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Mo’ data, mo’ problems

-



Overview

- As our data grow so does the complexity of our models

- Classic tool: ANOVA (Fisher, 1925) provides low dimensional summary of
heavily parameterized models in terms of “variance components”

- Along with a framework for testing large numbers of linear restrictions (F-test)

- Extensions: Hierarchical Linear Models (HLM), Multi-way Fixed Effect Models
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Partying like it’s 1929..

Recent applications of two-way FE (AKM) models to wage data:
Card, Heining, Kline (2013); Song, Price, Guvenen, Bloom, von Wachter (2015); Card,

Cardoso, Kline (2016); Macis and Schivardi (2016); Lavetti and Schmutte (2016); Sorkin

(2018); Lachowska, Mas, Woodbury (2018).

Related applications involving ANOVA, HLM, and/or Multi-way FE:
Graham (2008); Chetty, Friedman, Hilger, Saez, Schanzenbach, Yagan (2011); Arcidiacono,

Foster, Goodpaster, Kinsler (2012); Chetty, Friedman, Rockoff (2014); Finkelstein,

Gentzkow, Williams (2016); Silver (2016); Angrist, Hull, Pathak, Walters (2017); Best,

Hjort, Szakonyi (2017); Chetty and Hendren (2018); Altonji and Mansfield (2018).



Today

- Extend the classic toolkit to develop new estimator of quadratic forms that
accomodates heteroscedasticity

- Develop feasible inference procedure that adapts to different data designs
(including cases where variance components are weakly identified)

- Application: Two-way fixed effects on weakly connected network of firms
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Framework

Consider a linear model

yi = x′iβ + εi (i = 1, · · · , n),

with the following features:

- Many non-random regressors (dim(xi) = k ∝ n)

- Potentially heteroscedastic mean-zero error terms (E[ε2
i ] = σ2

i )

Object of interest is θ = β′Aβ where A is known and has rank r.
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Motivating Example: AKM

Example I (Two-way fixed effects, AKM)

Our leading application is

log-wagegt = αg + ψj(g,t) + x′gtδ + εgt (g = 1, · · · , N, t = 1, ..., Tg),

where j(·, ·) assigns each employee to one of J + 1 employers in each period.

Objects of interest are σ2
α, σ2

ψ, and σα,ψ where, e.g.,

σ2
ψ = 1

n

N∑
g=1

Tg∑
t=1

(ψj(g,t) − ψ̄)2, ψ̄ = 1
n

N∑
g=1

Tg∑
t=1

ψj(g,t).

- σ2
ψ = β′Aβ where the rank of A is J (often on the order of 1M!).

- Dimensionality presents substantial obstacles to estimation and inference
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Literature Model and Estimator Consistency Distribution Theory Application

Related methods / theoretical results

Variance Components (R2, ANOVA, HLM, Two-way FEs): Wright (1921); Fisher

(1925); Theil (1961); Akritas and Papadatos (2004); Akritas and Wang (2011); Dicker

(2014); Andrews, Gill, Schank, Upward (2008); Verdier (2016); Jochmans and Weidner

(2016); Bonhomme, Lamadon, Manresa (2017); Borovičková and Shimer (2017).

Leave-out or cross-fitting: Hahn and Newey (2004); Dhaene and Jochmans (2015);

Phillips and Hale (1977); Powell, Stock, Stoker (1989); Angrist, Imbens, Krueger (1999);

Hausman et al. (2012); Kolesár (2013); Newey and Robins (2018).

Inference with heteroskedasticity and/or many regressors: Anatolyev (2012);

Karoui and Purdom (2016); Lei, Bickel, Karoui (2016); Cattaneo, Jansson, Newey (2017).

Inference in non-standard problems: Staiger and Stock (1997); Andrews and Cheng

(2012); Elliott, Müller, Watson (2015); Andrews and Mikusheva (2016).
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Literature Model and Estimator Consistency Distribution Theory Application

Model

Linear regression

yi = x′iβ + εi (i = 1, · · · , n),

with

- xi ∈ Rk non-random and Sxx =
∑n
i=1 xix

′
i of full rank (k ≤ n),

- {εi}ni=1 mutually independent, E[εi] = 0 and E[ε2
i ] = σ2

i ,

- maxi Pii < 1 where Pii = x′iS
−1
xx xi is the i’th leverage.

Object of interest: θ = β′Aβ where A is known, non-random, and symmetric
with rank r.
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Literature Model and Estimator Consistency Distribution Theory Application

Limits are taken as n→∞

Linear regression

yi,n = x′i,nβn + εi,n (i = 1, · · · , n),

with

- xi,n ∈ Rkn non-random and Sxx,n =
∑n
i=1 xi,nx

′
i,n of full rank (kn ≤ n),

- {εi,n}ni=1 mutually independent, E[εi,n] = 0 and E[ε2
i,n] = σ2

i,n,

- maxi Pii,n < 1 where Pii,n = x′i,nS
−1
xx,nxi,n is the i’th leverage.

Object of interest: θn = β′nAnβn where An is known, non-random, and
symmetric with rank rn.



Literature Model and Estimator Consistency Distribution Theory Application

The problem w/ plugging in..

Sampling variability in β̂ generates bias in plug-in estimator θ̂PI = β̂′Aβ̂:

E[θ̂PI − θ] = trace
(
AV[β̂]

)
=

n∑
i=1

Biiσ
2
i

for Bii = x′iS
−1
xxAS

−1
xx xi.

- Bii closely related to leverage Pii

- Special case (ESS): A = Sxx ⇒ Bii = Pii
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Literature Model and Estimator Consistency Distribution Theory Application

Estimating the bias

The plug-in estimator θ̂PI = β̂′Aβ̂ has a bias of

trace
(
AV[β̂]

)
=

n∑
i=1

Biiσ
2
i where Bii = x′iS

−1
xxAS

−1
xx xi.

Basic insight: an unbiased “cross-fit” estimator of σ2
i is

σ̂2
i = yi(yi − x

′
iβ̂−i)

=
(
εi + x′iβ

) (
εi + x′i(β − β̂−i)

)
,

where β̂−i =
(∑

` 6=i x`x
′
`

)−1∑
` 6=i x`y`.



Literature Model and Estimator Consistency Distribution Theory Application

Leave-out Estimator

Thus, we propose the bias corrected estimator of θ:

θ̂ = β̂′Aβ̂ −
n∑
i=1

Biiσ̂
2
i .

A “leave-out” representation:

θ̂ =
n∑
i=1

yix̃
′
iβ̂−i where x̃i = AS−1

xx xi ∈ Rk,

=
n∑
i=1

∑
6̀=i
Ci`yiy` for Ci` = Bi` − 2−1Mi`

(
M−1
ii Bii +M−1

`` B``

)

Highlights the connection with existing leave-one-out ideas in parametric and
non-parametric models, e.g., JIVE and weighted average derivatives.
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Literature Model and Estimator Consistency Distribution Theory Application

“Fixing” HC2 in high dimensions..

Recall the HC2 variance estimator of Mackinnon and White (1985):

V̂HC2 = S−1
xx

(
n∑
i=1

xix
′
i

(yi − x
′
iβ̂)2

1− Pii

)
S−1
xx

- HC2 inconsistent when k ∝ n (Cattaneo, Jansson, Newey, 2017)

A cross-fit replacement:

V̂KSS = S−1
xx

(
n∑
i=1

xix
′
iσ̂

2
i

)
S−1
xx

= S−1
xx

(
n∑
i=1

xix
′
i

yi(yi − x
′
iβ̂)

1− Pii

)
S−1
xx

- Will show that this enables testing “a few” linear restrictions..
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Literature Model and Estimator Consistency Distribution Theory Application

The “Homoscedastic-only” correction

A commonly applied estimator based on homoscedasticity is (adjusted-R2,
bias-corrected 2SLS, ANOVA, . . . )

θ̂HO = θ̂PI −
n∑
i=1

Biiσ̂
2 where σ̂2 = 1

n− k

n∑
i=1

(yi − x
′
iβ̂)2.

- In general, biased when Pii or Bii correlate with σ2
i .

- Special case (balanced design): (Bii, Pii) do not vary w/ i.
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Example II (Uncentered R2)

R2 =
1
n

∑n
i=1(x′iβ)2

1
n

∑n
i=1 E

[
y2
i

]
- Numerator targeted by choosing A = Sxx/n

- Plug-in estimator R̃2 (Wright, 1921) uses

1
n

n∑
i=1

(x′iβ̂)2

- Homoscedasticity corrected estimator is R̂2
adj (Theil,1961)

1
n

n∑
i=1

(x′iβ̂)2 − k

n− k
1
n

n∑
i=1

(yi − x
′
iβ̂)2
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i=1 E

[
y2
i

]

- HO adjustment relies on Degrees of freedom correction:

(1− R̂2
adj)/(1− R̃

2) = n/(n− k)

- Contrast w/ leave out estimator θ̂, which can be written:

1
n

n∑
i=1

yix
′
iβ̂−i
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Literature Model and Estimator Consistency Distribution Theory Application

Assumption 1
(a) maxi E[ε4

i ] + σ−2
i = O(1),

(b) maxi Pii ≤ c < 1,
(c) maxi(x

′
iβ)2 = O(1).

(a) ensures thin tails of εi.

(b) + (c) implies that σ̂2
i has bounded variance.

(c) can be relaxed (technical condition).



Literature Model and Estimator Consistency Distribution Theory Application

An important matrix

Eigenvalues (λ1, . . . , λr) of following matrix govern properties of θ̂:

Ã = S−1/2
xx AS−1/2

xx

- A defines target parameter

- S−1
xx summarizes regressor design / difficulty of estimating each coefficient

- Special case (orthogonal regressors): Sxx = I ⇒ Ã = A
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Lemma 1 (Consistency)

Let Ã = S−1/2
xx AS−1/2

xx .

1. If A is positive semi-definite, (i) θ = O(1), and

(ii) trace(Ã2) = o(1),

then θ̂ − θ p→ 0.

2. If A is non-definite then write A = A′1A2 for some A1, A2. If θk = β′A′kAkβ

satisfies (i) and (ii) for k = 1, 2, then θ̂ − θ p→ 0.

- For “leave out R2” we have trace(Ã2) = k/n2 → 0.

⇒ θ̂ is consistent

- Next: Verify (ii) analytically in some stylized examples (ANOVA and HLM).

- Can assess (ii) empirically in cases where analytically intractable.
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Example III (ANOVA)

Consider

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , Tg),

where the object of interest is

σ2
α = 1

n

N∑
g=1

Tgα
2
g.

- Chetty et al. (2011): σ2
α = variance of “classroom effects” in STAR

- maxi Pii < 1 is equivalent to ming Tg ≥ 2.

- Here, Pii = nBii = 1
Tg(i)

⇒ θ̂HO biased when σ2
i vary w/ group size
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ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , Tg),

where the object of interest is

σ2
α = 1

n

N∑
g=1

Tgα
2
g.

Leave out estimator can be written:

σ̂2
α = 1

n

N∑
g=1

(
Tgα̂

2
g − σ̂

2
g

)

where α̂g = 1
Tg

∑Tg

t=1 ygt and σ̂
2
g = 1

Tg−1
∑Tg

t=1(ygt − α̂g)
2



Example III (ANOVA)

Consider

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , Tg),

where the object of interest is

σ2
α = 1

n

N∑
g=1

Tgα
2
g.

Ã is diagonal with N non-zero entries of 1
n so

trace
(
Ã2
)

= N

n2 ≤
1
n

= o(1).



Example IV (Hierarchical Linear Model (HLM))

Consider

ygt = αg + xgtδg + εgt (g = 1, . . . , N, t = 1, . . . , Tg),

where
∑Tg

t=1 xgt = 0 and the object of interest is

σ2
δ = 1

n

N∑
g=1

Tgδ
2
g .

- Raudenbush and Bryk (1986): σ2
δ = student-wgt’d var of slopes wrt SES

- maxi Pii < 1 is implied by ming Tg ≥ 3 and xgt1 6= xgt2 6= xgt3 6= xgt1 .

- Ã is diagonal with N non-zero entries of 1
n

Tg∑Tg
t=1

x
2
gt

, so

trace
(
Ã2
)

= o(1) if min
g

n

Tg

Tg∑
t=1

x2
gt →∞.
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Example I (Two-way fixed effects, AKM)

Consider (Tg = 2 and no Xgt)

ygt = αg + ψj(g,t) + εgt (i = g, · · · , N, t = 1, 2),

and σ2
ψ = 1

n

∑N
g=1

∑2
t=1(ψj(g,t) − ψ̄)2.

Ã is not diagonal, but `’th largest eigenvalue given by:

λ` = 1
n

1
λ̇J+1−`(E

1/2LE1/2)

where E is a diagonal matrix of employer specific “churn rates”, L is the
normalized Laplacian for the worker-firm mobility network, and λ̇`(·) gives the
`’th largest eigenvalue of argument.



Example I (Two-way fixed effects, AKM)

Consider (Tg = 2 and no Xgt)

ygt = αg + ψj(g,t) + εgt (i = g, · · · , N, t = 1, 2),

and σ2
ψ = 1

n

∑N
g=1

∑2
t=1(ψj(g,t) − ψ̄)2.
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Example I (Two-way fixed effects, AKM)

Consider (Tg = 2 and no Xgt)

ygt = αg + ψj(g,t) + εgt (i = g, · · · , N, t = 1, 2),

and σ2
ψ = 1

n

∑N
g=1

∑2
t=1(ψj(g,t) − ψ̄)2.

- Sufficient condition for consistency: strong connectivity
√
JC → ∞

where C ∈ (0, 1] is Cheeger’s constant

- Intepretation: no “bottlenecks” in mobility network



Rovigo and Belluno − Employer Mobility Network
Firms in Rovigo
Within−Rovigo mobility

Firms in Belluno
Within−Belluno mobility

Between region mobility
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Notation / Overview

We can represent the plug-in estimator θ̂PI as

β̂′Aβ̂ = β̂′S1/2
xx ÃS

1/2
xx β̂

= b̂′Db̂ =
r∑
`=1

λ`b̂
2
`

where we write

- Ã = S−1/2
xx AS−1/2

xx .

- Ã = QDQ′ for D = diag(λ1, . . . , λr), λ2
1 ≥ · · · ≥ λ

2
r > 0, and Q′Q = Ir,

- b̂ = Q′S1/2
xx β̂

“Warmup” result: Distribution of infeasible estimator when εi ∼ N (0, σ2
i )

θ∗ = β̂′Aβ̂ −
n∑
i=1

Biiσ
2
i
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- Ã = S−1/2
xx AS−1/2

xx .
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Lemma 1 (Finite Sample)

If εi ∼ N (0, σ2
i ), then

θ∗ =
r∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)
where b = Q′S1/2

xx β.



Lemma 1 (Finite Sample)

If εi ∼ N (0, σ2
i ), then

θ∗ =
r∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)
where b = Q′S1/2

xx β.

- Sums of squares of uncentered normals ⇒ non-central χ2

- Noncentrality governed by b



Building intuition..

θ∗ =
r∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)

Seek asymptotic approximations that simplify computation and relax
assumptions.

Note: can write b̂ as weighted sum
∑n
i=1 wiyi

- Weights are wi = Q′S−1/2
xx xi and obey

∑n
i=1 wiw

′
i = Ir.

- maxi w
′
iwi provides inverse measure of eff sample size

- Plausible that elements of b̂ are approx normal even when εi is not..
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Building intuition..

θ∗ =
r∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)

Preview of asymptotic results:

1) When r small (e.g. testing a single linear restriction) and b̂ is approximately
normally distributed, we obtain non-central χ2

2) When r large (e.g., testing LOTS of linear restrictions) and eigenvalues
same order of magnitude, can invoke a CLT to get normal approximation

3) When r large and eigenvalues different orders of magnitude (weak-id), get a
combination of χ2 and normal components



The “low rank” case

Proposition 1 (Low Rank)

If Assumption 1 holds, (i) maxi w
′
iwi = o(1), and (ii) r is fixed, then

θ̂ =
r∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
+ op(V[θ̂]1/2) and V[b̂]−1/2(b̂− b) d−→ N (0, Ir) .

Recall that b̂ =
∑n
i=1 wiyi where wi = Q′S−1/2

xx xi and
∑n
i=1 wiw

′
i = Ir.

The Lindeberg condition (i) ensures that

- no observation is too influential

- sampling error in the bias correction can be ignored.
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Application: testing a linear restriction
Suppose we are interested in testing

H0 : v′β = 0 for v ∈ Rk×1

Example 1: testing for regional diffs in firm FEs

Example 2: std err on projection of firm FEs onto firm characteristics

Prop 1 implies that, under H0, choosing A = vv′ yields

V[v′β̂]−1θ̂
d→ χ2(1)− 1

Eicker-White style variance estimator for inference:

V̂[v′β̂] = v′S−1
xx

(
n∑
i=1

xix
′
iσ̂

2
i

)
S−1
xx v
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Proposition 2 (High Rank, Strong Id)

If Assumption 1 holds, (i) V[θ̂]−1 maxi
(

(x̃′iβ)2 + (x̌′iβ)2
)

= o(1), and

(ii) λ2
1∑r

`=1 λ
2
`

= o(1),

then V[θ̂]−1/2(θ̂ − θ) d−→ N (0, 1).

Objects appearing in (i) are:

- x̃i = AS−1
xx xi where θ =

∑n
i=1 E[yix̃

′
iβ].

- x̌i =
∑n
`=1 Mi`

B``

1−P``
x` stems from bias correction.

- Intuition: Averaging r →∞ terms yields normality under (ii), but estimation
of the bias can not be ignored (x̌i is present in V[θ̂]).
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Application: testing many linear restrictions

Suppose we are interested in testing

H0 : Rβ = 0 for R ∈ Rr×k

- Example: testing block of FEs=0

- Traditional “F-test” would require homoscedasticity

Prop 2 implies that, under H0, choosing A = 1
rR
′(RS−1

xxR
′)−1R yields

V[θ̂]−1/2θ̂
d−→ N (0, 1)

Consistent estimator of V[θ̂] provided in paper
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Assumption 2
Suppose there exist a known and fixed q ∈ {1, . . . , r − 1} such that

λ2
q+1∑r
`=1 λ

2
`

= o(1) and
λ2
q∑r

`=1 λ
2
`

≥ c ∀n.

Decomposition:

b̂q = (b̂1, . . . , b̂q)
′ =

n∑
i=1

wiqyi, wiq = (wi1, . . . , wiq)
′,

θ̂q = θ̂ −
q∑
`=1

λ`(b̂
2
` − V̂[b̂`]), V̂[b̂] =

n∑
i=1

wiw
′
iσ̂

2
i .
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Theorem 1 (High Rank, Weak Id)

If maxi w′iqwiq = o(1), V[θ̂q]
−1 maxi

(
(x̃′iqβ)2 + (x̌′iqβ)2

)
= o(1), and

Assumption 2 holds, then

θ̂ =
q∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
+ θ̂q + op(V[θ̂]1/2)

and

V[(b̂′q, θ̂q)′]−1/2
(

(b̂′q, θ̂q)′ − E[(b̂′q, θ̂q)′]
)

d−→ N
(
0, Iq+1

)
.
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−1 maxi

(
(x̃′iqβ)2 + (x̌′iqβ)2

)
= o(1), and

Assumption 2 holds, then

θ̂ =
q∑
`=1

λ`

(
b̂2
` − V[b̂`]

)
+ θ̂q + op(V[θ̂]1/2)

and

V[(b̂′q, θ̂q)′]−1/2
(

(b̂′q, θ̂q)′ − E[(b̂′q, θ̂q)′]
)

d−→ N
(
0, Iq+1

)
.

- Result: q non-central χ2 terms + a normal

- When q � r: major simplification relative to finite sample dist.

- But still need to deal w/ q-dimensional nuisance parameter E[b̂q]



Weak-id Robust Confidence Interval

To construct a confidence interval we invert a minimum distance statistic:

Ĉθq =
[

min
(ḃ1,...,ḃq,θ̇q)′∈Bq

q∑
`=1

λ`ḃ
2
` + θ̇q, max

(ḃ1,...,ḃq,θ̇q)′∈Bq

q∑
`=1

λ`ḃ
2
` + θ̇q

]
where

Bq =
{

(b′q, θq)′ ∈ Rq+1 :
(

b̂q − bq
θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq
θ̂q − θq

)
≤ z2

κ̂

}

- Σ̂ = V̂[(b̂′q, θ̂q)
′] and κ̂ = κ(Σ̂),

- zκ is the critical value proposed in Andrews and Mikusheva (2016).

- κ measures the curvature (non-linearity) of the problem.
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An application to Italian data

Wage and employment data on 2 provinces within the Veneto region of Italy.

Years: 1999 and 2001

Number of movers: 3,531 and 6,414.

Number of employers: 1,282 and 1,684

Example I (Two-way fixed effects, AKM)

Model (Tg = 2 and no Xgt):

log-wagegt = αg + ψj(g,t) + εgt (g = 1, · · · , N, t = 1, 2).



The Provinces of Veneto



Leave-out sample preserves first two moments



High leverage ⇒ low-dimensional methods inappropriate



HO adjustment under-corrects
(Evidence of substantial heteroscedasticity)



HO adjustment under-corrects
(Evidence of substantial heteroscedasticity)



Covariance flips sign!



Leave out finds substantial PAM



AKM model exhibits very strong explanatory power
(Even after adjustment for “over-fitting”)



Rovigo and Belluno − Employer Mobility Network
Firms in Rovigo
Within−Rovigo mobility

Firms in Belluno
Within−Belluno mobility

Between region mobility



Firm effects higher in Belluno



But person effects seem lower
(Hard to tell b/c of limited mobility!)



Pooling increases the std error!



Consistent estimates



Confidence interval adapts to bottleneck



Strong curvature / big top eig share in pooled sample
(But Lindeberg condition is satisfied)



Simulations condition on observed mobility network



Leave-out estimator is unbiased



Plug-in / HO severely biased



Leave out standard error is consistent



Invalid normal approximation



Weak-id interval slightly conservative



Summary

We proposed an unbiased and consistent estimator of any variance component
in a heteroscedastic linear model w/ many regressors.

Robust inference procedure can be used to

- Test linear restrictions (“het consistent F-test”)

- Build weak-id robust confidence intervals for variance components

- Eigenvalue based diagnostics for weak identification – in practice, q = 1
appears to provide good coverage even with very weak connectivity

MATLAB code available at:
https://github.com/rsaggio87/LeaveOutTwoWay.

https://github.com/rsaggio87/LeaveOutTwoWay
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