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Mo’ data, mo’ problems
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Overview

As our data grow so does the complexity of our models

Classic tool: ANOVA (Fisher, 1925) provides low dimensional summary of

heavily parameterized models in terms of “variance components”

Along with a framework for testing large numbers of linear restrictions (F-test)

Extensions: Hierarchical Linear Models (HLM), Multi-way Fixed Effect Models



Partying like it's 1929..

Recent applications of two-way FE (AKM) models to wage data:

Card, Heining, Kline (2013); Song, Price, Guvenen, Bloom, von Wachter (2015); Card,
Cardoso, Kline (2016); Macis and Schivardi (2016); Lavetti and Schmutte (2016); Sorkin
(2018); Lachowska, Mas, Woodbury (2018).

Related applications involving ANOVA, HLM, and/or Multi-way FE:

Graham (2008); Chetty, Friedman, Hilger, Saez, Schanzenbach, Yagan (2011); Arcidiacono,
Foster, Goodpaster, Kinsler (2012); Chetty, Friedman, Rockoff (2014); Finkelstein,
Gentzkow, Williams (2016); Silver (2016); Angrist, Hull, Pathak, Walters (2017); Best,
Hjort, Szakonyi (2017); Chetty and Hendren (2018); Altonji and Mansfield (2018).
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Today

- Extend the classic toolkit to develop new estimator of quadratic forms that

accomodates heteroscedasticity

- Develop feasible inference procedure that adapts to different data designs

(including cases where variance components are weakly identified)

- Application: Two-way fixed effects on weakly connected network of firms
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Framework

Consider a linear model

y’L:‘r;/B—’—E’L (i:17"'7n)a

with the following features:
- Many non-random regressors (dim(z;) = k o n)

- Potentially heteroscedastic mean-zero error terms (E[e?] = o7)

Object of interest is § = 5’ A3 where A is known and has rank r.
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Motivating Example: AKM
Example | (Two-way fixed effects, AKM)
Our leading application is
log-wage,; = g + V(g4 + xlgté +eq (g=1,---,N, t=1,..,T),

where j(-,-) assigns each employee to one of J + 1 employers in each period.

Objects of interest are O’i, Ufp, and T where, e.g.,

1 Ty 1 Y Ty

2 2 i

Uwzﬁzz%gt) J w:ﬁz Vj(g,t)-
g=1t=1 g=11t=1

- cri, = (' A3 where the rank of A is .J (often on the order of 1M!).

- Dimensionality presents substantial obstacles to estimation and inference
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Related methods / theoretical results

Variance Components (R*, ANOVA, HLM, Two-way FEs): Wright (1921); Fisher
(1925); Theil (1961); Akritas and Papadatos (2004); Akritas and Wang (2011); Dicker
(2014); Andrews, Gill, Schank, Upward (2008); Verdier (2016); Jochmans and Weidner
(2016); Bonhomme, Lamadon, Manresa (2017); Borovitkova and Shimer (2017).

Leave-out or cross-fitting: Hahn and Newey (2004); Dhaene and Jochmans (2015);
Phillips and Hale (1977); Powell, Stock, Stoker (1989); Angrist, Imbens, Krueger (1999);
Hausman et al. (2012); Kolesar (2013); Newey and Robins (2018).

Inference with heteroskedasticity and/or many regressors: Anatolyev (2012);
Karoui and Purdom (2016); Lei, Bickel, Karoui (2016); Cattaneo, Jansson, Newey (2017).

Inference in non-standard problems: Staiger and Stock (1997); Andrews and Cheng
(2012); Elliott, Miiller, Watson (2015); Andrews and Mikusheva (2016).
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Yy = 28+ ¢ (i=1,---,n),
with
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Object of interest: § = 3’ A where A is known, non-random, and symmetric
with rank 7.



Literature Model and Estimator Consistency Distribution Theory Application

Limits are taken as n — oo

Linear regression
/ .
Yin = 'Ii,n/Bn + Ei,n (Z = 1a e 7”)3
with

k, /
- x;, € R™ non-random and S, ,, = >"" | @; a5, of full rank (k, < n),

2

i,m

- {ein}iz1 mutually independent, E[e; ,,] = 0 and E[sfn] =0

- max; Py, <1 where P; , = 2 S x; , is the i'th leverage.

i,n x,n

Object of interest: 6,, = 3., A, 3, where A, is known, non-random, and
symmetric with rank r,,.
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Literature Model and Estimator Consistency Distribution Theory Application

The problem w/ plugging in..

Sampling variability in B generates bias in plug-in estimator ép| = B'AB:

E[fp, — 0] = trace (AV[B]) - Zn: Bj;02
=1

! ao—1 —1
for B;; = x;5,; AS,. x;-

- B,; closely related to leverage P;;

- Special case (ESS): A= S,, = By = Py



iterature Model and Estimator Consistency Distribution

heory Application

Estimating the bias

The plug-in estimator fp; = 3’ A has a bias of

trace (AV[B]) = Z B;;07 where B = 2,8, AS x,.
i=1

Basic insight: an unbiased “cross-fit” estimator of o is

5’:'2 =y, (y; — fU;B—i)
= (€i =+ 1’;5) (51' +2i(B - B—i)) ;

. -1
where 3_; = (Z#i xl;xz) > oti TeYe-
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Thus, we propose the bias corrected estimator of 4:

G=Fa5 - B,

i=1

A “leave-out” representation:
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i=1



Model and Estimator

Leave-out Estimator

Thus, we propose the bias corrected estimator of 4:

A “leave-out” representation:

v, % B_; where #; = AS, 'z, € R",

>
Il

1 M: HM:

Z wyiye for Ci =By —27 ' My (Mﬁan + Me_elBu)
(#£i

Highlights the connection with existing leave-one-out ideas in parametric and
non-parametric models, e.g., JIVE and weighted average derivatives.
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Literature Model and Estimator Consistency Distribution Theory Application

“Fixing” HC2 in high dimensions..

Recall the HC2 variance estimator of Mackinnon and White (1985):

W . —g! Zn:xx'(ylix;/éf g1
HC?2 T i l—P” T

=1

- HC2 inconsistent when k o n (Cattaneo, Jansson, Newey, 2017)

A cross-fit replacement:

n

) —1 I A2 —1
VKSS = Sza: ( xzajzaz) Sa:a:

i=1
n (y; — @)

_ S:t_ml (Z xlm; Yi(yi — xif Sx_zl
i=1 1P

- Will show that this enables testing “a few" linear restrictions..
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The "Homoscedastic-only” correction

A commonly applied estimator based on homoscedasticity is (adjusted—RQ,
bias-corrected 2SLS, ANOVA, ...)

n n

. . 1 A

) A2 2

Ouo = Op — E B,;;6° where 6% = " E (y; — 23P)"
i=1 i=1

: : 2
- In general, biased when P;; or B;; correlate with o; .

- Special case (balanced design): (By;, P;;) do not vary w/ i.
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Example Il (Uncentered R*)

o2 AT
% Z:‘L:I E {yf]

- Numerator targeted by choosing A = S,,/n

- Plug-in estimator R* (Wright, 1921) uses

- Homoscedasticity corrected estimator is Ridj (Theil, 1961)

n

1, 5 ko1 .
n Z(m;b’)Q T h—rkn Z(yi - 952/5)2
i=1 i=1
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Example Il (Uncentered R?)

- HO adjustment relies on Degrees of freedom correction:

(1 - Rey)/(L = B*) = n/(n— k)

- Contrast w/ leave out estimator 0, which can be written:

1 — .
. Z Y
n “

i=1
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Consistency

Assumption 1

(a) maXiE[E?] + 0;2 =0(1),
(b) max; P; <c <1,
(c) max,(2;8)> = O(1).

(a) ensures thin tails of ¢;.

(b) + (c) implies that 7 has bounded variance.

(c) can be relaxed (technical condition).
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An important matrix

Eigenvalues (A, ..., \,) of following matrix govern properties of 0:

A=S512A8;17

- A defines target parameter

- S;xl summarizes regressor design / difficulty of estimating each coefficient



Literature Model and Estimator Consistency Distribution Theory Application

An important matrix

Eigenvalues (A, ..., \,) of following matrix govern properties of 0:

A=g51248 17

- A defines target parameter
- S;xl summarizes regressor design / difficulty of estimating each coefficient

- Special case (orthogonal regressors): S,, =1 = A=A
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Lemma 1 (Consistency)

Let A =5.1/2A8}2.

1. If A is positive semi-definite, (i) 6 = O(1), and
(i) trace(A?) = o(1),

then § — 6 2 0.

2. If A is non-definite then write A = A} A, for some Ay, Ay. If0, = 5 AL A8
satisfies (i) and (ii) for k = 1,2, then  — 6 5 0.

" 20
- For “leave out R

we have trace(A%) = k/n” — 0.
= 0 is consistent
- Next: Verify (ii) analytically in some stylized examples (ANOVA and HLM).

- Can assess (ii) empirically in cases where analytically intractable.
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Example Ill (ANOVA)

Consider
ygt:ag+€gt (gzl,...,N,tzl,...,Tg),

where the object of interest is

:\H

uMz
<Q
QN

- Chetty et al. (2011): o, = variance of “classroom effects” in STAR
- max; P; <1 is equivalent to min, T, > 2.

A . 2 .
- Here, P, =nB;; = %() = 0yo biased when o; vary w/ group size
g(i



Example 1l (ANOVA)

Consider

Ygt = Qg + €y (g=1,...,N, t=1,...

where the object of interest is

A1 T, A2 1 T, A \2
where &, = T, > 121 Ygt and G, = T,—1 > 21 (Yge — Gg)



Example [II (ANOVA)

Consider

Ygt = g+ Egy (9g=1,...,N, t=1,...

where the object of interest is



Example IV (Hierarchical Linear Model (HLM))

Consider

ygt:ag+zgt(5g+€gt (gzl,,N,tZI,

T . . .
where » . %, 2, = 0 and the object of interest is

1 N
2 } : 2
05 = 7_1 Tgég.
g=1
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Example IV (Hierarchical Linear Model (HLM))

Consider
Ygt = Og + Tg10g + Egy (g=1,...,N, t=1,...,T,),

T . . .
where >, %) 2, = 0 and the object of interest is

1N
5= n

0«)[\')

- Raudenbush and Bryk (1986): oj = student-wgt'd var of slopes wrt SES
- max; P;; < 1is implied by ming Ty > 3 and zp, # Ty, # Ty, # gy,



Example IV (Hierarchical Linear Model (HLM))

Consider
Ygt = Og + Tg10g + Egy (g=1,...,N, t=1,...,T,),

T . . .
where >, %) 2, = 0 and the object of interest is

-2

mm
3\’—‘
‘QL\J

- Raudenbush and Bryk (1986): oj = student-wgt'd var of slopes wrt SES

- max; P;; < 1isimplied by ming 7)) > 3 and x5, # wy, # @y, # T4
T,

- Ais diagonal with N non-zero entries of ﬁ%, so
Z1%gt
Ty
~ . n
trace (AQ) =o(1) if mln T Zzzt — 00.



Example | (Two-way fixed effects, AKM)

Consider (T, = 2 and no X ;)
ygt:ag_’_d)j(g,t)_}_sgt (i:g""aNat:LQ)a

and 012# = %Z;v:l Z?:l(wj(g,t) - 1;)2



Example | (Two-way fixed effects, AKM)

Consider (T, = 2 and no X ;)
ygt:ag+wj(g,t)+€gt (i:g7"'aNat:172)7

and ‘7121) = %Z;V:l 23:1(%‘(9,0 — )2

A is not diagonal, but £'th largest eigenvalue given by:

l 1
N Ay o(BVPLEY?)

Ap =

where E is a diagonal matrix of employer specific “churn rates”, £ is the
normalized Laplacian for the worker-firm mobility network, and )'\e(') gives the

£'th largest eigenvalue of argument.



Example | (Two-way fixed effects, AKM)

Consider (T, = 2 and no X ;)
Ygt = Qg T Pj(g,0) T Egt (i=g,---,N, t=1,2),

N _
and U?p = %Zg:1 Z?:l(wj(gat) — )"

- Sufficient condition for consistency: strong connectivity
VJC =

where C € (0, 1] is Cheeger's constant

- Intepretation: no “bottlenecks” in mobility network



Rovigo and Belluno — Employer Mobility Network

®  Firms in Rovigo —— Between region mobility = Firms in Belluno
Within-Rovigo mobility .

- Within—-Belluno mobility
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Notation / Overview

We can represent the plug-in estimator 9P| as

BAB=B'S}PAS 2B =VDb=">" \bj
/=1
where we write
- A=8;1%A8; 12
- A=QDQ for D = diag(\,..., A\), A3 > > A >0 and QQ =1,,
- b=Q'Si%h

“Warmup” result: Distribution of infeasible estimator when &; ~ N(0, 07 )

0" = B,Aé - Z BiiUiQ
i=1



Lemma 1 (Finite Sample)
Ife; ~ N'(0,07), then

0 — Z A (gg _ V[l}d) and b~ N (b,V[E])
(=1

where b = Q'SM?3.



Lemma 1 (Finite Sample)

Ife; ~ N'(0,07), then
0 = 3 Ao (07 — V[by]) and b~N (b,V[b]
> (- Vi) (1)

where b = Q'SM?3.

2
- Sums of squares of uncentered normals = non-central y

- Noncentrality governed by b
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_ - 22y P 5
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Seek asymptotic approximations that simplify computation and relax

assumptions.



Building intuition..
0" = s A (B2 = V[by]) and b~ N (b, V[b]
S - i) (u5)

Seek asymptotic approximations that simplify computation and relax

assumptions.
. w7 . n
Note: can write b as weighted sum > ", w;y;
Weigh =Q'S-}%z, and ob " -
- Weights are w; = Q' S, “x; and obey > " | w,w; = I,..
!/ . . .
- max; w;w; provides inverse measure of eff sample size

- Plausible that elements of b are approx normal even when ¢, is not..



Building intuition..

P A (Bffwz}g]) and EwN(b,V[B])

(=1

Preview of asymptotic results:

1) When 7 small (e.g. testing a single linear restriction) and b is approximately
normally distributed, we obtain non-central X2

2) When r large (e.g., testing LOTS of linear restrictions) and eigenvalues
same order of magnitude, can invoke a CLT to get normal approximation

3) When r large and eigenvalues different orders of magnitude (weak-id), get a
combination of X2 and normal components



The “low rank” case

Proposition 1 (Low Rank)

If Assumption 1 holds, (i) max; wijw; = o(1), and (ii) r is fixed, then

0= Z Ag (133 - V[ég]) +0,(VIO]Y?) and V[ TV2(b-b) S N(0,1,).
/=1

Recall that b= 37" | w,y; where w; = Q'S %z, and S wawy =1,



The “low rank” case

Proposition 1 (Low Rank)

If Assumption 1 holds, (i) max; wijw; = o(1), and (ii) r is fixed, then

0= Z Ag (133 - V[ég]) +0,(VIO]Y?) and V[ TV2(b-b) S N(0,1,).
(=1

Recall that b= 37" | w,y; where w; = Q'S %z, and S wawy =1,
The Lindeberg condition (i) ensures that

- no observation is too influential

- sampling error in the bias correction can be ignored.



Application: testing a linear restriction

Suppose we are interested in testing

Hy:v'=0 for v e RM!

Example 1: testing for regional diffs in firm FEs

Example 2: std err on projection of firm FEs onto firm characteristics
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Suppose we are interested in testing

Hy:v'=0 for v e RM!
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Application: testing a linear restriction

Suppose we are interested in testing

Hy:v'3=0 for v e RM!

Example 1: testing for regional diffs in firm FEs
Example 2: std err on projection of firm FEs onto firm characteristics

Prop 1 implies that, under Hy, choosing A = vv’ yields

~

VB0 S () —1
Eicker-White style variance estimator for inference:

V['B] =v'S,.) < xixﬁ?) S v

i=1



Proposition 2 (High Rank, Strong Id)

If Assumption 1 holds, (i) V6] ™" max; ((:E;ﬁ)Q + (i;5)2> = o(1), and

then V[0 "V/2(6 — 0) % N(0,1).

Objects appearing in (i) are:
- &= AS,) x; where § = " Ely,74).

v B . .
- &= M;1=p-x, stems from bias correction.



Proposition 2 (High Rank, Strong Id)
If Assumption 1 holds, (i) V6] ™" max; ((:ﬁ;ﬁ)Q + (i;ﬁ)Q) = o(1), and

then V[0 "V/2(6 — 0) % N(0,1).

Objects appearing in (i) are:
- &; = AS,, x; where = S0 Ely; 7).

v B . .
- T = M;1=p-x, stems from bias correction.

Intuition: Averaging r» — oo terms yields normality under (i), but estimation
of the bias can not be ignored (i; is present in V[A]).



Application: testing many linear restrictions
Suppose we are interested in testing

Hy:R3=0 for ReR™"

- Example: testing block of FEs=0

- Traditional “F-test” would require homoscedasticity
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Application: testing many linear restrictions

Suppose we are interested in testing

Hy:R3=0 for ReR™"

- Example: testing block of FEs=0

- Traditional “F-test” would require homoscedasticity

Prop 2 implies that, under H, choosing A = 2R'(RS,,'R')"'R yields

V0720 4 N(0,1)

A

Consistent estimator of V[0] provided in paper



Assumption 2

Suppose there exist a known and fixed g € {1,...,7 — 1} such that

2 2
% =0 % >c Vn.
25:1 >‘£ 25:1 >‘€



Assumption 2

Suppose there exist a known and fixed g € {1,...,7 — 1} such that

A2 A2
7‘(17-"_12 = 0(1) and % Z c Vn.
25:1 Al 25:1 Al
Decomposition:
n
bq = (bla ) q)/ = Zwlqyu W'Lq (wi17 7wiq)/7
=1



Theorem 1 (High Rank, Weak Id)

I max; wiwig = o(1), VI, max; ((#,8)° + (#,8)) = o(1), and
Assumption 2 holds, then

and



Theorem 1 (High Rank, Weak Id)

I max; wiwig = o(1), VI, max; ((#,8)° + (#,8)) = o(1), and
Assumption 2 holds, then

and

- Result: ¢ non-central X2 terms + a normal
- When ¢ < r: major simplification relative to finite sample dist.

- But still need to deal w/ g-dimensional nuisance parameter E[Bq]



Weak-id Robust Confidence Interval

To construct a confidence interval we invert a minimum distance statistic:

q
min Z b7 + 9q, max > Ab; + 6,

(bysesby,0.) 2 i1

qq qgl bysees q°7q
b, —b,\ b, —b
B, =< (by,0,) e RIFT . [0 g St Ca ) <
eq_‘gq Hq_eq

Eﬁl\’)



Weak-id Robust Confidence Interval

To construct a confidence interval we invert a minimum distance statistic:

min Z)\ebg—l—%,  max Z)\sz—i—e

(bys..sb,,6,)

a%) qgl 11111 a:94) ‘?Zl

~ ! ~
B, =1 (b,0,) € R ba = b st b= ba)
eq o 9!1 eq - 9(1

R )



Weak-id Robust Confidence Interval

To construct a confidence interval we invert a minimum distance statistic:

~ min Z)\gb[ + 9q, . max Z)\ebz + 9
(byyeesy bqﬁq qél 1111 0:0q) q[l

~ / ~
B, = ¢ (b0, e B (D0 P0) gt (BB <2
eq_‘gq eq_eq

- 2, is the critical value proposed in Andrews and Mikusheva (2016).

- Kk measures the curvature (non-linearity) of the problem.
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An application to ltalian data

Woage and employment data on 2 provinces within the Veneto region of ltaly.
Years: 1999 and 2001
Number of movers: 3,531 and 6,414.

Number of employers: 1,282 and 1,684

Example | (Two-way fixed effects, AKM)

Model (T, =2 and no X ,):

log-wage,; = oy + V(g + Egt (g=1,---,N, t=1,2).



The Provinces of Veneto




eave-out sample preserves first two moments

Table 1: Comparing Samples and Places

Rovigo Belluno Rovigo - Belluno
[1] [2] [3]

Largest Connected Set
Number of Observations 43,330 63,462 106,964
Number of Movers 5,061 7,921 13,022
Number of Firms 2,579 3,131 5,732
Mean Log Daily Wage 4.6089 4.7482 4.6917
Variance Log Daily Wage 0.1560 0.1256 0.1427
Leave Out Sample (Pruned)
Number of Observations 32,848 56,044 89,666
Number of Movers 3,531 6,414 9,972
Number of Firms 1,282 1,684 2,974
Mean Log Daily Wage 4.6015 4.7636 4.7047
Variance Log Daily Wage 0.1674 0.1245 0.1465
Maximum Leverage ( P;; ) 0.9241 0.9085 0.9236




High leverage = low-dimensional methods inappropriate

Table 1: Comparing Samples and Places

Rovigo Belluno Rovigo - Belluno
[1] [2] [31

Largest Connected Set
Number of Observations 43,330 63,462 106,964
Number of Movers 5,061 7,921 13,022
Number of Firms 2,579 3,131 5,732
Mean Log Daily Wage 4.6089 4.7482 4.6917
Variance Log Daily Wage 0.1560 0.1256 0.1427
Leave Out Sample (Pruned)
Number of Observations 32,848 56,044 89,666
Number of Movers 3,531 6,414 9,972
Number of Firms 1,282 1,684 2,974
Mean Log Daily Wage 4.6015 4.7636 4.7047
Variance Log Daily Wage 0.1674 0.1245 0.1465

Maximum Leverage ( P; ) 0.9241 0.9085 0.9236




HO adjustment under-corrects

(Evidence of substantial heteroscedasticity)

Table 2: Variance Decomposition

Rovigo Belluno Rovigo - Belluno
(1] [2] 3]
Variance of Log Wages 0.1674 0.1245 0.1465
Variance of Firm Effects
Plug in (AKM) 0.0831 0.0198 0.0607
Homoscedatic Correction 0.0722 0.0136 0.0538
Leave Out 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)
Variance of Worker Effects
Plug in (AKM) 0.0926 0.1035 0.1032
Homoscedatic Correction 0.0758 0.0883 0.0859
Leave Out 0.0647 0.0853 0.0792
(0.0043) (0.0011) (0.0038)




HO adjustment under-corrects

(Evidence of substantial heteroscedasticity)

Table 2: Variance Decomposition

Rovigo Belluno Rovigo - Belluno
(1] [2] E)
Variance of Log Wages 0.1674 0.1245 0.1465
Variance of Firm Effects
Plug in (AKM) 0.0831 0.0198 0.0607
Homoscedatic Correction 0.0722 0.0136 0.0538
Leave Out 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)
Variance of Worker Effects
Plug in (AKM) 0.0926 0.1035 0.1032
Homoscedatic Correction 0.0758 0.0883 0.0859
Leave Out 0.0647 0.0853 0.0792
(0.0043) (0.0011) (0.0038)




Covariance flips sign!

Table 2: Variance Decomposition

Rovigo Belluno Rovigo - Belluno
[1 [2] [3]

Variance of Log Wages 0.1674 0.1245 0.1465
Covariance Firm, Worker Effects
Plug in (AKM) -0.0072 -0.0039 -0.0126
Homoscedatic Correction 0.0030 0.0018 -0.0038
Leave Out 0.0138 0.0046 0.0028

(0.0043) (0.0009) (0.0076)
Correlation of Worker, Firm Effects
Plug in (AKM) -0.0821 -0.0863 -0.1593
Homoscedatic Correction 0.0409 0.0511 -0.0555
Leave Out 0.2202 0.1538 0.0469
Coefficient of Determination
Plug in (AKM) 0.9637 0.9280 0.9463
Homoscedatic Correction 0.9213 0.8490 0.8850
Leave Out 0.9153 0.8414 0.8797




Leave out finds substantial PAM

Table 2: Variance Decomposition

Rovigo Belluno Rovigo - Bellunc
(1] [2] (3]

Variance of Log Wages 0.1674 0.1245 0.1465
Covariance Firm, Worker Effects
Plug in (AKM) -0.0072 -0.0039 -0.0126
Homoscedatic Correction 0.0030 0.0018 -0.0038
Leave Out 0.0138 0.0046 0.0028

(0.0043) (0.0009) (0.0076)
Correlation of Worker, Firm Effects
Plug in (AKM) -0.0821 -0.0863 -0.1593
Homoscedatic Correction 0.0409 0.0511 -0.0555
Leave Out 0.2202 0.1538 0.0469
Coefficient of Determination
Plug in (AKM) 0.9637 0.9280 0.9463
Homoscedatic Correction 0.9213 0.8490 0.8850
Leave Out 0.9153 0.8414 0.8797




AKM model exhibits very strong explanatory power

(Even after adjustment for “over-fitting”)

Table 2: Variance Decomposition

Rovigo Belluno Rovigo - Belluno
[1] [2] (3]

Variance of Log Wages 0.1674 0.1245 0.1465
Covariance Firm, Worker Effects
Plug in (AKM) -0.0072 -0.0039 -0.0126
Homoscedatic Correction 0.0030 0.0018 -0.0038
Leave Out 0.0138 0.0046 0.0028

(0.0043) (0.0009) (0.0076)
Correlation of Worker, Firm Effects
Plug in (AKM) -0.0821 -0.0863 -0.1593
Homoscedatic Correction 0.0409 0.0511 -0.0555
Leave Out 0.2202 0.1538 0.0469
Coefficient of Determination
Plug in (AKM) 0.9637 0.9280 0.9463
Homoscedatic Correction 0.9213 0.8490 0.8850
Leave Out 0.9153 0.8414 0.8797




Rovigo and Belluno — Employer Mobility Network

®  Firms in Rovigo —— Between region mobility = Firms in Belluno
Within-Rovigo mobility .

- Within—-Belluno mobility




Firm effects higher in Belluno

Appendix Table A.1: Provincial Differences in Mean Effects

Firm Effects

Avg. Firm Effects (Belluno) -0.0189
Avg. Firm Effects (Rovigo) -0.2787
Difference 0.2598

(0.0941)
Lindeberg Condition (max;w?) 0.0381

Person Effects

Avg. Person Effects (Belluno) 4.7823
Avg. Person Effects (Rovigo) 4.8854
Difference -0.1020

(0.0941)

Lindeberg Condition (max; w?) 0.0381




But person effects seem lower

(Hard to tell b/c of limited mobility!)

Appendix Table A.1: Provincial Differences in Mean Effects

Firm Effects

Avg. Firm Effects (Belluno)
Avg. Firm Effects (Rovigo)
Difference

Lindeberg Condition (max;w3)
Person Effects
Avg. Person Effects (Belluno)

Avg. Person Effects (Rovigo)
Difference

Lindeberg Condition (max; w%)

-0.0189
-0.2787
0.2598

(0.0941)

0.0381
4.7823
4.8854
-0.1020

(0.0941)

0.0381




Pooling increases the std error!

Table 3: Inference on Variance of Firm Effects

Rovigo Belluno Rovigo - Belluno
(1] [2] 3]
Variance of Firm Effects
Leave out estimate 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)

95% Confidence Intervals - Strong id (q=0)
95% Confidence Intervals - Weak id (g=1)
Curvature ( k)

Diagnostics
Eigenvalue Ratio - 1

Eigenvalue Ratio - 2
Eigenvalue Ratio - 3

Lindeberg Condition ( max; w4 )
Sum of Squared Eigenvalues

[0.0446; 0.0771] [0.0081;0.0125] [0.0226; 0.0658]
[0.0455; 0.0795] [0.0081; 0.0127] [0.0288; 0.0786]

0.1792 0.1372 1.4448
0.1062 0.0465 0.8866
0.0623 0.0439 0.0132
0.0499 0.0348 0.0081
0.0200 0.2681 0.0378
0.0006 0.0002 0.0001




Consistent estimates

Table 3: Inference on Variance of Firm Effects

Rovigo Belluno Rovigo - Belluno
(1] [2] [3]
Variance of Firm Effects
Leave out estimate 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)

95% Confidence Intervals - Strong id (q=0) [0.0446; 0.0771] [0.0081; 0.0125] [0.0226; 0.0658]
95% Confidence Intervals - Weak id (qg=1) ~ [0.0455; 0.0795] [0.0081; 0.0127] [0.0288; 0.0786]
Curvature ( K) 0.1792 0.1372 1.4448

Diagnostics

Eigenvalue Ratio - 1 0.1062 0.0465 0.8866
Eigenvalue Ratio - 2 0.0623 0.0439 0.0132
Eigenvalue Ratio - 3 0.0499 0.0348 0.0081
Lindeberg Condition ( max; w?l) 0.0200 0.2681 0.0378

Sum of Squared Eigenvalues 0.0006 0.0002 0.0001




Confidence interval adapts to bottleneck

Table 3: Inference on Variance of Firm Effects

Rovigo Belluno Rovigo - Belluno
[1] [2] [3]
Variance of Firm Effects
Leave out estimate 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)

95% Confidence Intervals - Strong id (q=0) [0.0446; 0.0771] [0.0081; 0.0125] [0.0226; 0.0658]
95% Confidence Intervals - Weak id (g=1)  [0.0455; 0.0795] [0.0081; 0.0127] [0.0288; 0.0786]
Curvature ( /) 0.1792 0.1372 1.4448

Diagnostics

Eigenvalue Ratio - 1 0.1062 0.0465 0.8866
Eigenvalue Ratio - 2 0.0623 0.0439 0.0132
Eigenvalue Ratio - 3 0.0499 0.0348 0.0081
Lindeberg Condition ( max; wizl ) 0.0200 0.2681 0.0378

Sum of Squared Eigenvalues 0.0006 0.0002 0.0001




Strong curvature / big top eig share in pooled sample

(But Lindeberg condition is satisfied)

Table 3: Inference on Variance of Firm Effects

Rovigo Belluno Rovigo - Belluno
[1] [2] [3]
Variance of Firm Effects
Leave out estimate 0.0609 0.0103 0.0442
(0.0083) (0.0011) (0.0110)

95% Confidence Intervals - Strong id (q=0)  [0.0446; 0.0771] [0.0081; 0.0125] [0.0226; 0.0658]
95% Confidence Intervals - Weak id (q=1)  [0.0455; 0.0795] [0.0081; 0.0127] [0.0288; 0.0786]
Curvature ( ¥) 0.1792 0.1372 1.4448

Diagnostics

Eigenvalue Ratio - 1 0.1062 0.0465 0.8866
Eigenvalue Ratio - 2 0.0623 0.0439 0.0132
Eigenvalue Ratio - 3 0.0499 0.0348 0.0081
Lindeberg Condition ( max; Wi21) 0.0200 0.2681 0.0378

Sum of Squared Eigenvalues 0.0006 0.0002 0.0001




Simulations condition on observed mobility network

Table 4: Montecarlo Results for the Variance of Firm Effects

(1] [2] [3]
Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442

Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)

Plug-in (AKM) 0.0841  0.0196 0.0619
(0.0073) (0.0010)  (0.0116)

Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)

Mean estimated Standard Error 0.0074 0.0010 0.0108

Coverage Rate at 95%
Leave Out - Strong Id (q=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (q=1) 0.9634 0.9701 0.9736




Leave-out estimator is unbiased

Table 4: Montecarlo Results for the Variance of Firm Effects

(1] [2] [3]
Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442

Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)

Plug-in (AKM) 0.0841  0.0196 0.0619
(0.0073) (0.0010)  (0.0116)

Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)

Mean estimated Standard Error 0.0074 0.0010 0.0108

Coverage Rate at 95%
Leave Out - Strong Id (q=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (q=1) 0.9634 0.9701 0.9736




Plug-in / HO severely biased

Table 4: Montecarlo Results for the Variance of Firm Effects

6]

[21

31

Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442
Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)
Plug-in (AKM) 0.0841 0.0196 0.0619
(0.0073) (0.0010) (0.0116)
Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)
Mean estimated Standard Error 0.0074 0.0010 0.0108
Coverage Rate at 95%
Leave Out - Strong Id (q=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (g=1) 0.9634 0.9701 0.9736



Leave out standard error is consistent

Table 4: Montecarlo Results for the Variance of Firm Effects

[1]

[21

[3]

Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442
Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)
Plug-in (AKM) 0.0841 0.0196 0.0619
(0.0073)  (0.0010) (0.0116)
Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)
Mean estimated Standard Error 0.0074 0.0010 0.0108
Coverage Rate at 95%
Leave Out - Strong Id (q=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (gq=1) 0.9634 0.9701 0.9736




Invalid normal approximation

Table 4: Montecarlo Results for the Variance of Firm Effects

1

[21

31

Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442
Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)
Plug-in (AKM) 0.0841 0.0196 0.0619
(0.0073) (0.0010) (0.0116)
Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)
Mean estimated Standard Error 0.0074 0.0010 0.0108
Coverage Rate at 95% \
Leave Out - Strong Id (g=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (g=1) 0.9634 0.9701 0.9736




Weak-id interval slightly conservative

Table 4: Montecarlo Results for the Variance of Firm Effects

1

[21

31

Rovigo Belluno Rovigo - Belluno
True Variance of the Firm Effects 0.0609 0.0103 0.0442
Mean, Standard deviation across Simulations
Leave Out 0.0608 0.0103 0.0443
(0.0073) (0.0010) (0.0116)
Plug-in (AKM) 0.0841 0.0196 0.0619
(0.0073) (0.0010) (0.0116)
Homoscedatic Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)
Mean estimated Standard Error 0.0074 0.0010 0.0108
Coverage Rate at 95%
Leave Out - Strong Id (g=0) 0.9479 0.9469 0.8535
Leave Out - Weak Id (g=1) 0.9634 0.9701 0.9736




Summary

We proposed an unbiased and consistent estimator of any variance component
in a heteroscedastic linear model w/ many regressors.

Robust inference procedure can be used to
- Test linear restrictions (“het consistent F-test")

- Build weak-id robust confidence intervals for variance components

- Eigenvalue based diagnostics for weak identification — in practice, ¢ = 1
appears to provide good coverage even with very weak connectivity

MATLAB code available at:
https://github.com/rsaggio87/LeavelutTwoWay.


https://github.com/rsaggio87/LeaveOutTwoWay
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