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We propose leave-out estimators of quadratic forms designed for the study of linear
models with unrestricted heteroscedasticity. Applications include analysis of variance
and tests of linear restrictions in models with many regressors. An approximation al-
gorithm is provided that enables accurate computation of the estimator in very large
data sets. We study the large sample properties of our estimator allowing the num-
ber of regressors to grow in proportion to the number of observations. Consistency is
established in a variety of settings where plug-in methods and estimators predicated
on homoscedasticity exhibit first-order biases. For quadratic forms of increasing rank,
the limiting distribution can be represented by a linear combination of normal and
non-central > random variables, with normality ensuing under strong identification.
Standard error estimators are proposed that enable tests of linear restrictions and the
construction of uniformly valid confidence intervals for quadratic forms of interest. We
find in Italian social security records that leave-out estimates of a variance decomposi-
tion in a two-way fixed effects model of wage determination yield substantially different
conclusions regarding the relative contribution of workers, firms, and worker-firm sort-
ing to wage inequality than conventional methods. Monte Carlo exercises corroborate
the accuracy of our asymptotic approximations, with clear evidence of non-normality
emerging when worker mobility between blocks of firms is limited.

KEYWORDS: Variance components, heteroscedasticity, fixed effects, leave-out esti-
mation, many regressors, weak identification, random projection.

0. INTRODUCTION

AS ECONOMIC DATA SETS have grown large, so has the number of parameters employed
in econometric models. Typically, researchers are interested in certain low dimensional
summaries of these parameters that communicate the relative influence of the various
economic phenomena under study. An important benchmark comes from Fisher’s (1925)
foundational work on analysis of variance (ANOVA) which he proposed as a means of
achieving a “separation of the variance ascribable to one group of causes, from the vari-
ance ascribable to other groups.”
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This paper develops a new approach to estimation of and inference on variance com-
ponents, which we define broadly as quadratic forms in the parameters of a linear model.
Traditional variance component estimators are predicated on the assumption that the
errors in a linear model are identically distributed draws from a normal distribution.
Standard references on this subject (e.g., Searle, Casella, and McCulloch (2009)) suggest
diagnostics for heteroscedasticity and non-normality, but offer little guidance regarding
estimation and inference when these problems are encountered. A closely related liter-
ature on panel data econometrics proposes variance component estimators designed for
fixed effects models that restrict either the dimensionality of the underlying group means
(Bonhomme, Lamadon, and Manresa (2019)) or the nature of the heteroscedasticity gov-
erning the errors (Andrews, Gill, Schank, and Upward (2008), Jochmans and Weidner
(2019)).

Our first contribution is to propose a new variance component estimator designed for
unrestricted linear models with heteroscedasticity of unknown form. The estimator is fi-
nite sample unbiased and can be written as a naive “plug-in” variance component es-
timator plus a bias correction term that involves “cross-fit” (Newey and Robins (2018))
estimators of observation-specific error variances. We also develop a representation of the
estimator in terms of a covariance between outcomes and a “leave-one-out” generalized
prediction (e.g., as in Powell, Stock, and Stoker (1989)). Building on work by Achlioptas
(2003), we propose a random projection method that enables computation of our estima-
tor in very large data sets with little loss of accuracy.

We study the asymptotic behavior of the proposed leave-out estimator in an environ-
ment where the number of regressors may be proportional to the sample size: a frame-
work that has alternately been termed “many covariates” (Cattaneo, Jansson, and Newey
(2018)) or “moderate dimensional” (Lei, Bickel, and El Karoui (2018)) asymptotics. Ver-
ifiable design requirements are provided that ensure the estimator is consistent. These
design requirements are shown to be met in a series of examples where estimators relying
on jackknife or homoscedasticity-based bias corrections are inconsistent.

Three sets of asymptotic results are developed that allow our estimator to be used for
inference in a variety of settings. The first result concerns inference on quadratic forms of
fixed rank, a problem that typically arises when testing a few linear restrictions in a model
with many covariates (Cattaneo, Jansson, and Newey (2018)). Familiar examples include
testing that particular parameters are significant in a fixed effects model and conducting
inference on the coefficients from a projection of fixed effects onto a low dimensional
vector of covariates. Extending classic proposals by Horn, Horn, and Duncan (1975) and
MacKinnon and White (1985), we show that our leave-out approach can be used to con-
struct an Eicker—White style variance estimator that is unbiased in the presence of un-
restricted heteroscedasticity and that enables consistent inference on linear contrasts un-
der weaker design restrictions than those considered by Cattaneo, Jansson, and Newey
(2018).

Next, we derive a result establishing asymptotic normality for quadratic forms of grow-
ing rank. Such quadratic forms typically arise when conducting analysis of variance, but
also feature in tests of model specification involving a large number of linear restrictions
(Anatolyev (2012), Chao, Hausman, Newey, Swanson, and Woutersen (2014)). The large
sample distribution of the estimator is derived using a variant of the arguments in Chat-
terjee (2008) and Sglvsten (2020). A consistent standard error estimator is proposed that
utilizes sample splitting formulations of the sort considered by Newey and Robins (2018).

Finally, we present conditions under which the large sample distribution of our esti-
mator is non-pivotal and can be represented by a linear combination of normal and non-
central y? random variables, with the non-centralities of the y? terms serving as weakly
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identified nuisance parameters. This distribution arises in a two-way fixed effects model
when there are “bottlenecks” in the mobility network. Such bottlenecks are shown to
emerge, for example, when worker mobility is governed by a stochastic block model with
limited mobility between blocks. To construct asymptotically valid confidence intervals in
the presence of nuisance parameters, we propose inversion of a minimum distance test
statistic. Critical values are obtained via an application of the procedure of Andrews and
Mikusheva (2016). The resulting confidence interval is shown to be valid uniformly in
the values of the nuisance parameters and to have a closed form representation in many
settings, which greatly simplifies its computation.

We illustrate our results with an application of the two-way worker-firm fixed effects
model of Abowd, Kramarz, and Margolis (1999) to Italian social security records. The
proposed leave-out estimator finds a substantially smaller contribution of firms to wage
inequality and a much stronger correlation between worker and firm effects than either
the uncorrected plug-in estimator originally considered by Abowd, Kramarz, and Margo-
lis (1999) or the homoscedasticity-based correction procedure of Andrews et al. (2008).

Projecting the estimated firm effects onto worker and firm characteristics, we find that
older workers tend to be employed at firms offering higher firm wage effects and that this
phenomenon is largely explained by the tendency of older workers to sort to bigger firms.
Leave-out standard errors for the coefficients of these linear projections are found to be
several times larger than a naive standard error predicated on the assumption that the
estimated fixed effects are independent of each other. Stratifying our analysis by birth co-
hort, we formally reject the null hypothesis that older and younger workers face identical
vectors of firm effects.

To assess the accuracy of our asymptotic approximations, we conduct a series of Monte
Carlo exercises utilizing the realized mobility patterns of workers between firms. Clear
evidence of non-normality arises in the sampling distribution of the estimated variance of
firm effects in settings where the worker-firm mobility network is weakly connected. The
proposed confidence intervals are shown to provide reliable size control in both strongly
and weakly identified settings.

1. UNBIASED ESTIMATION OF VARIANCE COMPONENTS

Consider the linear model
yi=xB+e (i=1,...,n),

where the regressors x; € R¥ are non-random and the design matrix S,, = YL, x:x) has
full rank. The unobserved errors {¢;}/_, are mutually independent and obey E[&;] = 0, but
may possess observation-specific variances E[&7] = o?.

Our object of interest is a quadratic form 6 = 8’ AB for some known non-random sym-
metric matrix A € R¥** of rank r. Following Searle, Casella, and McCulloch (2009), when
A is positive semi-definite, 0 is a variance component, while when A is non-definite, 0
may be referred to as a covariance component. Note that linear restrictions on the pa-
rameter vector B can be formulated in terms of variance components: for a non-random
vector v, the null hypothesis v'8 = 0 is equivalent to the restriction § =0 when 4 = vv'.
Examples from the economics literature where variance components are of direct interest
are discussed in Section 2.
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1.1. Estimator

A naive plug-in estimator of @ is given by the quadratic form 6y = B AB, where 8 =
S I3 xiyi=B+ S !>, x;&; denotes the ordinary least squares (OLS) estimator of

B. Estimation error in B leads the plug-in estimator to exhibit a bias involving a linear
combination of the unknown variances {a?}"_,. Specifically, standard results on quadratic
forms imply that

E[0p1] — 0 = trace(AV[S]) ZB”

where B;; = xS_! AS_!x; measures the influence of the ith squared error &2 on Opr. As

XX

discussed in Section 2 this bias can be particularly severe when the dimension of the
regressors k is large relative to the sample size.
To remove this bias, we develop leave-out estimators of the error variances {07},

Denote the leave-i-out OLS estimator of 8 by ﬁ,i = (e —x;x) 7! Zz# X,y,. An unbiased
estimator of o7 is

&iZ = J’i()’i - x;ﬁ'ﬂ')-

We therefore propose the following bias-corrected estimator of 6:
= :é B Z B,,O’ (1)

While Newey and Robins (2018) observed that “cross-fit” covariances relying on sample
splitting can be used to remove bias of the sort considered here, we are not aware of prior
proposals to use the leave-i-out error variance estimators {G7}7,.

One can also motivate  via a change of variables argument. Letting &; = AS “Ix;denote
a vector of “generalized” regressors, we can write

0=pAB=PSuS AB= Zﬁx B=) E[yiB]
i=1

This observation suggests using the unbiased leave-out estimator

)= Zy,-fc;,é,,-. 2
i=1
Note that direct computation of 3_; can be avoided by exploiting the representation
rA Yi — x;B
Yi inB—t — 1_Pii )

where P; = x/S_!x; gives the leverage of observation i. Applying the Sherman-Morrison-
Woodbury formula (Woodbury (1949), Sherman and Morrison (1950)), this representa-
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tion also reveals that (1) and (2) are numerically equivalent:

xS xxSl

~'H ViXiO oy iPxx 52
YiX;B_i = yiX;S,; E X Yo+t ———F— E XeYe = ysz Biio;.
(23 1231
=yi¥;B-Biy? =Biiyix;B_i

A similar combination of a change of variables argument and a leave-one-out estimator
was used by Powell, Stock, and Stoker (1989) in the context of weighted average deriva-
tives. The JIVE estimators proposed by Phillips and Hale (1977) and Angrist, Imbens,
and Krueger (1999) also use a leave-one-out estimator, though without the change of
variables.!

REMARK 1: The {7}/, can also be used to construct an unbiased variance estimator
Vig1=S5,, (Z x,.x;.ag) S
i=1

Though ¥[B] need not be positive semi-definite, Section 4 shows that it can be used to per-
form asymptotically valid inference on linear contrasts in settings where existing Eicker—
White estimators fail. Specifically, using ¥[B] leads to valid inference under conditions
where the estimators of Rao (1970) and Cattaneo, Jansson, and Newey (2018) do not
exist (see, e.g., Horn, Horn, and Duncan (1975), Verdier (2017)).

REMARK 2: The quantity VIB] is closely related to the HC2 variance estimator of
MacKinnon and White (1985). While the HC2 estimator employs observation-specific
_ Oi—- X;B) _ i x:B)

1-P;; 1-P;;

variance estimators 67y, = , VIB] relies instead on o} =

REMARK 3: The leave-out estimator is easily adapted to settings where the data are
organized into mutually exclusive and independent “clusters” within which the errors may
be dependent (e.g., as in Moulton (1986)). The change of variables argument leading to
(2) also implies that an estimator of the form Y7, y,¥,B_., will be unbiased in such
settings, where BA_CU) is the OLS estimator obtained after leaving out all observations in
the cluster to which observation i belongs. Appendix A provides an application.

1.2. Relation to Existing Approaches

As detailed in Section 2, several literatures make use of bias corrections nominally
predicated on homoscedasticity. A common “homoscedasticity-only” estimator takes the
form

Oro =B AB — ZBHUHO, 3)

i=1

'The object of interest in JIVE estimation is a ratio of quadratic forms B1SxxB2/B5Sxx B2 in the two-equation
model y; = x;B; + g; for j =1,2. When no covariates are present, using leave-out estimators of both the
numerator and denominator of this ratio yields the JIVE1 estimator of Angrist, Imbens, and Krueger (1999).
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~2 1 n 1@R)2 ; ; ;
where 07, = — > 1, (v — x;B)” is the degrees-of-freedom corrected variance estimator.

A sufficient condition for unbiasedness of 6y is that there be no empirical covariance
between o7 and (Bj;, Py;). This restriction is in turn implied by the special cases of ho-
moscedasticity where o2 does not vary with i or balanced design where (B;;, P;) does not
vary with i. In general, however, this estimator will be biased (see, e.g., Scheffe (1959),
Chapter 10).

A second estimator, closely related to 6, relies upon a jackknife bias correction (Que-
nouille (1949)) of the plug-in estimator. This estimator can be written

o A n—1
Ok = nbp —

Z éPI,—i where é1>I,—i = BA,,,'ABA—i-

i=1

n

We show in the Supplemental Material (Kline, Saggio, and Sglvsten (2020)) that the con-
ventional jackknife can produce first-order biases in the opposite direction of the bias in
the plug-in estimator. This problem is also shown to extend to recently proposed jackknife
adaptations (Hahn and Newey (2004), Dhaene and Jochmans (2015)) designed for long
panels.

1.3. Finite Sample Properties

We now study the finite sample properties of the leave-out estimator 6 and its infea-
sible analogue 6" = B'AB — Y, Bio?, which uses knowledge of the individual error
variances. The following lemma establishes that 6 is unbiased whenever each of the leave-
one-out estimators ,é_,- exists, which can equivalently be expressed as the requirement that
max; P; < 1. This condition turns out to also be necessary for the existence of unbiased
estimators, which highlights the need for additional restrictions on the model or sample
whenever some leverages equal 1.

LEMMA 1: (i) If max; P; < 1, then E[0] = 6.
(ii) Unbiased estimators of 8 = B' AB exist for all A if and only if max; P; < 1.

See Appendix B for proofs.

Next, we establish that, when the errors are normal, the infeasible estimator 6* is a
weighted sum of a series of non-central y? random variables. This second result provides a
useful point of departure for our asymptotic approximations and highlights the important
role played by the matrix

A=5.174S.",

which encodes features of both the target parameter (as defined by 4) and the design
matrix S,,. ~

Let Ay, ..., A, denote the nonzero eigenvalues of A, where A? > ... > A? and each
eigenvalue appears as many times as its algebraic multiplicity. We use Q to refer to
the corresponding matrix of orthonormal eigenvectors so that 4 = QD(Q’ where D =
diag(A4, ..., A,). With these definitions,

’\,ABA = Z)\léﬁ,
=1
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where b= (by,...,b,) = Q/S}CfBA contains 7 linear combinations of the elements in .
The random vector b and the eigenvalues A, ..., A, are central to both the finite sample
distribution provided below in Lemma 2 and the asymptotic properties of 6 as studied
in Sections 4-6. Each eigenvalue of A can be thought of as measuring how strongly 6
depends on a particular linear combination of the elements in 8 relative to the difficulty
of estimating that combination (as summarized by S_!).

LEMMA 2: If &;~ N (0, 0?), then
(i) b~ N (b, V[b]) where b= Q'S'/*B,
(ii) 0" = 22:1 M(b? - VIb.]).

The distribution of 6* is a sum of r potentially dependent non-central y* random
variables with non-centralities b = (by, ..., b,)". In the special case of homoscedasticity
(07 = %) and no signal (b = 0), we have that b ~ N(0, 021,), which implies that the
distribution of * is a weighted sum of r independent central xy* random variables. The
weights are the eigenvalues of A, therefore consistency of 6* follows whenever the sum of
the squared eigenvalues converges to zero. The next subsection establishes that the leave-
out estimator remains consistent when a signal is present (b # 0) and the errors exhibit
unrestricted heteroscedasticity.

1.4. Consistency

We now drop the normality assumption and provide conditions under which 8 remains
consistent. To accommodate high dimensionality of the regressors, we allow all parts of
the model to change with #n:

yi,nz-xi"an_f'si,n (l:l, ""n)7

where x;, € R*, S, o = Y1 XinX,,, El&;,] =0, E[&},] = 07,, and 6, = B3], A, B, for some
sequence of known non-random symmetric matrices A, € R>** of rank r,. By treating
x;, and A4, as sequences of constants, all uncertainty derives from the disturbances {¢; , :
1 <i < n,n > 1}. This conditional perspective is common in the statistics literature on
ANOVA (Scheffe (1959), Searle, Casella, and McCulloch (2009)) and allows us to be
agnostic about the potential dependency among the {x;,}", and A,.> Following standard
practice, we drop the n subscript in what follows. All limits are taken as n goes to infinity
unless otherwise noted.

ASSUMPTION 1: (i) max;(E[&}] + (ri‘z) = 0(1); (ii) there exists a ¢ < 1 such that
max; P; < c for all n; and (iii) max,;(x;8)* = O(1).

Part (i) of this condition limits the thickness of the tails in the error distribution, as is
typically required for OLS estimation (see, e.g., Cattaneo, Jansson, and Newey (2018),
page 10). The bounds on (x;8)? and P; imply that 67 has bounded variance. Part (iii) is a

2An unconditional analysis might additionally impose distributional assumptions on A, and consider 6 =
B'E[A,]B as the object of interest. The uncertainty in 6 — 6 can always be decomposed into components

attributable to § — 6 and 6 — . Because the behavior of 6 — 6 depends entirely on model choices, we leave
such an analysis to future work.
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technical condition that can be relaxed to allow max;(x/8)* to increase slowly with sample
size as discussed further in Section 8. From (ii), it follows that % <c<1foralln.

The following lemma establishes consistency of 6.

LEMMA 3: If Assumption 1 and one of the following conditions hold, then 6—6->50:
(i) A is positive semi-definite, = B’ AP = O(1), and trace(A*) =Y _,_, A = o(1).
(i) A=3(A|Ar+ AyA)), where 6, = B A\ A, B and 0, = B’ A, A, B satisfy (i).

Part (i) of Lemma 3 establishes consistency of variance components given boundedness
of 6 and a joint condition on the design matrix S,, and the matrix 4.> Part (ii) shows that
consistency of covariance components follows from consistency of variance components
that dominate them via the Cauchy-Schwarz inequality, that is, 6* = (8’ A} A2B)* < 6,0,.
In several of the examples discussed in the next section, trace(;lz) is of order r/n?, which
is necessarily small in large samples. A more extensive discussion of primitive conditions
that yield trace(A%) = o(1) is provided in Section 8.

2. EXAMPLES

We now consider three commonly encountered empirical examples where our proposed
estimation strategy provides an advantage over existing methods.

EXAMPLE 1—Analysis of Covariance: Since the work of Fisher (1925), it has been com-
mon to summarize the effects of experimentally assigned treatments on outcomes with
estimates of variance components. Consider a data set composed of observations on N
groups with 7, observations in the gth group. The “analysis of covariance” model posits
that outcomes can be written

ygt:ag+x:gt6+ggt (g=1,...,N,t=1,..., T, =2),

where «a, is a group effect and x,, is a vector of strictly exogenous covariates.

A prominent example comes from Chetty, Friedman, Hilger, Saez, Schanzenbach, and
Yagan (2011) who studied the adult earnings y,, of n = Zi,vzl T, students assigned exper-
imentally to one of N different classrooms. Each student also has a vector of predeter-
mined background characteristics x,,. The variability in student outcomes attributable to
classrooms can be written

1N
2 I T = 2,
o, p gg_l o(a, —a)

where & = 1 Zgzl T,a, gives the (enrollment-weighted) mean classroom effect.

This model can be aligned with the notation of the preceding section by letting i =
i(g,t), where i(-, ) is bijective, with inverse denoted (g(-), #(-)), and defining y; = y,,,
€= &g,

X = (d:, X! ),, B = (CY/, 8/)/, a = (al, ey aN)/ and d,‘ = (1[g=1]7 ey 1{g=N])/-

gt

3A slight generalization of the proof reveals that this conclusion continues to hold under a locally misspeci-
fied model where max;|E[g;]| = O(1//n).
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To represent the target parameter in this notation, we write o> = B’ A, where

A, A; 0 1 ; _ 1
A:[% 0] forAdzﬁ(dl—d,...,d,,—d)andd:;l;d,«.

Chetty et al. (2011) estimated o using a random effects ANOVA estimator (see, e.g.,
Searle, Casella, and McCulloch (2009)), which is of the homoscedasticity-only type given
in (3). As shown in the Supplemental Material, this estimator is in general first-order
biased when the errors are heteroscedastic and group sizes are unbalanced.

Special Case: No Common Regressors. When there are no common regressors (x,, =0
for all g, 1), the leave-out estimator of ¢ has a particularly simple representation:

N

1 N T,
o2 = - Z(Tg(&g —a)’ — (1 — f)&;) where 7; =

g=1

—a&)%  (4)

for &, = 7 > vy and & = 1y Ty@,. This representation shows that if the model

consists only of group-specific intercepts, then the leave-out estimator relies on group-
level degrees-of-freedom corrections. The statistic in (4) was analyzed by Akritas and
Papadatos (2004) in the context of testing the null hypothesis that o> = 0 while allowing
for heteroscedasticity at the group level.

Covariance Representation. Another instructive representation of the leave-out estima-
tor is in terms of the empirical covariance

n
62=> ydia_; where ;= (&8).
i=1
The generahzed Tegressor d; is a residual from an mstrumental variables (IV) regressmn
Specifically, d = —((d d) — I (Xgaiytiy — Xg0)), Where X, 7 Zt | X and r gives the
coefficients from an IV regression of d; —d on Xg(iyeci) — Xg(i) USING Xg(iy(;) AS an instrument.
The IV residual c?i is uncorrelated with x,;;, and has a covariance with d; of A/, 4,, which

~/
ensures that the empirical covariance between y; and the generalized prediction d; &_; is
an unbiased estimator of o2,

EXAMPLE 2—Random Coefficients: Group memberships are often modeled as influ-
encing slopes in addition to intercepts (Kuh (1959), Hildreth and Houck (1968), Arellano
and Bonhomme (2011)). Consider the following “random coefficient” model:

Vo =0Qg+ZgYe+ o (g=1,...,N,t=1,...,T,>3).

An influential example comes from Raudenbush and Bryk (1986), who modeled stu-
dent mathematics scores as a “hierarchical” linear function of socioeconomic status (SES)

with school-specific intercepts («, € R) and slopes (y, € R). Letting y = Z =1 LgYg for
n= Z =1 Ig, the student-weighted variance of slopes can be written

1 N
= - Ty =¥’
g=1
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In the notation of the preceding section, we can write this model y; = x8 + ¢;, where
w=(d dz),  B=(@7), y=m..ow) and 2=p|0 O |p
i i Yi~gt) ) s 1y +++5 /N % 0 A;]Ad

for y;, €, d;, @, and A, as defined in the preceding example.

Raudenbush and Bryk (1986) used a maximum likelihood estimator of o7 predicated
upon normality and homoscedastic errors. Swamy (1970) considered an estimator of o
that relies on group-level degrees-of-freedom corrections and is unbiased when the error
variance is allowed to vary at the group level, but not with the level of z,,. Arellano and
Bonhomme (2011) proposed an estimator that is unbiased under arbitrary heteroscedas-
ticity patterns, which by Lemma 1 implies the leverage requirement max; P; < 1. Our pro-
posed leave-out estimator is also unbiased under arbitrary patterns of heteroscedasticity
and takes a particularly simple form.

Covariance Representation. The leave-out estimator can be written

n -
~ ~ 1 - Z . oy — Z .
A2 3 IS = g()1(i) g(i)
o, = E vizidy_; whered; = Z(di —-d), z;i= - ,

8(i)

i=1 - 2
Y Gt = Ze)
t=1

and z, = Tig Z,Til z,,. Demeaning z,;(; at the group level guarantees d;z; is uncorrelated
with d;, while scaling by the group variability in z,;, ensures that the covariance between
d,’%,’ and d,’Zg(,‘)t(,‘) is A;Ad

EXAMPLE 3—Two-Way Fixed Effects: Economists often study settings where units pos-
sess two or more group memberships, some of which can change over time. A prominent
example comes from Abowd, Kramarz, and Margolis (1999) (henceforth AKM) who pro-
posed a panel model of log wage determination that is additive in worker and firm fixed
effects. This so-called “two-way” fixed effects model takes the form

Yo =g+ Yjen+X,0+ey (g=1,....,N,t=1,...,T,>2), %)

where the function j(-,-) : {1,..., N} x {1,...,max, T,} — {0,...,J} allocates each of
n= Z;\;l T, person-year observations to one of J + 1 firms. Here « is a “person effect,”
Vi@ 15 a “firm effect,” x,, is a time-varying covariate, and &, is a time-varying error. In
this context, the mean-zero assumption on the errors g,, can be thought of as requiring
both the common covariates x,, and the firm assignments j(-, -) to obey a strict exogeneity
condition.

Interest in such models often centers on understanding how much of the variability
in log wages is attributable to firms. AKM summarized the firm contribution to wage
inequality with the following two parameters:

1 . 1 & .
0p==2 2 Wigo— 1) and ouy=—3 % (Wien— ey,

g=1 t=1 g=1 t=1

where i = L Zg;l ijl .- The variance component (rj, measures the direct contribu-
tion of firm wage variability to inequality, while the covariance component ¢, , measures
the additional contribution of systematic sorting of high wage workers to high wage firms.
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To represent this model in the notation of the preceding section, define
X;i= (dl/’ i/’ x:gt) S B= (a/’ lp/, 8,) ,
az(ah'-'?aN),—*—l;\]lpO’ lpz(lpl---alpl)/_l‘/]w()’

for y;, &, and d; as in the preceding examples, and f; = (1jjg,1)=1)5 - - - » Lijg.0=sy)’- The
target parameters are o = A, B and o, , = ' A, 4B, where

0 0 0 ([0 a4 0
Ag=[0 Apd; 0 and Ay =5|Apdc 0 0,
0 0 0 0 0 0

for A= - (fi — foeetsfa= D), f=13" f and A, as in the preceding examples.
Addition and subtraction of i, in 8 amounts to the normalization, i) = 0, which has
no effect on the variance components of interest. As Abowd et al. (2002) noted, least
squares estimation of (5) requires one normalization of the ¢ vector within each set of
firms connected by worker mobility. For simplicity, we assume all firms are connected so
that only a single normalization is required.*
Covariance Representation. AKM estimated o and o, using the naive plug-in es-

timators [§/A,,, B and [g’/Aa,l,,BA, which are biased. Andrews et al. (2008) proposed the
“homoscedasticity-only” estimators of (3). These estimators are unbiased when the er-
rors g; are independent and have common variance. Bonhomme, Lamadon, and Manresa
(2019) proposed a two-step estimation approach that is consistent in the presence of het-
eroscedasticity when the support of firm wage effects is restricted to a finite number of
values and each firm grows large with the total sample size n. Our leave-out estimators,
which avoid both the homoscedasticity requirement on the errors and any cardinality re-
strictions on the support of the firm wage effects, can be written compactly as covariances
taking the form

n n

~2 -1 A ~ -1 A

0-111 = Zyix;'Sxx Alﬂﬁ*i’ Ou,y = Zyix;Sxx Aﬂ,l/’ﬁ*i'
i=1 i=1

Notably, these estimators are unbiased whenever the leave-out estimator B_; can be com-
puted, regardless of the distribution of firm sizes.

Special Case: Two Time Periods. A simpler representation of & is available in the case
where only two time periods are available and no common regressors are present (7, =2
and x,, = 0 for all g, ¢). Consider this model in first differences:

Ay, =Afp +Ae, (g=1,...,N), (6)

“Bonhomme, Lamadon, and Manresa (2019) studied a closely related model where workers and firms each
belong to one of a finite number of types and each pairing of worker and firm type is allowed a different mean
wage. These mean wage parameters are shown to be identified when each worker type moves between each
firm type with positive probability, enabling estimation even when many firms are not connected.
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where Ay, = Yoo — Vo1, Ay = €40 — 841, and Af, = fie2) — fie1)- The leave-out estimator
of o applied to this differenced representation of the model is

N
52 =Y Ay Afif, where Af, = AySy\Af,,

where the quantities Sy;a; and §_, correspond respectively to S, and B_..

REMARK 4: The leave-out representation above reveals that &2 is unbiased not only
under arbitrary heteroscedasticity and design unbalance, but also under arbitrary corre-
lation between &, and &,. The same can be shown to hold for &, ,. Furthermore, this
representation highlights that &, only depends upon observations with Af, # 0 (i.e., firm
“movers”

3. LARGE SCALE COMPUTATION

It is possible to quickly approximate 6 in large scale applications using a variant of
the random projection method of Achlioptas (2003), which we refer to as the Johnson—
Lindenstrauss Approximation (JLA) for its connection to the work of Johnson and Lin-
denstrauss (1984). JLA can be described by the following algorithm: fixa p € N and gen-
erate the matrices Rp, Rp € R?*", where (Rp, Rp) are composed of mutually independent
Rademacher random variables that are independent of the data, that is, their entries take
the values 1 and —1 with probability 1/2. Next, decompose A into A = 1(A| A, + A, Ay)
for A,, A, € R™* where A, = A, if A is positive semi-definite.’ Let

13,-,-=%”RPXS;;)¢,-’2 and l§,-,-=%(RBAIS;jxi)/(RBAzS;;x,-),

where X = (xy, ..., x,)’. The Johnson-Lindenstrauss approximation to 6 is
n
0r.4=B AP — ZBH&EJLA’
i=1

(yi—x\ ) 3P3+P2 3P34+P2
WP g 130 ”) The term —% removes a non-linearity bias in-

—tu

where o O'IJLA =7 ST
troduced by approximating P;;.°
The following lemma establishes asymptotlc equivalence between the leave-out estima-

tor @ and its approximation 6, , when p* is large relative to the sample size.

LEMMA 4: If Assumption 1 is satlsﬁed n/p*=o(1), V6]~ =0(n), and one of the fol-
lowing conditions hold, then V[6]"/*(6,,,— 6 —B ») = 0,(1) where |B,| < Z?zl P?
|Bii|0',~ .

5In the examples of Section 2, 4; and A, can be constructed using A, and A -

%A MATLAB package (Kline, Saggio, and Sglvsten (2019b)) implementing both the exact and JLA versions
of our estimator in the two-way fixed effects model is available online. The Computational Appendix, located
in the replication file (Kline, Saggio, and Sglvsten (2020)), demonstrates that JLA allows us to accurately
compute a variance decomposition in a two-way fixed effects model with roughly 15 million parameters—a
scale comparable to the study of Card, Heining, and Kline (2013)—in under an hour.
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(i) A is positive semi-definite and E[B AB] — 6 = Yoo Biot=0(1).
(i) 4 = %(A/IAZ + A,A,) where 6, = B'A1A\B and 6, = B'A,A,B satisfy (i) and

VIB1IVI6y) _ o).

nv[6]2

For variance components, the lemma characterizes an approximation bias B, in 05145
which is at most 1/p times the bias in the plug-in estimator 3’ 4. For covariance com-
ponents, asymptotic equivalence ensues when the variance components defined by A} A,
and A, A, do not converge at substantially slower rates than 6. Under this condition, the
approximation bias is at most 1/ p times the average of the biases in the plug-in estimators
B A A B and B Ay A,

These bounds on the approximation bias suggest that a p of a few hundred should
suffice for point estimation. However, unless n/p* = o(1), the resulting approximation
bias needs to be accounted for when conducting inference. Specifically, one can lengthen
the tails of the confidence sets proposed in Sections 5 and 7 by "7, P;|Bi|67,, , when
relying on JLA.

4. INFERENCE ON QUADRATIC FORMS OF FIXED RANK

While the examples of Section 2 emphasized variance components where the rank r of
A was increasing with sample size, we first study the case where r is fixed. Problems of
this nature often arise when testing a few linear restrictions or when conducting inference
on linear combinations of the regression coefficients, say v'B. In the case of two-way fixed
effects models of wage determination, the quantity v'8 might correspond to the difference
in mean values of firm effects between male and female workers (Card, Cardoso, and
Kline (2015)) or to the coefficient from a projection of firm effects onto firm size (Bloom,
Guvenen, Smith, Song, and von Wachter (2018)). A third use case, discussed at length by
Cattaneo, Jansson, and Newey (2018), is where v’ corresponds to a linear combination
of a few common coefficients in a linear model with high dimensional fixed effects that
are regarded as nuisance parameters.

To characterize the limit distribution of § when r is small, we rely on a representation
of 6 as a weighted sum of squared linear combinations of the outcome data:

6= Z Ao (l;f - @[5{]) where b = Z w;y; and V[b] = Z w,w, o7
=1 i=1 i=1
for w; = (wy, ..., w;) = Q'S }/*x,;. The following theorem characterizes the asymptotic
distribution of § while providing conditions under which b is asymptotically normal and
%A’[b] is consistent.

THEOREM 1: If Assumption 1 holds, r is fixed, and max; w,w; = o(1), then
(i) VIBI2(b — b) 5 N(0, I,) where b= Q'S\,
(ii) V[b]'V[b] S 1,
(iii) 6= A(b? — V[b,]) + 0,(V[6]'2).
The high-level requirement of this theorem that max; w;w; = o(1) is a Lindeberg con-

dition ensuring that no observation is too influential. One can think of max; ww; as mea-
suring the inverse effective sample size available for estimating b: when the weights are
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equal across i, the equality >, ww; = I, implies that w? = %. Since 1 >" ww; = £,
the requirement that max; w/w; = o(1) is implied by a variety of primitive conditions that
limit how far a maximum is from the average (see, e.g., Anatolyev (2012), Appendix A.1).
Note that Theorem 1 does not apply to settings where r is proportional to n because
max; ww; > *.

In the special case where A = vv’ for some non-random vector v, Theorem 1 establishes
that the variance estimator V[3] = S (3", x;x;62)S;! enables consistent inference on

the linear combination v’ using the approximation

M 4 N0, 1). (7)
vV UV[B]v

To derive this result we assumed that max; P; < ¢ for some ¢ < 1, whereas standard
Eicker—White variance estimators generally require that max; P;; — 0 and Cattaneo, Jans-
son, and Newey (2018) established an asymptotically valid approach to inference in set-
tings where max; P; < 1/2. Thus, @[é] leads to valid inference under weaker conditions
than existing versions of Eicker—White variance estimators.

REMARK 5: Theorem 1 extends classical results on hypothesis testing of a few linear
restrictions, say, H, : RB = 0, to allow for many regressors and heteroscedasticity. A con-
venient choice of A for testing purposes is }R/(RS IR')"'R, where r, the rank of R € R,

is fixed. Under H,, the asymptotic distribution of 6 is a weighted sum of r central y? ran-

dom variables. This distribution is known up to V[IS] and a critical value can be found
through simulation.

5. INFERENCE ON QUADRATIC FORMS OF GROWING RANK

We now turn to the more challenging problem of conducting inference on 6 when r
increases with 7, as in the examples discussed in Section 2. These results also enable tests
of many linear restrictions. For example, in a model of gender-specific firm effects of the
sort considered by Card, Cardoso, and Kline (2015), testing the hypothesis that men and
women face identical sets of firm fixed effects entails as many equality restrictions as there
are firms.

5.1. Limit Distribution

In order to describe the result, we introduce X, =Y ,_, My %x% where M;, =1;—) —
lf;Ifl’ii
%; = 0 when the regressor 