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We propose leave-out estimators of quadratic forms designed for the study of linear
models with unrestricted heteroscedasticity. Applications include analysis of variance
and tests of linear restrictions in models with many regressors. An approximation al-
gorithm is provided that enables accurate computation of the estimator in very large
data sets. We study the large sample properties of our estimator allowing the num-
ber of regressors to grow in proportion to the number of observations. Consistency is
established in a variety of settings where plug-in methods and estimators predicated
on homoscedasticity exhibit first-order biases. For quadratic forms of increasing rank,
the limiting distribution can be represented by a linear combination of normal and
non-central χ2 random variables, with normality ensuing under strong identification.
Standard error estimators are proposed that enable tests of linear restrictions and the
construction of uniformly valid confidence intervals for quadratic forms of interest. We
find in Italian social security records that leave-out estimates of a variance decomposi-
tion in a two-way fixed effects model of wage determination yield substantially different
conclusions regarding the relative contribution of workers, firms, and worker-firm sort-
ing to wage inequality than conventional methods. Monte Carlo exercises corroborate
the accuracy of our asymptotic approximations, with clear evidence of non-normality
emerging when worker mobility between blocks of firms is limited.

KEYWORDS: Variance components, heteroscedasticity, fixed effects, leave-out esti-
mation, many regressors, weak identification, random projection.

0. INTRODUCTION

AS ECONOMIC DATA SETS have grown large, so has the number of parameters employed
in econometric models. Typically, researchers are interested in certain low dimensional
summaries of these parameters that communicate the relative influence of the various
economic phenomena under study. An important benchmark comes from Fisher’s (1925)
foundational work on analysis of variance (ANOVA) which he proposed as a means of
achieving a “separation of the variance ascribable to one group of causes, from the vari-
ance ascribable to other groups.”
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This paper develops a new approach to estimation of and inference on variance com-
ponents, which we define broadly as quadratic forms in the parameters of a linear model.
Traditional variance component estimators are predicated on the assumption that the
errors in a linear model are identically distributed draws from a normal distribution.
Standard references on this subject (e.g., Searle, Casella, and McCulloch (2009)) suggest
diagnostics for heteroscedasticity and non-normality, but offer little guidance regarding
estimation and inference when these problems are encountered. A closely related liter-
ature on panel data econometrics proposes variance component estimators designed for
fixed effects models that restrict either the dimensionality of the underlying group means
(Bonhomme, Lamadon, and Manresa (2019)) or the nature of the heteroscedasticity gov-
erning the errors (Andrews, Gill, Schank, and Upward (2008), Jochmans and Weidner
(2019)).

Our first contribution is to propose a new variance component estimator designed for
unrestricted linear models with heteroscedasticity of unknown form. The estimator is fi-
nite sample unbiased and can be written as a naive “plug-in” variance component es-
timator plus a bias correction term that involves “cross-fit” (Newey and Robins (2018))
estimators of observation-specific error variances. We also develop a representation of the
estimator in terms of a covariance between outcomes and a “leave-one-out” generalized
prediction (e.g., as in Powell, Stock, and Stoker (1989)). Building on work by Achlioptas
(2003), we propose a random projection method that enables computation of our estima-
tor in very large data sets with little loss of accuracy.

We study the asymptotic behavior of the proposed leave-out estimator in an environ-
ment where the number of regressors may be proportional to the sample size: a frame-
work that has alternately been termed “many covariates” (Cattaneo, Jansson, and Newey
(2018)) or “moderate dimensional” (Lei, Bickel, and El Karoui (2018)) asymptotics. Ver-
ifiable design requirements are provided that ensure the estimator is consistent. These
design requirements are shown to be met in a series of examples where estimators relying
on jackknife or homoscedasticity-based bias corrections are inconsistent.

Three sets of asymptotic results are developed that allow our estimator to be used for
inference in a variety of settings. The first result concerns inference on quadratic forms of
fixed rank, a problem that typically arises when testing a few linear restrictions in a model
with many covariates (Cattaneo, Jansson, and Newey (2018)). Familiar examples include
testing that particular parameters are significant in a fixed effects model and conducting
inference on the coefficients from a projection of fixed effects onto a low dimensional
vector of covariates. Extending classic proposals by Horn, Horn, and Duncan (1975) and
MacKinnon and White (1985), we show that our leave-out approach can be used to con-
struct an Eicker–White style variance estimator that is unbiased in the presence of un-
restricted heteroscedasticity and that enables consistent inference on linear contrasts un-
der weaker design restrictions than those considered by Cattaneo, Jansson, and Newey
(2018).

Next, we derive a result establishing asymptotic normality for quadratic forms of grow-
ing rank. Such quadratic forms typically arise when conducting analysis of variance, but
also feature in tests of model specification involving a large number of linear restrictions
(Anatolyev (2012), Chao, Hausman, Newey, Swanson, and Woutersen (2014)). The large
sample distribution of the estimator is derived using a variant of the arguments in Chat-
terjee (2008) and Sølvsten (2020). A consistent standard error estimator is proposed that
utilizes sample splitting formulations of the sort considered by Newey and Robins (2018).

Finally, we present conditions under which the large sample distribution of our esti-
mator is non-pivotal and can be represented by a linear combination of normal and non-
central χ2 random variables, with the non-centralities of the χ2 terms serving as weakly
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identified nuisance parameters. This distribution arises in a two-way fixed effects model
when there are “bottlenecks” in the mobility network. Such bottlenecks are shown to
emerge, for example, when worker mobility is governed by a stochastic block model with
limited mobility between blocks. To construct asymptotically valid confidence intervals in
the presence of nuisance parameters, we propose inversion of a minimum distance test
statistic. Critical values are obtained via an application of the procedure of Andrews and
Mikusheva (2016). The resulting confidence interval is shown to be valid uniformly in
the values of the nuisance parameters and to have a closed form representation in many
settings, which greatly simplifies its computation.

We illustrate our results with an application of the two-way worker-firm fixed effects
model of Abowd, Kramarz, and Margolis (1999) to Italian social security records. The
proposed leave-out estimator finds a substantially smaller contribution of firms to wage
inequality and a much stronger correlation between worker and firm effects than either
the uncorrected plug-in estimator originally considered by Abowd, Kramarz, and Margo-
lis (1999) or the homoscedasticity-based correction procedure of Andrews et al. (2008).

Projecting the estimated firm effects onto worker and firm characteristics, we find that
older workers tend to be employed at firms offering higher firm wage effects and that this
phenomenon is largely explained by the tendency of older workers to sort to bigger firms.
Leave-out standard errors for the coefficients of these linear projections are found to be
several times larger than a naive standard error predicated on the assumption that the
estimated fixed effects are independent of each other. Stratifying our analysis by birth co-
hort, we formally reject the null hypothesis that older and younger workers face identical
vectors of firm effects.

To assess the accuracy of our asymptotic approximations, we conduct a series of Monte
Carlo exercises utilizing the realized mobility patterns of workers between firms. Clear
evidence of non-normality arises in the sampling distribution of the estimated variance of
firm effects in settings where the worker-firm mobility network is weakly connected. The
proposed confidence intervals are shown to provide reliable size control in both strongly
and weakly identified settings.

1. UNBIASED ESTIMATION OF VARIANCE COMPONENTS

Consider the linear model

yi = x′
iβ+ εi (i= 1� � � � � n)�

where the regressors xi ∈ Rk are non-random and the design matrix Sxx = ∑n

i=1 xix
′
i has

full rank. The unobserved errors {εi}ni=1 are mutually independent and obey E[εi] = 0, but
may possess observation-specific variances E[ε2

i ] = σ2
i .

Our object of interest is a quadratic form θ= β′Aβ for some known non-random sym-
metric matrixA ∈Rk×k of rank r. Following Searle, Casella, and McCulloch (2009), when
A is positive semi-definite, θ is a variance component, while when A is non-definite, θ
may be referred to as a covariance component. Note that linear restrictions on the pa-
rameter vector β can be formulated in terms of variance components: for a non-random
vector v, the null hypothesis v′β= 0 is equivalent to the restriction θ= 0 when A= vv′.
Examples from the economics literature where variance components are of direct interest
are discussed in Section 2.
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1.1. Estimator

A naive plug-in estimator of θ is given by the quadratic form θ̂PI = β̂′Aβ̂, where β̂ =
S−1
xx

∑n

i=1 xiyi = β + S−1
xx

∑n

i=1 xiεi denotes the ordinary least squares (OLS) estimator of
β. Estimation error in β̂ leads the plug-in estimator to exhibit a bias involving a linear
combination of the unknown variances {σ2

i }ni=1. Specifically, standard results on quadratic
forms imply that

E[θ̂PI] − θ= trace
(
AV[β̂])=

n∑
i=1

Biiσ
2
i �

where Bii = x′
iS

−1
xxAS

−1
xx xi measures the influence of the ith squared error ε2

i on θ̂PI. As
discussed in Section 2, this bias can be particularly severe when the dimension of the
regressors k is large relative to the sample size.

To remove this bias, we develop leave-out estimators of the error variances {σ2
i }ni=1.

Denote the leave-i-out OLS estimator of β by β̂−i = (Sxx−xix′
i)

−1
∑

	�=i x	y	. An unbiased
estimator of σ2

i is

σ̂2
i = yi

(
yi − x′

iβ̂−i
)
�

We therefore propose the following bias-corrected estimator of θ:

θ̂= β̂′Aβ̂−
n∑
i=1

Biiσ̂
2
i � (1)

While Newey and Robins (2018) observed that “cross-fit” covariances relying on sample
splitting can be used to remove bias of the sort considered here, we are not aware of prior
proposals to use the leave-i-out error variance estimators {σ̂2

i }ni=1.
One can also motivate θ̂ via a change of variables argument. Letting x̃i =AS−1

xx xi denote
a vector of “generalized” regressors, we can write

θ= β′Aβ= β′SxxS−1
xxAβ=

n∑
i=1

β′xix̃′
iβ=

n∑
i=1

E
[
yix̃

′
iβ
]
�

This observation suggests using the unbiased leave-out estimator

θ̂=
n∑
i=1

yix̃
′
iβ̂−i� (2)

Note that direct computation of β̂−i can be avoided by exploiting the representation

yi − x′
iβ̂−i = yi − x′

iβ̂

1 − Pii �

where Pii = x′
iS

−1
xx xi gives the leverage of observation i. Applying the Sherman–Morrison–

Woodbury formula (Woodbury (1949), Sherman and Morrison (1950)), this representa-
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tion also reveals that (1) and (2) are numerically equivalent:

yix̃
′
iβ̂−i = yix̃′

iS
−1
xx

∑
	�=i
x	y	︸ ︷︷ ︸

=yix̃′
iβ̂−Biiy2

i

+ yix̃
′
iS

−1
xx xix

′
iS

−1
xx

1 − Pii
∑
	�=i
x	y	︸ ︷︷ ︸

=Biiyix′
iβ̂−i

= yix̃′
iβ̂−Biiσ̂2

i �

A similar combination of a change of variables argument and a leave-one-out estimator
was used by Powell, Stock, and Stoker (1989) in the context of weighted average deriva-
tives. The JIVE estimators proposed by Phillips and Hale (1977) and Angrist, Imbens,
and Krueger (1999) also use a leave-one-out estimator, though without the change of
variables.1

REMARK 1: The {σ̂2
i }ni=1 can also be used to construct an unbiased variance estimator

V̂[β̂] = S−1
xx

(
n∑
i=1

xix
′
iσ̂

2
i

)
S−1
xx �

Though V̂[β̂] need not be positive semi-definite, Section 4 shows that it can be used to per-
form asymptotically valid inference on linear contrasts in settings where existing Eicker–
White estimators fail. Specifically, using V̂[β̂] leads to valid inference under conditions
where the estimators of Rao (1970) and Cattaneo, Jansson, and Newey (2018) do not
exist (see, e.g., Horn, Horn, and Duncan (1975), Verdier (2017)).

REMARK 2: The quantity V̂[β̂] is closely related to the HC2 variance estimator of
MacKinnon and White (1985). While the HC2 estimator employs observation-specific

variance estimators σ̂2
i�HC2 = (yi−x′

iβ̂)
2

1−Pii , V̂[β̂] relies instead on σ̂2
i = yi(yi−x′

iβ̂)

1−Pii .

REMARK 3: The leave-out estimator is easily adapted to settings where the data are
organized into mutually exclusive and independent “clusters” within which the errors may
be dependent (e.g., as in Moulton (1986)). The change of variables argument leading to
(2) also implies that an estimator of the form

∑n

i=1 yix̃
′
iβ̂−c(i) will be unbiased in such

settings, where β̂−c(i) is the OLS estimator obtained after leaving out all observations in
the cluster to which observation i belongs. Appendix A provides an application.

1.2. Relation to Existing Approaches

As detailed in Section 2, several literatures make use of bias corrections nominally
predicated on homoscedasticity. A common “homoscedasticity-only” estimator takes the
form

θ̂HO = β̂′Aβ̂−
n∑
i=1

Biiσ̂
2
HO� (3)

1The object of interest in JIVE estimation is a ratio of quadratic forms β′
1Sxxβ2/β

′
2Sxxβ2 in the two-equation

model yij = x′
iβj + εij for j = 1�2. When no covariates are present, using leave-out estimators of both the

numerator and denominator of this ratio yields the JIVE1 estimator of Angrist, Imbens, and Krueger (1999).
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where σ̂2
HO = 1

n−k
∑n

i=1(yi −x′
iβ̂)

2 is the degrees-of-freedom corrected variance estimator.
A sufficient condition for unbiasedness of θ̂HO is that there be no empirical covariance
between σ2

i and (Bii�Pii). This restriction is in turn implied by the special cases of ho-
moscedasticity where σ2

i does not vary with i or balanced design where (Bii�Pii) does not
vary with i. In general, however, this estimator will be biased (see, e.g., Scheffe (1959),
Chapter 10).

A second estimator, closely related to θ̂, relies upon a jackknife bias correction (Que-
nouille (1949)) of the plug-in estimator. This estimator can be written

θ̂JK = nθ̂PI − n− 1
n

n∑
i=1

θ̂PI�−i where θ̂PI�−i = β̂′
−iAβ̂−i�

We show in the Supplemental Material (Kline, Saggio, and Sølvsten (2020)) that the con-
ventional jackknife can produce first-order biases in the opposite direction of the bias in
the plug-in estimator. This problem is also shown to extend to recently proposed jackknife
adaptations (Hahn and Newey (2004), Dhaene and Jochmans (2015)) designed for long
panels.

1.3. Finite Sample Properties

We now study the finite sample properties of the leave-out estimator θ̂ and its infea-
sible analogue θ∗ = β̂′Aβ̂ − ∑n

i=1Biiσ
2
i , which uses knowledge of the individual error

variances. The following lemma establishes that θ̂ is unbiased whenever each of the leave-
one-out estimators β̂−i exists, which can equivalently be expressed as the requirement that
maxi Pii < 1. This condition turns out to also be necessary for the existence of unbiased
estimators, which highlights the need for additional restrictions on the model or sample
whenever some leverages equal 1.

LEMMA 1: (i) If maxi Pii < 1, then E[θ̂] = θ.
(ii) Unbiased estimators of θ= β′Aβ exist for all A if and only if maxi Pii < 1.

See Appendix B for proofs.
Next, we establish that, when the errors are normal, the infeasible estimator θ∗ is a

weighted sum of a series of non-central χ2 random variables. This second result provides a
useful point of departure for our asymptotic approximations and highlights the important
role played by the matrix

Ã= S−1/2
xx AS−1/2

xx �

which encodes features of both the target parameter (as defined by A) and the design
matrix Sxx.

Let λ1� � � � � λr denote the nonzero eigenvalues of Ã, where λ2
1 ≥ · · · ≥ λ2

r and each
eigenvalue appears as many times as its algebraic multiplicity. We use Q to refer to
the corresponding matrix of orthonormal eigenvectors so that Ã = QDQ′ where D =
diag(λ1� � � � � λr). With these definitions,

β̂′Aβ̂=
r∑
	=1

λ	b̂
2
	�
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where b̂ = (b̂1� � � � � b̂r)
′ = Q′S1/2

xx β̂ contains r linear combinations of the elements in β̂.
The random vector b̂ and the eigenvalues λ1� � � � � λr are central to both the finite sample
distribution provided below in Lemma 2 and the asymptotic properties of θ̂ as studied
in Sections 4–6. Each eigenvalue of Ã can be thought of as measuring how strongly θ
depends on a particular linear combination of the elements in β relative to the difficulty
of estimating that combination (as summarized by S−1

xx ).

LEMMA 2: If εi ∼N (0�σ2
i ), then

(i) b̂∼N (b�V[b̂]) where b=Q′S1/2
xx β,

(ii) θ∗ =∑r

	=1 λ	(b̂
2
	 −V[b̂	]).

The distribution of θ∗ is a sum of r potentially dependent non-central χ2 random
variables with non-centralities b = (b1� � � � � br)

′. In the special case of homoscedasticity
(σ2

i = σ2) and no signal (b = 0), we have that b̂ ∼ N (0�σ2Ir), which implies that the
distribution of θ∗ is a weighted sum of r independent central χ2 random variables. The
weights are the eigenvalues of Ã, therefore consistency of θ∗ follows whenever the sum of
the squared eigenvalues converges to zero. The next subsection establishes that the leave-
out estimator remains consistent when a signal is present (b �= 0) and the errors exhibit
unrestricted heteroscedasticity.

1.4. Consistency

We now drop the normality assumption and provide conditions under which θ̂ remains
consistent. To accommodate high dimensionality of the regressors, we allow all parts of
the model to change with n:

yi�n = x′
i�nβn + εi�n (i= 1� � � � � n)�

where xi�n ∈ Rkn , Sxx�n =∑n

i=1 xi�nx
′
i�n, E[εi�n] = 0, E[ε2

i�n] = σ2
i�n, and θn = β′

nAnβn for some
sequence of known non-random symmetric matrices An ∈ Rkn×kn of rank rn. By treating
xi�n and An as sequences of constants, all uncertainty derives from the disturbances {εi�n :
1 ≤ i ≤ n�n ≥ 1}. This conditional perspective is common in the statistics literature on
ANOVA (Scheffe (1959), Searle, Casella, and McCulloch (2009)) and allows us to be
agnostic about the potential dependency among the {xi�n}ni=1 and An.2 Following standard
practice, we drop the n subscript in what follows. All limits are taken as n goes to infinity
unless otherwise noted.

ASSUMPTION 1: (i) maxi(E[ε4
i ] + σ−2

i ) = O(1); (ii) there exists a c < 1 such that
maxi Pii ≤ c for all n; and (iii) maxi(x′

iβ)
2 =O(1).

Part (i) of this condition limits the thickness of the tails in the error distribution, as is
typically required for OLS estimation (see, e.g., Cattaneo, Jansson, and Newey (2018),
page 10). The bounds on (x′

iβ)
2 and Pii imply that σ̂2

i has bounded variance. Part (iii) is a

2An unconditional analysis might additionally impose distributional assumptions on An and consider θ̄ =
β′E[An]β as the object of interest. The uncertainty in θ̂ − θ̄ can always be decomposed into components
attributable to θ̂− θ and θ− θ̄. Because the behavior of θ− θ̄ depends entirely on model choices, we leave
such an analysis to future work.
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technical condition that can be relaxed to allow maxi(x′
iβ)

2 to increase slowly with sample
size as discussed further in Section 8. From (ii), it follows that k

n
≤ c < 1 for all n.

The following lemma establishes consistency of θ̂.

LEMMA 3: If Assumption 1 and one of the following conditions hold, then θ̂− θ p→ 0:
(i) A is positive semi-definite, θ= β′Aβ=O(1), and trace(Ã2)=∑r

	=1 λ
2
	 = o(1).

(ii) A= 1
2(A

′
1A2 +A′

2A1), where θ1 = β′A′
1A1β and θ2 = β′A′

2A2β satisfy (i).

Part (i) of Lemma 3 establishes consistency of variance components given boundedness
of θ and a joint condition on the design matrix Sxx and the matrix A.3 Part (ii) shows that
consistency of covariance components follows from consistency of variance components
that dominate them via the Cauchy–Schwarz inequality, that is, θ2 = (β′A′

1A2β)
2 ≤ θ1θ2.

In several of the examples discussed in the next section, trace(Ã2) is of order r/n2, which
is necessarily small in large samples. A more extensive discussion of primitive conditions
that yield trace(Ã2)= o(1) is provided in Section 8.

2. EXAMPLES

We now consider three commonly encountered empirical examples where our proposed
estimation strategy provides an advantage over existing methods.

EXAMPLE 1—Analysis of Covariance: Since the work of Fisher (1925), it has been com-
mon to summarize the effects of experimentally assigned treatments on outcomes with
estimates of variance components. Consider a data set composed of observations on N
groups with Tg observations in the gth group. The “analysis of covariance” model posits
that outcomes can be written

ygt = αg + x′
gtδ+ εgt (g= 1� � � � �N� t = 1� � � � �Tg ≥ 2)�

where αg is a group effect and xgt is a vector of strictly exogenous covariates.
A prominent example comes from Chetty, Friedman, Hilger, Saez, Schanzenbach, and

Yagan (2011) who studied the adult earnings ygt of n=∑N

g=1 Tg students assigned exper-
imentally to one of N different classrooms. Each student also has a vector of predeter-
mined background characteristics xgt . The variability in student outcomes attributable to
classrooms can be written

σ2
α = 1

n

N∑
g=1

Tg(αg − ᾱ)2�

where ᾱ= 1
n

∑N

g=1 Tgαg gives the (enrollment-weighted) mean classroom effect.
This model can be aligned with the notation of the preceding section by letting i =

i(g� t), where i(·� ·) is bijective, with inverse denoted (g(·)� t(·)), and defining yi = ygt ,
εi = εgt ,
xi =

(
d′
i� x

′
gt

)′
� β= (

α′� δ′)′� α= (α1� � � � �αN)
′ and di = (1{g=1}� � � � �1{g=N})′�

3A slight generalization of the proof reveals that this conclusion continues to hold under a locally misspeci-
fied model where maxi|E[εi]| =O(1/√n).
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To represent the target parameter in this notation, we write σ2
α = β′Aβ, where

A=
[
A′
dAd 0
0 0

]
for Ad = 1√

n
(d1 − d̄� � � � � dn − d̄) and d̄ = 1

n

n∑
i=1

di�

Chetty et al. (2011) estimated σ2
α using a random effects ANOVA estimator (see, e.g.,

Searle, Casella, and McCulloch (2009)), which is of the homoscedasticity-only type given
in (3). As shown in the Supplemental Material, this estimator is in general first-order
biased when the errors are heteroscedastic and group sizes are unbalanced.

Special Case: No Common Regressors. When there are no common regressors (xgt = 0
for all g� t), the leave-out estimator of σ2

α has a particularly simple representation:

σ̂2
α = 1

n

N∑
g=1

(
Tg(α̂g − ˆ̄α)2 −

(
1 − Tg

n

)
σ̂2
g

)
where σ̂2

g = 1
Tg − 1

Tg∑
t=1

(ygt − α̂g)2� (4)

for α̂g = 1
Tg

∑Tg
t=1 ygt and ˆ̄α = 1

n

∑N

g=1 Tgα̂g. This representation shows that if the model
consists only of group-specific intercepts, then the leave-out estimator relies on group-
level degrees-of-freedom corrections. The statistic in (4) was analyzed by Akritas and
Papadatos (2004) in the context of testing the null hypothesis that σ2

α = 0 while allowing
for heteroscedasticity at the group level.

Covariance Representation. Another instructive representation of the leave-out estima-
tor is in terms of the empirical covariance

σ̂2
α =

n∑
i=1

yid̃
′
iα̂−i where β̂−i =

(
α̂′

−i� δ̂
′
−i
)
�

The generalized regressor d̃i is a residual from an instrumental variables (IV) regression.
Specifically, d̃i = 1

n
((di − d̄)− Γ̂ ′(xg(i)t(i) − x̄g(i))), where x̄g = 1

Tg

∑Tg
t=1 xgt and Γ̂ gives the

coefficients from an IV regression of di− d̄ on xg(i)t(i)− x̄g(i) using xg(i)t(i) as an instrument.
The IV residual d̃i is uncorrelated with xg(i)t(i) and has a covariance with di ofA′

dAd , which
ensures that the empirical covariance between yi and the generalized prediction d̃i

′
α̂−i is

an unbiased estimator of σ2
α.

EXAMPLE 2—Random Coefficients: Group memberships are often modeled as influ-
encing slopes in addition to intercepts (Kuh (1959), Hildreth and Houck (1968), Arellano
and Bonhomme (2011)). Consider the following “random coefficient” model:

ygt = αg + zgtγg + εgt (g= 1� � � � �N� t = 1� � � � � Tg ≥ 3)�

An influential example comes from Raudenbush and Bryk (1986), who modeled stu-
dent mathematics scores as a “hierarchical” linear function of socioeconomic status (SES)
with school-specific intercepts (αg ∈ R) and slopes (γg ∈ R). Letting γ̄ = 1

n

∑N

g=1 Tgγg for
n=∑N

g=1 Tg, the student-weighted variance of slopes can be written

σ2
γ = 1

n

N∑
g=1

Tg(γg − γ̄)2�
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In the notation of the preceding section, we can write this model yi = x′
iβ+ εi, where

xi =
(
d′
i� d

′
izgt

)′
� β= (

α′�γ′)′� γ = (γ1� � � � � γN)
′ and σ2

γ = β′
[

0 0
0 A′

dAd

]
β

for yi, εi, di, α, and Ad as defined in the preceding example.
Raudenbush and Bryk (1986) used a maximum likelihood estimator of σ2

γ predicated
upon normality and homoscedastic errors. Swamy (1970) considered an estimator of σ2

γ

that relies on group-level degrees-of-freedom corrections and is unbiased when the error
variance is allowed to vary at the group level, but not with the level of zgt . Arellano and
Bonhomme (2011) proposed an estimator that is unbiased under arbitrary heteroscedas-
ticity patterns, which by Lemma 1 implies the leverage requirement maxi Pii < 1. Our pro-
posed leave-out estimator is also unbiased under arbitrary patterns of heteroscedasticity
and takes a particularly simple form.

Covariance Representation. The leave-out estimator can be written

σ̂2
γ =

n∑
i=1

yiz̃id̃
′
iγ̂−i where d̃i = 1

n
(di − d̄)� z̃i = zg(i)t(i) − z̄g(i)

Tg(i)∑
t=1

(zg(i)t − z̄g(i))2

�

and z̄g = 1
Tg

∑Tg
t=1 zgt . Demeaning zg(i)t(i) at the group level guarantees d̃iz̃i is uncorrelated

with di, while scaling by the group variability in zg(i)t ensures that the covariance between
d̃iz̃i and dizg(i)t(i) is A′

dAd .

EXAMPLE 3—Two-Way Fixed Effects: Economists often study settings where units pos-
sess two or more group memberships, some of which can change over time. A prominent
example comes from Abowd, Kramarz, and Margolis (1999) (henceforth AKM) who pro-
posed a panel model of log wage determination that is additive in worker and firm fixed
effects. This so-called “two-way” fixed effects model takes the form

ygt = αg +ψj(g�t) + x′
gtδ+ εgt (g= 1� � � � �N� t = 1� � � � � Tg ≥ 2)� (5)

where the function j(·� ·) : {1� � � � �N} × {1� � � � �maxg Tg} → {0� � � � � J} allocates each of
n=∑N

g=1 Tg person-year observations to one of J + 1 firms. Here αg is a “person effect,”
ψj(g�t) is a “firm effect,” xgt is a time-varying covariate, and εgt is a time-varying error. In
this context, the mean-zero assumption on the errors εgt can be thought of as requiring
both the common covariates xgt and the firm assignments j(·� ·) to obey a strict exogeneity
condition.

Interest in such models often centers on understanding how much of the variability
in log wages is attributable to firms. AKM summarized the firm contribution to wage
inequality with the following two parameters:

σ2
ψ = 1

n

N∑
g=1

Tg∑
t=1

(ψj(g�t) − ψ̄)2 and σα�ψ = 1
n

N∑
g=1

Tg∑
t=1

(ψj(g�t) − ψ̄)αg�

where ψ̄= 1
n

∑N

g=1

∑Tg
t=1ψj(g�t). The variance component σ2

ψ measures the direct contribu-
tion of firm wage variability to inequality, while the covariance component σα�ψ measures
the additional contribution of systematic sorting of high wage workers to high wage firms.
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To represent this model in the notation of the preceding section, define

xi =
(
d′
i� f

′
i � x

′
gt

)′
� β= (

α′�ψ′� δ′)′�
α= (α1� � � � �αN)

′ + 1′
Nψ0� ψ= (ψ1 � � � �ψJ)

′ − 1′
Jψ0�

for yi, εi, and di as in the preceding examples, and fi = (1{j(g�t)=1}� � � � �1{j(g�t)=J})′. The
target parameters are σ2

ψ = β′Aψβ and σα�ψ = β′Aα�ψβ, where

Aψ =
⎡⎣0 0 0

0 A′
fAf 0

0 0 0

⎤⎦ and Aα�ψ = 1
2

⎡⎣ 0 A′
dAf 0

A′
fAd 0 0
0 0 0

⎤⎦ �
for Af = 1√

n
(f1 − f̄ � � � � � fn − f̄ ), f̄ = 1

n

∑n

i=1 fi and Ad as in the preceding examples.
Addition and subtraction of ψ0 in β amounts to the normalization, ψ0 = 0, which has

no effect on the variance components of interest. As Abowd et al. (2002) noted, least
squares estimation of (5) requires one normalization of the ψ vector within each set of
firms connected by worker mobility. For simplicity, we assume all firms are connected so
that only a single normalization is required.4

Covariance Representation. AKM estimated σ2
ψ and σα�ψ using the naive plug-in es-

timators β̂′Aψβ̂ and β̂′Aα�ψβ̂, which are biased. Andrews et al. (2008) proposed the
“homoscedasticity-only” estimators of (3). These estimators are unbiased when the er-
rors εi are independent and have common variance. Bonhomme, Lamadon, and Manresa
(2019) proposed a two-step estimation approach that is consistent in the presence of het-
eroscedasticity when the support of firm wage effects is restricted to a finite number of
values and each firm grows large with the total sample size n. Our leave-out estimators,
which avoid both the homoscedasticity requirement on the errors and any cardinality re-
strictions on the support of the firm wage effects, can be written compactly as covariances
taking the form

σ̂2
ψ =

n∑
i=1

yix
′
iS

−1
xxAψβ̂−i� σ̂α�ψ =

n∑
i=1

yix
′
iS

−1
xxAα�ψβ̂−i�

Notably, these estimators are unbiased whenever the leave-out estimator β̂−i can be com-
puted, regardless of the distribution of firm sizes.

Special Case: Two Time Periods. A simpler representation of σ̂2
ψ is available in the case

where only two time periods are available and no common regressors are present (Tg = 2
and xgt = 0 for all g� t). Consider this model in first differences:

�yg = �f ′
gψ+�εg (g= 1� � � � �N)� (6)

4Bonhomme, Lamadon, and Manresa (2019) studied a closely related model where workers and firms each
belong to one of a finite number of types and each pairing of worker and firm type is allowed a different mean
wage. These mean wage parameters are shown to be identified when each worker type moves between each
firm type with positive probability, enabling estimation even when many firms are not connected.
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where �yg = yg2 − yg1, �εg = εg2 − εg1, and �fg = fi(g�2) − fi(g�1). The leave-out estimator
of σ2

ψ applied to this differenced representation of the model is

σ̂2
ψ =

N∑
g=1

�yg�f̃
′
gψ̂−g where �f̃g =AffS

−1
�f�f�fg�

where the quantities S�f�f and ψ̂−g correspond respectively to Sxx and β̂−i.

REMARK 4: The leave-out representation above reveals that σ̂2
ψ is unbiased not only

under arbitrary heteroscedasticity and design unbalance, but also under arbitrary corre-
lation between εg1 and εg2. The same can be shown to hold for σ̂α�ψ. Furthermore, this
representation highlights that σ̂2

ψ only depends upon observations with �fg �= 0 (i.e., firm
“movers”).

3. LARGE SCALE COMPUTATION

It is possible to quickly approximate θ̂ in large scale applications using a variant of
the random projection method of Achlioptas (2003), which we refer to as the Johnson–
Lindenstrauss Approximation (JLA) for its connection to the work of Johnson and Lin-
denstrauss (1984). JLA can be described by the following algorithm: fix a p ∈ N and gen-
erate the matrices RB�RP ∈ Rp×n, where (RB�RP) are composed of mutually independent
Rademacher random variables that are independent of the data, that is, their entries take
the values 1 and −1 with probability 1/2. Next, decompose A into A= 1

2(A
′
1A2 +A′

2A1)

for A1�A2 ∈ Rn×k, where A1 =A2 if A is positive semi-definite.5 Let

P̂ii = 1
p

∥∥RPXS−1
xx xi

∥∥2
and B̂ii = 1

p

(
RBA1S

−1
xx xi

)′(
RBA2S

−1
xx xi

)
�

where X = (x1� � � � � xn)
′. The Johnson–Lindenstrauss approximation to θ̂ is

θ̂JLA = β̂′Aβ̂−
n∑
i=1

B̂iiσ̂
2
i�JLA�

where σ̂2
i�JLA = yi(yi−x′

iβ̂)

1−P̂ii (1 − 1
p

3P̂3
ii+P̂2

ii

1−P̂ii ). The term 1
p

3P̂3
ii+P̂2

ii

1−P̂ii removes a non-linearity bias in-
troduced by approximating Pii.6

The following lemma establishes asymptotic equivalence between the leave-out estima-
tor θ̂ and its approximation θ̂JLA when p4 is large relative to the sample size.

LEMMA 4: If Assumption 1 is satisfied, n/p4 = o(1), V[θ̂]−1 = O(n), and one of the fol-
lowing conditions hold, then V[θ̂]−1/2(θ̂JLA − θ̂− Bp) = op(1) where |Bp| ≤ 1

p

∑n

i=1 P
2
ii ×

|Bii|σ2
i :

5In the examples of Section 2, A1 and A2 can be constructed using Ad and Af .
6A MATLAB package (Kline, Saggio, and Sølvsten (2019b)) implementing both the exact and JLA versions

of our estimator in the two-way fixed effects model is available online. The Computational Appendix, located
in the replication file (Kline, Saggio, and Sølvsten (2020)), demonstrates that JLA allows us to accurately
compute a variance decomposition in a two-way fixed effects model with roughly 15 million parameters—a
scale comparable to the study of Card, Heining, and Kline (2013)—in under an hour.



LEAVE-OUT ESTIMATION OF VARIANCE COMPONENTS 1871

(i) A is positive semi-definite and E[β̂′Aβ̂] − θ=∑n

i=1Biiσ
2
i =O(1).

(ii) A = 1
2(A

′
1A2 + A′

2A1) where θ1 = β′A′
1A1β and θ2 = β′A′

2A2β satisfy (i) and
V[θ̂1]V[θ̂2]
nV[θ̂]2 =O(1).

For variance components, the lemma characterizes an approximation bias Bp in θ̂JLA,
which is at most 1/p times the bias in the plug-in estimator β̂′Aβ̂. For covariance com-
ponents, asymptotic equivalence ensues when the variance components defined by A′

1A1

and A′
2A2 do not converge at substantially slower rates than θ̂. Under this condition, the

approximation bias is at most 1/p times the average of the biases in the plug-in estimators
β̂′A′

1A1β̂ and β̂′A′
2A2β̂.

These bounds on the approximation bias suggest that a p of a few hundred should
suffice for point estimation. However, unless n/p2 = o(1), the resulting approximation
bias needs to be accounted for when conducting inference. Specifically, one can lengthen
the tails of the confidence sets proposed in Sections 5 and 7 by 1

p

∑n

i=1 P̂
2
ii|B̂ii|σ̂2

i�JLA when
relying on JLA.

4. INFERENCE ON QUADRATIC FORMS OF FIXED RANK

While the examples of Section 2 emphasized variance components where the rank r of
A was increasing with sample size, we first study the case where r is fixed. Problems of
this nature often arise when testing a few linear restrictions or when conducting inference
on linear combinations of the regression coefficients, say v′β. In the case of two-way fixed
effects models of wage determination, the quantity v′βmight correspond to the difference
in mean values of firm effects between male and female workers (Card, Cardoso, and
Kline (2015)) or to the coefficient from a projection of firm effects onto firm size (Bloom,
Guvenen, Smith, Song, and von Wachter (2018)). A third use case, discussed at length by
Cattaneo, Jansson, and Newey (2018), is where v′β corresponds to a linear combination
of a few common coefficients in a linear model with high dimensional fixed effects that
are regarded as nuisance parameters.

To characterize the limit distribution of θ̂ when r is small, we rely on a representation
of θ as a weighted sum of squared linear combinations of the outcome data:

θ̂=
r∑
	=1

λ	
(
b̂2
	 − V̂[b̂	]

)
where b̂=

n∑
i=1

wiyi and V̂[b̂] =
n∑
i=1

wiw
′
iσ̂

2
i

for wi = (wi1� � � � �wir)
′ = Q′S−1/2

xx xi. The following theorem characterizes the asymptotic
distribution of θ̂ while providing conditions under which b̂ is asymptotically normal and
V̂[b̂] is consistent.

THEOREM 1: If Assumption 1 holds, r is fixed, and maxi w′
iwi = o(1), then

(i) V[b̂]−1/2(b̂− b) d−→N (0� Ir) where b=Q′S1/2
xx β,

(ii) V[b̂]−1V̂[b̂] p−→ Ir ,
(iii) θ̂=∑r

	=1 λ	(b̂
2
	 −V[b̂	])+ op(V[θ̂]1/2).

The high-level requirement of this theorem that maxi w′
iwi = o(1) is a Lindeberg con-

dition ensuring that no observation is too influential. One can think of maxi w′
iwi as mea-

suring the inverse effective sample size available for estimating b: when the weights are
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equal across i, the equality
∑n

i=1wiw
′
i = Ir implies that w2

i	 = 1
n
. Since 1

n

∑n

i=1w
′
iwi = r

n
,

the requirement that maxi w′
iwi = o(1) is implied by a variety of primitive conditions that

limit how far a maximum is from the average (see, e.g., Anatolyev (2012), Appendix A.1).
Note that Theorem 1 does not apply to settings where r is proportional to n because
maxi w′

iwi ≥ r
n
.

In the special case whereA= vv′ for some non-random vector v, Theorem 1 establishes
that the variance estimator V̂[β̂] = S−1

xx (
∑n

i=1 xix
′
iσ̂

2
i )S

−1
xx enables consistent inference on

the linear combination v′β using the approximation

v′(β̂−β)√
v′V̂[β̂]v

d−→N (0�1)� (7)

To derive this result we assumed that maxi Pii ≤ c for some c < 1, whereas standard
Eicker–White variance estimators generally require that maxi Pii → 0 and Cattaneo, Jans-
son, and Newey (2018) established an asymptotically valid approach to inference in set-
tings where maxi Pii ≤ 1/2. Thus, V̂[β̂] leads to valid inference under weaker conditions
than existing versions of Eicker–White variance estimators.

REMARK 5: Theorem 1 extends classical results on hypothesis testing of a few linear
restrictions, say, H0 :Rβ= 0, to allow for many regressors and heteroscedasticity. A con-
venient choice ofA for testing purposes is 1

r
R′(RS−1

xx R
′)−1R, where r, the rank ofR ∈Rr×k,

is fixed. Under H0, the asymptotic distribution of θ̂ is a weighted sum of r central χ2 ran-
dom variables. This distribution is known up to V[b̂] and a critical value can be found
through simulation.

5. INFERENCE ON QUADRATIC FORMS OF GROWING RANK

We now turn to the more challenging problem of conducting inference on θ when r
increases with n, as in the examples discussed in Section 2. These results also enable tests
of many linear restrictions. For example, in a model of gender-specific firm effects of the
sort considered by Card, Cardoso, and Kline (2015), testing the hypothesis that men and
women face identical sets of firm fixed effects entails as many equality restrictions as there
are firms.

5.1. Limit Distribution

In order to describe the result, we introduce x̌i =∑n

	=1Mi	
B		

1−P		 x	, where Mi	 = 1{i=	} −
xiS

−1
xx x	. Note that x̌i gives the residual from a regression of Bii

1−Pii xi on xi. Therefore,

x̌i = 0 when the regressor design is balanced. The contribution of x̌i to the behavior of θ̂
is through the estimation of

∑n

i=1Biiσ
2
i , which can be ignored in the case where the rank

of A is bounded. When the rank of A is large, as implied by condition (ii) of Theorem 2
below, this estimation error can resurface in the asymptotic distribution. One can think
of the eigenvalue ratio in (ii) as the inverse effective rank of Ã: when all the eigenvalues

are equal, λ2
1∑r

	=1 λ
2
	
= 1

r
.
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THEOREM 2: Recall that x̃i =AS−1
xx xi where θ̂=∑n

i=1 yix̃
′
iβ̂−i. If Assumption 1 holds and

the following conditions are satisfied:

(i) V[θ̂]−1 max
i

((
x̃′
iβ
)2 + (

x̌′
iβ
)2)= o(1)� (ii)

λ2
1

r∑
	=1

λ2
	

= o(1)�

then V[θ̂]−1/2(θ̂− θ) d−→N (0�1).

The proof of Theorem 2 relies on a variation of Stein’s method developed in Sølvsten
(2020) and a representation of θ̂ as a second order U-statistic, that is,

θ̂=
n∑
i=1

∑
	�=i
Ci	yiy	� (8)

where Ci	 = Bi	−2−1Mi	(M
−1
ii Bii +M−1

		 B		) and Bi	 = x′
iS

−1
xxAS

−1
xx x	. The proof shows that

the “kernel” Ci	 varies with n in such a way that θ̂ is asymptotically normal whether or not
θ̂ is a degenerate U-statistic (i.e., whether or not β is zero).

One representation of the variance appearing in Theorem 2 is

V[θ̂] =
n∑
i=1

(
2x̃′

iβ− x̌′
iβ
)2
σ2
i + 2

n∑
i=1

∑
	�=i
C2
i	σ

2
i σ

2
	 �

Note that this variance is bounded from below by mini σ2
i

∑n

i=1(2x̃
′
iβ)

2 + (x̌′
iβ)

2 since∑n

i=1 x̃
′
iβx̌

′
iβ = 0. Therefore, condition (i) of Theorem 2 will be satisfied whenever

maxi((x̃′
iβ)

2 + (x̌′
iβ)

2) is not too large compared to
∑n

i=1(x̃
′
iβ)

2 + (x̌′
iβ)

2. As in Theo-
rem 1, (i) is implied by a variety of primitive conditions that limit how far a maximum is
from the average, but since (i) involves a one-dimensional function of xi it can also be
satisfied when r is large. A particularly simple case where (i) is satisfied is when β = 0;
further cases are discussed in Section 8.

REMARK 6: Theorem 2 can be used to test a large system of linear restrictions of the
form H0 : Rβ = 0, where r → ∞ is the rank of R ∈ Rr×k. Under this null hypothesis,
choosing A= 1

r
R′(RS−1

xx R
′)−1R implies V[θ̂]−1/2θ̂

d−→ N (0�1) as all the nonzero eigenval-
ues of Ã are equal to 1

r
. The existing literature allows for either heteroscedastic errors

and moderately few regressors (Donald, Imbens, and Newey (2003), k3/n→ 0) or ho-
moscedastic errors and many regressors (Anatolyev (2012), k/n≤ c < 1). When coupled
with the estimator of V[θ̂] presented in the next subsection, this result enables tests with
heteroscedastic errors and many regressors.7

REMARK 7: Theorem 2 extends some common results in the literature on many and
many weak instruments (see, e.g., Chao, Swanson, Hausman, Newey, and Woutersen

7This testing problem was also analyzed in Anatolyev and Sølvsten (2020), who proposed a finite sample
correction to the critical value and a leave-three-out estimator of V[θ̂].
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(2012)) where the estimators are asymptotically equivalent to quadratic forms. The struc-
ture of that setting is such that Ã= Ir/r and r → ∞, in which case condition (ii) of The-
orem 2 is automatically satisfied.

5.2. Variance Estimation

In order to conduct inference based on the normal approximation in Theorem 2, we
now propose an estimator of V[θ̂]. The U-statistic representation of θ̂ in (8) implies that
the variance of θ̂ is

V[θ̂] = 4
n∑
i=1

(∑
	�=i
Ci	x

′
	β

)2

σ2
i + 2

n∑
i=1

∑
	�=i
C2
i	σ

2
i σ

2
	 �

Naively replacing {x′
iβ�σ

2
i }ni=1 with {yi� σ̂2

i }ni=1 to form a plug-in estimator of V[θ̂] will, in
general, lead to invalid inferences as σ̂2

i σ̂
2
	 is a biased estimator of σ2

i σ
2
	 . For this reason,

we consider estimators of the error variances that rely on leaving out more than one ob-
servation. We describe in the Supplemental Material a simple adjustment that leads to
conservative inference in settings where leaving out more than one observation is infeasi-
ble.

Sample Splitting. To circumvent the aforementioned biases, we exploit two independent
unbiased estimators of x′

iβ that are also independent of yi. These estimators are denoted
x̂′
iβ−i�s =

∑n

	�=i Pi	�sy	 for s = 1�2, where Pi	�s does not (functionally) depend on the {yi}ni=1.
To ensure independence between x̂′

iβ−i�1 and x̂′
iβ−i�2, we require that Pi	�1Pi	�2 = 0 for all

	. Employing these split sample estimators, we create a new set of unbiased estimators
for σ2

i :

σ̃2
i = (

yi − x̂′
iβ−i�1

)(
yi − x̂′

iβ−i�2
)

and σ̂2
i�−	 =

{
yi
(
yi − x̂′

iβ−i�1
)

if Pi	�1 = 0�
yi
(
yi − x̂′

iβ−i�2
)

if Pi	�1 �= 0�

where σ̂2
i�−	 is independent of y	 and σ̃2

i is a cross-fit estimator of the form considered
in Newey and Robins (2018). These cross-fit estimators can be used to construct an un-
biased estimator of σ2

i σ
2
	 . Letting Pim�−	 = Pim�11{Pi	�1=0} + Pim�21{Pi	�1 �=0} denote the weight

observation m receives in σ̂2
i�−	 and C̃i	 = C2

i	 + 2
∑n

m=1CmiCm	(Pmi�1Pm	�2 + Pmi�2Pm	�1), we
define

σ̂2
i σ

2
	 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ̂2
i�−	 · σ̂2

	�−i if Pim�−	P	m�−i = 0 for all m�
σ̃2
i · σ̂2

	�−i else if Pi	�1 + Pi	�2 = 0�
σ̂2
i�−	 · σ̃2

	 else if P	i�1 + P	i�2 = 0�
σ̂2
i�−	 · (y	 − ȳ)2 · 1{C̃i	<0} otherwise.

The first three cases in the above definition correspond respectively to pairs where (i) σ̂2
i�−	

and σ̂2
	�−i are independent, (ii) x̂′

iβ−i�1 and x̂′
iβ−i�2 are independent of y	, and (iii) x̂′

	β−	�1
and x̂′

	β−	�2 are independent of yi. When any of these three cases apply, the resulting esti-
mator of σ2

i σ
2
	 will be unbiased. For the remaining set of pairs B = {(i� 	) : Pim�−	P	m�−i �=

0 for some m�Pi	�1 + Pi	�2 �= 0�P	i�1 + P	i�2 �= 0} that comprise the fourth case, we rely on
an unconditional variance estimator which leads to a biased estimator of σ2

i σ
2
	 and con-

servative inference.
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Design Requirements. Constructing the above split sample estimators places additional
requirements on the design matrix Sxx. We briefly discuss these requirements in the con-
text of Examples 1, 2, and 3. In Example 1, leave-one-out estimation requires a minimum
group size of two, whereas existence of {x̂′

iβ−i�s}s=1�2 requires groups sizes of at least three.
Conservative inference can be avoided when the minimum group size is at least four. In
Example 2, minimum group sizes of three and five are sufficient to ensure feasibility of
leave-one-out estimation and existence of {x̂′

iβ−i�s}s=1�2, respectively. Conservativeness can
be avoided with a minimum group size of seven.

In the first-differenced representation of Example 3, the predictions {x̂′
iβ−i�s}s=1�2 are

associated with particular paths in the worker-firm mobility network and independence
requires that these paths be edge-disjoint. Menger’s theorem (Menger (1927)) implies
that {x̂′

iβ−i�s}s=1�2 exists if the design matrix has full rank when any two observations are
dropped. Menger’s theorem also implies that conservativeness can be avoided if the de-
sign matrix has full rank when any three observations are dropped. In our application, we
use Dijkstra’s algorithm to find the paths that generate {x̂′

iβ−i�s}s=1�2.

Consistency. The following lemma shows that σ̂2
i σ

2
	 can be utilized to construct an esti-

mator of V[θ̂] that delivers consistent inference when sufficiently few pairs fall into B and
provides conservative inference otherwise.

LEMMA 5: For s = 1�2, suppose that x̂′
iβ−i�s satisfies (unbiasedness)

∑n

	�=i Pi	�sx
′
	β= x′

iβ,
(sample splitting) Pi	�1Pi	�2 = 0 for all 	, and (projection property) λmax(PsP

′
s)= O(1) where

Ps = (Pi	�s)i�	 is the hat-matrix corresponding to x̂′
iβ−i�s. Let

V̂[θ̂] = 4
n∑
i=1

(∑
	�=i
Ci	y	

)2

σ̃2
i − 2

n∑
i=1

∑
	�=i
C̃i	σ̂

2
i σ

2
	 �

(i) If the conditions of Theorem 2 hold and |B| =O(1), then V̂[θ̂]−1/2(θ̂− θ) d−→N (0�1).
(ii) If the conditions of Theorem 2 hold, then lim infn→∞ P(θ ∈ [θ̂± zαV̂[θ̂]1/2]) ≥ 1 − α,

where z2
α denotes the (1 − α)th quantile of a central χ2

1 random variable.

The first term in V̂[θ̂] is a plug-in estimator with expectation V[θ̂]+2
∑n

i=1

∑
	�=i C̃i	σ

2
i σ

2
	 .

Hence, the second term is a bias correction that completely removes the bias when B = ∅
and leaves a positive bias otherwise. The Supplemental Material establishes validity of an
adjustment to V̂[θ̂] that utilizes an upward biased unconditional variance estimator for
observations where it is not possible to construct {x̂′

iβ−i�s}s=1�2.

REMARK 8: The purpose of the condition |B| =O(1) in the above lemma is to ensure
that the bias of V̂[θ̂] grows small with the sample size. Because the bias of V̂[θ̂] is non-
negative, inference based on V̂[θ̂] remains valid even when this condition fails, as stated
in the second part of Lemma 5. To gauge the conservatism of the standard error estimate,
researchers may wish to calculate the fraction of pairs that belong to B along with the
share of observations for which it is not possible to construct {x̂′

iβ−i�s}s=1�2.

6. WEAKLY IDENTIFIED QUADRATIC FORMS OF GROWING RANK

When condition (ii) of Theorem 2 is violated, inference based on Lemma 5 can be
misleading. For example, in two-way fixed effects models, it is possible that bottlenecks
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arise in the mobility network that lead the largest eigenvalues to dominate the others.
Section 8 formalizes this idea in a stochastic block model where limited mobility between
blocks generates bottlenecks.

This section provides a theorem that covers the case where some of the squared eigen-
values λ2

1� � � � � λ
2
r are large relative to their sum

∑r

	=1 λ
2
	 . To interpret this assumption,

recall that each eigenvalue of Ã measures how strongly θ depends on a particular linear
combination of the elements of β relative to the difficulty of estimating that combination
(as summarized by S−1

xx ). From Lemma 3, trace(Ã2)=∑r

	=1 λ
2
	 governs the total variability

in θ̂. Therefore, Theorem 3 covers the case where θ depends strongly on a few linear com-
binations of β that are imprecisely estimated relative to the overall sampling uncertainty
in θ̂. The following assumption formalizes this setting.

ASSUMPTION 2: There exist a c > 0 and a known and fixed q ∈ {1� � � � � r − 1} such that

λ2
q+1
r∑
	=1

λ2
	

= o(1) and
λ2
q

r∑
	=1

λ2
	

≥ c for all n�

Assumption 2 defines q as the number of squared eigenvalues that are large relative to
their sum. Equivalently, q indexes the number of nuisance parameters in b that are weakly
identified relative to their influence on θ and the uncertainty in θ̂. In Section 7.2, we offer
some guidance on choosing q in settings where it is unknown.

6.1. Limit Distribution

Given knowledge of q, we can split θ̂ into a known function of b̂q = (b̂1� � � � � b̂q)
′ and θ̂q

where b̂1� � � � � b̂q are OLS estimators of the weakly identified nuisance parameters:

b̂q =
n∑
i=1

wiqyi� wiq = (wi1� � � � �wiq)′�

θ̂q = θ̂−
q∑
	=1

λ	
(
b̂2
	 − V̂[b̂	]

)
� V̂[b̂] =

n∑
i=1

wiw
′
iσ̂

2
i �

The main difficulty in proving the following theorem is to show that the joint distribu-
tion of (b̂′

q� θ̂q)
′ is normal, which we do using the same variation of Stein’s method that

was employed for Theorem 2. The high-level conditions involve x̃iq and x̌iq which are the
parts of x̃i and x̌i that pertain to θ̂q and are defined in the proof of Theorem 3.

THEOREM 3: If maxi w′
iqwiq = o(1), V[θ̂q]−1 maxi((x̃′

iqβ)
2 + (x̌′

iqβ)
2) = o(1), and As-

sumptions 1 and 2 hold, then

(i) V[(b̂′
q� θ̂q)

′]−1/2((b̂′
q� θ̂q)

′ −E[(b̂′
q� θ̂q)

′]) d−→N (0� Iq+1),
(ii) θ̂=∑q

	=1 λ	(b̂
2
	 −V[b̂	])+ θ̂q + op(V[θ̂]1/2).

Theorem 3 provides an approximation to θ̂ in terms of a quadratic function of q asymp-
totically normal random variables and a linear function of one asymptotically normal ran-
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dom variable. Here, the non-centralities E[b̂q] = (b1� � � � � bq)
′ serve as nuisance parame-

ters that influence both θ and the shape of the limiting distribution of θ̂ − θ. The next
section proposes an approach to dealing with these nuisance parameters that provides
asymptotically valid inference on θ for any value of q.

6.2. Variance Estimation

In Theorem 3, the relevant variance is Σq = V[(b̂′
q� θ̂q)

′], which can be written

Σq =
n∑
i=1

⎡⎢⎢⎢⎢⎣
wiqw

′
iqσ

2
i 2wiq

(∑
	�=i
Ci	qx

′
	β

)
σ2
i

2w′
iq

(∑
	�=i
Ci	qx

′
	β

)
σ2
i 4

(∑
	�=i
Ci	qx

′
	β

)2

σ2
i + 2

∑
	�=i
C2
i	qσ

2
i σ

2
	

⎤⎥⎥⎥⎥⎦ �
where Ci	q is defined in the proof of Theorem 3. Our estimator of this variance reuses the
split sample estimators introduced for Theorem 2:

Σ̂q =
n∑
i=1

⎡⎢⎢⎢⎢⎣
wiqw

′
iqσ̂

2
i 2wiq

(∑
	�=i
Ci	qy	

)
σ̃2
i

2w′
iq

(∑
	�=i
Ci	qy	

)
σ̃2
i 4

(∑
	�=i
Ci	qy	

)2

σ̃2
i − 2

∑
	�=i
C̃2
i	qσ̃

2
i σ

2
	

⎤⎥⎥⎥⎥⎦ �

where C̃i	q and σ̃2
i σ

2
	 are defined in the proof of the next lemma which shows consistency

of this variance estimator.

LEMMA 6: For s = 1�2, suppose that x̂′
iβ−i�s satisfies

∑n

	�=i Pi	�sx
′
	β = x′

iβ, Pi	�1Pi	�2 = 0
for all 	, and λmax(PsP

′
s)= O(1). If the conditions of Theorem 3 hold and |B| = O(1), then

Σ−1
q Σ̂q

p−→ Iq+1.

REMARK 9: As in the case of variance estimation for Theorem 2, it may be that the de-
sign does not allow for construction of the predictions x̂′

iβ−i�1 and x̂′
iβ−i�2 used in Σ̂q. The

Supplemental Material describes an adjustment to Σ̂q which has a positive definite bias
and therefore leads to conservative inferences when coupled with the inference method
discussed in the next section.

7. INFERENCE WITH NUISANCE PARAMETERS

We now develop a two-sided confidence interval for θ that delivers asymptotic size
control conditional on a choice of q. Our proposal involves inverting a minimum distance
statistic in b̂q and θ̂q, which Theorem 3 implies are jointly normally distributed. To avoid
the conservatism associated with standard projection methods (e.g., Dufour and Jasiak
(2001)), we adjust the critical value downwards to deliver size control on θ rather than
E[(b̂′

q� θ̂q)
′]. However, unlike in standard projection problems, θ is a nonlinear function

of E[b̂q]. To accommodate this complication, we use a critical value proposed by Andrews
and Mikusheva (2016) that depends on the curvature of the problem.
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7.1. Inference With Known q

The confidence interval we consider is based on inversion of a minimum-distance statis-
tic for (b̂′

q� θ̂q)
′ using the critical value proposed in Andrews and Mikusheva (2016). For a

specified level of confidence, 1 − α, we consider the interval

Ĉθ
α�q =

[
min

(ḃ1�����ḃq�θ̇q)
′∈Êα�q

q∑
	=1

λ	ḃ
2
	 + θ̇q� max

(ḃ1�����ḃq�θ̇q)
′∈Êα�q

q∑
	=1

λ	ḃ
2
	 + θ̇q

]
�

where

Êα�q =
{(

b′
q� θq

)′ ∈Rq+1 :
(

b̂q − bq
θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq
θ̂q − θq

)
≤ z2

α�κ̂q

}
�

The critical value function, zα�κ, depends on the maximal curvature, κ, of a certain mani-
fold (exact definitions of zα�κ and κ are given in the Supplemental Material). Heuristically,
κ can be thought of as summarizing the influence of the nuisance parameter E[b̂q] on the
shape of θ̂’s limiting distribution. Accordingly, z2

α�0 is equal to the (1 − α)th quantile of a
central χ2

1 random variable. As κ→ ∞, z2
α�κ approaches the (1 − α)th quantile of a cen-

tral χ2
q+1 random variable. This upper limit on zα�κ is used in the projection method in

its classical form as popularized in econometrics by Dufour and Jasiak (2001), while the
lower limit zα would yield size control if θ were linear in E[b̂q].

When q= 1, the maximal curvature is κ̂1 = 2|λ1|V̂[b̂1]
V̂[θ̂1]1/2(1−ρ̂2)1/2

, where ρ̂ is the estimated cor-

relation between b̂1 and θ̂1. This curvature measure is intimately related to eigenvalue
ratios previously introduced, as κ̂2

1 is approximately equal to 2λ2
1∑r

	=2 λ
2
	

when the error terms
are homoscedastic and β = 0. A closed form expression for the q = 1 confidence inter-
val is provided in the Supplemental Material. When q > 1, inference relies on solving
two quadratic optimization problems that involve q+ 1 unknowns, which can be achieved
reliably using standard quadratic programming routines.

The following lemma shows that a consistent variance estimator as proposed in
Lemma 6 suffices for asymptotic validity under the conditions of Theorem 3.

LEMMA 7: If Σ−1
q Σ̂q

p−→ Iq+1 and the conditions of Theorem 3 hold, then

lim inf
n→∞

P
(
θ ∈ Ĉθ

α�q

)≥ 1 − α�

The confidence interval studied in Lemma 7 constructs a q + 1 dimensional ellipsoid
Êα�q and maps it through the quadratic function (ḃ1� � � � � ḃq� θ̇q) 
→ ∑q

	=1 λ	ḃ
2
	 + θ̇q. This

approach ensures uniform coverage over any possible values of the nuisance parameters
b1� � � � � bq.

7.2. Choosing q

The preceding discussion of inference considered a setting where the number of weakly
identified parameters was known in advance. When it is not clear what value q takes,
researchers may wish to report confidence intervals for two consecutive values of q (or
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their union).8 This observation also suggests a heuristic rule for choosing q: select q so
that λ2

q/
∑r

	=1 λ
2
	 ≥ 1

10 and λ2
q+1/

∑r

	=1 λ
2
	 <

1
10 , with q = 0 when λ2

1/
∑r

	=1 λ
2
	 <

1
10 . A similar

threshold rule can be motivated by a mild strengthening of Assumption 2 that allows one
to learn q from the data.

ASSUMPTION 2′: There exist a c > 0, an ε > 0, and a fixed q ∈ {1� � � � � r − 1} such that

λ2
q+1
r∑
	=1

λ2
	

=O(r−ε) and
λ2
q

r∑
	=1

λ2
	

≥ c for all n�

A threshold based choice of q is the unique q̂ for which

λ2
q̂+1
r∑
	=1

λ2
	

< cr and
λ2
q̂

r∑
	=1

λ2
	

≥ cr for some cr → 0�

with q̂ = 0 when λ2
1∑r

	=1 λ
2
	
< cr . Under Assumption 2′, q̂ = q in sufficiently large samples

provided that cr is chosen so that crrε → ∞. This condition is satisfied when cr shrinks
slowly to zero, for example, when cr ∝ 1/ log(r).

8. VERIFYING CONDITIONS

We now revisit the examples of Section 2 and verify the conditions required to apply
our theoretical results. The Supplemental Material provides further details on these cal-
culations.

EXAMPLE 1—Analysis of Covariance, continued: Recall that θ= σ2
α = 1

n

∑N

g=1 Tg(αg −
ᾱ)2, where ygt = αg + x′

gtδ+ εgt , g index the N groups, and Tg is group size.
No Common Regressors. Assumption 1(ii), (iii) requires maxg α2

g = O(1) and Tg ≥ 2
since Pii = T−1

g(i). Consistency follows from Lemma 3 since λ	 = 1
n

for 	 = 1� � � � � r where
r = N − 1. Thus, trace(Ã2) = r/n2 ≤ 1/n = o(1). Theorem 1 applies if the number of
groups is fixed and ming Tg → ∞, while Theorem 2 applies if the number of groups is
large. Theorem 3 cannot apply as all eigenvalues are equal to 1

n
.

Common Regressors. To accommodate common regressors of fixed dimension, assume
‖δ‖2 + maxg�t‖xgt‖2 = O(1) and that 1

n

∑N

g=1

∑Tg
t=1(xgt − x̄g)(xgt − x̄g)

′ converges to a
positive definite limit. This is a standard assumption in basic panel data models (see,
e.g., Wooldridge (2010), Chapter 10). Allowing such common regressors does not al-
ter the previous conclusions: Theorem 1 applies if N is fixed and ming Tg → ∞ since
w′
iwi ≤ Pii = T−1

g(i) + O(n−1), Theorem 2 applies if N → ∞ since
∑n

	=1|Mi	| = O(1) im-
plies that V[θ̂]−1 maxi(x̌′

iβ)
2 = o(1), and Theorem 3 cannot apply since nλ	 ∈ [c1� c2] for

	= 1� � � � � r and some c2 ≥ c1 > 0 not depending on n.
Unbounded Mean Function. All conclusions continue to hold if maxg�t α2

g + ‖xgt‖2 =
O(1) is replaced with maxg�t α2

g+‖xgt‖2

max{N�ming Tg} = o(1) and σ2
α + 1

n

∑N

g=1

∑Tg
t=1‖xgt‖2 =O(1).

8Both our simulations and empirical application suggest that Ĉθα�q barely varies with q when λ2
q+1/

∑r
	=1 λ

2
	 <

1
10 . Consequently, little power is sacrificed by taking the union.
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EXAMPLE 2—Random Coefficients, continued: For simplicity, consider the uncentered
second moment θ = 1

n

∑N

g=1 Tgγ
2
g where ygt = αg + z′

gtγg + εgt . Suppose Assumption 1
holds and assume that maxg�t αg + γ2

g + z2
gt = O(1) and ming Szz�g ≥ c > 0, where Szz�g =∑Tg

t=1(zgt − z̄g)2. Note that ming Szz�g > 0 is equivalent to full rank of Sxx and Szz�g indexes
how precisely γg can be estimated.

Consistency. TheN eigenvalues of Ã are λg = Tg

n
S−1
zz�g for g= 1� � � � �N , where the group

indexes are ordered so that λ1 ≥ · · · ≥ λN . Consistency follows from Lemma 3 if λ−1
1 =

n
Szz�1
T1

→ ∞. This is automatically satisfied with many groups of bounded size.
Limit Distribution. If N is fixed and ming Szz�g → ∞, then Theorem 1 applies. If√
N
T1
Szz�1 → ∞, then Theorem 2 applies. If

√
N
T2
Szz�2 → ∞,

√
N
T1
Szz�1 = O(1), and Szz�1 → ∞,

then Theorem 3 applies with q = 1. In this case, γ1 is weakly identified relative to its
influence on θ and the overall variability of θ̂. This is expressed through the condition√
N
T1
Szz�1 =O(1), where Szz�1 is the identification strength of γ1, T1 is the influence of γ1 on

θ, and 1/
√
N indexes the variability of θ̂.

EXAMPLE 3—Two-Way Fixed Effects, continued: In this final example, we restrict
attention to the first-differenced setting �yg = �f ′

gψ + �εg with Tg = 2 and a large
number of firms, J → ∞. Our target parameter is the variance of firm effects θ =
σ2
ψ = 1

n

∑N

g=1

∑Tg
t=1(ψj(g�t) − ψ̄)2 and we consider Assumption 1 satisfied; in particular,

maxj|ψj| =O(1).
Leverages. The leverage Pgg of observation g is less than 1 if the origin and destination

firms of worker g are connected by a path not involving g. Letting ng denote the number
of edges in the shortest such path, one can show that Pgg ≤ ng

1+ng . Therefore, if maxg ng <
100, then Assumption 1(ii) is satisfied with maxPgg ≤ 0�99. In our application, we find
maxg ng = 12, leading to a somewhat smaller bound on the maximal leverage. The same
consideration implies a bound on the model in levels since Pi(g�t)i(g�t) = 1

2(1 + Pgg).
Eigenvalues. The eigenvalues of Ã satisfy the equality

λ	 = 1
nλ̇J+1−	

for 	= 1� � � � � J�

where λ̇1 ≥ · · · ≥ λ̇J are the nonzero eigenvalues of the matrix E1/2LE1/2. L is the nor-
malized Laplacian of the employer mobility network and connectedness of the network
is equivalent to full rank of Sxx (see the Supplemental Material for definitions). E is a
diagonal matrix of employer-specific “churn rates,” that is, the number of moves in and
out of a firm divided by the total number of employees in the firm. E and L interact in
determining the eigenvalues of Ã. In Example 2, the quantities {T−1

	 Szz�	}N	=1 played a role
directly analogous to the churn rates in E, so in this example we focus on the role of L by
assuming that the diagonal entries of E are all equal to 1.

Strongly Connected Network. The employer mobility network is strongly connected if√
JC → ∞, where C ∈ (0�1] is Cheeger’s constant for the mobility network (see, e.g., Mo-

har (1989), Jochmans and Weidner (2019)). Intuitively, C measures the most severe “bot-
tleneck” in the network, where a bottleneck is a set of movers that, upon removal from the
data, splits the mobility network into two disjoint blocks. The severity of the bottleneck is
governed by the number of movers removed divided by the smallest number of movers in



LEAVE-OUT ESTIMATION OF VARIANCE COMPONENTS 1881

either of the two disjoint blocks. The inequalities λ̇J ≥ 1 − √
1 − C2 (Chung (1997), The-

orem 2.3) and λ2
1/
∑J

	=1 λ
2
	 ≤ 4(

√
Jλ̇J)

−2 imply that a strongly connected network yields
q= 0, which rules out application of Theorem 3. Furthermore, a strongly connected net-
work is sufficient (but not necessary) for consistency of θ̂ as

∑J

	=1 λ
2
	 ≤ J

n
(
√
nλ̇J)

−2.
Weakly Connected Network. When

√
JC is bounded, the network is weakly connected

and can contain a sufficiently severe bottleneck that a linear combination of the elements
of ψ is estimated imprecisely relative to its influence on θ and the total uncertainty in θ̂.
The weakly identified linear combination in this case is a difference in average firm effects
across the two blocks on either side of the bottleneck, which contributes a χ2 term to the
asymptotic distribution. Below, we use a stochastic block model to further illustrate this
phenomenon. Our empirical application demonstrates that weakly connected networks
can appear in practically relevant settings.

Stochastic Block Model. Consider a stochastic block model of network formation where
firms belong to one of two blocks and a set of workers switch firms, possibly by mov-
ing between blocks. Workers’ mobility decisions are independent: with probability pb a
worker moves between blocks and with probability 1 − pb she moves within block. For
simplicity, we further assume that the two blocks contain equally many firms. To ensure
Assumption 1(ii) holds, we work with a semi-sparse network where J log(J)

n
+ log(J)

npb
→ 0.9

In this model, the asymptotic behavior of θ̂ is governed by pb: the most severe bottle-
neck is between the two blocks and has a Cheeger’s constant proportional to pb. In the
Supplemental Material, we use this model to verify the high-level conditions leading to
Theorems 2 and 3 and show that Theorem 2 applies when

√
Jpb → ∞, while Theorem 3

applies with q = 1 otherwise. The argument extends to any finite number of blocks, in
which case q is the number of blocks minus one. Finally, we show that θ̂ is consistent even
when the network is weakly connected. To establish consistency, we only impose log(J)

npb
→ 0,

which requires that the number of movers across the two blocks is large.

9. APPLICATION

In this section, we use Italian social security records to compute leave-out estimates of
the AKM wage decomposition and contrast them with estimates based upon the plug-in
estimator of Abowd, Kramarz, and Margolis (1999) and the homoscedasticity-corrected
estimator of Andrews et al. (2008). We then investigate whether the variance components
that comprise the AKM decomposition differ across age groups and test some hypothe-
ses regarding the relationship between firm fixed effects, worker age, and firm size. We
conclude with a Monte Carlo analysis of the performance of our proposed confidence
intervals.

9.1. Sample Construction

The data used in our analysis come from the Veneto Worker History (VWH) file, which
provides the annual earnings and days worked associated with each covered employment
spell taking place in the Veneto region of Northeast Italy over the years 1984–2001. Our
baseline sample consists of workers with employment spells taking place in the years 1999

9The semi-sparse stochastic block model is routinely employed in the literature on spectral clustering (e.g.,
Sarkar and Bickel (2015)) to guarantee connectedness of the network. The bias of the plug-in estimator under
this model is o(1/ log(J)). Hence, bias correction is essential for valid inference but not for consistency.
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TABLE I

SUMMARY STATISTICSa

Pooled Younger Workers Older Workers

Largest Connected Set
Number of Observations 1,859,459 1,027,034 643,020
Number of Movers 197,572 133,627 53,035
Number of Firms 73,933 62,848 26,606
Mean Log Daily Wage 4.7507 4.6694 4.8925
Variance Log Daily Wage 0.1985 0.1329 0.2722

Leave-one-out Sample
Number of Observations 1,319,972 661,528 425,208
Number of Movers 164,203 102,746 35,467
Number of Firms 42,489 33,151 10,733
Mean Log Daily Wage 4.8066 4.7275 4.9455
Variance Log Daily Wage 0.1843 0.1200 0.2591
Maximum Leverage (Pii) 0.9365 0.9437 0.9513

aData in column (1) correspond to VHW observations in the years 1999 and 2001. Column (2) restricts to workers born in the
years 1965–1983. Column (3) considers workers born in the years 1937–1964. The largest connected set gives the largest sample in
which all firms are connected by worker mobility. The leave-one-out sample is the largest connected set such that every firm remains
connected after removing any single worker from the sample. Statistics on log daily wages are person-year weighted.

and 2001, which provides us with a three-year horizon over which to measure job mobility.
A longer panel, spanning the years 1996–2001, is studied in Appendix A. For each worker,
we retain the employment spells yielding the highest earnings in the years 1999 and 2001.
Wages in each year are defined as earnings in the selected spell divided by the spell length
in days. Workers are divided into two groups of roughly equal size according to their
year of birth: “younger” workers born in the years 1965–1983 (aged 18–34 in 1999) and
“older” workers born in the years 1937–1964 (aged 35–64 in 1999). Further details on our
processing of the VWH records are provided in the Computational Appendix.

Table I reports the number of person-year observations available among workers em-
ployed by firms in the region’s largest connected set, along with the largest connected set
for each age group. Workers are classified as “movers” if they switch firms between 1999
and 2001. Roughly 21% of all workers are movers and the average number of movers
per connected firm ranges from nearly 3 in the pooled sample to roughly 2 in the thinner
age-specific samples.

Our leave-out estimation strategy requires that firms remain connected by worker mo-
bility when any single mover is dropped. Pruning the sample to ensure this condition holds
drops roughly half of the firms but less than a third of the movers and eliminates roughly
30% of all workers regardless of their mobility status. These additional restrictions raise
mean wages by roughly 5% and lower the variance of wages by 5–10% depending on the
sample.

9.2. Variance Decompositions

We fit AKM models of the form given in (5) with xgt = 0 to the leave-one-out samples
after having pre-adjusted log wages for year effects in a first step.10 The bottom of Table I
reports for each sample the maximum leverage (maxi Pii) of any person-year observation.

10This adjustment is obtained by estimating an AKM model that includes a dummy control for the year 2001.
Hence, ygt gives the log wage in year t minus a year 2001 dummy times its estimated coefficient. This two-step
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TABLE II

VARIANCE DECOMPOSITIONa

Pooled Younger Workers Older Workers

Variance of Firm Effects
Plug in (PI) 0�0358 0�0368 0�0415
Homoscedasticity Only (HO) 0�0295 0�0270 0�0350
Leave Out (KSS) 0�0240 0�0218 0�0204

Variance of Person Effects
Plug in (PI) 0�1321 0�0843 0�2180
Homoscedasticity Only (HO) 0�1173 0�0647 0�2046
Leave Out (KSS) 0�1119 0�0596 0�1910

Covariance of Firm, Person Effects
Plug in (PI) 0�0039 −0�0058 −0�0032
Homoscedasticity Only (HO) 0�0097 0�0030 0�0040
Leave Out (KSS) 0�0147 0�0075 0�0171

Correlation of Firm, Person Effects
Plug in (PI) 0�0565 −0�1040 −0�0334
Homoscedasticity Only (HO) 0�1649 0�0726 0�0475
Leave Out (KSS) 0�2830 0�2092 0�2744

Coefficient of Determination (R2)
Plug in (PI) 0�9546 0�9183 0�9774
Homoscedasticity Only (HO) 0�9029 0�8184 0�9524
Leave Out (KSS) 0�8976 0�8091 0�9489

aDecompositions conducted in the leave-one-out samples described in Table I. All variance components are person-year weighted.
Wages have been pre-adjusted for a year fixed effect.

While our pruning procedure ensures maxi Pii < 1, it is noteworthy that maxi Pii is still
quite close to 1, indicating that certain person-year observations remain influential on the
parameter estimates. This finding highlights the inadequacy of asymptotic approximations
that require the dimensionality of regressors to grow slower than the sample size.

Table II reports the results of applying to our leave-one-out samples three estima-
tors of the AKM variance decomposition: the traditional plug-in (PI) estimator θ̂PI, the
homoscedasticity-only (HO) estimator θ̂HO of Andrews et al. (2008), and the leave-out
(KSS) estimator θ̂. The PI estimator finds that the variance of firm effects in the pooled
sample accounts for roughly 20% of the total variance of wages, while among younger
workers, firm effect variability is found to account for 31% of overall wage variance.
Among older workers, variability in firm effects is estimated to account for only 16%
of the variance of wages.

Applying the HO estimator of Andrews et al. (2008) reduces the estimated variances
of firm effects by roughly 18% in the age-pooled sample, 27% in the sample of younger
workers, and 16% in the sample of older workers. However, the KSS estimator yields
further, comparably sized, reductions in the estimated firm effect variance relative to the
HO estimator, indicating the presence of substantial heteroscedasticity in these samples.
For instance, in the pooled leave-one-out sample, the KSS estimator finds a variance of
firm effects that accounts for only 13% of the overall variance of wages, while the HO
estimator finds that firm effects account for 16% of wage variance. Moreover, while the

approach simplifies computation without compromising consistency because the year effect is estimated at a√
N rate.
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plug-in estimates suggested that the firm effect variance was greater among older than
younger workers, the KSS estimator finds the opposite pattern.

PI estimates of person effect variances account for 66%–88% of the total variance of
wages depending on the sample. Moreover, the estimated ratio of older to younger person
effect variances in the leave-one-out sample is roughly 2.6. Applying the HO estimator re-
duces the magnitude of the person effect variance among all age groups, but boosts the
ratio of older to younger person effect variances to 3.2. The KSS estimator yields fur-
ther downward corrections to estimated person effect variances, leading the contribution
of person effect variability to range from only 50% to 80% of total wage variance. Pro-
portionally, however, the variability of older workers remains stable at 3.2 times that of
younger workers.

PI estimates of the covariance between worker and firm effects are negative in both
age-restricted samples, though not in the pooled sample. When converted to correlations,
these figures suggest there is mild negative assortative matching of workers to firms. Ap-
plying the HO estimator leads the covariances to change sign in both age-specific sam-
ples, while generating a mild increase in the estimated covariance of the pooled sample.
In all three samples, however, the HO estimates indicate very small correlations between
worker and firm effects. By contrast, the KSS estimator finds a rather strong positive cor-
relation of 0.21 among younger workers, 0.27 among older workers, and 0.28 in the pooled
sample, indicating the presence of non-trivial positive assortative matching between work-
ers and firms.

The usual PI estimator of R2 suggests the two-way fixed effects model explains more
than 95% of wage variation in the pooled sample, 91% in the sample of younger work-
ers, and 97% in the sample of older workers. The HO estimator of R2, which is equiva-
lent to the adjusted R2 measure of Theil (1961), indicates that the two-way fixed effects
model explains roughly 90% of the variance of wages in the pooled sample, a finding
quite close to the estimates reported in Card, Heining, and Kline (2013). Applying the
heteroscedasticity robust KSS estimator yields negligible changes in estimated explana-
tory power relative to the HO estimates.11 Interestingly, a sample size weighted average
of the age group-specific KSS R2 estimates lies slightly below the pooled KSS estimate of
R2, which suggests that allowing firm effects to differ by age group may fail to improve
the model’s fit. We examine this hypothesis more carefully in Section 9.3.

In Appendix A, we conduct variance decompositions in an unbalanced six year panel
of VHW data and account for serial correlation in worker wages by leaving out “clus-
ters” of wage observations as in Remark 3.12 Remarkably, we find that leaving out either
a worker-firm match or an entire worker history yields an estimated variance of firm ef-
fects very close to the two-period KSS estimates reported in Table II, suggesting that little
serial correlation is present across worker-firm matches. Hence, a computationally con-
venient approach to avoiding biases in longer panels may be to simply collapse the data
to match means in a first step and then analyze these means using the standard leave-one-
observation-out estimator.

11A closed form expression for the KSS estimator of R2, and its connection to the PI and HO estimators,
was provided in an earlier version of this paper (Kline, Saggio, and Sølvsten (2019a)).

12Kline, Saggio, and Sølvsten (2019a) provided a more extensive analysis of this longer panel. Further anal-
ysis of KSS corrections in short and long panels can be found in Lachowska, Mas, Saggio, and Woodbury
(2020).
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TABLE III

PROJECTING FIRM EFFECTS ONTO COVARIATESa

(1) (2)

Older Worker 0�0272 −0�0016
(0�0009) (0�0024)
[0�0003] [0�0001]

Log Firm Size 0�0276
(0�0007)
[0�0001]

Older Worker × Log Firm Size 0�0028
(0�0005)
[0�0002]

Predicted Gap in Firm Effects (Older vs. Younger Workers) 0�0272 0�0054
(0�0009) (0�0019)
[0�0003] [0�0008]

Number of Observations 1,319,972 1,319,972

aThis table reports the coefficients from projections of firm effects onto worker and firm characteristics in the pooled leave-one-out
sample. A constant is included in each model. Standard errors based on equation (7) reported in parentheses. Naive Eicker–White
(HC1) standard errors shown in square brackets. “Predicted Gap in Firm Effects” reports the predicted difference in firm effects
between older and younger workers according to either Column (1) or Column (2) evaluated at the median firm size of 12 workers.

9.3. Sorting and Wage Structure

The KSS estimates reported in Table II suggest that older workers exhibit slightly less
variable firm effects and a stronger correlation between person and firm effects than
younger workers. These findings might reflect life cycle differences in the sorting of work-
ers to firms or differences in the structure of firm wage effects across the two age groups.

Table III explores the sorting channel by projecting the pooled firm effects from the
leave-one-out sample onto an indicator for being an older worker, the log of firm size,
and their interaction. Because these projection coefficients are linear combinations of the
estimated firm effects, we employ the KSS standard errors proposed in equation (7). For
comparison, we also report naive Eicker–White standard errors that treat the firm effect
estimates as mutually independent. In all cases, the KSS standard error is at least twice the
corresponding naive standard error. Evidently, the standard practice of regressing fixed
effect estimates on observables in a second step without accounting for correlation across
these estimates can yield highly misleading inferences.

The first column of Table III shows that older workers tend to be employed at firms with
firm wage effects roughly 2.7% higher than younger workers. The second column reveals
that this sorting relationship is largely mediated by firm size. An older worker at a firm
with a single employee is estimated to have a mean firm wage effect only 0.16% lower than
a younger worker at a firm of the same size, an economically insignificant difference that
is also deemed statistically insignificant when using the KSS standard error. As firm size
grows, older workers begin to enjoy somewhat larger firm wage premia. At the median
firm size of 12 workers, the predicted gap between older and younger workers rises to
0.54%, a modest gap that we can nonetheless distinguish from zero at the 5% level using
the KSS standard error. We conclude that the tendency of older workers to be employed
at larger firms is a quantitatively important driver of the firm wage premia they enjoy.

To assess whether firm wage effects differ between age groups, we study the set J of
8578 firms at which firm effects for younger (ψY

j ) and older (ψO
j ) workers are both leave-

one-out estimable. Figure 1 plots the person-year weighted averages of ψ̂Y
j and ψ̂O

j within
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FIGURE 1.—Do firm effects differ across age groups?

each centile bin of ψ̂O
j . A person-year weighted projection of ψ̂Y

j onto ψ̂O
j yields a slope

of only 0.501. To correct for attenuation bias, we multiply this plug-in slope by the ratio
of the PI estimate of the person-year weighted variance of ψO

j to the corresponding KSS
estimate of this quantity, which yields an adjusted projection slope of 0.987. Converting
this slope into a correlation using the KSS estimate of the person-year weighted variance
of ψY

j yields a person-year weighted correlation between the two sets of firm effects of
0.89. This high correlation suggests that the underlying (ψY

j �ψ
O
j ) pairs are in fact tightly

clustered around the 45 degree line depicted in Figure 1.
Theorem 2 allows us to formally test the joint null hypothesis that the two sets of firm

effects are actually identical; that is, that both the slope and R2 from a projection of ψY
j

onto ψO
j equal 1. We can state this hypothesis as H0 : ψO

j = ψY
j for all j ∈ J . Using the

test suggested in Remark 6, we obtain a realized test statistic of 3�95, which yields a p-
value on H0 of less than 0�1%. Hence, we can decisively reject the null hypothesis that
older and younger workers face exactly the same vectors of firm effects, despite their high
correlation.

9.4. Inference

We now study more carefully the problem of inference on the variance of firm effects.
For convenience, the top row of Table IV reprints our earlier KSS estimates of the vari-
ance of firm effects in each sample. Below each estimate of firm effect variance is a stan-
dard error, computed according to the approach described in Lemma 5. As noted in Re-
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mark 8, these standard errors will be somewhat conservative when there is a large share
of observations for which no split sample predictions can be created. In the leave-one-out
samples, this share varies between 15% and 22%. For comparison, we also report results
for leave-two-out samples, which turn out to exhibit very similar point estimates, and for
which the split sample predictions always exist.13 The standard errors will also tend to
be conservative when there is a large share of observation pairs in the set B, for which
there is upward bias in the estimator of the error variance product. However, for both
the leave-one-out and leave-two-out samples, this share varies between only 0.03% and
0.46%, suggesting that little bias stems from this source.

The next panel of Table IV reports the 95% confidence intervals that arise from set-
ting q = 0, q = 1, or q = 2. While the first interval employs a normal approximation, the
latter two allow for weak identification by employing non-standard limiting distributions
involving linear combinations of normal and χ2 random variables. We also report esti-
mates of the curvature parameters (κ1�κ2) used to construct the weak identification ro-
bust intervals. In the pooled samples, both curvature parameters are estimated to be quite
small, indicating that a normal approximation is accurate. Accordingly, setting q > 0 has
little discernible effect on the resulting confidence intervals in these samples. However,
among older workers, particularly in the leave-two-out sample, we find greater curvature,
suggesting weak identification may be empirically relevant. Setting q > 0 in this sample
widens the confidence interval somewhat and also changes its shape: mildly shortening
the lower tail of the interval but lengthening the upper tail.

Theorem 3 suggests that two important diagnostics for the asymptotic behavior of our
estimator are the top eigenvalue shares {λ2

s /
∑r

	=1 λ
2
	}s=1�2�3 and the Lindeberg statistics

{maxi w2
is}s=1�2. The bottom panel of Table IV reports these statistics for each sample. The

top eigenvalue shares are fairly small in the pooled sample and among younger workers.
A small top eigenvalue share indicates that the estimator does not depend strongly on any
particular linear combination of firm effects and hence that a normal distribution should
provide a suitable approximation to the estimator’s asymptotic behavior (i.e., that q= 0).
Accordingly, we find that the confidence intervals are virtually identical for all values of q
in both the pooled samples and the two samples of younger workers.

Among older workers, the top eigenvalue share is 31% in the leave-one-out sample and
58% in the leave-two-out sample. The next largest eigenvalue share is, in both cases, less
than 5%, which suggests this is a setting where q= 1. In line with the theory, confidence
intervals based upon the q = 1 and q = 2 approximations are nearly identical in both
samples of older workers. The accuracy of these weak-identification robust confidence
intervals hinges on the Lindeberg condition of Theorem 3 being satisfied. One can think
of the Lindeberg statistic maxi w2

is as giving an inverse measure of effective sample size
available for estimating the linear combination of firm effects associated with the sth
largest eigenvalue. The fact that these statistics are all less than or equal to 0.05 implies
an effective sample size of at least 20. Finally, the sum of squared eigenvalues is quite
small in all six samples considered, indicating that the leave-out estimator is consistent
also in our weakly identified samples.

9.5. Monte Carlo Experiments

We turn now to studying the finite sample behavior of the leave-out estimator of firm
effect variance and its associated confidence intervals under a particular data generating

13See Kline, Saggio, and Sølvsten (2019a) for summary statistics on this sample and a more detailed com-
parison of leave-one-out and leave-two-out estimates.
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TABLE V

MONTE CARLO RESULTS FOR THE VARIANCE OF FIRM EFFECTSa

Pooled Younger Workers Older Workers

Leave-One-Out
Sample

Leave-Two-Out
Sample

Leave-One-Out
Sample

Leave-Two-Out
Sample

Leave-One-Out
Sample

Leave-Two-Out
Sample

Relative Bias in Point Estimators
Leave Out (KSS) 0�03% 0�02% −0�04% −0�02% 0�41% −0�44%

(1�15%) (1�35%) (1�37%) (1�57%) (7�23%) (10�61%)
Homoscedasticity
Only (HO)

24�12% 15�02% 29�93% 18�06% 33�63% 19�54%

(1�13%) (1�35%) (1�36%) (1�59%) (7�25%) (10�60%)
Plug in (PI) 28�19% 17�94% 36�67% 22�58% 37�55% 22�01%

(1�13%) (1�35%) (1�36%) (1�59%) (7�25%) (10�60%)
Relative Bias in KSS Std Error

41�04% 3�42% 47�97% 3�99% 27�92% −0�33%

Coverage rate
Strong id (q= 0) 99�6% 96�4% 99�5% 95�4% 97�9% 89�9%
Weak id (q= 1) 99�6% 96�3% 99�3% 96�5% 98�5% 95�5%

aSection 9.5 describes the DGP. “Relative Bias in Point Estimators” gives the average across simulations of the difference between
the estimated and true values of the firm effect variance scaled by the true variance of firm effects. In parentheses, the table reports
the simulated standard deviation of the same quantity. “Relative Bias in KSS Std Error” reports the average across simulations of
the difference between the KSS standard error and the Monte Carlo standard deviation of the KSS estimator scaled by the Monte
Carlo standard deviation of the KSS estimator. “Strong id” gives the coverage rate of a confidence interval for the variance of firms
effects based upon KSS standard errors and a normal approximation. “Weak id” reports the coverage rate of the test-inversion based
confidence interval described in Section 7 under q= 1. All results rely upon 1000 Monte Carlo draws.

process (DGP). Data were generated from the following first-differenced model based
upon equation (6):

�yg = �f ′
gψ̂

scale +�εg (g= 1� � � � �N)�

Here, ψ̂scale gives the vector of OLS firm effect estimates found in the pooled leave-one-
out sample, rescaled to match the KSS estimate of firm effect variance for that sample
of 0.024. The errors �εg were drawn independently from a Student’s t-distribution with 5
degrees of freedom and variances given by the following model:

V[�εg] = exp(a0 + a1Bgg + a2Pgg + a3 lnLg2 + a4 lnLg1)�

whereLgt gives the size of the firm employing worker g in period t. The coefficients of this
model were estimated via a nonlinear least squares fit to the σ̂2

g in the pooled leave-one-
out sample.14 For each sample, we drew from the above DGP 1000 times while holding
firm assignments fixed at their sample values.

Table V reports the results of this Monte Carlo experiment. In accord with theory, the
KSS estimator of firm effect variances is unbiased while the PI and HO estimators are
biased upwards. As expected, the KSS standard error estimator exhibits a modest upward
bias in the leave-one-out samples ranging from 28% in the sample of older workers to
48% among younger workers. In the leave-two-out sample, however, the standard error
estimator exhibits biases of only 4% or less. Unsurprisingly then, the q= 0 confidence in-
terval over-covers in both the pooled leave-one-out sample and the leave-one-out sample

14The parameter estimates were: â0 = −3�3441, â1 = 1�3951, â2 = −0�0037, â3 = −0�0012, â4 = −0�0086.
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of younger workers. In the corresponding leave-two-out samples, however, coverage is
very near its nominal level, both for the normal based (q= 0) and the weak identification
robust (q= 1) intervals.

In the samples of older workers, the normal distribution provides a poor approximation
to the shape of the estimator’s sampling distribution, which is to be expected given the
large top eigenvalues found in these designs. This non-normality leads to under-coverage
by the q = 0 confidence interval in the leave-two-out sample. By contrast, applying the
weak identification robust interval yields coverage very close to nominal levels despite the
fact that the effective sample size available for the top eigenvector is only about 20.

10. CONCLUSION

We propose a new estimator of quadratic forms with applications to several areas of
economics. The estimator is finite sample unbiased in the presence of unrestricted het-
eroscedasticity and can be accurately approximated in very large data sets via random
projection methods. Consistency is established under verifiable design requirements in an
environment where the number of regressors may grow in proportion to the sample size.
The estimator enables tests of linear restrictions of varying dimension under weaker con-
ditions than have been explored in previous work. A new distributional theory highlights
the potential for the proposed estimator to exhibit deviations from normality when some
linear combinations of coefficients are imprecisely estimated relative to others. Monte
Carlo experiments demonstrate that confidence intervals predicated on the assumption
that q = 1 can provide accurate size control, even when the realized mobility network
exhibits a severe bottleneck.

APPENDIX A: ANALYSIS OF LONGER PANELS

This appendix reports estimates of the variance of firm effects in an unbalanced panel
spanning the years 1996–2001.15 Because the equivalence discussed in Remark 4 no longer
holds when T > 2, the leave-out estimator may exhibit a bias when the errors are serially
correlated. Table A.I probes for the importance of serial correlation by leaving out “clus-
ters” of observations—as described in Remark 3—defined successively as all observations
within the same worker-firm “match” and all observations belonging to the same worker.16

Leaving out the match yields an important reduction in the variance of firm effects rela-
tive to leaving out a single person-year observation, indicating the presence of substantial
serial correlation within match. By contrast, leaving out all observations associated with
the worker turns out to have negligible effects on the estimated variance of firm effects,
suggesting that serial correlation across matches is negligible. As expected, pooling sev-
eral years of data reduces the bias of the plug-in estimator. Contrasting Table A.I with
Table II, the leave-worker-out bias correction reduces the pooled plug-in estimate of firm
effect variance in our unbalanced six-year panel by roughly 20%, while bias correcting
the corresponding plug-in estimate in our baseline two-year sample yields a reduction of
approximately 30%.

15To analyze this longer panel, we expand our set of time varying covariates to include unrestricted year
effects and a third-order polynomial in age normalized to have slope zero at age 40 as discussed in Card, Car-
doso, Heining, and Kline (2018). Pre-adjusting for age has negligible effects on the variance decompositions
reported in Table II but is quantitatively more important in this longer panel.

16Because worker g’s person effect is not estimable when leaving that worker’s entire wage history out, we
estimate within-transformed specifications that eliminate the person effects in a first step.
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TABLE A.I

VARIANCE OF FIRM EFFECTS UNDER DIFFERENT LEAVE-OUT STRATEGIESa

Pooled Younger Workers Older Workers

Variance of Firm Effects
Plug-in 0.0304 0.0303 0.0376
Leave Person-Year Out 0.0296 0.0302 0.0314
Leave Match Out 0.0243 0.0221 0.0265
Leave Worker Out 0.0241 0.0227 0.0270

aDecompositions use all VHW wage records spanning the years 1996–2001 that are leave-worker-out connected in the relevant
sample. The pooled sample contains 5,163,446 person-year observations, the sample of younger workers contains 2,632,596 obser-
vations, and the sample of older workers contains 2,016,202 observations; see Table 3 of Kline, Saggio, and Sølvsten (2019a) for
additional sample dimensions and summary statistics. “Leave Person-Year Out” computes a bias correction by leaving a single person-
year observation out. “Leave Match Out” computes a bias correction by leaving entire worker-firm matches out. “Leave Worker Out”
computes a bias correction by leaving out each worker’s entire wage history. The Computational Appendix provides implementation
details.

APPENDIX B: PROOFS

PROOF OF LEMMA 1: For the first claim, it suffices to show that E[σ̂2
i ] = σ2

i when Pii <
1, since θ̂= β̂′Aβ̂−∑n

i=1Biiσ̂
2
i and E[β̂′Aβ̂]−θ= trace(AV[β̂])=∑n

i=1Biiσ
2
i . When Sxx

has full rank and Pii < 1, it follows from the Sherman–Morrison–Woodbury formula that
Sxx − xix

′
i is invertible so that the leave-one-out estimator β̂−i = (Sxx − xix

′
i)

−1
∑

	�=i x	y	
exists. As β̂−i is independent of εi and unbiased for β with fixed regressors, we have

E
[
σ̂2
i

]= E
[
yi
(
yi − x′

iβ̂−i
)]= E

[(
εi + x′

iβ
)
(εi + x′

i(β− β̂−i)
]

= E
[
ε2
i

]+E[εi]x′
iE[β− β̂−i] + x′

iβE[εi] + x′
iβx

′
iE[β− β̂−i] = σ2

i �

For the second claim, it suffices to show that no unbiased estimator of β′Sxxβ exists
when maxi Pii = 1. As the model only places restrictions on the first two moments of yi,
any unbiased estimator must have the form y ′Cy +U , where y = (y1� � � � � yn)

′, E[U] = 0,
and C = (Ci	)i�	 satisfies (i) Cii = 0 for all i and (ii) X ′CX = Sxx for X = (x1� � � � � xn)

′.
Item (ii) implies that C must satisfy C = I + PC̃M +MC̃P +MC̃M for some C̃ where
M = (Mi	)i�	 and P = In −M . If there exists an i with Pii = 1, then

∑n

	=1 P
2
i	 = Pii yields

Mi	 = 0 for all 	 which implies that Cii must equal 1 to satisfy (ii). However, this makes it
impossible to satisfy (i), so no unbiased estimator can exist. Q.E.D.

PROOF OF LEMMA 2: Recall the spectral decomposition Ã = QDQ′ and definition of
b̂ = Q′S1/2

xx β̂ which satisfies that b̂ ∼ N (b�V[b̂]) when εi ∼ N (0�σ2
i ). We have that θ∗ =∑r

	=1 λ	(b̂
2
	 − V[b̂	]) since β̂′Aβ̂ = β̂′S1/2

xx ÃS
1/2
xx β̂ = b̂′Db̂ = ∑r

	=1 λ	b̂
2
	 and

∑n

i=1Biiσ
2
i =

trace(AV[β̂])= trace(DV[b̂])=∑r

	=1 λ	V[b̂	]. Q.E.D.

PROOF OF LEMMA 3: The difference between θ̂ and θ is

θ̂− θ= 2
n∑
i=1

n∑
	=1

Bi	x
′
	βεi +

n∑
i=1

∑
	�=i
Bi	εiε	 +

n∑
i=1

Bii
(
ε2
i − σ̂2

i

)
�
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and each term has mean zero so we show that their variances are small in large samples.
Suppose that A is positive semi-definite. The variance of the first term is

4
n∑
i=1

(
n∑
	=1

Bi	x
′
	β

)2

σ2
i ≤ 4 max

i
σ2
i β

′X ′B2Xβ= 4 max
i
σ2
i β

′AS−1
xxAβ

≤ 4 max
i
σ2
i θλ1 = o(1)�

where B = (Bi	)i�	, the last inequality follows from positive semi-definiteness of A, and
the last equality follows from θ=O(1) and λ1 ≤ trace(Ã2)1/2 = o(1). The variance of the
second term is

2
n∑
i=1

∑
	�=i
B2
i	σ

2
i σ

2
	 ≤ 2 max

i
σ4
i

n∑
i=1

n∑
	=1

B2
i	 = 2 max

i
σ4
i trace

(
Ã2
)= o(1)�

Finally, the variance of the third term is

n∑
i=1

(
n∑
	=1

M−1
		 B		Mi	x

′
	β

)2

σ2
i + 2

n∑
i=1

∑
	�=i
M−2

ii B
2
iiM

2
i	σ

2
i σ

2
	

≤ 1
c2 max

i
σ2
i max

i

(
x′
iβ
)2

n∑
i=1

B2
ii +

2
c

max
i
σ4
i

n∑
i=1

B2
ii = o(1)�

where mini Mii ≥ c > 0 and
∑n

i=1B
2
ii ≤ trace(Ã2)= o(1). This shows the first claim of the

lemma.
When A is non-definite, we write A= 1

2(A
′
1A2 +A′

2A1) and note that

β′AS−1
xxAβ≤ 1

2
(
θ1λmax(Ã2)+ θ2λmax(Ã1)

)
and

trace
(
Ã2
)≤ trace

(
Ã2

1

)1/2
trace

(
Ã2

2

)1/2
�

where Ã	 = S−1/2
xx A′

	A	S
−1/2
xx for 	= 1�2 and λmax(Ã2) is the largest eigenvalue of Ã2. Thus,

consistency of θ̂ follows from θ	 =O(1) and trace(Ã2
	)= o(1) for 	= 1�2. Q.E.D.

PROOF OF LEMMA 4: See Supplemental Material. Q.E.D.

PROOF OF THEOREM 1: The proof has two steps. First, we write θ̂ as
∑r

	=1 λ	(b̂
2
	 −

V[b̂	]) plus an approximation error of smaller order than V[θ̂]. This argument establishes
the last two claims of the lemma. Second, we use Lyapunov’s CLT to show that b̂ ∈ Rr is
jointly asymptotically normal.

Decomposition and Approximation. From the proof of Lemma 2, it follows that

θ̂=
r∑
	=1

λ	
(
b̂2
	 −V[b̂	]

)+
n∑
i=1

Bii
(
σ2
i − σ̂2

i

)
�
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and we show next that the mean-zero variable
∑n

i=1Bii(σ
2
i − σ̂2

i ) is op(V[θ̂]1/2). We have

n∑
i=1

Bii
(
σ̂2
i − σ2

i

)=
n∑
i=1

Bii

n∑
	=1

M−1
ii x

′
iβMi	ε	 +

n∑
i=1

Bii
(
ε2
i − σ2

i

)+
n∑
i=1

Bii
∑
	�=i
M−1

ii Mi	εiε	�

The variances of these three terms are

n∑
	=1

σ2
	

(
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i=1

Mi	BiiM
−1
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′
iβ

)2
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i
σ2
i

n∑
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B2
iiM

−2
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(
x′
iβ
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i
σ2
i max

i

(
x′
iβ
)2
M−2

ii ×
n∑
i=1

B2
ii�

n∑
i=1

B2
iiV
[
ε2
i

]≤ max
i

E
[
ε4
i

]×
n∑
i=1

B2
ii�

n∑
i=1

∑
	�=i

(
B2
iiM

−2
ii +BiiM−1

ii B		M
−1
		

)
M2

i	σ
2
i σ

2
	 ≤ 2 max

i
σ4
i M

−2
ii ×

n∑
i=1

B2
ii�

Furthermore, we have that

V[θ̂]−1
n∑
i=1

B2
ii ≤ max

i
w′
iwiV[θ̂]−1

r∑
l=1

λ2
l (Ã)≤ max

i
w′
iwi max

i
σ−4
i = o(1)�

so each of the three variances is of smaller order than V[θ̂].
For the second claim, it suffices to show that δ(v) := V[v′b̂]−1(V̂[v′b̂] −V[v′b̂]) =

op(1) for all non-random v ∈ Rr with v′v = 1. Let v ∈ Rr be such a vector. As
above, we have that δ(v) = ∑n

i=1wi(v)(σ̂
2
i − σ2

i ) is a mean-zero variable which is
op(1) if

∑n

i=1wi(v)
4 = o(1) where wi(v) = (v′wi)2/

∑n

i=1σ
2
i (v

′wi)2. But this follows from∑n

i=1wi(v)
4 ≤ maxi σ−4

i maxi w′
iwi = o(1) where the inequality is implied by maxi w′

iwi =
o(1), v′v= 1, and

∑n

i=1wiw
′
i = Ir .

Asymptotic Normality. Next, we show that all linear combinations of b̂ are asymptotically
normal. Let v ∈ Rr be a non-random vector with v′v = 1. Lyapunov’s CLT implies that
V[v′b̂]−1/2v′(b̂− b) d−→N (0�1) if

V
[
v′b̂

]−2
n∑
i=1

E
[
ε4
i

](
v′Q′S−1/2

xx xi
)4 =V

[
v′b̂

]−2
n∑
i=1

E
[
ε4
i

](
v′wi

)4 = o(1)� (9)

We have that maxi w′
iwi = o(1) implies (9) since maxi(v′wi)2 ≤ maxi w′

iwi,
∑n

i=1(v
′wi)2 =

1, V[v′b̂]−1 ≤ maxi σ−2
i =O(1), and maxiE[ε4

i ] =O(1) by the definition ofwi and Assump-
tion 1. Q.E.D.

The proofs of Theorems 2 and 3 are based on the following lemma. Let {vn�i}i�n be a
triangular array of row-wise independent random variables with E[vn�i] = 0 and V[vn�i] =
σ2
n�i, let {ẇn�i}i�n be a triangular array of non-random weights that satisfy

∑n

i=1 ẇ
2
n�iσ

2
n�i = 1

for all n, and let (Wn)n be a sequence of symmetric non-random matrices in Rn×n with
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zeroes on the diagonal that satisfy 2
∑n

i=1

∑
	�=i W

2
n�i	σ

2
n�iσ

2
n�	 = 1. For simplicity, we drop

the subscript n on vn�i, σ2
n�i, ẇn�i, Wn�i	, and Wn. Define

Sn =
n∑
i=1

ẇivi and Un =
n∑
i=1

∑
	�=i
Wi	viv	�

LEMMA B.1: If maxiE[v4
i ] +σ−2

i =O(1), (i) maxi ẇ2
i = o(1), and (ii) trace(W 4)= o(1),

then (Sn�Un)′
d−→N (0� I2).

This lemma extends the main result of Appendix A2 in Sølvsten (2020) to allow for
{vi}i to be a triangular array of non-identically distributed variables. Furthermore, the
conclusion is presented in a way that is tailored to the subsequent proofs in this paper.
The proof of Lemma B.1 requires no substantially new ideas compared to Sølvsten (2020).

PROOF OF LEMMA B.1: See Supplemental Material. Q.E.D.

PROOF OF THEOREM 2: The proof involves two steps. First, we decompose θ̂ into
a weighted sum of two terms of the type described in Lemma B.1. Second, we use
Lemma B.1 to show joint asymptotic normality of the two terms. The conclusion that
θ̂ is asymptotically normal is immediate from there.

Decomposition. The difference between θ̂ and θ is

θ̂− θ=
n∑
i=1

(
2x̃′

iβ− x̌′
iβ
)
εi +

n∑
i=1

∑
	�=i
Ci	εiε	�

where these two terms are uncorrelated and have variances

VS =
n∑
i=1

(
2x̃′

iβ− x̌′
iβ
)2
σ2
i and VU = 2

n∑
i=1

∑
	�=i
C2
i	σ

2
i σ

2
	 �

Thus, we write V[θ̂]−1/2(θ̂ − θ) = ω1Sn + ω2Un, where ω1 = V 1/2
S /V[θ̂]1/2, ω2 = V 1/2

U /

V[θ̂]1/2,

Sn = V −1/2
S

n∑
i=1

(
2x̃′

iβ− x̌′
iβ
)
εi and Un = V −1/2

U

n∑
i=1

∑
	�=i
Ci	εiε	�

Asymptotic Normality. We will argue along converging subsequences. Move to a subse-
quence where ω1 converges. If the limit is zero, then V[θ̂]−1/2(θ̂ − θ) = ω2Un + op(1)
and so it follows from marginal normality of Un established in the last paragraph of the
proof that θ̂ is asymptotically normal. Thus, we consider the case where the limit of ω1

is nonzero. In the notation of Lemma B.1, we then have ẇi = V −1/2
S (2x̃′

iβ− x̌′
iβ) and

Wi	 = V −1/2
U Ci	.

For Lemma B.1(i), we have

max
i
ẇ2
i ≤ 4ω−1

1 max
i

(
x̃′
iβ
)2 + (

x̌′
iβ
)2

V[θ̂] = o(1)�
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where the last equality follows from Theorem 2(i) and the nonzero limit of ω1.
For Lemma B.1(ii), it can be shown that for all n, trace(C4) ≤ cU · trace(B4) = cU ·

trace(Ã4)≤ cUλ2
1 · trace(Ã2) and VU ≥ cL mini σ4

i · trace(Ã), where the finite and nonzero
constants cU and cL do not depend on n (but depend on mini Mii which is bounded away
from zero). Thus, Assumption 1 implies that

trace
(
W 4

)≤ cUλ
2
1 · trace

(
Ã2
)(

cL min
i
σ4
i · trace

(
Ã2
))2 =O

(
λ2

1

trace
(
Ã2
))= o(1)�

where the last equality follows from Theorem 2(ii). Q.E.D.

PROOF OF LEMMA 5: See Supplemental Material. Q.E.D.

Exact definitions of the variables involved in stating the regularity conditions of
Theorem 3 were omitted from the main text and are provided here. Let Ci	q =
Bi	q − 2−1Mi	(M

−1
ii Biiq + M−1

		 B		q), Bi	q = x′
iS

−1/2
xx ÃqS

−1/2
xx x	, Ãq = ∑r

	=q+1 λ	q	q
′
	, x̃iq =∑n

	=1Bi	qx	, and x̌iq =∑n

	=1Mi	M
−1
		 B		qx	.

PROOF OF THEOREM 3: The proof involves two steps. First, we write θ̂ as the sum of
(1a) a quadratic function applied to b̂q, (1b) an approximation error which is of smaller
order than V[θ̂], and (2) a weighted sum of two terms, Sn and Un, of the type described
in Lemma B.1. Second, we use Lemma B.1 to show that (b̂′

q�Sn�Un)′ ∈ Rq+2 is jointly
asymptotically normal.

Decomposition and Approximation. Noting that β̂′Aβ̂=∑q

	=1 λ	b̂
2
	 +∑n

i=1

∑n

	=1Bi	qyiy	
and

n∑
i=1

Biiσ̂
2
i =

n∑
i=1

Bii�−qσ2
i +

n∑
i=1

Biiqσ̂
2
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n∑
i=1

Bii�−q
(
σ̂2
i − σ2

i

)
=

q∑
	=1

λ	V[b̂	] +
n∑
i=1

Biiqσ̂
2
i + op

(
V[θ̂]1/2

)
where Bii�−q = Bii −Biiq�

we have that

θ̂=
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	=1

λ	
(
b̂2
	 −V[b̂	]

)+ θ̂q + op
(
V[θ̂]1/2

)
for θ̂q =

n∑
i=1

∑
	�=i
Ci	qyiy	�

where it follows from maxi w′
iqwiq = o(1) and the calculations in the proof of Theorem 1

that the mean-zero random variable
∑n

i=1Bii�−q(σ̂
2
i − σ2

i ) is op(V[θ̂]1/2).
We will further center and rescale θ̂q by writing

V[θ̂q]−1/2
(
θ̂q −E[θ̂q]

)=ω1Sn +ω2Un�

where ω1 = V 1/2
S /V[θ̂q]1/2, ω2 = V 1/2

U /V[θ̂q]1/2,

Sn = V −1/2
S
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(
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VS =∑n

i=1(2x̃
′
iqβ− x̌′

iqβ)
2σ2

i , VU = 2
∑n

i=1

∑
	�=i C

2
i	qσ

2
i σ

2
	 , and Un is uncorrelated of Sn and

b̂q.
Asymptotic Normality. As in the proof of Theorem 2, we will argue along converg-

ing subsequences and therefore move to a subsequence where ω1 converges. If the
limit is zero, then the conclusion of the theorem follows from Lemma B.1 applied to
(V[v′b̂q]−1/2(v′b̂q −E[v′b̂q])�Un)′ for v ∈Rq with v′v= 1. Thus, we consider the case where
the limit of ω1 is nonzero.

Next, we use Lemma B.1 to show that(
V[b̂q + uSn]−1/2

(
v′b̂q −E

[
v′b̂q

]+ uSn
)
�Un

)′ d−→N (0� I2)

for any non-random (v′�u)′ ∈ Rq+1 with v′v + u2 = 1. In the notation of Lemma B.1, we
have

ẇi =V[b̂q + uSn]−1/2
(
v′wiq + uV −1/2

S
(
2x̃′

iqβ− x̌′
iqβ

))
and Wi	 = V −1/2

U Ci	q�

A simple calculation shows that V[v′b̂q +uSn] ≥ mini σ2
i � 0, so maxi ẇ2

i = o(1) follows
from Theorem 3(i), Theorem 3(ii), and ω1 being bounded away from zero.

Similarly, we have as in the proof of Theorem 2 that

trace
(
C4
q

)≤ c trace
(
B4
q

)≤ cλ2
q+1

r∑
	=q+1

λ2
	 and V 2

U ≥ω−4
2 min

i
σ8
i trace

(
Ã2
)2

for Cq = (Ci	q)i�	 and Bq = (Bi	q)i�	, so Assumptions 1 and 2 yield trace(W 4) = o(1).
Q.E.D.

PROOF OF LEMMAS 6 AND 7: See Supplemental Material. Q.E.D.
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