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Appendix A: Data

This appendix describes the construction of the sample used in this article. The data come from

the Head Start Impact Study (HSIS). This data set includes information on 4,442 children, each

applying to Head Start at one of 353 experimental sites in Fall 2002. The raw data used here includes

information on test scores, child demographics, preschool attendance, and preschool characteristics.

Our core sample includes 3,571 children (80 percent of experimental participants) with non-missing

values for key variables. We next describe the procedures used to process the raw data and construct

this sample.

A.1 Test scores

Outcomes are derived from a series of tests given to students in the Fall of 2002 and each subsequent

Spring. The followup window extends through Spring 2006 for the three-year-old applicant cohort

and Spring 2005 for the four-year-old cohort.

We use these assessments to construct summary indices of cognitive skills in each period. These

summary indices include scores on the Peabody Picture and Vocabulary Test (PPVT) and Wood-

cock Johnson III Preacademic Skills (WJIII) tests. The WJIII Preacademic Skills score combines

performance on several subtests to compute a composite measure of cognitive performance. We use

versions of the PPVT and WJIII scores derived from item response theory (IRT), which uses the

reliability of individual test items to construct more a more accurate measure of student ability than

the simple raw score. The summary index in each period is a simple average of standardized PPVT

and WJIII scores, with each score standardized to have mean zero and standard deviation one in

the control group, separately by applicant cohort and year. Our core sample excludes applicants

without PPVT and WJIII scores in Spring 2003.

The HSIS data includes a number of other test scores in addition to the PPVT and WJIII.

Previous analyses of the HSIS data have looked at different combinations of outcomes: Puma et al.

(2010) show estimates for each individual test, Walters (2015) uses a summary index that combines

all available tests, and Bitler, Domina and Hoynes (2014) show separate results for the PPVT and

WJIII. We focus on a summary index of the PPVT and WJIII because these tests are among

the most reliable in the HSIS data (Puma et al. 2010), are consistently measured in each year

(which allows for interpretable intertemporal comparisons), and can be most easily compared to

the previous literature (for example, Currie and Thomas [1995] estimate effects on PPVT scores).

Estimates that include additional outcomes in the summary index or restrict attention to individual

outcomes produced similar results, though these estimates were typically less precise.

A.2 Demographics

Baseline demographics come from a parental survey conducted in Fall 2002. Parents of eighty-one

percent of children responded to this survey. We supplement this information with a set of variables

in the HSIS “Covariates and Subgroups” data file, which includes additional data collected during
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experimental recruitment to fill in characteristics for non-respondents. When a characteristic is

measured in both files and answers are inconsistent, the “Covariates and Subgroups” value is used.

Our core sample excludes applicants with missing values for baseline covariates except income,

which is missing more often than other variables. We retain children with missing income and

include a missing dummy in all specifications.

A.3 Preschool attendance

Preschool attendance is measured from the HSIS “focal arrangement type” variable, which rec-

onciles information from parent interviews and teacher/care provider interviews to construct a

summary measure of the childcare setting. This variable includes codes for centers, non-relative’s

homes, relative’s homes, own home (with a relative or non-relative), parent care, and Head Start.

Children are coded as attending Head Start if this variable is coded “Head Start;” another preschool

center if it is coded “Center;” and no preschool if it takes any other non-missing value. We exclude

children with missing focal arrangement types in constructing the core sample.

A.4 Preschool characteristics

Our analysis uses experimental site characteristics and characteristics of the preschools children

attend (if any), such as whether transportation is provided, funding sources, and an index of quality.

This information is derived from interviews with childcare center directors conducted in the Spring

of 2003. This information is provided in a student-level file, with the responses of the director of

a child’s preschool center included as variables. Site characteristics are coded using values of these

variables for treatment group children with focal care arrangements coded as “Head Start” at each

center of random assignment. In a few cases, these values differed for Head Start attendees at the

same site; we used the most frequently-given responses in these cases. An exception is the quality

index, which synthesizes information from parent, center director, and teacher surveys. We use the

mean value of this index reported by Head Start attendees at each site to construct site-specific

measures of quality.

A.5 Weights

The probability of assignment to Head Start differed across experimental sites. The HSIS data

includes several weight variables designed to account for these differences. These weights also in-

clude a factor that adjusts for differences in the probability that Head Start centers themselves

were sampled (Puma et al. 2010). This weighting can be used to estimate the average effect of

Head Start participation in the US, rather than the average effect in the sample; these parameters

may differ if effects differ across sites in a manner related to sampling probabilities. Probabilities of

sampling differed widely across centers, however, leading to very large differences in weights across

children and decreasing precision. Instead of using the HSIS weights, we constructed inverse prob-

ability weights based on the fraction of applicants at each site offered Head Start. The discussion
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in Puma et al. (2010) suggests that the numbers of treated and control students at each site were

specified in advance, implying that this fraction correctly measures the ex ante probability that a

child is assigned to the treatment group. Results using other weighting schemes were similar, but

less precise.

We also experimented with models including center fixed effects rather than using weights.

These models produced similar results, but our multinomial probit model is much more difficult to

estimate with fixed effects than with weights. We therefore opted to use weights rather than fixed

effects for all estimates reported in the article.
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Appendix B: Identification of Complier Characteristics

This appendix extends results from Imbens and Rubin (1997) and Abadie (2002) to show iden-

tification of population shares, characteristics and marginal potential outcome distributions for

subpopulations of compliers drawn from other preschools and no preschool. Under the monotonic-

ity restriction (1), we have

− E [1 {Di = c} |Zi = 1]− E [1 {Di = c} |Zi = 0]

E [1 {Di = h} |Zi = 1]− E [1 {Di = h} |Zi = 0]
= −−E [1 {Di(0) = c} − 1 {Di(1) = c}]

E [1 {Di(1) = h} − 1 {Di(0) = h}]

= −−P (Di(1) = h,Di(0) = c)

P (Di(1) = h,Di(0) 6= h)

= Sc.

The share of compliers drawn from competing preschools can therefore be estimated as minus

the ratio of the Head Start offer’s effect on other preschool attendance to its effet on Head Start

attendance.

Observed characteristics and marginal potential outcome distributions for complier subgroups

are also identified. Let g (Yi, Xi) be any measurable function of outcomes and exogenous covariates.

Consider the quantity

κc ≡
E [g(Yi, Xi) · 1 {Di = c} |Zi = 1]− E [g (Yi, Xi)) · 1 {Di = c} |Zi = 0]

E [1 {Di = c} |Zi = 1]− E [1 {Di = c} |Zi = 0]
.

The numerator can be written

E [g (Yi(Di(1)), Xi) · 1 {Di(1) = c}]− E [g(Yi(Di(0)), Xi) · 1 {Di(0) = c}],

where the conditioning on Zi has been dropped because offers are independent of potential outcomes

and covariates. This simplifies to

κc = E [g (Yi(c), Xi) |Di(1) = c]P (Di(1) = c)− E [g (Yi(c), Xi) |Di(0) = c]P (Di(0) = c)

= E [g (Yi(c), Xi) |Di(1) = c,Di(0) = c]P (Di(1) = c,Di(0) = c)

−E [g (Yi(c), Xi) |Di(1) = c,Di(0) = c]P (Di(1) = c,Di(0) = c)

−E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c)

= −E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c),

where the first equality uses the fact that P (Di(0) = c|Di(1) = c) = 1. The denominator is the

effect of the offer on the probability that Di = c, which is minus the share of the population shifted

from c to h, −P (Di(1) = h,Di(0) = c). Hence,
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κc =
−E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c)

−P (Di(1) = h,Di(0) = c)

= E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c],

which completes the proof.

An analogous argument shows identification of E [g (Yi(n), Xi) |Di(1) = h,Di(0) = n] by replacing

c with n throughout. Moreover, replacing c with h, the same argument shows identification of

E [g (Yi(h), Xi) |Di(1) = h,Di(0) 6= h], which can be used to characterize the distribution of Yi(h)

for the full population of compliers.

Note that κc is the population coefficient from an instrumental variables regression of g(Yi, Xi) ·
1 {Di = c} on 1 {Di = c}, instrumenting with Zi. The characteristics of the population of compliers

shifted from c to h can therefore be estimated using the sample analogue of this regression. In

Appendix Table A.II we estimate the characteristics of non-Head Start preschool centers attended

by compliers drawn from c by setting g (Yi, Xi) equal to a characteristic of the preschool center a

child attends (set to zero for children not in preschool). In Appendix Table A.VII we set g(Yi, Xi) =

Yi to estimate the means of Yi(c), Yi(n), and Yi(h) for compliers.
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Appendix C: Derivation of Marginal Value of Public Funds

This appendix derives the expressions for the marginal value of public funds in equations (8), (9)

and (12). Section C.4 discusses the use of earnings vs. wage changes to value test score impacts.

C.1 Program Scale

First, consider the case where competing programs are not rationed. From (4), the effect of a

change in δ on the average after-tax lifetime income of children is

∂B

∂δ
= (1− τ)p

∂E [Yi]

∂δ
.

The test score for child i can be written

Yi = Yi(Di(1))Zi + Yi(Di(0))(1− Zi),

so

E [Yi] = E [Yi(Di(1))|Zi = 1] δ + E [Yi(Di(0))|Zi = 0] (1− δ)

= E [Yi(Di(1))] δ + E [Yi(Di(0))] (1− δ),

where the second line follows from the assumption that Head Start offers are independent of po-

tential outcomes and potential treatment choices. Then

∂E [Yi]

∂δ
= E [Yi(Di(1))]− E [Yi(Di(0))]

= E [Yi(Di(1))− Yi(Di(0))]

= E [Yi(Di(1))− Yi(Di(0))|Di(1) 6= Di(0)]P (Di(1) 6= Di(0)).

Since Ui(n) and Ui(c) do not depend on Zi and Ui(h, 1) > Ui(h, 0), the condition Di(1) 6= Di(0)

implies that Di(1) = h. We can therefore rewrite the last expression as

∂E [Yi]

∂δ
= E [Yi(h)− Yi(Di(0))|Di(1) = h,Di(0) 6= h]P (Di(1) = h,Di(0) 6= h)

= LATEh · P (Di(1) = h,Di(0) 6= h),

which is equation (6). It follows that

∂B

∂δ
= (1− τ)p · LATEh · P (Di(1) = h,Di(0) 6= h).

From equation (5), the effect of a change in δ on the government budget is

∂C

∂δ
= φh

∂P (Di = h)

∂δ
+ φc

∂P (Di = c)

∂δ
− τp∂E [Yi]

∂δ
.
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The probability of Head Start participation is

P (Di = h) = E [1 {Di(1) = h}] δ + E [1 {Di(0) = h}] (1− δ),

which implies

∂P (Di = h)

∂δ
= E [1 {Di(1) = h}]− E [1 {Di(0) = h}]

= E [1 {Di(1) = h} − 1 {Di(0) = h}]

= E [1 {Di(1) = h,Di(0) 6= h}]

= P (Di(1) = h,Di(0) 6= h),

where the second-to-last equality again used the fact that Di(1) 6= Di(0) implies Di(1) = h.

Similarly,

∂P (Di = c)

∂δ
= E [1 {Di(1) = c} − 1 {Di(0) = c}]

= −E [1 {Di(1) = h,Di(0) = c}]

= −P (Di(1) = h,Di(0) = c).

Plugging these expressions into ∂C/∂δ yields

∂C

∂δ
= φhP (Di(1) = h,Di(0) 6= h)− φcP (Di(1) = h,Di(0) = c)

−τpLATEhP (Di(1) = h,Di(0) 6= h)

= (φh − φcSc − τpLATEh)P (Di(1) = h,Di(0) 6= h) ,

which is equation (7).

The marginal value of public funds associated with a change in δ is the ratio of the impact on

B to the impact on C:

MV PFδ ≡
∂B/∂δ

∂C/∂δ
.

By plugging in expressions for these derivatives we obtain

MV PFδ =
(1− τ)pLATEh

φh − φcSc − τpLATEh
,

which is equation (8).
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C.2 Rationed Substitutes

We next consider the case where seats in competing programs are rationed. As in Head Start, we

assume that seats in the competing program are distributed randomly. Let Zih and Zic denote

offers in options h and c, and let δh and δc denote the corresponding offer probabilities. Preferences

now depend on both offers. Utilities are described by

Ui(h, Zih), Ui(c, Zic), Ui(n),

and preschool enrollment choices are defined by

Di(zh, zc) = arg max
d∈{h,c,n}

Ui(d, zh, zc).

Let πd(zh, zc) = P (Di(zh, zc) = d) denote the probability of enrollment in option d as a function

of the two offers. Total enrollment in option c is

P (Di = c) = δhδcπc(1, 1) + δh(1− δc)πc(1, 0) + (1− δh)δcπc(0, 1) + (1− δh)(1− δc)πc(0, 0). (A1)

We assume that competing preschools adjust δc so that dP (Di = c)/dδh = 0. Totally differentiating

equation (A1) with respect to δh yields

dδc
dδh

= − δc (πc(1, 1)− πc(0, 1)) + (1− δc) (πc(1, 0)− πc(0, 0))

δh (πc(1, 1)− πc(1, 0)) + (1− δh) (πc(0, 1)− πc(0, 0))
.

=
P (Di(1, Zic) = h,Di(0, Zic) = c)

P (Di(Zih, 1) = c,Di(Zih, 0) 6= c)
.

To keep enrollment constant, δc adjusts by the ratio of the effect of an offer at h on attendance at

c to the effect of an offer at c on attendance at c.

Average test scores are given by

E [Yi] = δh (δcE [Yi(Di(1, 1))] + (1− δc)E [Yi(Di(1, 0))])

+(1− δh) (δcE [Yi(Di(0, 1))] + (1− δc)E [Yi(Di(0, 0))]) ,

so

dE [Yi]

dδh
= δc (E [Yi(Di(1, 1))− Yi(Di(0, 1))])

+(1− δc) (E [Yi(Di(1, 0))]− E [Yi(Di(0, 0))])

+
dδc
dδh
· (δhE [Yi(Di(1, 1))− Yi(Di(1, 0))] + (1− δh)E [Yi(Di(0, 1))− Yi(Di(0, 0)]) ,

which can be rewritten

dE [Yi]

dδh
= E [Yi(Di(1, Zic))− Yi(Di(0, Zic))]
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+
dδc
dδh
· (E [Yi(Di(Zih, 1))− Yi(Di(Zih, 0))])

= LATEh · P (Di(1, Zic) = h,Di(0, Zic) 6= h)

+LATEc · P (Di(1, Zic) = h,Di(0, Zic) = c).

Here the local average treatment effects are defined as

LATEh = E [Yi(h)− Yi(Di(0, Zic))|Di(1, Zic) = h,Di(0, Zic) 6= h],

LATEc = E [Yi(c)− Yi(Di(Zih, 0))|Di(Zih, 1) = c,Di(Zih, 0) 6= c].

This can be further simplified to

dE [Yi]

dδh
= (LATEh + ScLATEc) · P (Di(1, Zic) = h,Di(0, Zic) 6= h).

The effect of an increase in δh on the government’s budget is

dC

dδh
= φh ·

dP (Di = h)

dδh
− τp · dE [Yi]

dδh
.

Since δc adjusts to keep P (Di = c) constant, we have dP (Di = c)/dδh = 0. We assume that

all marginal children drawn into c by offers come from n rather than h. This implies LATEc =

LATEnc, and furthermore

dP (Di = h)

dδh
= P (Di(1, Zic) = h,Di(0, Zic) 6= h).

Then the marginal value of public funds is

MV PFδ,rat =
dB/dδh
dC/dδh

= (1− τ)p (LATEh + ScLATEnc)P (Di(1, Zic) = h,Di(0, Zic) 6= h)

× [φhP (Di(1, Zic) = h,Di(0, Zic) 6= h)− τp (LATEh + ScLATEnc)P (Di(1, Zic) = h,Di(0, Zic) 6= h)]−1

=
(1− τ)p (LATEh + LATEnc · Sc)
φh − τp (LATEh + LATEnc · Sc)

,

which is equation (9).

This implies that MV PFδ,rat > MV PFδ whenever Head Start and other preschools have similar

test score effects and other preschools are cheapt\er. Specifically, when LATEnc = LATEnh =

LATE > 0 and LATEch = 0, we have MV PFδ,rat = (1−τ)pLATE
φh−τpLATE > MV PFδ = (1−τ)pLATE

φh−φcSc
1−Sc

−τpLATE
whenever φc < φh.
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C.3 Structural Reforms

Next, consider structural reforms that alter the program feature f . A change in f generates the

following impacts on income and the government budget:

∂B

∂f
= (1− τ)p

∂E [Yi]

∂f
,

∂C

∂f
= φh

∂P (Di = h)

∂f
+ φ′h(f)P (Di = h) + φc

∂P (Di = c)

∂f
− τp∂E [Yi]

∂f

=
∂P (Di = h)

∂f

[
φh + φ′h(f)∂ (lnP (Di = h)/∂f)−1 + φc

∂P (Di = c)/∂f

∂P (Di = h/∂f)
− τp ∂E [Yi] /∂f

∂P (Di = h)/∂f

]
.

We can write mean test scores as

E [Yi] = E [Yi(h) · 1 {Ui(h, Zi) + f ≥ Ui(c), Ui(h, Zi) + f ≥ 0}]

+E [Yi (c) · 1 {Ui(c) ≥ Ui(h, Zi) + f, Ui(c) ≥ 0}]

+E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}] ,

where we have normalized Ui(n) to zero. The third term in this expression is

E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}] =
´∞
−∞
´ 0
−∞
´ −f
−∞ y · gyu(y, uh, uc)duhducdy,

where gyu(·) is the joint density function of Yi(n), Ui(h, Zi) and Ui(c). Using Leibniz’s rule for

differentiation under the integral sign and Fubini’s theorem, we have

∂E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}]
∂f

=
´∞
−∞
´ 0
−∞

∂

∂f

[´ −f
−∞ y · gyu(y, uh, uc)duh

]
ducdy

=−
ˆ ∞
−∞

ˆ 0

−∞
y · gyu(y,−f, uc)ducdy

=−
ˆ 0

−∞

[ˆ ∞
−∞

y · gy|u (y| − f, uc) dy
]
gu(−f, uc)duc

=−
ˆ 0

−∞
E [Yi(n)|Ui(h, Zi) + f = 0, Ui(c) = uc] gu(−f, uc)duc

=−
ˆ 0

−∞
gu(−f, uc)duc · E [Yi(n)|Ui(h, Zi) + f = 0, Ui(c) < 0]

=− guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0) · E [Yi(n)|Ui(h) + f = 0, Ui(c) < 0]

where gy|u(·) is the density of Yi(n) conditional on the utilities, gu(·) is the joint density of the

utilities, and guh(·) is the marginal density of Ui(h, Zi). The last factor in this expression is the

average of Yi(n) for individuals who are indifferent between Head Start and home care, and strictly
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prefer home care to the competing program. The first two factors give the total density associated

with this event.

Similar arguments show the effects of a change in f on scores in c and h:

∂E [Yi (c) · 1 {Ui(c) ≥ Ui(h, Zi) + f, Ui(c) ≥ 0}]
∂f

= −gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

× E [Yi(c)|Ui(h, Zi) + f = Ui(c), Ui(c) > 0] ,

∂E [Yi(h) · 1 {Ui(h, Zi) + f ≥ Ui(c), Ui(h) + f ≥ 0}]
∂f

= {gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

+ guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0)}

× E [Yi(h)|Ui(h, Zi) + f = max {Ui(c), Ui(n)}] ,

where gc−h(·) is the density of Ui(c)− Ui(h, Zi).
The corresponding effects on choice probabilities are

∂P (Di = h)

∂f
= guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0)

+ gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c)) ,

∂P (Di = c)

∂f
= −gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c)).

The share of marginal children drawn from the competing program is then given by

−→
S c = − ∂P (Di = c)/∂f

∂P (Di = h)/∂f

=
gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0) + gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))
.

By plugging these equations into the expressions for costs and benefits and dividing by the total

density of marginal compliers, we obtain

MV PFf =
(1− τ)pMTEh

φh(1 + η)− φc
−→
S c − τpMTEh

,

which is equation (12).

C.4 Valuing test score impacts

Here we consider more carefully how to value test score impacts in dollar terms. Specifically,

we show that if test score impacts yield corresponding labor supply responses, an adjustment to

lifetime earnings impacts is necessary to properly capture the welfare benefits of a policy change.
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This argument implies that we should use projected impacts on wages (as opposed to earnings) to

value test score gains.

Letting y denote a child’s human capital level (as proxied by test scores), we are interested in

deriving a child’s willingness to pay (as an adult) for an intervention shifting her human capital

level from y0 to y1 > y0. If this willingness to pay exceeds the net cost to government of financing

the human capital increase, then the intervention is efficiency improving in the Kaldor-Hicks sense

that all parties could be made better off.

We work with a simple static model where children face a competitive labor market with no

uncertainty and are free to choose lifetime labor supply in accord with utility maximization. Sup-

pose children have utility over consumption (q) and leisure (l) given by the function u
(
q, l
)
. The

lifetime budget constraint of a child with human capital level y can be written:

q = w (y)
(
T − l̄

)
+ b,

where w (y) = (1− τ) py ≡ ω is the after-tax wage, T is a time endowment, and b is unearned

income. The uncompensated (Marshallian) labor supply function is l (ω, b).

Define the excess expenditure function:

e (ω, ū) ≡ min
{
q − ω

(
T − l̄

)
: u
(
q, l̄
)
≥ ū

}
as the minimal level level of unearned income necessary to obtain utility level ū at wage level ω.

By the envelope theorem
∂

∂ω
e (ω, ū) = −lc (ω, ū) ,

where lc (ω, ū) is the compensated (Hicksian) labor supply function.

Suppose that at human capital level y0 the child is able to obtain utility level u0. The compen-

sating variation:

CV (y0, y1) ≡ e (w (y0) , u0)− e (w (y1) , u0) ,

measures how much income a child could give away at human capital level y1 and still obtain his

old utility level u0. A first order Taylor approximation yields:

CV (y0, y1) ≈ (1− τ) plc (w (y0) , u0) (y1 − y0)

= (1− τ) pl (w (y0) , b) (y1 − y0) . (A2)

In words, the value to a child of a small increase in test scores is given by the mechanical impact

this increase in her wage would have on her lifetime earnings if her labor supply were fixed at

l (w (y0) , b).

This is to be contrasted with the actual effect of the human capital increase on his earnings
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which can be written:

w (y1) l (w (y1) , b)− w (y0) l (w (y0) , b) ≈ (1− τ) pl (w (y0) , b) (1 + ε) (y1 − y0) ,

where ε ≡ w(y0)
l(w(y0),b)

∂
∂ω l (w (y0) , b) gives the uncompensated elasticity of labor supply. Relative to

(A2), this expression has an extra term (1 + ε) that reflects how the child adjusts her lifetime labor

supply in response to the increase in her after-tax wage. By the envelope theorem, these behavioral

changes (when they are small) do not yield additional utility.

The upshot of this analysis is that empirical estimates of the impact of test scores on earnings

need to be deflated by 1
1+ε to reflect the child’s valuation of the intervention. Much of the literature

finds small (or even negative) long run uncompensated labor supply elasticities suggesting that the

necessary adjustment is probably small (Ashenfelter, Doran and Schaller 2010; Blundell, Pistaferri

and Saporta-Eksten 2015). Consistent with this view, Lindqvist and Vestman (2011) find the

proportional response of wages to test scores to be only slightly below the corresponding response

of earnings (see Appendix Table A.IV).
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Appendix D: Empirical Cost Benefit Analysis

This appendix discusses in more detail the assumptions underlying the cost-benefit analysis of

Section VI.

D.1 Representativeness of the HSIS data

The HSIS data are a nationally-representative random sample of Head Start applicants, and HSIS

offers are distributed randomly (Puma et al. 2010). The HSIS is therefore ideal for estimating

values of LATEh and Sc in the population of Head Start applicants.1 Fortunately, the current Head

Start application rate is high, which limits the scope for selection into the applicant pool that might

change with program scale. Currie (2006) reports that two-thirds of eligible children participated

in Head Start in 2000. This is higher than the Head Start participation rate in the HSIS sample

(49 percent). However, fifteen percent of participants attend undersubscribed centers outside the

HSIS sample, which implies that about 57 percent (0.85 · 0.49 + 0.15) of all applicants participate

in Head Start (Puma et al. 2010). For this to be consistent with a participation rate of two-thirds

among eligible households, virtually all eligible households must apply. Therefore, selection into

the Head Start applicant pool is unlikely to be quantitatively important for our analysis.

D.2 Program benefits

The term p in equation (4) gives the dollar value of a one standard deviation increase in test

scores. Although earnings are unavailable for the HSIS sample, a growing body of evidence shows

a consistent link between short-run test score effects and earnings impacts. Rather than choose a

particular value for p, we consider a range of values consistent with the literature, focusing on how

low of a value would be necessary to undermine the conclusion that Head Start pays for itself.

Appendix Table A.IV summarizes several studies that compare test score and earnings impacts

for the same intervention. The most closely related study is by Chetty et al. (2011), an analysis

of the Tennessee STAR class size experiment. Chetty et al. (2011, p.7 online appendix) show that

a one standard deviation increase in kindergarten test scores induced by an experimental change

in classroom quality yields a 13.1 percent increase in earnings at age 27.2 The STAR results also

suggest that immediate test score effects of early-childhood programs predict earnings gains better

1As detailed in Appendix A, our analysis excludes HSIS applicants without followup data (20 percent of the
sample), and we use weights that capture the probability a child is assigned to Head Start but not the probability a
Head Start center is sampled from the larger population of centers. Our estimates may not be representative of the
full population of Head Start applicants if children without followup data differ systematically from other children
or if applicant populations differ in a way that is systematically related to center-level sampling probabilities.

2Effects in standard deviation units may have different meanings if score distributions differ across populations
or over time. For example, Cascio and Staiger (2012) show that test score norming partially explains fadeout in
effects of educational interventions. Sojourner (2009) shows that the standard deviation of nationally-normed scores
in the STAR sample is 87 percent of the national standard deviation. The standard deviations of Spring 2003 PPVT
and WJIII scores in the HSIS are 70 percent and 91 percent of the national standard deviation, for a mean of 81
percent. This suggests we should rescale the STAR estimate of 13.1 percent to 12.2 percent in our sample; our
baseline calibrations use a more conservative estimate of 10 percent.
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than test score effects in other periods: classrooms that boost test scores in the short run increase

earnings in the long run despite fadeout of test score impacts in the interim. We therefore project

earnings gains based on our first-year estimates of LATEh.

The STAR classroom quality estimate of 13.1 percent is smaller than a corresponding OLS

estimate controlling for rich family characteristics in the STAR sample (18 percent), and comparable

to estimates from Chetty, Friedman and Rockoff (2014b) linking test score and earnings impacts for

teacher value-added (10.3 percent for value-added, 12 percent for OLS with controls). The Chetty,

Friedman and Rockoff (2014b) findings also replicate the pattern of long-run earnings impacts

coupled with fadeout of medium-run test score effects. In an analysis of the Perry Preschool

Project, Heckman et al. (2010b) estimate larger ratios of earnings per standard deviation of test

scores (24 to 29 percent). Sibling fixed effects estimates from studies of Head Start by Currie

and Thomas (1995) and Garces, Thomas and Currie (2002) suggest much larger ratios, though the

earnings estimates are also very statistically imprecise. To be conservative, our baseline calibrations

assume an earnings impact of 10 percent per standard deviation of earnings, which is at the bottom

of the range of estimates reported in Table A.IV.3

Calculating percentage changes in earnings requires a prediction of average earnings in the HSIS

population. Chetty et al. (2011) calculate that the average present discounted value of earnings in

the United States is approximately $522,000 at age 12 in 2010 dollars. Using a 3-percent discount

rate, this yields a present discounted value of $438,000 at age 3.4 (the average age of applicants in

the HSIS). Children who participate in Head Start are disadvantaged and therefore likely to earn

less than the US average. The average household participating in Head Start earned 46 percent

of the US average in 2013 (US DHHS, 2013; Noss, 2014). Lee and Solon (2009) find an average

intergenerational income elasticity in the United States of roughly 0.4, implying that the average

child in Head Start is expected to earn 78 percent of the US average (1− (1− 0.46) · 0.4).4 These

calculations yield a present value of earnings ē equal to $343, 492 at age 3.4.

Thus, our baseline estimate is that the marginal benefit of enrolling an additional child in Head

Start is 0.1 · $343, 492 ·LATEh. Using the pooled first-year estimate of LATEh reported in Section

III, we project an earnings impact of 0.1 · $343, 492 · 0.247 = $8, 472. We set τ = 0.35 based upon

estimates from the Congressional Budget Office (2012, Figure 2) that account for federal and state

taxes along with food stamps participation. This generates a discounted after-tax lifetime earnings

gain of $5,513 for compliers.

3The only estimates below 10 percent in Table A.IV are from Murnane, Willet and Levy (1995) and Currie and
Thomas (1999). Murnane et al. use High School and Beyond data to construct an OLS estimate relating 12th grade
scores to log wages at age 24 for males (7.7 percent). The same approach produces a larger estimate for females (10.9
percent). Currie and Thomas report partial effects from models that include both math and reading scores. Since
these scores are very highly correlated, the total effect for a single test score is likely to be larger.

4Chetty et al. (2014) find that the IGE is not constant across the parent income distribution. Appendix Figure
IA in their study shows that the elasticity of mean child income with respect to mean parent income is 0.414 for
families between the 10th and 90th percentile of parent income but lower for families below the 10th percentile. Since
Head Start families are drawn from these poorer populations, it is reasonable to expect that the relevant IGE for this
population is below 0.4, implying that our rate of return calculations are conservative.
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D.3 Program costs

Equation (7) shows that the net marginal social cost of Head Start enrollment depends on the

costs to government of enrollment in Head Start and competing preschools along with the share

of compliers drawn from other preschools. Per-pupil expenditure in Head Start is approximately

$8, 000 (US DHHS, 2013). As reported in Column (7) of Table III, the estimated share of compliers

drawn from other preschools is 0.34.

To get an idea of the costs of competing programs, Panel A of Appendix Table A.II reports

information on funding sources for Head Start and competing preschool centers. These data come

from a survey administered to the directors of Head Start centers and other centers attended by

children in the HSIS experiment. Column (2) shows that competing preschools receive financing

from a mix of sources, and many receive public subsidies. Thirty-nine percent of competing centers

did not complete the survey, but among respondents, only 25 percent (0.153/0.606) report parent

fees as their largest source of funding. The modal funding source is state preschool programs

(30 percent), and an additional 16 percent report that other childcare subsidies are their primary

funding source. Column (3) reports characteristics of competing preschools attended by c-compliers,

estimated using a generalization of the methods for characterizing compliers described by Abadie

(2002) (see Appendix B). In the absence of a Head Start offer, c-compliers attend preschools that

rely slightly more on parent fees, but most are financed by a mix of state preschool programs,

childcare subsidies, and other funding sources.

Panel B of Table A.II compares key inputs and practices in Head Start and competing preschool

centers attended by children in the HSIS sample. On some dimensions, Head Start centers appear

to provide higher-quality services than competing programs. Columns (4) and (5) show that Head

Start centers are more likely to provide transportation to preschool and frequent home visiting

than competing centers. Average class size is also smaller in Head Start, and Head Start center

directors have more experience than their counterparts in competing preschools. As a result of

these differences, Head Start centers score higher on a composite measure of quality. On the other

hand, teachers at alternative programs are more likely to have bachelors degrees and certification,

and these programs are more likely to provide full-day service. Column (6) shows that compet-

ing preschools attended by Head Start compliers are very similar to the larger set of alternative

preschools in the HSIS sample.

Table A.II suggests that roughly 75% of competing programs are financed primarily by public

subsidies. Of course, even centers that are financed primarily by fees are likely to receive subsidies

for enrolling the disadvantaged students in our sample (who are unlikely to be able to pay full price).

Based upon this, we use as our “preferred” estimate that φc = 0.75φh, which is a conservative

estimate if Head Start and competing preschools are equally costly and 75% of Head Start eligible

students had their tuition fully subsidized at competing preschools while others receive partial

subsidies. Our “pessimistic” scenario where φc = 0.5φh corresponds roughly to the case where all

of the non-responding centers in Table A.II relied on private fees for financing. Finally, the “naive”

assumption that φc = 0 is useful as a benchmark for assessing the importance of fiscal externalities.
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Appendix E: Interacted Two-stage Least Squares

This Appendix investigates the use of the interacted two-stage least squares approach described

in Section VII to estimate models treating both Head Start and other preschools as endogenous

variables. Suppose there is a single binary covariate Xi ∈ {0, 1}. Under the assumptions described

in Section IV, covariate-specific instrumental variables coefficients give local average treatment

effects:

E [Yi|Zi = 1, Xi = x]− E [Yi|Zi = 0, Xi = x]

E [1 {Di = h} |Zi = 1, Xi = x]− E [1 {Di = h} |Zi = 0, Xi = x]
= LATEh(x).

Furthermore, we have

LATEh(x) = Sc(x)LATEch(x) + (1− Sc(x))LATEnh(x),

where Sc(x) = P (Di(1)=h,Di(0)=c|Xi=x)
P (Di(1)=h,Di(0)6=h|Xi=x) is the covariate-specific share of compliers drawn from other

preschools. The Sc(x) are identified, but if we assume LATEch and LATEnh vary with x in an

unrestricted way we have two equations in four unknowns and cannot use the available information

to recover subLATEs.

Suppose instead we assume that the subLATEs don’t vary with x, so that LATEdh(x) =

LATEdh ∀x, d ∈ {c, n}. Our two equations are

LATEh(1) = Sc(1)LATEch + (1− Sc(1))LATEnh,

LATEh(0) = Sc(0)LATEch + (1− Sc(0))LATEnh.

The solution to this system is

LATEnh =
Sc(0)LATEh(1)− Sc(1)LATEh(0)

Sc(0)− Sc(1)
,

LATEch =
(1− Sc(0))LATEh(1)− (1− Sc(1))LATEh(0)

(1− Sc(0))− (1− Sc(1))
.

The right-hand sides tell us the probability limits of 2SLS coefficients from a model instrumenting

1 {Di = h} and 1 {Di = c} with Zi and Zi ·Xi and controlling for Xi. Specifically, the Head Start

coefficient from this interacted 2SLS strategy equals LATEnh and the other preschool coefficient

equals LATEnh−LATEch. To see this note that the 2SLS system is just-identified under constant

effects which implies constant subLATEs. There is therefore exactly one way to solve for the two

effects of interest using the available information; since the equations above yield these effects they

must give this solution.

If the constant effects assumption is wrong, the interacted 2SLS strategy yields a Head Start

coefficient equal to

LATEnh = Sc(0)Sc(1)
Sc(0)−Sc(1)LATEch(1) + Sc(0)(1−Sc(1))

Sc(0)−Sc(1) LATEnh(1)
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− Sc(1)Sc(0)
Sc(0)−Sc(1)LATEch(0)− Sc(1)(1−Sc(0))

Sc(0)−Sc(1) LATEnh(0),

which can be written

LATEnh = Sc(0)Sc(1)
Sc(0)−Sc(1) · (LATEch(1)− LATEch(0))

+ (wn(1)LATEnh(1) + (1− wn(1))LATEnh(0)) ,
(A3)

where

wn(1) =
Sc(0)(1− Sc(1))

Sc(0)− Sc(1)
.

Equation (A3) shows that the interacted 2SLS strategy yields a Head Start coefficient equal to

a weighted average of the subLATEs LATEnh(x), plus a term that depends on heterogeneity in

LATEch(x). If there is heterogeneity in this other subLATE, this strategy does not recover the

causal effect of h relative to n for any well-defined subpopulation. This result is a special case of

the results in Kirkboen, Leuven and Mogstad (forthcoming) and Hull (2015), who show that 2SLS

does not generally recover causal effects in models with multiple endogenous variables.
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Appendix F: Selection Model

F.1 Control Functions

This appendix derives the control function terms for the selection model of Section VII. Households

participate in Head Start (Di = h) when

ψh(Xi, Zi) + vih > ψc(Xi) + vic, ψh(Xi, Zi) + vih > 0 ,

which can be re-written

vic − vih√
2 (1− ρ(Xi))

<
ψh(Xi, Zi)− ψc(Xi)√

2(1− ρ(Xi))
, −vih < ψh(Xi, Zi).

The random variables

(
vic−vih√
2(1−ρ(Xi)

)
and (−vih) have a bivariate standard normal distribution with

correlation

√
1−ρ(Xi)

2 . Then using the formulas in Tallis (1961) for the expectations of bivariate

standard normal random variables truncated from above, we have

E

[
vic − vih√

2 (1− ρ(Xi))
|Xi, Zi, Di = h

]
= Λ

(
ψh(Xi,Zi)−ψc(Xi)√

2(1−ρ(Xi))
, ψh(Xi, Zi);

√
1−ρ(Xi)

2

)
,

E [−vih|Xi, Zi, Di = h] = Λ

(
ψh(Xi, Zi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

where

Λ(a1, b1; ξ) ≡ −

φ(a1)Φ

(
b1−ξa1√

1−ξ2

)
+ ξφ (b1) Φ

(
a1−ξb1√

1−ξ2

)
Φb(a1, b1; ξ)

.

Here φ(·) and Φ(·) are the PDF and CDF of the standard normal distribution, while Φb(·) is the

bivariate standard normal CDF.

Defining λd (Xi, Zi, Di) ≡ E [vid|Xi, Zi, Di], this implies that we can write

λh(Xi, Zi, h) = −Λ

(
ψh(Xi, Zi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

λc(Xi, Zi, h) = −Λ

(
ψh(Xi, Zi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
+
√

2(1− ρ(Xi)) · Λ
(
ψh(Xi,Zi)−ψc(Xi)√

2(1−ρ(Xi))
, ψh(Xi, Zi);

√
1−ρ(Xi)

2

)
.
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Similar calculations for Di = c and Di = n yield

λh(Xi, Zi, c) = −Λ

(
ψc(Xi),

ψc(Xi)−ψh(Xi,Zi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
+
√

2 (1− ρ(Xi)) · Λ
(
ψc(Xi)−ψh(Xi,Zi)√

2(1−ρ(Xi))
, ψc(Xi);

√
1−ρ(Xi)

2

)
,

λc(Xi, Zi, c) = −Λ

(
ψc(Xi),

ψc(Xi)−ψh(Xi,Zi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

λh(Xi, Zi, n) = Λ (−ψh(Xi, Zi),−ψc(Xi); ρ(Xi)) ,

λc(Xi, Zi,, n) = Λ (−ψc(Xi),−ψh(Xi, Zi); ρ(Xi)) .

F.2 Identification

We next consider identification of the selection model parameters and the subLATEs in a model

with one binary covariate, Xi ∈ {0, 1}. In this case the choice model is fully saturated and there

are four parameters for each value of Xi: ψh(x, 1), ψh(x, 0), ψc(x), and ρ(x). These parameters are

just-identified and perfectly fit the four independent conditional choice probabilities

πd(x, z) = Pr [Di = d|Xi = x, Zi = z] , d ∈ {h, c}, z ∈ {0, 1}.

The parameters of the selection model are therefore implicit functions of the choice probabilities.

Let ∆d(x) denote the difference in mean outcomes between offered and non-offered children,

conditional on Xi and Di:

∆d(x) = E [Yi|Xi = x, Zi = 1, Di = d]− E [Yi|Xi = x, Zi = 0, Di = d].

Evaluating equation (16) for Xi = 1 and Xi = 0 gives

∆d(1) = γdh (λh(1, 1, d)− λh(1, 0, d)) + γdc (λc(1, 1, d)− λc(1, 0, d)),

∆d(0) = γdh (λh(0, 1, d)− λh(0, 0, d)) + γdc (λc(0, 1, d)− λc(0, 0, d)).

Solving these equations for the selection coefficients yields

γdh =
∆d(1) (λc(0, 1, d)− λc(0, 0, d))−∆d(0) (λc(1, 1, d)− λc(1, 0, d))

(λh(1, 1, d)− λh(1, 0, d)) (λc(0, 1, d)− λc(0, 0, d))− (λh(0, 1, d)− λh(0, 0, d)) (λc(1, 1, d)− λc(1, 0, d))
,

γdc =
∆d(1) (λh(0, 0, d)− λh(0, 1, d))−∆d(0) (λh(1, 0, d)− λh(1, 1, d))

(λh(1, 1, d)− λh(1, 0, d)) (λc(0, 1, d)− λc(0, 0, d))− (λh(0, 1, d)− λh(0, 0, d)) (λc(1, 1, d)− λc(1, 0, d))
.

These expressions have the form of multivariate instrumental variables coefficients. Specifically,

they are coefficients from an infeasible IV model that uses Zi and ZiXi as instruments for vih and

vic in the Di = d sample, controlling for a main effect of Xi. Though vih and vic are unobserved,
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the λd(Xi, Zi, Di) functions capture their conditional means and can therefore be used to construct

the first stage for the IV model.

The expressions for γdh and γdc have the same denominator. A necessary and sufficient con-

dition for identification of the two selection coefficients is that this denominator is non-zero. To

interpret the requirements for identification, note that the λd(·) are functions of the selection model

parameters, so they are implicitly functions of the choice probabilities π(x, z). This implies that

if πd(x, 1) = πd(x, 0) ∀d, then λh(x, 1, d) = λh(x, 0, d) and λc(x, 1, d) = λc(x, 0, d), resulting in a

denominator equal to zero. A necessary condition for identification is therefore that the Head Start

offer shifts choice probabilities for both covariate groups. Similarly, if πd(1, z) = πd(0, z) ∀d for

either z = 0 or z = 1, the denominator equals zero. A second necessary condition is therefore that

choice probabilities differ across covariate groups conditional on the Head Start offer. This requires

differences in compliance group shares (always takers, c-never takers, n-never takers, c-compliers

and n-compliers). Finally, note that the denominator may be zero even if the offer shifts behavior

for both covariate groups and choice probabilities differ conditional on Zi. Identification requires

Head Start offers to shift the conditional means of both vih and vic in such a way that the mean

changes in the two unobservables are not proportional.

F.3 Estimating SubLATEs

After estimating the selection model we use it to predict mean potential outcomes for subpopula-

tions that respond differently to the Head Start offer. We then use these predictions to compute

treatment effects and assess the fit of the model. For example, we construct estimates of LATEnh,

the effect of Head Start relative to home care for children that switch from home care to Head

Start in response to an offer.

N -compliers switch from n to h when offered, and are therefore described by

ψh(Xi, 1) + vih > 0 > ψh(Xi, 0) + vih, ψc(Xi) + vic < 0.

We can rewrite these conditions

−ψh(Xi, 1) < vih < −ψh(Xi, 0), vic < −ψc(Xi).

The selection errors vih and vic are truncated between (−ψh(Xi, 1),−ψh(Xi, 0)) and (−∞,−ψc(Xi))

for n-compliers. Equation (14) therefore implies that mean potential outcomes for n-compliers are

E [Yi(d)|Xi,−ψh(Xi, 1) < vih < −ψh(Xi, 0), vic < −ψc(Xi)] = θd0 +X ′iθdx

+γdhΛ0 (−ψh(Xi, 1),−ψh(Xi, 0),−∞,−ψc(Xi); ρ(Xi))

+γdcΛ0 (−∞,−ψc(Xi),−ψh(Xi, 1),−ψh(Xi, 0); ρ(Xi)) ,
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where

Λ0(a0, a1, b0, b1; ξ) =

φ(a0)

[
Φ

(
b1−ξa0√

1−ξ2

)
− Φ

(
(1−ξ)a0√

1−ξ2

)]
− φ(a1)

[
Φ

(
b1−ξa1√

1−ξ2

)
− Φ

(
b0−ξa1√

1−ξ2

)]
Φb (a1, b1; ξ)− Φb(a1, b0; ξ)− Φb(a0, b1; ξ) + 2Φb(a0, b0; ξ)

+

ξφ(b0)

[
Φ

(
a1−ξb1√

1−ξ2

)
− Φ

(
a0−ξb0√

1−ξ2

)]
− ξφ(b1)

[
Φ

(
a1−ξb1√

1−ξ2

)
− Φ

(
a0−ξb1√

1−ξ2

)]
Φb (a1, b1; ξ)− Φb(a1, b0; ξ)− Φb(a0, b1; ξ) + 2Φb(a0, b0; ξ)

.

The Λ0(·) function gives means of bivariate standard normal random variables truncated from both

sides (Tallis 1961). Analogous derivations give mean potential outcomes for c-compliers, always

takers, n-never takers, and c-never takers.

An estimate of mean Yi(d) for n compliers with covariates Xi is given by

µ̂nhd (Xi) = θ̂d0 +X ′i θ̂dx +γ̂dhΛ0

(
−ψ̂h(Xi, 1),−ψ̂h(Xi, 0),−∞,−ψ̂c(Xi); ρ̂(Xi)

)
+γ̂dcΛ0

(
−∞,−ψ̂c(Xi),−ψ̂h(Xi, 1),−ψ̂h(Xi, 0); ρ̂(Xi)

)
,

where ψ̂h and ρ̂ come from a first-step multinomial probit model and θ̂d, θ̂
x
d , γ̂hd and γ̂cd come from

a second-step least squares regression. To obtain unconditional estimates, we integrate over the

distribution of Xi for n-compliers. An estimate of the marginal mean of Yi(d) for n-compliers is

given by

µ̂nhd =
∑
i

(
ω̂nhi∑
j ω̂

nh
j

)
µ̂nhd (Xi),

where

ω̂nhi =
[
Φb

(
−ψ̂h(Xi, 0),−ψ̂c(Xi); ρ̂(Xi)

)
− Φb

(
−ψ̂h(Xi, 1),−ψ̂c(Xi); ρ̂(Xi)

)]
wi

is an estimate of the probability that individual i is an n-complier conditional on his or her co-

variates, multiplied by the HSIS sample weight wi. We then construct the subLATE estimate

ˆLATEnh = µ̂nhh − µ̂nhn . Estimates of mean potential outcomes and treatment effects for other

subgroups are obtained via similar calculations.

F.4 Specification tests

Testing for underidentification

The identification argument in Section F.2 shows that the selection coefficients for enrollment

alternative d are identified when there exist an x and x′ in the support of Xi such that

(λh(x, 1, d)− λh(x, 0, d)) (λc(x
′, 1, d)− λc(x′, 0, d)) 6=

(λh(x′, 1, d)− λh(x′, 0, d)) (λc(x, 1, d)− λc(x, 0, d)).

Equivalently, γdh and γdc are not identifed if
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λh(x, 1, d)− λh(x, 0, d) = qd1 × (λc(x, 1, d)− λc(x, 0, d)) ∀x

for some proportionality factor qd. We test the null hypothesis that the model is underidentified

by fitting the least squares regression

λ̂h(Xi, 1, d)− λ̂h(Xi, 0, d) =

3∑
k=0

qdk

(
λ̂c(Xi, 1, d)− λ̂c(Xi, 0, d)

)k
+ ηid (A4)

in the sample with Di = d. The null hypothesis that qd0 = qd2 = qd3 = 0 is compatible with

underidentification of the outcome equation for alternative d; if this hypothesis is false, the control

function differences are not proportional and the selection parameters are identified.

To account for estimation error in the first-step multinomial probit parameters we conduct

inference via the nonparametric bootstrap. Let q̂d = (q̂d0, q̂d2, q̂d3)′ denote full-sample estimates

from equation (A4) and let q̂bd denote corresponding estimates in bootstrap sample b. We form the

test statistic

F̂d =
q̂′dV̂

−1
qd q̂d

3
,

where

V̂qd =
1

T

T∑
b=1

(
q̂bd − q̄d

)(
q̂bd − q̄d

)′
and q̄d is the mean of q̂bd across bootstrap samples. We then compare F̂d to critical values of the

F (3,∞) distribution. The results of this test are reported in Appendix Figure A.II.

Testing additive separability

The key restriction in equation (14) is additive separability: mean potential outcomes are additively

separable in Xi, vih and vic. As a result, the selection coefficients do not depend on Xi and

these coefficients can be identified via comparisons of gaps in selected outcomes by offer status

across covariate groups. The additive separability restriction cannot be tested with a single binary

covariate, but it is testable if Xi takes more than two values.

To test the additive separability restriction for care alternative d we estimate regressions of the

form

ε̂id = θ̃d0 +X ′i θ̃dx+ γ̃dhλ̂h(Xi, Zi, d) + γ̃dcλ̂c(Xi, Zi, d) + λ̂h(Xi, Zi, d)X ′iξdh+ λ̂c(Xi, Zi, d)X ′iξdc+uid

for each care alternative, where ε̂id is the residual from two-step estimation of (15). We then

construct an F -statistic for the joint null hypothesis that ξdh = ξdc = 0 for all three care alternatives.

Let F̂ denote the full-sample F -statistic for this test, and let ξ̂dh and ξ̂dc denote full-sample estimates

of ξdh and ξdc. In bootstrap sample b we form corresponding estimates ξ̂bdh and ξ̂bdc and test the

hypothesis that ξ̂bdh = ξ̂dh and ξ̂bdc = ξ̂dc for all d, generating the test statistic F̂ b. A bootstrap

p-value for a score test of additive separability is then
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pT =
1

T

T∑
b=1

1
[
F̂ b > F̂

]
.

Table VII reports p-values for this test.

Testing model fit

Our control function approach requires correct specification of both the choice model and the model

for outcomes. To assess the fit of the choice model we use the multinomial probit estimates to predict

probabilities of Head Start and substitute preschool participation, π̂h(Xi, Zi) and π̂c(Xi, Zi). We

then split the sample into 25 cells defined by interactions of quintiles of the two probabilities. Cells

with fewer than 50 observations are grouped into a single cell. Finally, we test that empirical

choice probabilities match mean predicted probabilities in each cell, treating the mean predictions

as fixed. Appendix Figure A.I plots empirical choice probabilities against cell means of the two

model predictions. The nonparametric means are very close to the model predictions and a joint

test of equality does not reject. This suggests that the choice model fits well.

Two additional analyses assess the fit of the model for outcomes. The first splits the sample into

vingtiles of predicted LATEh, and compares model-predicted estimates to IV estimates within these

bins. As shown in Appendix Figure A.III, the model predictions tightly matches the IV estimates

while also capturing substantial effect heterogeneity. We cannot reject that the IV estimates and

model predictions are equal up to sampling error (p = 0.26).

The second analysis compares instrumental variables estimates of mean potential outcomes that

are nonparametrically identified to corresponding estimates from the selection model. As shown in

Appendix B, for example, an estimate of mean Yi(n) for n-compliers can be obtained by estimating

the instrumental variables model

Yi1 {Di = n} = κ0 + κn1 {Di = c}+ ui,

1 {Di = n} = m0 +m1Zi + ei.

The IV estimate κ̂n is a consistent estimate of E [Yi(n)|Di(1) = h,Di(0) = n], which can be com-

pared to the two-step control function estimate µ̂nhn .

We use a bootstrap covariance matrix to test the fit of the outcome model. Let τ̂ denote

a vector of differences between nonparametrically estimated and model-predicted moments (for

example, κ̂n − µ̂nhn ), and let τ̂b denote the corresponding estimate in bootstrap sample b. We form

the test statistic

Ŵ = τ̂ ′V̂ −1
τ τ̂

where

V̂τ =
1

T

T∑
b=1

(τ̂b − τ̄) (τ̂b − τ̄)′.
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Here τ̄ is the mean of τ̂b across bootstrap trials. We then compare Ŵ to critical values of the χ2
t

distribution, where t is the number of elements in τ̂ . The results of this test are shown in Appendix

Table A.VII.
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Appendix G: Site Group Fixed Effects

This appendix describes methods for incorporating experimental site group fixed effects into our

two-step control function estimation procedure. These methods allow us to leverage cross-site varia-

tion while reducing the dimension of heterogeneity across sites, eliminating an incidental parameters

problem that would arise with a full set of site fixed effects. Our approach is similar in spirit to

that of Bonhomme and Manresa (2015), who develop methods that account for grouped patterns of

heterogeneity in linear panel data models. Saggio (2012) extends the group fixed effects approach

to panel binary choice models. In the translation from panel data to our multi-site experimental

setting, sites play the role of cross-sectional units and experimental subjects play the role of time

periods.

G.1 Model

Experimental sites are indexed by s ∈ {1, .., S}, and s(i) denotes the site for individual i ∈
{1, ..., N}. Each site belongs to one of G unobserved groups, with g(s) ∈ {1, ..., G} the group

for site s. The number of sites S may grow asymptotically with N , but the number of groups G is

assumed to be fixed. Utilities for Head Start, other preschools and home care are given by

Ui(h, Zi) = ψ
g(s(i))
h (Zi) + vih,

Ui(c) = ψg(s(i))c + vic,

Ui(n) = 0,

with

(vih, vic) |Zi, s(i) ∼ N

(
0,

[
1 ρg(s(i))

ρg(s(i)) 1

])
.

Here we have omitted other observed covariates for simplicity, though these can be easily incorpo-

rated. This model implies that preferences depend on the site s(i) through the site group g(s(i)).

This reduces the dimension of cross-site heterogeneity from S to G.

G.2 Estimation

If the site groupings were known, the group-specific parameters Ψ =
{
ψgh(1), ψgh(0), ψgc , ρg

}G
g=1

could

be straightforwardly estimated via a multinomial probit model saturated in group indicators. These

groupings are unknown a priori, however, so the group assignments must be estimated from the

data. Following Bonhomme and Manresa (2015), we use an estimation scheme that alternates be-

tween maximizing the likelihood function conditional on group assignments and reassigning groups

to maximize the likelihood function conditional on the group-specific parameters.
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Let g0(s) be the initial type assignment for site s. The estimated group-specific parameters at

iteration k ∈ {0, 1, ...} are given by

Ψ̂k = arg max
Ψ

N∑
i=1

logL
(
Di|Zi;ψgk(s(i))

h (1), ψ
gk(s(i))
h (0), ψgk(s(i))

c , ρgk(s(i))
)

,

where L (d|z;ψh(1), ψh(0), ψc, ρ) is the multinomial probit likelihood function. Let
{
ψ̂gkh (1), ψ̂gkh (0), ψ̂gkc , ρ̂gk

}
denote the elements of Ψ̂k corresponding to group g. The new group assignments for iteration k+1

are then

gk+1(s) = arg max
g∈{1...G}

∑
i:s(i)=s

logL
(
Di|Zi; ψ̂gkh (1), ψ̂gkh (0), ψ̂gkc , ρ̂

gk
k

)
.

The algorithm proceeds until the change in the log likelihood from one iteration to the next falls

below a tolerance threshold.

G.3 Implementation

Before implementing the estimation procedure, we group together very small sites until the re-

maining sites have no fewer than 10 observations. Where possible, sites with the smallest numbers

of observations are first grouped together within Head Start program areas until the smallest site

within an area has at least 10 observations (see Puma et al. [2010] for a description of HSIS program

areas and experimental sites). For program areas with fewer than 10 total observations, we then

iteratively group the smallest program areas into sites until the smallest site has no fewer than 10.

This procedure results in 183 sites with average size 19.5.

The group fixed effects estimator described above is then applied to the sites. The objective

function for the group fixed effects estimation procedure may not be globally concave. To aid in

finding the global maximum, we sequentially increase the complexity of the model by estimating

it for each G and using the final group assignments from the previous model to initialize the next

model. Specifically, to estimate a model with G groups, we start with the final assignments from a

model with G− 1 groups and split the group with the lowest final log likelihood at the median log

likelihood. This procedure performed well in Monte Carlo trials.

To avoid overfitting the model, we select the final number of groups based on the Bayesian

Information Criterion (BIC). The BIC penalizes extra parameters in proportion to the log of the

sample size. Let g∗G(s) denote the final group assignment for site s when the total number of groups

is G. The BIC is given by

BIC(G) = −2

N∑
i=1

logL
(
Di|Zi; ψ̂

g∗G(s(i))

h (1), ψ̂
g∗G(s(i))

h (0), ψ̂
g∗G(s(i))
c , ρ̂g

∗
G(s(i))

)
+ (S + 4G) logN .

Here the S in the second term captures parameters corresponding to group assignments for the S

sites, while the 4G captures the estimated group-specific parameters. The final number of groups
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is chosen to minimize BIC(G). As shown in Appendix Table A.VI, the BIC selects 7 groups when

the model includes no other covariates and 6 groups when the model includes our full set of baseline

covariates.

Our two-step models with site group fixed effects include indicators for site groups in all second-

step regressions, fully interacted with preschool alternative. The site groups and group-specific pa-

rameters are reestimated in our bootstrap resampling procedure, with group assignments initialized

at their full-sample values in each bootstrap trial.
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Panel A. Head Start participation Panel B. Substitute preschool participation

Notes: This figure plots empirical probabilities of participating in Head Start and competing preschools against corresponding model predictions. Estimates come from the 
multinomial probit model in Table VI. Cells are defined by interactions of quintiles of the two predicted probabilities from the model. Cells with fewer than 50 observations are 
combined into a single cell. Panel A compares empirical probabilities of Head Start participation against cell means of the corresponding model-predicted probability, and panel B 
shows corresponding results for substitute preschools. Each panel shows the results of a test that the empirical and model-predicted probabilities are equal, treating the model 
predictions as fixed. The joint p -value for a test that the model fits in both panels equals 0.76.

Figure A.I. Multinomial Probit Model Fit
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Notes: This figure plots differences in control functions that predict Head Start and other 
preschool tastes conditional on preschool choices and covariates. Estimates come from the 
multinomial probit model in Table VI. The horizontal axis shows the difference in predicted 
Head Start tastes with the Head Start offer switched on and off, and the vertical axis shows the 
difference in predicted other preschool tastes with the offer switched on and off. Identification of 
the selection model requires that these values do not all lie on a line through the origin for each 
preschool choice. Dashed lines show OLS fits through the origin, and points show means of 
control function differences by percentile of the difference in predicted Head Start tastes. Tests 
are based on regressions of the difference in 𝜆h  on a constant and a third-order polynomial in the 
difference in predicted 𝜆c  for each preschool choice. F -statistics and p -values come from 
bootstrapped Wald tests of the hypothesis that the constant, second- and third-order terms are 
zero. See Appendix F for details. To preserve scale, the figure omits points in the bottom decile 
of the predicted difference in tastes for Head Start.

Figure A.II. Identification of the Selection Model
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Notes: This figure plots model-predicted local average treatment effects against IV 
estimates. Estimates come from the two-step model in column (5) of Table VII. The 
sample is divided into vingtiles on the basis of the model-predicted LATE. Points 
show IV estimates by vingtile vs. average model-predicted LATE by vingtile. The 
dashed line is the 45 degree line. Test statistic and p -value come from a Wald test of 
the hypothesis that the 45 degree line fits all points up to sampling error.

Figure A.III. Model-predicted LATE h vs. IV estimates
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Experimental center Attended center
(1) (2)

Transportation provided 0.421 0.458

Quality index 0.701 0.687

Fraction of staff with bachelor's degree 0.304 0.321

Fraction of staff with teaching license 0.084 0.099

Center director experience 19.08 18.24

Student/staff ratio 6.73 6.96

Full day service 0.750 0.715

More than three home visits per year 0.112 0.110

N
p -value

Table A.I. Characteristics of Head Start Centers Attended by Always Takers

Notes: This table reports characteristics of Head Start centers for children 
assigned to the HSIS control group who attended Head Start. Column (1) shows 
characteristics of the centers of random assignment for these children, while 
column (2) shows characteristics of the centers they attended. The p -value is 
from a test of the hypothesis that all mean center charteristics are the same. The 
sample excludes children with missing values for either characteristics of  the 
center of random assignment or the center attended. 

112
0.318



Other centers attended Other centers attended 
Head Start Other centers  by c  -> h  compliers Head Start Other centers  by c  -> h  compliers

Largest funding source (1) (2) (3) Input (4) (5) (6)
Head Start 0.842 0.027 0.038 Transportation provided 0.629 0.383 0.324

Parent fees 0.004 0.153 0.191 Quality index 0.702 0.453 0.446

Child and adult care food program 0.011 0.026 0.019 Fraction of staff with bachelor's degree 0.345 0.527 0.491

State pre-K program 0.004 0.182 0.155 Fraction of staff with teaching license 0.113 0.260 0.247

Child care subsidies 0.013 0.097 0.107 Center director experience 18.2 12.2 12.6

Other funding or support 0.022 0.118 0.113 Student/staff ratio 6.80 8.24 8.54

No funding or support 0.000 0.003 0.001 Full day service 0.637 0.735 0.698

Missing 0.105 0.394 0.375 More than three home visits per year 0.192 0.073 0.072

Table A.II. Characteristics of Head Start and Substitute Preschool Centers

Notes: This table reports characteristics of Head Start and other preschool centers obtained from surveys of center directors. Panel A displays information on the largest funding source for each center 
type, and panel B shows information on center inputs and practices.  Columns (3) and (6) reports characteristics of other preschool centers attended by non-offered compliers who would be induced to 
attend Head Start by an experimental offer. Estimates in these columns are produced using the methods for characterizing compliers described in Appendix B. 

Panel A. Funding sources Panel B. Inputs and practices



Full-time Full- or part-time
(1) (2)

Offer effect 0.020 -0.005
(0.018) (0.019)

Mean of dep. var. 0.334 0.501

N

Table A.III. Effects on Maternal Labor Supply

Notes: This table reports coefficients from regressions of 
measures of maternal labor supply in Spring 2003 on the 
Head Start offer indicator. Column (1) displays effects on 
the probability of working full-time, while column (2) 
shows effects on the probability of working full- or part-
time. Children with missing values for maternal 
employment are excluded. All models use inverse 
probability weights and control for baseline covariates. 
Standard errors are clustered at the Head Start center 
level.
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Test score effect Log earnings Log wage Ratio: wages or earnings
Intervention (std. dev. units) effect effect /test scores

Study (1) (2) (3) (4) (5)
Chetty et al. (2011) Tennessee STAR 0.024 0.003 - 0.131

(1 s.d. of class quality, kindergarten)a

OLS with controls 1.0 0.18 - 0.18
(kindergarten)b

Chetty, Friedman and Teacher value-added 0.13 0.013 - 0.103
Rockoff (2014b) (1 s.d. of teacher VA, grades 3-8)c

OLS with controls 1.0 0.12 - 0.12
(grades 3-8)d

Currie and Thomas (1999) OLS with controls 1.0 - Partial effects: 0.076 (math),
(age 7)e 0.076 (math), 0.080 (reading)

0.080 (reading)

Currie and Thomas (1995), Head Start 0.217 0.566 - 2.61
Garces, Thomas and Currie (2002) (whites, mother fixed effects, age 4+)f

Head Start 0.009 0.073 - 8.11
(blacks, mother fixed effects, age 4+)g

Heckman, Stixrud and OLS with controls 1.0 - 0.121 0.121
 Urzua (2006) (males, ages 14-22)h

OLS with controls 1.0 - 0.169 0.169
(females, ages 14-22)i

Heckman et al. (2010b) Perry Preschool Project 0.787 0.189 - 0.240
(males, age 4)j

Perry Preschool Project 0.980 0.286 - 0.292
(females, age 4)k

Lindqvist and Vestman (2011) OLS with controls 1.0 0.136 0.104 0.104
(males, w/controls, ages 18-19)l

Murnane, Willet and Levy (1995) OLS with controls 1.0 - 0.077 0.077
(males, grade 12)m

OLS with controls 1.0 - 0.109 0.109
(females, grade 12)n

lTable 1: Controlling for a small set of covariates, a one standard deviation increase in cognitive skills at age 18-19 increases log wages by 0.104 at age 32+ for Swedish men. 
Table 3: A one standard deviation increase in cognitive skills increases annual earnings by 43,392 SEK (sample mean 319,800 SEK).

nTable 4: Controlling for covariates, a 1-point increase in senior-year math scores increases age 24 log wages by 0.017 for females in the High School and Beyond Survey (the 
std. dev. of math scores is approximately 6.25 points).

Table A.IV. Estimates of Test Score and Earnings Impacts

Notes: We convert all test score effects to standard deviation units (column (2)) and all earnings effects to percentages (column (3)). 
aTable VIII: A 1 s.d. increase in class quality (peer scores) raises kindergarten test scores by 0.662 percentile points and age 27 earnings by $50.61.
bTable IV: Controlling for covariates, a 1 percentile point increase in kindergarten test scores raises average annual earnings from age 25 to age 27 by $93.79.
cTable III: A 1 s.d. increase in teacher value-added raises test scores by 0.13 standard deviations and boosts age 28 earnings by $285.55.
dAppendix Table III: Controlling for covariates, a 1 s.d. increase in test scores raises age 28 earnings by $2,585.

fCurrie and Thomas (1995), Table 4: Head Start participation raises test scores by 5.88 percentile points at age 4+ for whites. Garces, Thomas and Currie (2002), Table 2: Head 
Start participation raises log earnings between age 23 and age 25 by 0.566 for whites.
gCurrie and Thomas (1995), Table 4: Head Start participation raises test scores by 0.247 percentile points at age 4+ for whites. Garces, Thomas and Currie (2002), Table 2: 
Head Start participation raises log earnings between age 23 and age 25 by 0.073 for blacks.

jAppendix Figure G.1 (a): Treatment increased male IQ by 11.8 points at age 4. Appendix Table H.1: Treatment increased male age 27 earnings by $2,363 (control mean 
$12,495).
kAppendix Figure G.1 (b): Treatment increased female IQ by 14.7 points at age 4. Appendix Table H.2: Treatment increased female age 27 earnings by $2,568 (control mean 
$8,986).

mTable 3: Controlling for covariates, a 1-point increase in senior-year math scores increases age 24 log wages by 0.011 for males in the High School and Beyond Survey (the 
std. dev. of math scores is approximately 6.25 points).

eTables 3 and 4 report partial effects of scoring in the top vs. bottom quartile of reading and math scores at age 7 on log wages at age 33 for British children. We use Krueger's 
(2003) conversion of effects on quartiles to standard deviation units.

hTable 1: Controlling for covariates, a one standard deviation increase in cognitive skills at age 14-22 increases log wages at age 30 by 0.121 for males. Controls include non-
cognitive skills.
iTable 1: Controlling for covariates, a one standard deviation increase in cognitive skills at age 14-22 increases log wages at age 30 by 0.169 for females. Controls include non-
cognitive skills.



One endogenous 
variable

Head Start Head Start Other centers
Instruments Estimator (1) (2) (3)

Offer 2SLS 0.247 - -
(1 instrument) (0.031)

Offer X sites 2SLS 0.210 0.213 0.008
(183 instruments) (0.026) (0.039) (0.095)

First-stage F 215.1 90.0 2.7
Overid. p-value 0.002

LIML 0.218 0.029 -0.581
(0.027) (0.139) (0.432)

Overid. p-value 0.002

JIVE 0.217 0.109 -0.329
(0.026) (0.110) (0.332)

Overid. p-value 0.001
Notes: This table reports two-stage least squares estimates of the effects of Head Start and other 
preschool centers in Spring 2003. The model in the first row instruments Head Start attendance with 
the Head Start offer. Models in the remaining rows instrument Head Start and other preschool 
attendance with interactions of the offer and indicators for experimental sites. Sites with fewer than 
10 observations are grouped together within program areas as described in Appendix D. All models 
control for main effects of the interacting variables and baseline covariates. JIVE refers to the JIVE2 
estimator defined in Angrist, Imbens and Krueger (1995), computed after first partialing out the 
exogenous covariates as described by Ackerberg and Devereux (2009). Overidentification tests for 
JIVE are based on Hansen's (1982) J -statistics for 2SLS and LIML. Overidentification tests for JIVE 
are based on the many instrument and heteroskedasticity-robust statistic derived by Chao et al. 
(2014). First stage F -statistics are Angrist/Pischke (2009) partial F 's. Standard errors are robust to 
heteroskedasticity.

Table A.V. Two Stage Least Squares Estimates with Site Interaction Instruments
Two endogenous

variables

0.002

0.076

0.003



Log likelihood BIC Log likelihood BIC
Groups (1) (2) (3) (4)

1 -2,761.7 7,323.1 -2,582.0 7,912.7

2 -2,535.0 6,657.1 -2,366.9 6,811.6

3 -2,435.6 6,490.9 -2,268.3 6,647.1

4 -2,386.9 6,426.4 -2,223.4 6,590.0

5 -2,348.5 6,382.2 -2,184.1 6,544.2

6 -2,309.0 6,336.0 -2,154.9 6,518.6

7 -2,292.2 6,335.0 -2,150.6 6,542.8

8 -2,279.1 6,341.7 -2,141.7 6,557.5

Table A.VI. Model Selection Criteria for Site Group Fixed Effect Models

Notes: This table shows results for multinomial probit models with fixed effects for unobserved experimental site 
groups. Columns (1) and (3) show the maximized log likelihood for each number of site groups, and columns (2) and 
(4) show corresponding values of the Bayesian Information Criterion (BIC), equal to the number of model parameters 
times the log of the sample size minus twice the log likelihood. Columns (1) and (2) include no other covariates, while 
columns (3) and (4) include the covariates listed in the notes to Table VI. See Appendix G for details.

Sites only Covariates and sites



IV Two-step IV Two-step IV Two-step IV Two-step
(1) (2) (3) (4) (5) (6) (7) (8)

n -compliers 0.454 0.454 - 0.303 - -0.323 -0.078 -0.067

c -compliers 0.232 0.231 - 0.078 0.107 0.172 - -0.525

All compliers 0.686 0.685 0.233 0.227 - -0.156 - -0.221

n -never takers 0.095 0.093 - 0.590 - -0.392 -0.035 -0.017

c -never takers 0.083 0.082 - 0.248 0.316 0.309 - -0.530

Always takers 0.136 0.140 -0.028 0.027 - -0.140 - -0.340

Full population 1 1 - - -0.136 - -0.245

P -value: IV = Two-step
P -value for all moments

Table A.VII. Comparison of IV and Model-based Estimates of Mean Potential Outcomes

Notes: This table compares nonparametric estimates of mean potential outcomes for subpopulations to estimates implied by the two-step model in 
column (5) of Table VII.

Type probability E [Y (h )] E [Y (n )]E [Y (c )]

0.589 0.260 0.605 0.731
0.792
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