M_{j} = P_{j}T_{j}f(N_{j}, K_{j}) = P_{j}T_{j}N_{j}g(k_{j})$$

• Suppose $k_j = k^*$. Then:

$$\ln\left(\frac{VA_{j}}{N_{j}}\right) = \ln TFP_{j} + \ln g\left(k^{*}\right)$$

• Suppose also that $\frac{M_j}{R_i} = m^*$. Then:

$$\ln\left(\frac{R_j}{N_i}\right) = \ln TFP_j + \ln g(k^*) - \ln(1-m^*).$$

Measuring Rents

• de Menil (1971) firm and worker split "quasi-rent":

$$Q_j = VA_j - w_i^a N_j - r_j K_j$$

Average quasi-rent:

$$\frac{Q_{j}}{N_{j}} = TFP_{j}g(k^{*}) - w_{j}^{a} - r_{j}k^{*}$$

Can show:

$$\frac{\partial \ln(\frac{Q_j}{N_j})}{\partial \ln TFP_j} = \frac{\partial \ln(\frac{\pi_j}{N_j})}{\partial \ln TFP_j} = \frac{VA_j/N_j}{Q_j/N_j} \approx 2$$

• Bottom line: sales / VA elasticities \approx 2× quasi-rent / profit elasticities

Summary of Estimated Rent Sharing Elasticities - Preferred Specifications, Adjusting to TFP Basis

(:	1. Christofides and Oswald (1992)	0.140	(0.035)
Industry-Level 4	2. Blanchflower, Oswald, Sanfey (1996)	0.060	(0.024) Mean=0.16
Profit Measure	3. Estevao and Tevlin (2003)	0.290	(0.100)
(4	4. Abowd and Lemieux (1993)	0.220	(0.081)
Firm-Level	5. Van Reenen (1996)	0.290	(0.089)
Profit but	5. Hildreth and Oswald (1997)	0.040	(0.010) Mean=0.15
	7. Hildreth (1998)	0.030	(0.010)
Wicali Wage	3. Barth et al (2014)	0.160	(0.002)
	9. Margolis and Salvanes (2001), France	0.062	(0.041)
g	9. Margolis and Salvanes (2001), Norway	0.024	(0.006)
-	10. Arai (2003)	0.020	(0.004)
-	11. Guiso, Pistaferri, Schivardi (2005)	0.069	(0.025)
-	12. Fakhfakf and FitzRoy (2004)	0.120	(0.045)
-	13. Caju, Rycx, Tojerow (2009)	0.080	(0.010)
Firm-Level 2	14. Martins (2009)	0.039	(0.021)
Profit and	15. Guertzgen (2009)	0.048	(0.002) Mean=0.08
Indiv. Wage	16. Cardoso and Portela (2009)	0.092	(0.045)
-	17. Arai and Hayman (2009)	0.068	(0.002)
-	18. Card, Divincienti, Maida (2014)	0.073	(0.031)
-	19. Carlsson, Messina, and Skans (2014)	0.149	(0.057)
2	20. Card, Cardoso, Kline (2014), Between Firm	0.156	(0.006)
2	20. Card, Cardoso, Kline (2014), Stayers	0.049	(0.007)
	21. Bagger et al. (2014), Mfg	0.090	(0.020)

Table 1: Summary of Estimated Rent-Sharing Elasticities

Study	Design Features	Measure of Profitability	Elasticity
A. Industry-Level Profit Measures			
1. Christofides and Oswald (1992)	Canadian union contracts; 120 narrowly defined manufacturing industries	Industry profits/worker (wage changes)	0.07
2. Blanchflower, Oswald, Sanfey (1996)	US individual wage data (CPS), grouped to industryxyear cells; manufacturing only	Industry profits/worker (within-industry changes)	0.01-0.06
3. Estevao and Tevlin (2003)	US manufacturing industry data; adjusted for labor quality; instrument for value-added = demand shocks in downstream sectors	Value added per worker (first differences)	0.29
		Profit per worker (first differences)	0.14
B. Firm-Level Profit Measures, Average Firm	n-level Wages		
4. Abowd and Lemieux (1993)	Canadian union contracts merged to corporate accounts; instruments for revenues = industry selling prices, import and export prices	Quasi-rent/worker (wage change model)	0.22
5. Van Reenen (1996)	Large British manufacturing firms merged with corporate accounts; instruments for rents = innovations, imports, R&D, industry concentration	Quasi-rent/worker (wage change model)	0.29
6. Hildreth and Oswald (1997)	British firms (EXSTAT); firm-specific profits (from financial statements); instruments = lagged values of wages and profits	Profit per worker	0.02
7. Hildreth (1998)	British manufacturing establishments; establishment-specific value added; instruments for rents = innovation measure	Quasi-rent/worker	0.03
8. Barth et al (2014)	US establishments in LBD. Establishment- specific revenues; instrument for revenues/worker = revenues/worker in same industry, other regions	Sales/worker (within-establishment changes)	OLS = 0.32 IV = 0.16

Note: Table continues.

Table 1 (continued): Summary of Estimated Rent-Sharing Elasticities

Study	Design Features	Measure of Profitability	Elasticity
C. Individual Wages and Firm-Level Profit I	<u>Measures</u>		
9. Margolis and Salvanes (2001)	Worker and firm data for France and Norway; full time male workers in manufacturing; profit from financial fillings; instruments = sales/worker and subsidies/worker	Profit per worker	France: 0.03 Norway: 0.01
10. Arai (2003)	Swedish worker panel matched to employer (10-year stayers design); profits from financial statements	Change in 5-year average profit per worker	0.01-0.02
11. Guiso, Pistaferri, Schivardi (2005)	Italian worker panel matched to larger firms; value added from financial statements; model- based decomposition of value-added shocks	Permanent shock to log value added per worker Transitory shock to log value added per worker	0.07
12. Fakhfakf and FitzRoy (2004)	Larger French manufacturing establishments; value added from establishment survey	Mean log value-added/worker over past 3 years	0.12
13. Caju, Rycx, Tojerow (2009)	Belgian establishment panel; value added and labor cost from financial statements	Value added minus labor costs per worker	0.03-0.04
14. Martins (2009)	Larger Portuguese manufacturing firms; revenue and capital costs from financial statements; instruments=export share of sales × exchange rate changes	Revenue-capital costs/worker (differenced)	0.03-0.05
15. Guertzgen (2009)	German establishment/worker panel (LIAB) value added from establishment survey. instruments for change in quasi-rent = lags of	Quasi-rent/worker (no adjustment for capital)	0.03-0.04
	value added and wages	Change in quasi-rent/worker (stayers design), instrumented	0.01-0.06

Note: Table continues.

Table 1 (continued): Summary of Estimated Rent-Sharing Elasticities

Study	Design Features	Measure of Profitability	Elasticity
C. Individual Wages and Firm-Level Profit Measu	<u>ires</u>		
16. Cardoso and Portela (2009)	Portuguese worker panel; sales from firm reports; model-based decomposition of sales shocks	Permanent shock to log sales	0.09
	moder-based decomposition of sales shocks	Transitory shock to log sales	0.00
17. Arai and Hayman (2009)	Swedish worker/firm panel (1996-2000); profits from financial statements; stayers; instrument=change in foreign sales	Change in profit per worker	0.05
18. Card, Divincienti, Maida (2014)	Italian worker panel matched to firms; value added and capital from financial statements; instrument for value added = sales/worker at firms in other regions	Value added per worker (within job match)	0.06-0.08
19. Carlsson, Messina, and Skans (2014)	Swedish worker panel matched to firms; mining and manufacturing only; firm-specific output and selling price indexes; instruments for	Firm-specfic output/worker (within-job-match)	0.05
	productivity = indexes of firm-specific and sectoral TFPQ;	Sectoral average output/worker (within-job-match)	0.15
20. Card, Cardoso, and Kline (2014)	Portuguese worker panel matched to firms; value added and capital from financial statements: wage measure=estimated firm	Mean Value added per worker	Males: 0.16 Females: 0.14
	effect from AKM model	Mean Value added per worker (changes for stayers)	Males: 0.05 Females: 0.04
21. Bagger, Christensen, and Mortensen (2014)	Danish worker panel matched to firms; output from firm survey; non-parametric regressions within sector of wages on labor productivity	Output per worker	Manuf: 0.09 Trade: 0.13 Transp/Comm: 0.05 Finance/Real Est: 0.07

Summary

- Bigger elasticities for:
 - Aggregate wages (composition effects)
 - Aggregate shocks (equilibrium effects)
 - Permanent shocks (insurance)
 - Instrumented specifications (measurement error / mechanical)
- Would be nice to have more studies w/ E-E microdata exploiting observable firm-level shocks ala Van Reenen (1996)
- ullet Converting to VA/Sales units, most elasticities $\in [0.05, 0.15]$
 - Too small to explain all covariance in trends between productivity and wage dispersion
 - But sorting can amplify effects of dispersion in wage premia

Firm Movers

Abowd, Kramarz, and Margolis (AKM, 1999):

$$\ln w_{it} = \alpha_i + \psi_{J(i,t)} + X'_{it}\beta + \varepsilon_{it}$$

- Average wage effect of moving from firm j to firm k given by $\psi_k \psi_j$
- Decomposing inequality:

$$Var\left(\ln w_{it}\right) = \underbrace{Var\left(\alpha_{i}\right)}_{\text{workers}} + \underbrace{Var\left(\psi_{J(i,t)}\right)}_{\text{firms}} + Var\left(X'_{it}\beta\right) + Var\left(\varepsilon_{it}\right)$$

$$+2\underbrace{Cov\left(\alpha_{i}, \psi_{J(i,t)}\right)}_{\text{sorting}} + 2Cov\left(\alpha_{i}, X'_{it}\beta\right) + 2Cov\left(\psi_{J(i,t)}, X'_{it}\beta\right)$$

• Recent studies: $\frac{Var\left(\psi_{J(i,t)}\right)}{Var(\ln w_{it})} \in [0.15, 0.25]$

Variance Decomposition (CHK, 2013)

Decomposition of Variance of Log Wages

Are AKM-style estimates credible?

Additive Separability: proportional markup/down for all workers

 Exogeneous mobility: no selection on time-varying errors or match component

$$P(J(i,t) = j | \alpha_i, \psi, \varepsilon_{i1}, ..., \varepsilon_{iT}) = P(J(i,t) = j | \alpha_i, \psi)$$

 Statistical issues: fixed effect estimates inconsistent in short panels

Event-studies (CHK, 2013)

Figure 2: Mean Wages of West German Male Job Changers, Classified by Quartile of Co-worker Wages at Origin and Destination (2002-09)

Notes: figure shows mean wages of male workers observed in 2002-2009 who change jobs in 2004-2007 and held the preceding job for 2 or more years, and the new job for 2 or more years. Jobs are classified into quartiles based on mean wage of co-workers.

Mobility is directed (CHK, 2012)

Appendix Table 3: Mean Log Wages Before and After Job Change, for Movers with Two or More Years of Wage Data Before and After Job Change

	_				_		
Mean Log Wages of Movers							
	Number of	2 years	1 year	1 year	2 years	4 Yea	r Change
Origin/destination	Changes:	before	before	after	after	Raw	Adjusted **
quartile	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Interval 1: 1985-1991	_						
1 to 1	333,648	4.003	4.025	4.085	4.113	0.110	0.000
1 to 2	206,251	4.063	4.085	4.207	4.248	0.185	0.075
1 to 3	136,119	4.064	4.087	4.271	4.323	0.260	0.150
1 to 4	82,193	4.102	4.132	4.380	4.444	0.342	0.232
2 to 1	125,376	4.160	4.178	4.144	4.175	0.015	-0.072
2 to 2	204,787	4.229	4.251	4.286	4.316	0.087	0.000
2 to 3	158,360	4.258	4.278	4.359	4.395	0.137	0.051
2 to 4	86,038	4.298	4.324	4.474	4.529	0.231	0.144
3 to 1	59,334	4.245	4.261	4.163	4.194	-0.051	-0.153
3 to 2	91,474	4.315	4.337	4.333	4.371	0.056	-0.046
3 to 3	173,160	4.384	4.409	4.452	4.486	0.102	0.000
3 to 4	136,569	4.460	4.487	4.594	4.635	0.175	0.073
4 to 1	30,110	4.373	4.396	4.252	4.284	-0.089	-0.220
4 to 2	41,079	4.459	4.488	4.447	4.487	0.028	-0.103
4 to 3	91,177	4.552	4.584	4.596	4.633	0.080	-0.051
4 to 4	290,921	4.678	4.710	4.777	4.809	0.131	0.000

Event-studies (CCK, 2015)

Figure 3a: Mean Log Wages of Portuguese Male Job Changers, Classified by Quartile of Co-Worker Wages at Origin and Destination

Notes: figure shows mean wages of male workers at mixed-gender firms who changed jobs in 2004-2007 and held the preceding job for 2 or more years, and the new job for 2 or more years. Job is classified into quartiles based on mean log wage of co-workers of both genders.

Mobility Directed in Portugal too (CCK, 2015)

Appendix Table B2: Wages of Job Changes for Movers with 2+ Years of Data Before/After Job Change

			Mean Log Real Wages of Movers:						
Origin/	Number	Pct. Of	2 years	1 year	1 year	2 years	3 Year Change (%)		
destination	Changes	Changes	before	before	after	after	Raw	Adjusted*	(Std Err)
quartile	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Males									
1 to 1	13,787	43.2	1.14	1.14	1.16	1.20	5.6	0.5	(0.5)
1 to 2	9,139	28.7	1.19	1.18	1.35	1.37	17.6	11.6	(0.6)
1 to 3	6,283	19.7	1.20	1.19	1.48	1.51	30.6	23.9	(0.7)
1 to 4	2,682	8.4	1.28	1.27	1.71	1.75	47.3	39.0	(1.2)
2 to 1	7,293	21.2	1.34	1.35	1.22	1.27	-6.5	-12.0	(0.6)
2 to 2	12,326	35.8	1.37	1.38	1.40	1.42	5.0	-0.8	(0.6)
2 to 3	10,356	30.0	1.41	1.42	1.54	1.57	15.9	9.3	(0.5)
2 to 4	4,496	13.0	1.49	1.49	1.81	1.84	35.3	27.0	(0.9)
3 to 1	4,356	11.9	1.49	1.52	1.24	1.30	-19.4	-25.6	(0.7)
3 to 2	8,835	24.2	1.54	1.55	1.45	1.48	-5.8	-12.2	(0.6)
3 to 3	15,107	41.3	1.61	1.63	1.65	1.67	6.4	-0.3	(0.5)
3 to 4	8,246	22.6	1.73	1.75	1.94	1.97	24.7	16.0	(0.7)
4 to 1	1,634	5.4	1.79	1.83	1.39	1.43	-36.2	-43.3	(1.6)
4 to 2	3,245	10.7	1.82	1.86	1.58	1.61	-20.9	-28.1	(1.2)
4 to 3	6,589	21.7	1.93	1.97	1.85	1.88	-5.2	-13.1	(0.9)
4 to 4	18,830	62.1	2.29	2.32	2.41	2.45	15.9	6.1	(0.9)

Event-studies (CCK, 2015)

Figure 3b: Mean Wages of Portuguese Female Job Changers, Classified by Quartile of Co-Worker Wages at Origin and Destination

Notes: figure shows mean wages of female workers at mixed gender firms who changed jobs in 2004-2007 and held the preceding job for 2 or more years, and the new job for 2 or more years. Jobs are classified into quartiles based on mean log wage of co-workers of both genders.

Symmetry Plot (CCK, 2015)

Figure 4a: Test for Symmetry of Regression-Adjusted Wage Changes of Portuguese Male Movers Across Coworker Wage Quartiles

Note: Figure plots regression adjusted mean wage changes over 4 year interval for job changers who move across coworker wage quartile groups indicated. Dashed line represents symmetric changes for upward and downward movers.

Symmetry Plot (CCK, 2015)

Figure 4b: Test for Symmetry of Regression-Adjusted Wage Changes of Portuguese Female Movers Across Coworker Wage Quartiles

Note: Figure plots regression adjusted mean wage changes over 4 year interval for job changers who move across coworker wage quartile groups indicated. Dashed line represents symmetric changes for upward and downward movers.

Separability Plot (CHK, 2013)

Figure 5: Mean Residuals by Person/Establishment Deciles, German Male Workers 2002-09

Notes: figure shows mean residuals from estimated AKM model with cells defined by decile of estimated establishment effect, interacted with decile of estimated person effect.

Separability Plot (CCK, 2015)

Figure 6a: Mean Residuals by Person/Firm Deciles, Portuguese Male Workers

Note: figure shows mean residuals from estimated AKM model with cells defined by decile of estimated firm effects interacted with decile of estimated person effect.

Figure 7: Relationship of Estimated Firm Fixed Effects with Log Value Added/Worker

Note: points shown represent mean estimated firm-specific wage premiums from AKM models for men and women, averaged across firms in 100 percentile bins of mean log value added per worker.

Finite sample biases

• Under the AKM assumptions, FE estimates are unbiased:

$$E\left[\hat{\psi}_{j}\right] = \psi_{j} \ \forall j, E\left[\hat{\alpha}_{i}\right] = \alpha_{i} \ \forall i$$

- But noise leads to upward bias in variance of estimated effects and downward bias in covariance
 - Bias concave in # movers per firm (Andrews et al, 2008)
- Bias corrections proposed by Andrews et al (2008) and Gaure (2015) rely on strong homoscedasticity / non-correlation assumptions about time-varying errors $\{\varepsilon_{it}\}$
 - But promising work on random effects alternatives (Abowd et al, 2012; Bonhomme et al, 2015)
 - Structural models: joint model of mobility and wages (e.g., Postel-Vinay and Robin, 2002)
- In practice, bias is likely to be fairly substantial if working w/ samples instead of population files

Andrews et al (2010): Germany, 1998-2007

Fig. 1. Increasing the number of movers per establishment in a fixed sample of establishments increases $Corr(\hat{\theta}_i, \hat{\psi}_j)$.

A Model of Imperfect Competition

- Want to think more carefully about how firm heterogeneity can generate wage premia
- Standard approach: Search and Matching (S&M)
 - S&M gives plausible account of unemployment / labor flows
 - But not really a theory of wages per se
 - In fact, wages often indeterminate (Edgeworth, 1932)
- Today: follow IO literature in thinking about imperfect competition due to "workplace differentiation"
 - Differentiation gives firms some power to set wages
 - Study link between productivity and wage dispersion
 - Interpretation of AKM-style firm effects
 - And some new testable predictions...

Setup

- Two types of workers: L and H
- J firms, each with non-wage attributes
- Indirect utility for an individual i of type $S \in \{L, H\}$ of working at firm j is:

$$v_{iSj} = \beta_S \ln w_{Sj} + a_{Sj} + \epsilon_{iSj}$$

- $\{a_{Lj}, a_{Hj}\}$ capture mean valuations of work environment
- $\{\varepsilon_{\mathit{iLj}}, \varepsilon_{\mathit{iHj}}\} \sim \mathit{EV}1$ (.) capture heterogeneity in valuations

Market Structure

• Logit choice probabilities:

$$p_{Sj} \equiv P(v_{iSj} \ge v_{iSk} \ \forall k \ne j) = \frac{\exp(\beta_S \ln w_{Sj} + a_{Sj})}{\sum_{k=1}^{J} \exp(\beta_S \ln w_{Sk} + a_{Sk})}$$

• Take $J \to \infty$ (large market):

$$p_{Sj} \approx \lambda_S \exp(\beta_S \ln w_{Sj} + a_{Sj}),$$

where (λ_H, λ_L) are constants

Firm-specific supply

• Iso-elastic type-specific supply curves:

$$\ln L_j(w_{Lj}) = \ln(L\lambda_L) + \beta_L \ln w_{Lj} + a_{Lj}$$

$$\ln H_j(w_{Hj}) = \ln(H\lambda_H) + \beta_H \ln w_{Hj} + a_{Hj},$$

- As $(\beta_L, \beta_H) \to \infty$, market becomes competitive
- ullet $\{a_{Lj},a_{Hj}\}$ break mechanical link between firm size and wages

Firm Optimization

• Firm j's production function:

$$Y_j = T_j f(L_j, H_j)$$

Firm's problem is to choose wages to minimize cost:

$$\min_{w_L, w_H} w_L L_j(w_L) + w_H H_j(w_H) \text{ s.t. } T_j f(L_j(w_L), H_j(w_H)) \ge Y$$

 Note: firm knows shape of LS fn's but not identity of workers who comprise them (no 1st-degree price discrim)

Wages

• Choosing (w_{iH}, w_{iL}) yields standard "mark down" formula:

$$w_{Lj} = \frac{\beta_L}{1 + \beta_L} T_j f_L \mu_j$$

$$w_{Hj} = \frac{\beta_H}{1 + \beta_H} T_j f_H \mu_j$$

where $\mu_j \equiv MC \stackrel{opt}{=} MR$

• Example: $\beta_L = \beta_H = 9 \Rightarrow$ workers paid 90% of MRP

Special Case: Linear Production, Fixed Output Price

• Production function:

$$Y_j = T_j((1-\theta)L_j + \theta H_j)$$

Equilibrium Wages:

$$w_{Lj} = \frac{\beta_L}{1 + \beta_L} (1 - \theta) T_j P_j^0$$

$$w_{Hj} = \frac{\beta_H}{1 + \beta_H} \theta T_j P_j^0$$

- Notes:
 - ullet "Rent-sharing" elasticity =1
 - No "sharing" going on: rents captured by inframarginal workers due to asym. info
 - No compensating diffs $(a_{Sj}$'s don't influence the LS elasticity)

Equilibrium Wages and Employment

Figure 8: Equilibrium Wages and Employment

AKM Interpretation

$$\ln w_{jH} = \underbrace{\ln \frac{\beta_H}{1 + \beta_H} + \ln 1 - \theta}_{\text{Person Eff}} + \underbrace{\ln T_j P_j^0}_{\text{Firm Eff}}$$

$$\ln w_{jL} = \underbrace{\ln \frac{\beta_L}{1 + \beta_L} + \ln \theta}_{\text{Person Eff}} + \underbrace{\ln T_j P_j^0}_{\text{Firm Eff}}$$

- Stable "person effect" across firms driven by LS elasticity and technology
- Stable "firm effect" driven by productivity
- Inequality trends:
 - Variance of firm effects driven by σ_T^2 , $\sigma_{P^0}^2$
 - \bullet Possible group differences due to diffs in $\beta's$ (Robinson, 1933)

Relative Wages / Employment

Relative wages invariant to TFP (stable person eff):

$$\ln \frac{w_{Hj}}{w_{Lj}} = \ln \frac{\beta_H}{1 + \beta_H} - \ln \frac{\beta_L}{1 + \beta_L} + \ln \frac{\theta}{1 - \theta}$$

• But relative employment related to TFP if $\beta_H \neq \beta_L$:

$$\ln \frac{H_j}{L_j} = C + \ln \frac{a_{Hj}}{a_{Lj}} + \beta_H \ln \theta - \beta_L \ln \frac{1}{1 - \theta} + (\beta_H - \beta_L) \ln T_j P_j^0$$

- Notes:
 - Firm size / sorting driven by both productivity and non-wage amenities
 - $\beta_H > \beta_L \Rightarrow$ more productive firms have higher skill share

Adding product market power

- Downward sloping demand: $P_j = P_j^0 Y_j^{-1/\varepsilon}$, $\varepsilon > 1$
- Marginal revenue: $MR_j = (1 \frac{1}{\varepsilon}) P_i^0 Y_i^{-1/\varepsilon}$
- Wages become:

$$w_{Lj} = \frac{\beta_L}{1 + \beta_L} (1 - \theta) T_j^{1 - 1/\varepsilon} P_j^0 f(L_j(w_{Lj}), H_j(w_{Hj}))^{-1/\varepsilon}$$

$$w_{Hj} = \frac{\beta_H}{1 + \beta_H} \theta T_j^{1 - 1/\varepsilon} P_j^0 f(L_j(w_{Lj}), H_j(w_{Hj}))^{-1/\varepsilon}$$

- Note that now "TFPR" = $T_i^{1-1/\varepsilon}P_i^0$
- AKM-style decomp still holds because relative wages $\frac{w_{Hj}}{w_{Lj}}$ invariant to TFP, now firm effect is (to 1st order):

$$\psi_{j} \approx \frac{\varepsilon}{\varepsilon + \overline{\beta_{i}}} \ln \frac{P_{j}^{0}}{\overline{P}} + \frac{\varepsilon - 1}{\varepsilon + \overline{\beta_{i}}} \ln \frac{T_{j}}{\overline{T}}$$

"Rent-sharing" elasticities

• Letting $\overline{\beta_j} = \beta_L \kappa_j + \beta_H (1 - \kappa_j)$, $\kappa_j = \frac{(1 - \theta)L_j}{(1 - \theta)L_i + \theta H_i}$, we have:

$$\begin{array}{ll} \frac{\partial \ln w_{Lj}}{\partial \ln P_j^0} &= \frac{\partial \ln w_{Hj}}{\partial \ln P_j^0} = & \frac{\varepsilon}{\varepsilon + \overline{\beta_j}} \\ \frac{\partial \ln w_{Lj}}{\partial \ln T_j} &= \frac{\partial \ln w_{Hj}}{\partial \ln T_j} = & \frac{\varepsilon - 1}{\varepsilon + \overline{\beta_j}} \end{array}$$

- Special cases:
 - As $\varepsilon \to \infty$, $\frac{\partial \ln w_{Lj}}{\partial \ln T_i} \to 1$ (constant MRP)
 - As $\varepsilon \to 1$, $\frac{\partial \ln w_{Lj}}{\partial \ln T_i} \to 0$ (inelastic demand)
 - As $\overline{\beta_j} o \infty$, $\frac{\partial \ln w_{lj}}{\partial \ln T_i} o 0$ (competitive labor market)
 - As $\overline{\beta_j} \to 0$, $\frac{\partial \ln w_{Lj}}{\partial \ln T_c} \to \frac{\varepsilon 1}{\varepsilon}$ (fixed labor supply)
- Suppose $\overline{\beta_j}=9$, $\varepsilon=1.5$. Then $\frac{\partial \ln w_{Lj}}{\partial \ln P_i^0}=.14$, $\frac{\partial \ln w_{Lj}}{\partial \ln T_i}=.047$
- "Rent-sharing" elasticity will be weighted average of these two based upon variance-covariance of shocks to (P_i^0, T_j)

A Shift in Demand

Figure 9: Effect of Demand Variation with Decreasing Marginal Revenue Product

Adding imperfect substitution

Suppose we relax linear production technology to allow CES production:

$$Y_i = Tf(L, H) = T_i[(1 - \theta)L_i^{\rho} + \theta H_i^{\rho}]^{1/\rho}$$

where $\rho \in (-\infty, 1]$. The elasticity of substitution is $\sigma = (1 - \rho)^{-1} \in [1, \infty)$

• Wages can be written:

$$\left(1 + \frac{1}{\sigma}\beta_L\right) \ln w_{Lj} = \ln \left(\frac{\beta_L}{1 + \beta_L}\right) + \ln(1 - \theta) - \frac{1}{\sigma}a'_{Lj} + \Gamma_j$$

$$\left(1 + \frac{1}{\sigma}\beta_H\right) \ln w_{Hj} = \ln \left(\frac{\beta_H}{1 + \beta_H}\right) + \ln \theta - \frac{1}{\sigma}a'_{Hj} + \Gamma_j$$

• AKM-decomp holds when $\beta_L \approx \beta_H$. Otherwise it only holds locally within skill groups.

A new prediction

 Usual inverse relationship between relative quantities and wages now holds at firm-level:

$$\frac{\partial \ln(H_j/L_j)}{\partial \ln P_j^0} = -\sigma \frac{\partial \ln(w_{H_j}/w_{L_j})}{\partial \ln P_j^0}$$

• Firm-level evidence on what is usually considered a macro phenomenon?

Relative Quantities and Prices: Low vs. Medium

Figure 11: Relative Wages and Relative Employment of Low-Education Workers vs. Wage Premium for Apprenticeship-Qualified Workers

Note: figure shows 5th to 95th percentile groups only. Mean log relative wage premium is mean wage premium for low-education workers minus wage premium for apprenticeship qualified workers. Mean log relative employment is mean log employment of low-education workers minus log employment of apprenticeship-qualified workers. Based on establishment wage premiums and employment shares among West German male full time workers, 2002-2009.

Relative Quantities and Prices: High vs. Medium

Figure 12: Relative Wages and Relative Employment of High-Education Workers vs. Wage Premium for Apprenticeship-Qualified Workers

Note: figure shows 10th to 95th percentile groups only. Mean log relative wage premium is mean wage premium for high-education workers minus wage premium for apprenticeship qualified workers. Mean log relative employment is mean log employment of high-education workers minus log employment of apprenticeship-qualified workers. Based on establishment wage premiums and employment shares among West German male full time workers, 2002-2009.

"SBTC" shocks (simple version)

- Technology diffuses unevenly across firms (Griliches, 1957;
 Doms, Dunne, and Troske, 1997; Dunne et al., 2004)
- No reason to assume all variation is Hicks neutral: Let θ vary in addition to TFP!
- When $(\sigma, \varepsilon) \to \infty$, we get skill-group specific firm effects:

$$\psi_j^L = \ln(1 - \theta_j) + \ln T_j P_j^0$$

$$\psi_j^H = \ln \theta_j + \ln T_j P_j^0$$

• Regression of type-L FE on type-H FE:

$$\frac{\textit{Cov}[\psi_j^L, \psi_j^H]}{\textit{Var}[\psi_i^H]} < 1$$

 Alternate explanation for imperfect correlation of firm effs across groups

Firm effects by Skill Group

Figure 10: Establishment Wage Premiums for High and Low Education Groups vs. Premium for Appenticeship-Qualified Workers

Note: figure shows 5th to 95th percentile groups only. Based on estimated establishment effects for West German male full time workers, 2002-2009. Establishment effects are normalized to have mean of 0 for each education

"SBTC" shocks (full version)

- \bullet Define $\xi_j \equiv \frac{\partial \ln f}{\partial \ln \theta_j}$ as "TFP-like" component of SBTC shock
- ullet Distinguish from "pure" shock to relative productivity $rac{ heta_j}{1- heta_j}$
- Link between relative wages and quantities now ambiguous:

$$\frac{\partial \ln(w_H/w_L)}{\partial \ln \theta_j} = \frac{\frac{1}{1-\theta_j}\sigma(1+\frac{\overline{\beta}}{\varepsilon}) + (\beta_L - \beta_H)\xi_j(1-\frac{1}{\varepsilon})}{\sigma + \beta_L + \beta_H + (\frac{\sigma}{\varepsilon} - 1)\overline{\beta_j} + \frac{1}{\varepsilon}\beta_L\beta_H}
\frac{\partial \ln(H_j/L_j)}{\partial \ln \theta_j} = \frac{\frac{1}{1-\theta_j}\sigma(\widetilde{\beta_j} + \frac{1}{\varepsilon}\beta_L\beta_H) - (\beta_L - \beta_H)\xi_j(1-\frac{1}{\varepsilon})}{\sigma + \beta_L + \beta_H + (\frac{\sigma}{\varepsilon} - 1)\overline{\beta_j} + \frac{1}{\varepsilon}\beta_L\beta_H}$$

- TFP-like variation induces negative correlation, while "pure"
 TFP-constant component induces positive correlation
- ullet Expect *under-estimate* of σ from regression of relative wages on relative quantities

Final Thoughts

- Both rent-sharing and firm-mover literatures find that firms important for wages
- Static monopsony model can explain AKM style wage structure and "rent sharing" effects
- ullet Even a little market power (eta=9) gives interesting results

Going forward..

- Think about static monopsony as steady state of dynamic model w/ frictions?
- Allow for finite J and study strategic interactions between firms?
- How to handle aggregation with imperfect competition and heterogeneity?
- Supply shocks to individual firms? (converse of rent sharing literature)
- Effects of labor market institutions? (min wage, contracts, regulations)