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This paper develops methods for detecting discrimination by individual employers
using correspondence experiments that send fictitious resumes to real job openings. We
establish identification of higher moments of the distribution of job-level callback rates
as a function of the number of resumes sent to each job and propose shape-constrained
estimators of these moments. Applying our methods to three experimental data sets, we
find striking job-level heterogeneity in the extent to which callback probabilities differ
by race or sex. Estimates of higher moments reveal that while most jobs barely discrim-
inate, a few discriminate heavily. These moment estimates are then used to bound the
share of jobs that discriminate and the posterior probability that each individual job
is engaged in discrimination. In a recent experiment manipulating racially distinctive
names, we find that at least 85% of jobs that contact both of two white applications and
neither of two black applications are engaged in discrimination. To assess the potential
value of our methods for regulators, we consider the accuracy of decision rules for in-
vestigating suspicious callback behavior in various experimental designs under a simple
two-type model that rationalizes the experimental data. Though we estimate that only
17% of employers discriminate on the basis of race, we find that an experiment send-
ing 10 applications to each job would enable detection of 7–10% of discriminatory jobs
while yielding Type I error rates below 0.2%. A minimax decision rule acknowledging
partial identification of the distribution of callback rates yields only slightly fewer in-
vestigations than a Bayes decision rule based on the two-type model. These findings
suggest illegal labor market discrimination can be reliably monitored with relatively
small modifications to existing correspondence designs.

KEYWORDS: Audit study, discrimination, empirical Bayes, indirect evidence, partial
identification.

1. INTRODUCTION

IT IS ILLEGAL to use information on race, sex, or age to make employment decisions in the
United States.1 The voluminous empirical literature on labor market discrimination has
focused primarily on establishing whether markets discriminate against particular groups
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of workers on average (Altonji and Blank (1999), Guryan and Charles (2013)). However,
a finding of market-level discrimination provides little guidance to regulators tasked with
enforcing anti-discrimination law, who must decide which specific employers to investi-
gate (US Equal Employment Opportunity Commission (2016)). Indeed, classic models of
discrimination emphasize that market-level disparities can be generated by many differ-
ent distributions of discriminatory behavior across employers (Becker (1957)). This paper
extends the frontier by developing new tools to characterize discriminatory behavior in
markets and to detect discrimination by individual employers.

Our approach adapts insights from the literature on empirical Bayes (EB) analysis of
large scale testing problems (Efron (2012)) to the study of correspondence experiments
that submit fictitious applications with randomly generated characteristics to actual job
vacancies (Bertrand and Duflo (2017) provided a review). Since the influential work of
Bertrand and Mullainathan (2004), correspondence experiments typically sample thou-
sands of jobs and send each a few applications with distinctive names that signify race or
sex. Our basic insight is that such studies are best viewed as ensembles of exchangeable
micro-experiments. From the ensemble, one can infer properties of the distribution of
discriminatory behavior which can, in turn, be used to form empirical posteriors about
the probability that any given job is discriminating.

As in classic EB analyses of count data (Efron and Morris (1975), Brown (2008)), we
treat callback outcomes as independent Bernoulli trials governed by job- and race- (or
sex)-specific callback probabilities, a modeling choice we show closely approximates call-
back behavior in correspondence experiments. Because few applications are sent to each
job, the distribution of job-specific callback probabilities is under-identified, invalidating
standard nonparametric EB approaches (e.g., Efron (2016)). However, we establish iden-
tification of a set of moments of the joint distribution of white and black callback prob-
abilities determined by the number of applications sent to each job. To estimate these
moments, we propose a shape-constrained Generalized Method of Moments (SCGMM)
estimator that requires the estimated moments to be consistent with a proper bivariate
probability distribution. Applying this estimator to three experimental data sets reveals
tremendous heterogeneity across jobs in the extent to which callback probabilities differ
by race or sex. Estimates of third and higher moments reveal that while most jobs barely
discriminate, a few discriminate heavily.

Extending classic results on the identification of False Discovery Rates (Benjamini and
Hochberg (1995), Efron, Tibshirani, Storey, and Tusher (2001), Storey (2002)), we com-
pute sharp lower bounds on the share of jobs engaged in discrimination given the iden-
tified moments. In the Bertrand and Mullanaithan experiment, we estimate that at least
13% of jobs discriminate against black applicants. The corresponding estimate in a more
recent study by Nunley, Pugh, Romero, and Seals (2015) is 17%. In a study by Arceo-
Gomez and Campos-Vasquez (2014), we find that at least 6% of jobs discriminate against
women, while at least 14% discriminate against men. These population shares are then
used to compute bounds on posterior probabilities that particular jobs are discriminat-
ing given their callback patterns. We find that these posterior bounds are often highly
informative even with few applications per job. For example, we estimate that at least
72% of jobs calling both of two white applicants and neither of two black applicants in
the Bertrand and Mullainathan (2004) experiment are engaged in discrimination, while
at least 85% of such jobs in the Nunley et al. (2015) experiment are discriminating. In the
Arceo-Gomez and Campos-Vasquez (2014) experiment, we find that at least 97% of the
jobs that call back four women and no men discriminate against men, while at least 88%
of jobs that call back four men and no women discriminate against women.
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To explore the potential policy implications of our findings, we assess the prospects
for systematically detecting discriminators based on callback evidence generated by alter-
native hypothetical correspondence study designs. This investigation is based on detec-
tion/error tradeoffs that arise under a parametric two-type model fit to the Nunley et al.
(2015) data. With only two white and two black applications per job, it is difficult to re-
liably identify discriminating employers. But with 10 applications per job, we find that a
regulator who knows the joint distribution of callback probabilities can correctly identify
7% of discriminating jobs while incurring Type I error rates of less than 0.2%.

Finally, to probe the sensitivity of these conclusions to our modeling assumptions, we
consider the problem of a hypothetical regulator who knows only the identified moments
of the distribution of callback probabilities. This regulator decides which jobs to investi-
gate using a minimax decision rule that minimizes the maximum risk consistent with the
known moments. We develop a tractable approach to estimating the maximum risk func-
tion and find that a minimax regulator investigates only slightly fewer jobs than would a
Bayesian regulator who knows the joint distribution of callback probabilities. This robust-
ness emerges because the risk function is nearly identified at realistic posterior thresholds
that might be used to trigger investigations.

Our results illustrate the potential of experimental methods to assist with regulatory
enforcement of anti-discrimination laws. Because employers vary tremendously in their
propensity to discriminate against protected groups, regulators face a difficult inferential
task. Our findings suggest correspondence experiments can be paired with simple deci-
sion rules to reliably identify discriminators. More generally, the methods developed here
provide a tractable empirical framework for making decisions when the population dis-
tribution of unit heterogeneity is only partially identified by an experiment. Candidate
applications of these methods include detecting judges engaged in illegal discrimination
(Arnold, Dobbie, and Hull (2020)), targeting of workplace safety inspections based on
experimental audit data (Levine, Toffel, and Johnson (2012)), identifying violations of ra-
tionality with laboratory choice experiments (Halevy, Persitz, and Zrill (2018)), and evalu-
ating the performance of individual teachers and schools based upon student achievement
data (Chetty, Friedman, and Rockoff (2014a), Angrist, Hull, Pathak, and Walters (2017)).

2. DEFINING DISCRIMINATION

We now develop a formal notion of discrimination tailored to the analysis of corre-
spondence experiments. To simplify exposition, we focus on race, which we code as binary
(“white”/“black”). Suppose that we have a sample of J jobs with active vacancies. To each
of these jobs, we send Lw applications with distinctively white names and Lb applica-
tions with distinctively black names as in Bertrand and Mullainathan (2004), for a total
of L = Lw + Lb applications. Denote the race associated with the name used in appli-
cation � ∈ {1� � � � �L} to job j ∈ {1� � � � � J} as Rj� ∈ {w�b}. The potential callback function
Yj� : {w�b} → {0�1} indicates whether job j would call back application � as a function of
that applicant’s assigned race. Observed callbacks are then given by Yj� = Yj�(Rj�).

When Yj�(w) �= Yj�(b), job j has engaged in racial discrimination with application �.
Notably, even if racially distinctive names influence employer behavior only through their
role as a proxy for parental background (Fryer and Levitt (2004)), using the names at any
point in the hiring process is likely to be viewed by courts as a pretext for discrimination.2

2See, for example, the discussion in U.S. Equal Employment Opportunity Commission v. Target Corpora-
tion, 460 F.3d 946, 7th Cir. Wis. (2006) and footnote 27 of Fryer and Levitt (2004).
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While courts are typically interested in establishing whether a particular plaintiff expe-
rienced discrimination in precisely this sense, we will take the perspective of a regulator
tasked with assessing prospectively whether an employer systematically treats applicants
differently based upon race. For example, the mission of the U.S. Equal Employment
Opportunity Commission (EEOC) is to “prevent and remedy unlawful employment dis-
crimination and advance equal opportunity for all in the workplace” (emphasis added).
The following assumption formalizes this prospective notion of discrimination at the em-
ployer level.

ASSUMPTION 1: Callbacks are race- and job-specific Bernoulli trials:

Yj�(r)|Rj1 · · ·RjL i�i�d�∼ Bernoulli(pjr) for r ∈ {w�b}�

Note that random assignment of racially distinctive names to applications guarantees
independence of Yj�(r) from {Rjk}Lk=1. The key behavioral restriction in Assumption 1 is
that the {Yj�(r)}L�=1 are i.i.d. Even if application characteristics other than race are chosen
in an i.i.d. manner, this assumption rules out, for example, scenarios in which a job calls
back the first qualified applicant and disregards all subsequent applications.3 We discuss
below how to test for such violations. The probability pjr may be interpreted as the call-
back rate that would emerge in a hypothetical experiment in which a large number of
applications of race r are sent to job j.4

Letting Cjr = ∑L

�=1 1{Rj� = r}Yj� denote the number of applications of race r to
job j that were called back, Assumption 1 implies the probability Pr(Cjw = cw�Cjb =
cb|pjw�pjb) that employer j calls back cw white applications and cb black applications
is

f (cw� cb|pjw�pjb)=
(
Lw

cw

)(
Lb

cb

)
pcwjw(1 −pjw)Lw−cwpcbjb(1 −pjb)Lb−cb � (1)

We are now ready to offer a job-level definition of discrimination, which we will hence-
forth refer to simply as discrimination.

DEFINITION: Job j engages in discrimination when pjb �= pjw.

Discriminatory jobs are labeled with the indicator functionDj = 1{pjb �= pjw}. This def-
inition is prospective in that an employer with Dj = 1 will eventually discriminate against
an applicant even if it has not done so yet.

3. ENSEMBLES AND POSTERIORS

The above framework treats each job’s callback decisions as a set of race-specific
Bernoulli trials. We next consider what can be learned from an ensemble of experiments
conducted at many jobs. This idea is formalized in the following exchangeability assump-
tion on the jobs.

3One could equivalently view such behavior as a violation of our specification of potential outcomes, which
builds in the Stable Unit Treatment Value Assumption of Rubin (1980).

4If hundreds of applications were sent to a single job, the employer would likely be overwhelmed and As-
sumption 1 would fail. We show below, however, that this assumption provides a suitable approximation to an
experiment with 8 applications, which is an unusually large choice of L.
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ASSUMPTION 2: Race-specific callback probabilities are independent and identically dis-
tributed:

pjw�pjb
i�i�d�∼ G(·� ·)�

The distribution function G : [0�1]2 → [0�1] describes callback rate heterogeneity
among jobs in the population from which the study samples. In practice, audit studies
usually draw small random samples of jobs from online job boards. The i.i.d. assump-
tion abstracts from the fact that there are a finite number of jobs on these boards. Note
that, by virtue of random assignment, pjw and pjb are independent of the racial mix of
applications to job j.

Assumption 2 implies that the unconditional distribution of callbacks can be expressed
as a mixture of binomial trials. We denote the unconditional probability of observing the
callback vector (cw� cb) by

f̄ (cw� cb)=
∫
f (cw� cb|pw�pb)dG(pw�pb)� (2)

The distribution G will serve as a key object of interest in our analysis. One reason for
interest in G is that it characterizes both the prevalence and severity of discrimination
in a population. Prevalence is captured by the proportion of jobs that are engaged in
discrimination, which can be written

π̄ = Pr(Dj = 1)=
∫
pw �=pb

dG(pw�pb)�

Likewise, the severity of discrimination can be summarized by moments of the form∫
(pw − pb)

m dG(pw�pb), which will equal zero for any m ∈ N if all jobs call back ap-
plicants independently of race.

A second reason for interest inG lies in its potential forensic value as a tool for identify-
ing which jobs are discriminating. The quantity π(cw� cb)= Pr(Dj = 1|Cjw = cw�Cjb = cb)
gives the prevalence of discrimination among jobs with callback vector (cw� cb). We can
also think of π(Cjw�Cjb) as the posterior probability that a job is discriminating given
the callback evidence (Cjw�Cjb). Invoking Bayes’s rule, π(cw� cb) can be expressed as a
functional of the “prior” distribution G:

π(cw� cb)= Pr(Cjw = cw�Cjb = cb|Dj = 1)π̄

f̄ (cw� cb)

=

∫
pw �=pb

f (cw� cb|pw�pb)dG(pw�pb)
f̄ (cw� cb)

= P(cw� cb︸ ︷︷ ︸
direct

� G︸︷︷︸
indirect

)�

The dependence of π(cw� cb) on G is an example of what Efron (2010) referred to as
“indirect evidence.” To understand the logic of incorporating indirect evidence, suppose
π̄ = 0 so that no jobs discriminate. Then π(Cjw�Cjb)= 0 with probability 1: any seemingly
suspicious callback decisions are due to chance. Likewise, if π̄ = 1, all jobs are discrimi-
nators and there is no need for direct evidence on the behavior of particular jobs. But in
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intermediate cases, where some share of jobs are discriminators, and some are not, it is
rational to blend the direct evidence from a particular job with contextual information on
the population from which that job was drawn.

Empirical Bayes approaches seek to form empirical posteriors P(cw� cb� Ĝ) that substi-
tute the unknown G with an estimator Ĝ. Important applications of this idea arise in the
literature on multiple hypothesis testing, where a key concept is the False Discovery Rate
(Benjamini and Hochberg (1995)), which can be thought of as a posterior expectation of
the share of null hypotheses under consideration that are true (Efron et al. (2001), Storey
(2002), Storey (2003)). In our setting, a hypothetical regulator investigating jobs with ev-
idence vector (cw� cb) can expect a False Discovery Rate of 1 − π(cw� cb). Appendix A of
the Supplemental Material (Kline and Walters (2021)) develops this connection in more
detail.

4. IDENTIFICATION OF G

Each job’s realized callback rates (Cjw/Lw�Cjb/Lb) provide noisy estimates of the latent
callback probabilities (pjw�pjb). The binomial structure of this noise is not classical, which
leads point identification ofG to fail when the number of applications per job is small.5 In
this section, we establish that certain moments of G are nonetheless identified by simple
linear transformations of unconditional callback probabilities. We then proceed to derive
bounds on the posterior probability function π(cw� cb) consistent with these moments.

Moments

From (2), we can write

f̄ (cw� cb)=
(
Lw

cw

)(
Lb

cb

)
E
[
pcwjw(1 −pjw)Lw−cwpcbjb(1 −pjb)Lb−cb

]

=
(
Lw

cw

)(
Lb

cb

) Lw−cw∑
m=0

Lb−cw∑
n=0

(−1)m+n
(
Lw − cw
m

)(
Lb − cb
n

)
E
[
pcw+m
jw p

cb+n
jb

]
� (3)

where E[·] denotes the expectation with respect to G. Hence, the reduced form callback
rates can be written as linear functions of uncentered moments of the latent callback
probabilities.

We index these moments via the function

μ(m�n)≡ E
[
pmjwp

n
jb

]
for (m�n) ∈ N

2�

Letting f̄ = (f̄ (1�0)� � � � � f̄ (Lw�0)� � � � � f̄ (Lw�Lb))′ denote the vector of frequencies for
all possible callback outcomes excluding (0�0) and μ = (μ(1�0)� � � � �
μ(Lw�0)� � � � �μ(Lw�Lb))′ the corresponding list of moments, we can write the equa-
tions in (3) as a linear system f̄ = Bμ, where B is a known nonsingular square matrix

5If L were to grow large, one could invoke a normal approximation on each job’s sample callback rates
and then apply a variance stabilizing transform to make the noise approximately homoscedastic, as in classic
EB studies of batting averages (Efron and Morris (1975), Brown (2008)). With homoscedastic normal estima-
tion error, G could then be estimated via deconvolution (e.g., as in Efron (2016)). However, Brown (2008)
cautioned against using such approximations with 10 or fewer observations per group.
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of binomial coefficients. Inverting the linear system yields

μ= B−1f̄ � (4)

which immediately implies the following lemma.

LEMMA 1—Identification of Moments: Under Assumptions 1 and 2 and for a given appli-
cation design (Lw�Lb), all moments μ(m�n) for 0 ≤m≤Lw and 0 ≤ n≤Lb are identified.

Lemma 1 formalizes the sense in which the identifying power of a correspondence ex-
periment is increasing in the number of applications of each type sent to each job. As
min{Lw�Lb} grows large, the entire joint distribution of black and white callback prob-
abilities becomes identified, which motivates nonparametric deconvolution approaches
such as Efron (2016). With a finite number of applications per job, Lemma 1 establishes
which moments of G are identified from (4).

For example, when Lw =Lb = 2 as in Bertrand and Mullainathan (2004), Lemma 1 es-
tablishes identification of the first two moments of black and white callback probabilities.
From these moments, one can identify the variance of the racial difference in callback
rates:

V[pjb −pjw] = μ(0�2)+μ(2�0)− 2μ(1�1)−μ(0�1)2 −μ(1�0)2 + 2μ(0�1)μ(1�0)�

With more applications per job, higher moments of the distribution of job-level discrimi-
nation become identified. Furthermore, when the application design (Lw�Lb) varies ran-
domly across jobs, some moments of G will be over-identified. We later exploit these
over-identifying restrictions in estimation to improve precision and test our modeling as-
sumptions.

Analytic Bound on Posterior Probabilities

Though the study of moments of the callback distribution G can shed light on underly-
ing heterogeneity in callback behavior, the posterior probability π(cw� cb) need not admit
a representation in terms of a finite number of moments. However, a simple analytic
bound on the posterior can be derived from an application of Bayes’s rule that condi-
tions on the total number of callbacks Cjb +Cjw to job j. Let f̄t(cw)= Pr(Cjw = cw�Cjb =
t − cw|Cjb +Cjw = t) denote the probability mass function for white callbacks in the stra-
tum of jobs that call back t applicants in total, and let f̄ 0

t (cw)= (
Lw
cw

)(
Lb
t−cw

)
/
(
L

t

)
denote the

corresponding probability mass function that would arise under Assumptions 1 and 2 if
no discrimination were present in this stratum. Finally, let π̄t = Pr(Dj = 1|Cjb +Cjw = t)
denote the share of jobs calling back t total applicants that are engaged in discrimination.

One can write the posterior probability of discrimination in terms of these objects as
follows:

π(cw� cb)= 1 −
(1 − π̄cw+cb)︸ ︷︷ ︸

prior that D= 0

f̄ 0
cw+cb(cw)︸ ︷︷ ︸

likelihood if D= 0

f̄cw+cb(cw)︸ ︷︷ ︸
marginal likelihood

�

Because the probability mass function f̄t(cw) is directly identified by the experiment, the
only nuisance parameters entering the posterior are the stratum-specific priors {π̄t}Lt=0.
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For example, in an experiment with Lw =Lb = 2, the prevalence of discrimination among
jobs that call back only white applications isπ(2�0)= 1−(1−π̄2)(1/6)/f̄2(2). By contrast,
in this design, the exact p-value on the null hypothesis that a job calling back only white
applications is not discriminating is simply f̄ 0

2 (2)= 1/6. Note that π(2�0) > f̄ 0
2 (2) if and

only if π̄2 > 1 − 5f̄2(2), which highlights the crucial role of the stratum prior in drawing
posterior inferences.

The following lemma, which is proved in Appendix B of the Supplemental Material,
provides a tractable bound on both the stratum prior π̄t and, consequently, the posterior
prevalence function π(cw� t − cw).

LEMMA 2—Bounds on Stratum Prior and Posterior:

(i) π̄t ≥ max
cw∈{0�����t}

max
{
f̄ 0
t (cw)− f̄t(cw)
f̄ 0
t (cw)

�
f̄t(cw)− f̄ 0

t (cw)

1 − f̄ 0
t (cw)

}
� t ∈ {1� � � � �L− 1}�

(ii) π(cw� t − cw)≥ 1 − f̄ 0
t (cw)

f̄t(cw)
min

c′w∈{0�����t}
min

{
f̄t

(
c′
w

)
f̄ 0
t

(
c′
w

) � 1 − f̄t
(
c′
w

)
1 − f̄ 0

t

(
c′
w

)}
� t ∈ {cw� � � � �L− 1}�

Part (i) of this lemma shows that the experiment places a lower bound on the share
of jobs engaged in discrimination in each callback stratum that is increasing in the dis-
crepancy between the distribution of callback outcomes and the distribution predicted by
the nondiscrimination null. Efron et al. (2001, p. 1154) proposed an analogous bound to
control the False Discovery Rate in a multiple testing analysis of a microarray experiment.
Part (ii) establishes via standard Bayesian updating arguments that the bound on the prior
translates into a corresponding lower bound on the posterior.

Sharp Bounds

While the bounds in Lemma 2 are easy to compute, they need not be sharp, as restric-
tions across callback strata have been ignored. A lower bound on the stratum prior π̄t that
exploits all of the logical restrictions in our framework can be written as the solution to
the following constrained optimization problem:

min
G∈G

1 −

(
L

t

)
t∑

c′w=0

f̄
(
c′
w� t − c′

w

)
∫
pt(1 −p)L−t dG(p�p)� (5)

s.t. f̄ (cw� cb)=
(
Lw

cw

)(
Lb

cb

)∫
pcww (1 −pw)Lw−cwpcbb (1 −pb)Lb−cb dG(pw�pb)

for (cw = 0� � � � �Lw; cb = 0� � � � �Lb)� (6)

To make this problem computationally tractable, we consider a space G of discretized
approximations to the unknown distribution function G.6 Because both the objective and

6See Noubiap and Seidel (2001) for a closely related approach and an asymptotic analysis of the effects of
discretization.
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TABLE I

DESCRIPTIVE STATISTICS FOR RESUME CORRESPONDENCE STUDIESa

Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez

(1) (2) (3)

Number of jobs 1112 2305 799
Applications per job 4 4 8
Treatment/control Black/white Black/white Male/female
Callback rates: Total 0�079 0�167 0�123
Treatment 0�063 0�154 0�108
Control 0�094 0�180 0�138
Difference −0�031 −0�026 −0�033

(0�007) (0�007) (0�008)

aThis table reports sample characteristics based on data from three resume correspondence experiments. Columns (1) and (2) show
statistics from Bertrand and Mullainathan’s (2004) and Nunley et al.’s (2015) studies of racial discrimination in the United States.
Column (3) reports statistics from Arceo-Gomez & Campos-Vasquez’s (2014) study of gender discrimination in Mexico. Standard
errors for treatment/control differences, clustered at the job level, are in parentheses.

constraints are linear in the probability mass function associated with G, we can apply
linear programming (LP) routines to compute bounds on π̄t given an estimate of the
callback probabilities {f̄ (cw� cb)}cw�cb . Details of our computational procedure are given
in Appendix C of the Supplemental Material. Since the distribution G is not indexed by
t, the solution to (5) enforces constraints across callback strata. Consequently, we may
obtain informative bounds on the share of discriminatory jobs even among those jobs that
call no (or all) applications back.7

Analogous LP formulations can be used to bound any linear functional ofG. For exam-
ple, the lower bound on the unconditional prevalence of discrimination π̄ is obtained by
replacing the objective in (5) with minG∈G 1 − ∫

dG(p�p). Likewise, we can bound from
below the proportion of jobs discriminating against whites by replacing the objective in
(5) with minG∈G

∫
pw<pb

dG(pw�pb). We leverage these insights to compute bounds on the
prevalence of a variety of directional notions of discrimination in the empirical work to
follow.

5. DATA

We apply our methods to data from three correspondence experiments summarized in
Table I. Bertrand and Mullainathan (BM, 2004) applied to 1112 job openings in Boston
and Chicago, submitting four applications to each job. Of the four applications, two were
assigned black-sounding names while the remaining two were assigned white-sounding
names. The callback rate to applications with black-sounding names was 3.1 percentage
points lower than that of applications with white-sounding names.

Nunley et al. (NPRS, 2015) studied racial discrimination in the market for new college
graduates by applying to 2305 listings on an online job board, again sending four resumes
per job opening. Unlike BM, the names assigned to the four resumes were sampled with-
out replacement from a pool of eight names, four of which were distinctively black and
four of which were distinctively white. This led the share of black names sent to each
job to vary randomly in increments of 25% from 0% to 100%. The overall callback rate

7Suppose, for instance, thatG is a two-type mixture with Pr(pjw = 1�pjb = 1)= 1/2 and Pr(pjw = 1/2�pjb =
0)= 1/2. Then all jobs with zero callbacks must be discriminators.
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in the NPRS study was more than twice as high as in the BM study, perhaps because
the fictitious applicants were more highly educated. On average, black names had a 2.6
percentage point lower callback rate than white names.

Arceo-Gomez and Campos-Vasquez (AGCV, 2014) applied to 799 job openings
through an online job portal in a study of race and gender discrimination in Mexico City,
Mexico. AGCV sent eight fictitious applications to each job, and the applicants were all
recent college graduates. While the AGCV experiment looks at a different context than
BM or NPRS, this data set allows us to demonstrate the gains from doubling the number
of applications per job opening. To illustrate the identifying power of sending four appli-
cations to each protected group, we focus on gender in this experiment, as AGCV used a
three-category definition of race.8 In the AGCV experiment, women were 3.3 percentage
points more likely to receive callbacks than men.

6. ARE CALLBACKS INDEPENDENT TRIALS?

We begin by considering tests of the Bernoulli trials assumption that undergirds our
econometric framework. This assumption would be violated if the likelihood of a callback
depends not just on an application’s own characteristics but also on the characteristics of
other applications sent to the same job. To assess this possibility, we fit linear probability
models of the form

Yj� = λ0 +X ′
j�λ1 + X̄ ′

j�λ2 + εj�� (7)

where Xj� is a vector of application characteristics and X̄j� = (L − 1)−1
∑

k �=� Xjk gives
the “leave out” mean of those characteristics among the applications sent to job j ex-
cluding application �. While the coefficient vector λ1 gives the direct effect of application
characteristics on callbacks, the coefficient vector λ2 captures the “peer effect” of other
applications to the same job on application �’s callback propensity. Assumption 1 restricts
these peer effects to be zero (λ2 = 0).

For OLS estimates of λ2 to identify causal effects, X̄j� must be uncorrelated with any
omitted application characteristics Zj� that influence callbacks. We therefore focus on the
NPRS study which assigned both race and a large number of other application character-
istics independently of each other and across applications.9

Columns (1) and (2) of Table II report estimates of the parameters in (7) for the NPRS
study, with each row showing the coefficients from a separate regression. While applica-
tions with distinctively black names are significantly less likely to be called back, we find
no significant effect on callback probabilities of changing the racial mix of the other three
applications to the same job. Across the 12 covariates we consider, only one (an indicator
for 3+ months of unemployment) finds a significant peer effect at conventional levels, and
a joint test fails to reject that all of the leave out mean coefficients are zero (p = 0�45).
As another composite test, we report the results of a model in which the peer effects

8In principle, the methods developed here could be extended to a multivariate distribution of callback prob-
abilities for three or more groups. Section 8 explores this possibility by allowing callback rates to differ by
resume quality in addition to race or gender.

9In contrast, BM assigned application characteristics according to their joint distribution in a training sam-
ple, making it likely that the characteristics we study Xj� are correlated with other omitted characteristics Zj�
that predict callbacks. The application characteristics were also chosen to yield a good match with the job
(see BM, p. 996), leading Zj� to be correlated with its leave out mean Z̄j� and hence with X̄j�. The AGCV
study includes only a small number of randomized resume characteristics that are not predictive of callback
outcomes.
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are restricted to be proportional to the main effects of the application’s own characteris-
tics Xj�. The row titled “predicted callback rate” pools all the application characteristics
into an index X ′

j�λ̂1(j), where λ̂1(j) is the leave out OLS coefficient vector obtained from
regressing the callback indicator on application covariates after leaving out all applica-
tions to job j. A unit increase in X ′

j�λ̂1(j) is associated with roughly half of a callback on
average. Though X ′

j�λ̂1(j) strongly predicts callbacks, its average value among competing
applications (L− 1)−1

∑
k �=� X

′
jkλ̂1(j) has no statistically discernible impact on callbacks.

A second set of tests for independence exploits data on the specific order in which re-
sumes were sent to jobs in the AGCV experiment (corresponding data were unavailable
for BM and NPRS). With independent trials, all callback sequences leading to a partic-
ular total number of callbacks t should be equally likely, so each such sequence should
constitute a share

(
L

t

)−1
of the sample calling t applications in total. Many plausible forms

of dependence would manifest as violations of this condition. If employers stop calling af-
ter seeing enough high quality applicants, for example, we should expect to see sequences
with runs of callbacks followed by non-callbacks. Likewise, if some employers detect the
experiment after receiving several applications, we should see sequences with early call-
backs over-represented and fewer callbacks at later positions in the order.

Columns (3)–(7) of Table II provide tests of the independence assumption in each call-
back stratum t of the AGCV data. We form Pearson (1900) χ2 test statistics equal to
quadratic forms in the difference between observed and expected callback sequence fre-
quencies, scaled by the covariance matrix of these differences under the null that each
sequence in a stratum is equally likely. Panel A splits the sample of eight applications into
two sequences of four at each job in order to increase the expected frequency of each
sequence, which may improve the power of the test against certain alternatives. Panel
B displays results using the full eight-application sequence. These tests fail to reject the
null hypothesis of independence in any callback stratum (p ≥ 0�07) or across all strata
jointly (p = 0�57). As shown in columns (7) and (8), the conclusions of this exercise are
similar when we base inference on an asymptotic approximation to the distribution of the
χ2 statistic and when we use exact finite-sample p-values computed by summing proba-
bilities of all sequence configurations that are less likely than the observed configuration
under the null.

Tests based on the full set of callback sequences may have low power against some
alternatives. Panel C of Table II therefore reports the results of three additional tests for
specific plausible forms of dependence. A test that callback rates are equal across the
eight resume order positions fails to reject (p= 0�62). Similarly, a linear regression of a
callback indicator on resume order suggests that the callback rate declines slightly with
order, but the slope coefficient is not statistically significant at conventional levels (p =
0�15). Finally, to test if earlier applications influence an employer’s perception of resume
quality, the bottom row of panel C regresses a callback indicator on the share of the
four total female applications to the job sent prior to the current application, controlling
for whether the current application is female. This test again fails to reject the null of
independence (p = 0�79). These results indicate that the independent Bernoulli trials
model provides a good approximation to correspondence studies sending eight or fewer
applications to each job. While we are not aware of any existing experiments sending more
than eight applications to each job, a potentially interesting topic for future research is to
study the nature of any dependence that arises as additional applications are sent to a
given employer.
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TABLE III

NONPARAMETRIC ESTIMATES OF TREATMENT EFFECT VARIATION IN RESUME CORRESPONDENCE STUDIESa

Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez

pb pw pb −pw pb pw pb −pw pm pf pm −pf
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mean 0�063 0�094 −0�031 0�153 0�176 −0�023 0�109 0�137 −0�028
(0�006) (0�007) (0�006) (0�007) (0�007) (0�005) (0�009) (0�010) (0�008)

Standard deviation 0�152 0�199 0�082 0�290 0�307 0�102 0�229 0�257 0�178
(0�012) (0�012) (0�016) (0�008) (0�007) (0�012) (0�012) (0�011) (0�014)

Correlation
with pw or pf

0�927 1�00 −0�717 0�944 1�00 −0�336 0�738 1�00 −0�498
(0�051) – (0�119) (0�017) – (0�066) (0�039) – (0�058)

Skewness – – – 3�76 3�65 −4�49 4�04 3�74 −1�64
(0�08) (0�08) (0�82) (0�13) (0�10) (0�56)

Excess kurtosis – – – – – – 8�59 5�91 13�6
(1�13) (0�71) (3�5)

J-statistic: 0.0 23.0 2.7
p-value: 1.00 0.226 0.891

aThis table reports shape-constrained generalized method of moments (SCGMM) estimates of key features of the joint distribution
of treatment and control callback rates in three resume correspondence studies. Columns (1)–(3) show estimates for black and white
callback rates in Bertrand and Mullainathan (2004), columns (4)–(6) display estimates for black and white callback rates in Nunley
et al. (2015), and columns (7)–(9) show estimates for male and female callback rates in Arceo-Gomez and Campos-Vasquez (2014).
Standard errors are computed using the numerical bootstrap procedure described by Hong and Li (2020). J-statistics are minimized
SCGMM criterion functions. p-values come from bootstrap tests of the hypothesis that the model restrictions are satisfied.

7. MOMENT AND POSTERIOR ESTIMATES

To estimate the identified moments in each experiment, we compute shape-constrained
GMM (SCGMM) estimates that require the callback frequencies to be rationalizable by
a proper discretized probability distribution defined on a 150×150 grid of support points.
Imposing shape constraints serves two goals. First, we need the moment estimates to be
rationalizable by some G ∈ G in order to subsequently use them as constraints when es-
timating bounds via our linear programming method. Second, imposing valid shape con-
straints in estimation typically improves accuracy and precision (see Chetverikov, Santos,
and Shaikh (2018) for a review). Details of the SCGMM estimation procedure, which
involves solving a quadratic programming (QP) problem, appear in Appendix D of the
Supplemental Material.

Table III uses the shape-constrained estimates to summarize key features of the dis-
tribution of callback probabilities in each experiment, and reports minimized SCGMM
criterion functions (J-statistics) and p-values from bootstrap tests of the shape constraints
based on the methods of Chernozhukov, Newey, and Santos (2015). The full set of un-
constrained moment estimates appear in Appendix Tables A.I–A.III. Because the shape
constraints may make the criterion non-differentiable, we rely on the “numerical boot-
strap” procedure of Hong and Li (2020) to construct pointwise valid estimates of standard
errors.10

Table IV reports LP estimates of the lower bound probability that a given employer is
discriminating. In computing both the analytic bounds of Lemma 2 and the sharp bounds

of (5), we replace the unknown callback probabilities f̄ with estimates ˆ̄f = Bμ̂, where μ̂

10Because the asymptotic distribution of the shape-constrained estimator will tend to be non-normal (Fang
and Santos (2018)), standard errors provide only a heuristic guide to the uncertainty associated with each
moment estimate.



778 P. KLINE AND C. WALTERS

TABLE IV

LOWER BOUNDS ON PROBABILITIES OF DISCRIMINATIONa

Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez

Pr(pw �= pb) Pr(pw <pb) Pr(pb <pw) Pr(pw �= pb) Pr(pw <pb) Pr(pb <pw) Pr(pf �= pm) Pr(pf <pm) Pr(pm <pf)

Callbacks (1) (2) (3) (4) (5) (6) (7) (8) (9)

All 0�130 0�000 0�130 0�361 0�155 0�175 0�207 0�064 0�142
0 0�038 0�000 0�038 0�155 0�094 0�050 0�065 0�023 0�042
1 0�424 0�000 0�424 0�679 0�187 0�438 0�721 0�307 0�414

{0�363} {0�176} {0�071}
2 0�442 0�000 0�442 0�700 0�016 0�684 0�708 0�226 0�481

{0�379} {0�282} {0�524}
3 0�508 0�000 0�508 0�826 0�069 0�739 0�584 0�050 0�533

{0�440} {0�126} {0�502}
4 0�212 0�000 0�212 0�434 0�270 0�128 0�518 0�053 0�465

{0�492}
5 0�320 0�153 0�167

{0�286}
6 0�372 0�176 0�197

{0�308}
7 0�453 0�122 0�331

{0�170}
8 0�069 0�008 0�062
J-statistic: 29.3 0.0 29.3 62.5 23.4 62.5 427.8 27.1 421.0
P-value: 0.000 1.00 0.000 0.000 0.193 0.009 0.000 0.018 0.000

aThis table reports lower bounds on the probability that jobs discriminate based upon race or sex. Bounds are computed via linear
programming. Where possible, corresponding analytic bounds based on the formula in Lemma 2 appear in brackets. The first row
shows bounds in the population of all jobs, and the remaining rows display bounds conditional on the total number of callbacks.
Columns (1)–(3) show results for racial discrimination in the Bertrand and Mullainathan (2004) data, while columns (4)–(6) show
results for racial discrimination in the Nunley et al. (2015) data. Columns (1) and (4) display lower bounds on the fraction of jobs with
equal callback rates for white and black applicants, columns (2) and (5) report lower bounds on the fraction discriminating against
white applicants, and columns (3) and (6) report lower bounds on the fraction discriminating against black applicants. Results for
the Nunley et al. (2015) data that condition on the number of callbacks refer to jobs receiving two white and two black applications.
Columns (7)–(9) show results for sex discrimination in the Arceo-Gomez and Campos-Vasquez (2014) data. Column (7) reports a lower
bound on the fraction of jobs with equal callbacks for men and women, column (8) shows a lower bound on the fraction discriminating
against women, and column (9) reports a lower bound on the fraction discriminating against men. J-statistics and p-values come from
bootstrap tests of the hypothesis that the lower bound equals zero for all jobs.

is the relevant vector of shape-constrained moment estimates produced by our SCGMM
procedure. Because the LP algorithm used to solve (5) scales efficiently to large problems,
we use a finer discretization with 36 times as many points as the grid used in our earlier
SCGMM step.11

Bertrand and Mullainathan (2004)

The first rows of columns (1) and (2) of Table III show the mean callback probabilities
of white and black applications across jobs. The J-statistic of zero reported in column (2)
of Table III indicates that the shape constraints do not bind in the BM data, that is, that the
sample frequencies can be rationalized to numerical precision by a discretized probability

11Appendix Table A.IV in the Supplemental Material assesses the sensitivity of our estimates to alternative
discretization schemes. The results show that the moment estimates are not sensitive to the number of grid
points used in the SCGMM step (as evidenced by the goodness-of-fit statistic) and that the bounds stabilize
with a sufficiently large number of grid points in the linear programming step.
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distribution. Because the shape constraints do not bind and the BM application design
is balanced, the mean callback probabilities match the callback rates reported in Table I
perfectly. More interesting are the second moments: there is substantial over-dispersion
in callback probabilities, with standard deviations across jobs for each race-specific prob-
ability more than double the mean probability. As expected, there is also a strong positive
correlation between white and black callback rates, reflecting that some employers simply
call back more applications of all types.

Column (3) of Table III reveals substantial heterogeneity in the difference in race-
specific callback rates pjb −pjw across jobs, with a standard deviation more than twice as
large as the mean. The third row shows a strong negative correlation between the discrim-
inatory gap in callback rates pjb − pjw and the white callback probability pjw, suggesting
that discrimination tends to be stronger when jobs have higher chances of calling back
more white workers. This reflects, in part, a mechanical boundary effect, as an employer
with very low callback rates has little opportunity to discriminate. Since the white callback
rate in this study is only around 10%, boundary effects are likely to be a quantitatively im-
portant phenomenon.

Column (1) of Table IV reports lower bounds on the share of jobs engaged in discrim-
ination by the number of total callbacks in the BM experiment. Estimates of the analytic
bounds from Lemma 2 (presented in brackets) suggest that at least 38% of the jobs that
call back two applications are engaged in discrimination, while at least 44% of jobs that
call back three applications are discriminating. The sharp LP bounds are somewhat tighter
than their analytical counterparts, revealing that at least 44% of the jobs calling back two
applicants are discriminating on the basis of race. Among jobs that call back three ap-
plications, at least half are discriminating. Hence, in this callback stratum, our estimates
suggest jobs should not logically be presumed “innocent” of discrimination.

The LP approach also generates informative bounds in callback strata for which ana-
lytical bounds are not available. Overall, at least 13% of jobs discriminate on the basis of
race. Notably, at least 4% of jobs that call back no applications are engaged in discrimi-
nation, while at least 21% of jobs that call back all four applications discriminate on the
basis of race. Since neither of these strata exhibit any difference in black-white callback
rates, all of the relevant information on discrimination in these strata comes from the total
number of callbacks blended with the indirect evidence from the population distribution
G.

Column (2) of Table IV reports LP-based lower bounds on the proportion of jobs with
white callback probabilities less than their black callback probabilities. We find a lower
bound of exactly zero in each callback stratum, indicating that the callback probabilities
can be rationalized without any employers engaging in “reverse discrimination” against
whites. Column (3) reports lower bounds on the proportion of jobs with white callback
probabilities greater than their black callback probabilities. These lower bound estimates
coincide exactly with those reported in column (1). Accordingly, we easily reject the null
hypothesis of no discrimination against blacks.

Figure 1 converts the lower bound estimates in column (3) of Table IV to lower bound
posterior probabilities of discrimination. Overall, at least 13% of jobs engage in discrim-
ination. However, at least 72% of jobs that call back two white and no black applications
are discriminating, while a job that calls back one white and no black applications has at
least a 58% chance of being engaged in discrimination.
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FIGURE 1.—Lower bounds on posterior probabilities of discrimination, BM data.

Nunley, Pugh, Romero, and Seals (2015)

Moment estimates from the NPRS study are reported in columns (4)–(6) of Ta-
ble III. Recall that NPRS employed five distinct application designs with (Ljw�Ljb) ∈
{(4�0)� (3�1)� (2�2)� (1�3)� (0�4)}. Appendix Table A.II reports design-specific method of
moments estimates of all identified moments for the three designs with the largest sample
sizes.12 As expected, the design-specific estimates are generally close to one another and
we cannot reject that they are identical. To pool the designs efficiently, we again use an
SCGMM estimator that requires the moments be rationalizable by a proper probability
distributionG ∈ G . The minimized SCGMM criterion function provides a measure of the
goodness of fit of our model. Applying the bootstrap method of Chernozhukov, Newey,
and Santos (2015) yields a p-value of 0.23 for the null hypothesis that the results for all
experimental designs are jointly rationalized by a common distribution G.

Consistent with our findings for the BM data, columns (4)–(6) of Table III reveal sub-
stantial heterogeneity in race-specific callback rates in the NPRS experiment, with stan-
dard deviations roughly twice their mean. The imbalanced designs used by NPRS allow
us to identify higher moments than the earlier BM study even though the two studies
sent the same number of applications per job. While race-specific callback rates are right-
skewed, racial gaps in callback probabilities pjb − pjw are left-skewed, indicating a long
tail of heavy discriminators.

Columns (4)–(6) of Table IV report estimated lower bounds on the probability of dis-
crimination from the NPRS study for the full population of jobs as well as bounds con-
ditional on total callbacks in a balanced design with Ljw = Ljb = 2. In column (1), our
analytic bound formula suggests at least 28% of the jobs calling back two applicants in
this design are discriminating—slightly lower than the corresponding estimate in BM.

12The remaining designs were omitted from this analysis due to small sample sizes. Only 22 jobs were in the
(Ljw = 0�Ljb = 4) design while 43 jobs fell in the (Ljw = 4�Ljb = 0) design.
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FIGURE 2.—Lower bounds on posterior probabilities of discrimination, NPRS data.

Applying the LP approach tightens the analytic bounds dramatically and provides addi-
tional bounds on the prevalence of discrimination among jobs that make no callbacks or
that call every application. We estimate that at least 36% of all jobs have different white
and black callback probabilities, with that share rising to 70% among employers who call
back two applicants in a balanced (2�2) design.

Some of this discrimination is estimated to be against whites. Column (5) shows that

the shape-constrained callback probabilities ˆ̄f imply that at least 15% of employers have
white callback probabilities less than their black probabilities. These moments are esti-
mated with error, however, and a bootstrap test of the null hypothesis that all employers
have white callback probabilities weakly exceeding their black callback probabilities yields
a p-value of 0.19. If we attribute the evidence of reverse discrimination to sampling error,
we can take the estimates in column (6) as the relevant lower bounds on discrimination.
These results imply that at least 17% of jobs discriminate against black applicants. We
decisively reject the null hypothesis that this lower bound is zero.

Figure 2 converts these lower bound priors into posterior estimates of the share of
employers with selected callback configurations engaged in discrimination against black
applicants. We estimate that at least 85% of the employers calling back two white and
no black applicants in a balanced (2�2) design are discriminating against blacks. Interest-
ingly, calling back three whites and no blacks in a (3�1) design is estimated to be even
more suspicious, with at least 90% of the employers generating this callback evidence
engaged in discrimination against black applicants.
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Arceo-Gomez and Campos-Vasquez (2014)

The full set of moment estimates for the AGCV experiment (reported in Appendix Ta-
ble A.III) reveal that the shape constraints bind strongly in this case, presumably because
the design of the AGCV experiment involves many small cells. Despite substantial move-
ment in some moment estimates, the bootstrap p-value from a test of the null hypothesis
that the callback frequencies are generated by the model is 0.89, indicating that the raw
callback frequencies are rationalizable by a well-behaved underlying joint distribution of
callback probabilities.

Columns (7)–(9) of Table III report key moment estimates from the AGCV data. The
behavior of the first two moments is similar to that reported in the prior two experiments,
with gender-specific standard deviations roughly twice their mean callback probabilities.
However, the greater number of applications used in this design helps enormously with
the precision of higher moment estimates. We find strong evidence of left-skew in the
distribution of gender gaps in callback probabilities as well as evidence of excess kurtosis
in the distribution of gaps. While many jobs discriminate little, there is a thick tail of heavy
discriminators.

Columns (7)–(9) of Table IV report estimated lower bounds on the probability of dis-
crimination in the AGCV experiment. Focusing on the sharp bounds reported in col-
umn (7), we find that at least 21% of jobs are engaged in discrimination. Remarkably,
this share rises to 72% among jobs calling back one applicant and 71% among jobs call-
ing two. These shares are much higher than the corresponding analytic bounds, showing
that cross-stratum restrictions in a design with eight applications are useful for tightening
bounds in strata with few callbacks. Evidently, jobs that call back few applicants in the
AGCV experiment are very likely to engage in discrimination.

Some of this discrimination appears to be “reverse” discrimination against women. Col-
umn (8) shows that at least 6% of jobs discriminate against women, and a bootstrap test
of the null hypothesis that this bound equals zero is decisively rejected (p < 0�02). An
employer that calls back a single application has at least a 31% chance of discriminating
against women. Column (9) shows that at least 14% of jobs discriminate against men,
and the bootstrap p-value indicates this bound is also statistically distinguishable from
zero. The mean difference in callback rates in the ACGV experiment therefore masks
gender discrimination operating in both directions. An employer that calls back a single
application has at least a 41% chance of discriminating against men.

Figure 3 plots lower bound posterior probabilities of discrimination against men and
women, respectively, for selected callback configurations. At least 97% of the jobs that
call back four women and no men are estimated to discriminate against men, and at least
88% of jobs that call back four men and no women are estimated to discriminate against
women. But even an employer that calls back a single woman and no men has at least a
74% chance of discriminating against men. Likewise, at least 66% of jobs that call back a
single man and no women are estimated to discriminate against women. That we obtain
such informative posteriors in settings with a single callback demonstrates the tremendous
value of indirect evidence in this setting.

8. EXPERIMENTAL DESIGN AND DETECTION ERROR TRADEOFFS

The above analysis demonstrated that it is possible to achieve high posterior certainty
that individual jobs are engaged in discrimination when callback rates at those jobs dif-
fer dramatically across protected groups. Can such evidence be used to reliably detect a
nontrivial share of discriminating jobs? We address this question by studying the tradeoff
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FIGURE 3.—Lower bounds on posterior probabilities of discrimination, AGCV data.

between Type I and II errors that arises under a simple two-type mixture specification
calibrated to match callback rates in the NPRS data given race and other resume char-
acteristics. We then consider how the resulting detection error tradeoffs change as the
experimental design is altered to send more applications to each job.

A Mixed Logit Model

We work with a mixed logit model for callbacks of the form

Pr(Yj� = 1|Rj��Xj��αj�βj)=Λ(
αj −βj1{Rj� = b} +X ′

j�ψ
)
�

where Λ(·) = exp(·)
1+exp(·) is the standard logistic CDF, Xj� is a vector of de-meaned applica-

tion covariates, and (αj�βj) are random coefficients governing the odds of a white call-
back and discrimination against blacks, respectively. To allow for heterogeneity in white
callback rates, we assume that αj

i�i�d�∼ N(α0�σ
2
α). Discrimination is modeled as a two-type

(conditional) mixture:

βj|αj =
{
β0 w/ prob. Λ(τ0 + τααj)�
0 w/ prob. 1 −Λ(τ0 + τααj)�

This specification allows for some share of jobs to not discriminate at all, while the re-
maining jobs depress the odds of calling back blacks relative to whites by roughly β0%.
When τα �= 0, the probability of discrimination depends on αj , which governs the white
callback rate. Note that random assignment of the covariates Xj� implies they are inde-
pendent of (αj�βj) and therefore excludable from the type probability equation.
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TABLE V

MIXED LOGIT PARAMETER ESTIMATES, NPRS DATAa

Types

Constant No Selection Selection
(1) (2) (3)

Distribution of logit(pw):
α0 −4�71 −4�93 −4�93

(0�22) (0�24) (0�28)
σα 4�74 4�99 4�98

(0�22) (0�25) (0�29)
Discrimination intensity:
β0 0�456 4�05 4�05

(0�108) (1�56) (1�58)
Discrimination logit:
τ0 – −1�59 −1�56

(0�42) (1�10)

τα – – −0�005
(0�180)

Fraction with pw �= pb: 1.00 0.168 0.170
Log-likelihood −2792�1 −2788�2 −2788�2
Parameters 15 16 17
Sample size 2305 2305 2305

aThis table reports simulated maximum likelihood estimates of mixed logit models for callback probabilities in the Nunley et
al. (2015) data. Columns (2)–(3) allow for two discrete types of firms, one of which does not discriminate based upon race. All
models include resume covariates (sex, high SES, GPA, business major, employment gap, internship, underemployment, and indicators
for durations of current and past unemployment). Covariates are de-meaned in the estimation sample. Robust standard errors in
parentheses.

Model Estimates

Table V shows the results of fitting the above model to the NPRS experiment by sim-
ulated maximum likelihood. Column (1) provides a standard random effects logit model
with heterogeneity confined to the intercept as in Farber, Silverman, and von Wachter
(2016). We find substantial variability across jobs in the overall odds of a callback: a 0.1
standard deviation increase in the intercept αj is estimated to raise the odds of a callback
by 47%. We also find clear evidence of market-wide discrimination: black applications
have roughly 46% lower odds of being called back than their white counterparts.

Column (2) allows the race effect βj to vary across employers, which yields a significant
improvement in model fit. The types specification finds that only about 17% of jobs dis-
criminate against blacks—very near the nonparametric lower bound estimate produced
earlier by our LP routine (see column (6) of Table IV). The degree of discrimination
among such jobs is estimated to be severe: the odds of receiving a callback are roughly
exp(4)−1 ≈ 53 times higher for white applications than for blacks. Column (3) allows the
probability of discrimination to vary with the white callback rate, which yields a negligible
improvement in model fit. Surprisingly, αj and βj are found to be nearly independent,
which implies that the negative correlation between pjb − pjw and pjw reported in Ta-
ble III is attributable to boundary effects. Again, this model finds roughly 17% of jobs
discriminate against blacks. Because we cannot reject the null hypothesis that τα = 0,
we work with the more parsimonious model in column (2) in the exercises that follow.
Appendix Figure A.1 provides a goodness-of-fit diagnostic for this model, plotting the
empirical callback rates in each black/white callback by application design cell against the
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FIGURE 4.—Mixed logit estimates of posterior discrimination probabilities, NPRS data.

logit model’s predicted callback probability in that cell. The empirical frequencies track
the model predictions closely and a naive Pearson χ2 test fails to reject the null hypothesis
that the model rationalizes the cell frequencies up to sampling error.

Posteriors

Figure 4 reports the distribution of posterior probabilities Pr(Dj = 1|{Yj��Rj��X ′
j�ψ}L�=1)

implied by the parameter estimates reported in column (2) of Table V. To summarize the
influence of the covariates, we evaluate the posteriors at two points within each race
group, corresponding to the estimated index X ′

j�ψ̂ being a standard deviation above or
below its empirical mean, which we refer to as “high” and “low” quality applications. By
construction, the mean posterior coincides with the estimated share of jobs that discrim-
inate. The types model finds that only 17% of jobs are discriminating, yielding a strong
prior that the typical job is not violating employment law. Yet calling back only white ap-
plicants still justifies a substantial degree of suspicion: 62% of the jobs that call back two
whites and no blacks are discriminating.

Imbalances in the covariate mix of applicants can substantially intensify this suspicion.
For example, 79% of the jobs that call back two low quality white applications and neither
of two high quality black applications are discriminating. Evidently, even in models with
a strong presumption of innocence, four applications can provide enough information to
cast substantial doubt on whether individual employers are in compliance with employ-
ment law. However, it is only under the most extreme callback configurations that we can
detect discriminators with reasonable certainty.

Detection Error Tradeoffs

Consider now a hypothetical regulator who forms posteriors taking as prior knowl-
edge the two-type estimates reported in Table V. One may think of the regulator as first
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FIGURE 5.—Detection/error tradeoffs, NPRS data.

learning the parameters of the two-type model from a large experiment and then sending
applications to additional jobs drawn from the same population from which the original
study sampled.

Figure 5 illustrates the detection error rates that arise from investigating all jobs exceed-
ing various posterior thresholds. The horizontal axis gives the share of jobs engaged in dis-
crimination that are investigated. The vertical axis plots the share of non-discriminators
that are not investigated, which can equivalently be viewed as 1 minus the Type I error
rate. Each point gives the values of these shares corresponding to a particular posterior
decision threshold. The bold point corresponds to a posterior threshold of 80%.

In the canonical design with only two white and two black applications per job, the
80% posterior threshold yields almost no false accusations. This control over Type I er-
rors comes at the cost of a high Type II error rate—few accusations of any sort are made,
leading to a negligible share of discriminators detected. Note that conducting a classical
hypothesis test (e.g., Fisher’s exact test) at the 1% level is equivalent to controlling the
share of non-discriminators that are not investigated, which is depicted by the horizontal
line at 0.99. This rule would yield more investigations but most of these would be erro-
neous: the equivalent posterior threshold in the two-pair design is only 33%.

Expanding the design to five pairs of applications yields a substantial outward shift in
the detection error tradeoff curve. Using a posterior threshold of 80% keeps the share of
employers erroneously investigated for discrimination below 0.2% while allowing detec-
tion of roughly 7.5% of jobs that discriminate. Lowering the posterior threshold further
boosts the detection rate above 10% while modestly increasing the Type I error rate. This
shows that ten applications is enough to accurately detect a nontrivial share of discrimi-
nators.
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The third line shows the results of an experiment where each job is sent five high quality
black applications and five low quality white applications.13 Modifying the experimental
design in this way yields additional improvements in Type I and II error rates. Using
an 80% posterior threshold, the share of non-discriminators investigated remains below
0.2%, while the share of discriminators investigated rises to almost 10%.

9. INDIRECT EVIDENCE AND POLICY

The findings of the previous section indicate that correspondence experiments with as
few as 10 applications can reliably detect a substantial share of discriminating employers
when the population distribution of callback probabilities is known. We now consider how
a Bayesian regulator might go about deciding which jobs to investigate and then assess
how partial identification of the callback rate distribution affects this decision rule.14

The Regulator’s Problem

Suppose the regulator must decide which jobs to investigate based on a vector of direct
evidence Ej = {Yj��Rj��Xj�}L�=1 revealed by a correspondence study. The regulator uses a
deterministic decision rule δ(Ej) that maps this evidence vector to a binary inquiry deci-
sion.15 Each job has a pair of race-specific callback probabilities {pjw(x)�pjb(x)} that may
vary with applicant quality x. We use H(·) to denote the i.i.d. randomization distribution
ofXj�. Consistent with our earlier analysis of the NPRS experiment, we rule out the possi-
bility of discrimination against whites by assuming Pr(pjw(x)≥ pjb(x))= 1 for all quality
levels x ∈X .

The regulator’s loss from applying decision rule δ(Ej)= δj ∈ {0�1} to job j is modeled
as

Lj(δj)= δj
(
κ−Λ

(∫ [
Λ−1

(
pjw(x)

) −Λ−1
(
pjb(x)

)]
dH(x)

))
� (8)

One can think of the parameter κ ∈ (1/2�1] as capturing the cost of conducting an inves-
tigation. The term Λ(

∫ [Λ−1(pjw(x)) − Λ−1(pjb(x))]dH(x)) ∈ [1/2�1] gives the benefit
to the investigation, which is increasing in the average log callback odds advantage of
whites over blacks at job j across quality levels. To ensure this benefit remains bounded,
the racial difference in log odds is then mapped back to the unit interval by the logis-
tic CDF to produce the payoff to an investigation. Note that, under the logit model of
the previous section, this payoff reduces to Λ(βj). The regulator would like to investi-
gate whenever this payoff exceeds the investigation cost, in which case Lj(1), the loss of
investigating, is negative.

13Of course, the results of such an experiment would be difficult to interpret without an earlier experiment
revealing the model parameters, as one would not be able to parse the effects of race from those of quality.

14Our analysis is based loosely on the functioning of the EEOC, which has the authority to conduct sys-
tematic investigations into the discriminatory behavior of particular organizations. Because investigations are
costly, the EEOC uses a priority system based on human judgement to decide which complaints to investigate
(US Equal Employment Opportunity Commission (2016)). The results below illustrate how direct callback ev-
idence from a correspondence experiment can be blended with indirect evidence to assist or replace informal
human judgements.

15We confine ourselves to deterministic rules because randomized decision rules violate commonly held
horizontal equity principles.
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Because the {pjw(x)�pjb(x)}x∈X are not known, the regulator minimizes expected loss
(i.e., risk). When the regulator knows the joint distribution of callback probabilities in the
population, the risk function can be written

Rj

(
G�δ(·)) = E

[
Lj(δj)

] = E

[
δj(Ej)

(
κ−Λ

(∫ [
Λ−1

(
pjw(x)

) −Λ−1
(
pjb(x)

)]
dH(x)

))]
�

where G : [0�1]2|X | → [0�1] is the joint distribution of quality-specific callback rates. Be-
cause {Ej�pjw(x)�pjb(x)}Jj=1 are i.i.d. across jobs, we can drop the j subscripts and refer
to the risk function as R(G�δ(·)). Choosing δ(Ej) to minimize the risk function pointwise
yields the following lemma, which characterizes the regulator’s optimal decision rule in
the case where G is known.

LEMMA 3—Optimal Decision Rule: The decision rule

δ(Ej)= 1
{
E

[
Λ

(∫ [
Λ−1

(
pjw(x)

) −Λ−1
(
pjb(x)

)]
dH(x)

)
|Ej

]
> κ

}
minimizes R(G�δ)�

One can think of Lemma 3 as offering an economically motivated standard of rea-
sonable doubt: when the posterior expected benefit of an investigation exceeds the in-
vestigation cost κ, it is rational to conduct an investigation. Note that, in the two-type
logit model, the difference in log odds at job j equals β0Dj for all quality levels, so
the optimal decision rule amounts to investigating when the posterior probability of dis-
crimination exceeds a cost-based threshold. In this case, the decision rule can be written
δ(Ej)= 1{P(Ej�Glogit) > (κ− 1/2)/(Λ(β0)− 1/2)}.

Ambiguity

WhenG is only known to lie in some identified setΘ of distributions, many possible de-
cision rules are consistent with rationality. Among those rules, an important benchmark
is the minimax decision rule (Wald (1945), Savage (1951), Manski (2000)), which mini-
mizes the maximum risk that may arise from the regulator’s decisions. We can define the
maximum risk function and the associated minimax decision rule respectively as

Rm(Θ�δ)= sup
G∈Θ

R(G�δ) and δmm = arg inf
δ∈D

Rm(Θ�δ)� (9)

where D is the set of deterministic decision rules. Unlike in the case where G is known,
a regulator that only knows G ∈Θ cannot consult a single posterior expectation to make
the decision of whether to investigate. Rather, the maximum risk of each decision rule
must be computed to obtain the minimax decision rule.

Relying on a discretized function space for G simplifies computation of the maximum
risk function Rm consistent with a set of experimental callback probabilities. As explained
in Appendix E of the Supplemental Material, whenΘ consists of a family of discrete distri-
butions, Rm(Θ�δ) can be computed numerically as the solution to a linear programming
problem. The minimax decision rule δmm(·) is found by computing Rm(Θ�δ) for each
candidate rule δ ∈ D and choosing the rule that yields lowest maximal risk.
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FIGURE 6.—Bayes and minimax risk, NPRS data.

Bayes versus Minimax Decisions

We now compare the decisions made by a Bayesian regulator with a minimax regulator
in the hypothetical five-pair generalization of the NPRS experiment considered in Sec-
tion 8. As in Figure 4, we assume applications take on only two quality levels (high or
low) with equal probability.

We consider a restricted family D † ⊂ D of decision rules of the form δ(Ej) =
1{P(Ej�Glogit) ≥ q}, where q ∈ (0�1) is a posterior cutoff and Glogit is the logit model
reported in column (2) of Table V. Computing the maximal risk for this family of deci-
sion rules can be thought of as a way of “second guessing” the risk associated with each
logit posterior threshold without debating the logit model’s ordering of the underlying
evidence configurations.16 In computing Rm(Θ�δ), we use the logit model predictions of
callback probabilities within each of the two quality bins as constraints (see the Appendix
for details) and calibrate κ so that, under the logit DGP, an 80% posterior threshold
minimizes risk.

Figure 6 plots logit (i.e., Bayes) risk and Rm(Θ�δ) against the nominal logit posterior
threshold q. As q approaches 1, both the maximal and Bayes risks approach zero, as no

16With Lw white and Lb black applications, there are 2(1+Lw)(1+Lb) logically possible decision rules which, in
practice, prohibits brute force enumeration whenLw+Lb > 4. Restricting attention to logit posterior threshold
rules allows us to circumvent this obstacle. In cases where multiple evidence configurations yield the same logit
posterior, we consider separate rules that investigate each of these configurations individually.
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jobs are investigated in the limit. Conversely, as the posterior threshold approaches zero,
at which point all jobs are investigated, the maximum risk diverges from the Bayes risk
because the least favorable G is one where nearly all jobs are engaged in trivial levels of
discrimination that fail to justify the investigation cost. Recall from Table IV, however,
that some jobs in the NPRS experiment must be discriminating, which limits the magni-
tude of this divergence.

While the Bayes risk function is minimized by the decision rule with a posterior thresh-
old of 80%, Rm(Θ�δ) is minimized by a rule with a logit-based threshold of 83%. This
higher threshold implies that a minimax regulator would investigate fewer jobs than a
Bayesian regulator with the same preferences who believes G to be logit. The change
in behavior is minimal, however, suggesting that, at least for this specification of prefer-
ences, the Bayes decision rule is relatively robust to ambiguity over the nature of the true
DGP. As shown in Appendix Figure A.2, however, had we considered a more aggressive
Bayesian benchmark (e.g., a 40% threshold), the minimax and Bayes rules would have
departed more substantially, as the maximum risk can greatly exceed the Bayes risk.

That the Bayes and minimax thresholds are nearer each other for higher nominal
thresholds is to be expected, as our risk function must approach zero as the posterior
cutoff approaches 1. In practice, state and regulatory agencies are likely to exhibit pref-
erences requiring relatively high posterior thresholds that, as in our example, make the
bounds on the risk function relatively narrow over the relevant range of decision rules.
The concordance of maximum and Bayes risk over this range suggests that flexible para-
metric models such as the mixed logit specification employed in Section 8 may serve as a
useful heuristic for decisionmaking by such entities.

10. CONCLUSION

Correspondence studies are powerful tools that have been extensively used to de-
tect market-level averages of discriminatory behavior. Revisiting three such studies, we
find tremendous heterogeneity in discriminatory behavior across jobs. This heterogene-
ity presents authorities charged with enforcing anti-discrimination laws with a difficult
inferential task. Our analysis suggests that when ensemble evidence is used, sending 10
applications per job enables accurate detection of a nontrivial share of discriminatory em-
ployers. This finding opens the possibility that discrimination can be monitored—perhaps
in real time—at the employer level.

Our results also provide a number of methodological lessons regarding the design and
analysis of correspondence studies, and of experimental ensembles more generally. First,
we demonstrate that indirect evidence can serve as a valuable supplement to direct ev-
idence even when heterogeneity distributions are not point identified. Using a few mo-
ments of the callback rate distribution in conjunction with only four applications per job,
we derived informative lower bounds on the share of jobs engaged in illegal discrimina-
tion in the NPRS experiment. In the AGCV study, which sent eight applications to each
job, we deduced informative lower bound rates of discrimination against men and women
separately.

Second, our analysis highlights that the appropriate use of indirect evidence depends
critically on the objectives of the investigator, formalized in our framework by the loss
function of a hypothetical regulator. While in point identified settings it is straightforward
to characterize the tradeoffs presented by different decision rules, partial identification of
heterogeneity distributions tends to undermine identifiability of this tradeoff itself. In our
setting, acknowledging the ambiguity stemming from partial identification turns out to
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lead to only slightly more conservative decisions with a plausible loss function. An im-
portant topic for future research is the extent to which the policy implications of recent
econometric evaluations of teachers, schools, hospitals, and neighborhoods (e.g., Chetty,
Friedman, and Rockoff (2014b), Angrist et al. (2017), Hull (2018), Chetty and Hendren
(2018), Chetty, Friedman, Hendren, Jones, and Porter (2018)) vary with alternative no-
tions of risk.
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APPENDIX A: CONNECTIONS TO LARGE SCALE TESTING

THE PROBLEM OF DETECTING INDIVIDUAL DISCRIMINATORS based on correspondence
evidence is closely related to the literature on large scale testing, which is concerned with
deciding which hypotheses to reject based upon the results of a very large number of
tests (Efron (2012) provided a review). A seminal contribution to this literature comes
from Benjamini and Hochberg (1995), who proposed controlling the False Discovery Rate
(FDR): the expected share of rejected null hypotheses that are true. We next show that a
decision rule based on the posterior probability π(cw� cb) will control an analogue of the
FDR, while a decision rule based on classical hypothesis testing will not.

As in Section 9, let δ : {0� � � � �Lw} × {0� � � � �Lb} → {0�1} represent an auditing rule
that maps the evidence vector (Cjw�Cjb) to a binary investigation decision. Letting
NJ ≡ ∑J

j=1 δ(Cjw�Cjb) denote the total number of investigations in a sample of J
jobs, we can define the Positive False Discovery Rate (Storey (2003)) as: pFDRJ =
E[N−1

J

∑J

j=1 δ(Cjw�Cjb)(1 − Dj)|NJ ≥ 1]. In words, pFDRJ gives the proportion of in-
vestigated jobs that are not discriminating, conditional on at least one investigation tak-
ing place. The following lemma establishes that a posterior cutoff decision rule controls
pFDRJ .

LEMMA A1: If δ(Cjw�Cjb)= 1{π(Cjw�Cjb) > p̄}, then pFDRJ ≤ 1 − p̄.

PROOF: Storey (2003, Theorem 1) showed that pFDRJ = Pr(Dj = 0|δ(Cjw�Cjb) = 1)
for any deterministic decision rule δ(·) obeying Pr(δ(Cjw�Cjb)= 1) > 0. Then the poste-
rior cutoff rule δ(Cjw�Cjb)= 1{π(Cjw�Cjb) > p̄} yields

pFDRJ = Pr
(
Dj = 0|π(Cjw�Cjb) > p̄

)
≤ Pr

(
Dj = 0|π(Cjw�Cjb)= p̄) = 1 − p̄� Q.E.D.

By contrast, consider an alternative decision rule δ†(Cjw�Cjb) based on a classical hy-
pothesis test that controls size at a fixed level α̃ < 1. To simplify exposition, suppose that
the test is pivotal under the null of nondiscrimination so that

Pr
(
δ†(Cjw�Cjb)= 1|pjw = p�pjb = p) = α̃� ∀p ∈ [0�1]�
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We can write the resulting pFDRJ of this rule:

Pr
(
Dj = 0|δ†(Cjw�Cjb)= 1

)
= Pr

(
δ†(Cjw�Cjb)= 1|Dj = 0

)
(1 − π̄)

Pr
(
δ†(Cjw�Cjb)= 1|Dj = 0

)
(1 − π̄)+ Pr

(
δ†(Cjw�Cjb)= 1|Dj = 1

)
π̄

≥ α̃(1 − π̄)
α̃(1 − π̄)+ π̄ �

To see that δ†(Cjw�Cjb) fails to control pFDRJ , note that limπ̄↓0
α̃(1−π̄)

α̃(1−π̄)+π̄ = 1. That is,
when almost no jobs are discriminating, classical hypothesis testing will result in the vast
majority of investigations being false accusations.

The False Discovery Rate of Benjamini and Hochberg (1995) can be written FDRJ =
pFDRJ ×Pr(NJ ≥ 1). Because Pr(NJ ≥ 1) ≤ 1, Lemma A1 implies that the posterior
cutoff rule also controls FDRJ .

APPENDIX B: PROOF OF LEMMA 2

By the law of total probability, the share of jobs calling cw white and t − cw black appli-
cations among those calling t total can be written

f̄t(cw)= (1 − π̄t)f̄ 0
t (cw)+ π̄t f̄ 1

t (cw)�

where f̄ dt (cw)= Pr(Cjw = cw|Cjw +Cjb = t�Dj = d) for d ∈ {0�1}. Since f̄ 1
t (cw) ∈ [0�1], we

have

f̄t(cw)≥ (1 − π̄t)f̄ 0
t (cw)� f̄t(cw)≤ (1 − π̄t)f̄ 0

t (cw)+ π̄t�
which implies

π̄t ≥ max
{
f̄ 0
t (cw)− f̄t(cw)
f̄ 0
t (cw)

�
f̄t(cw)− f̄ 0

t (cw)

1 − f̄ 0
t (cw)

}
�

Taking the maximum of these lower bounds over cw ∈ {0� � � � � t} yields the bound on π̄t in
part (i) of Lemma 2.

By Bayes’s rule, the share of discriminators among jobs calling cw white and t−cw black
applications is given by

π(cw� t − cw)= 1 − f̄ 0
t (cw)(1 − π̄t)
f̄t(cw)

�

Plugging the bound on π̄t from part (i) of the lemma into this expression gives the bound
on π(cw� t − cw) in part (ii).

APPENDIX C: DISCRETIZATION OF G AND LINEAR PROGRAMMING BOUNDS

To compute the solution to the problem in (5), we approximate the CDF G(pw�pb)
with the discrete distribution

GK(pw�pb)=
K∑
k=1

K∑
s=1

ηks1
{
pw ≤ �(k� s)�pb ≤ �(s�k)}�
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where the {ηks}K�Kk=1�s=1 are probability masses and {�(k� s)��(s�k)}K�Kk=1�s=1 comprise a set
of mass point coordinates generated by the function

�(k� s)= min{k� s} − 1
K︸ ︷︷ ︸

diagonal

+ max{0�k− s}2

K(1 +K − y)︸ ︷︷ ︸
off-diagonal

�

This discretization scheme can be visualized as a two-dimensional grid containing K2 ele-
ments. The diagonal entries on the grid represent jobs where no discrimination is present.
The first term above ensures the mass points are equally spaced along the diagonal from
(0�0) to (K−1

K
� K−1

K
). The second term spaces off diagonal points quadratically according

to their distance from the diagonal in order to accommodate jobs with very low levels of
discrimination while economizing on the number of grid points. We use a spacing scheme
that places more points near the diagonal because we are particularly interested in the
mass exactly on the diagonal. Note that lim

K→∞
�(K� s)= 1, ensuring the grid asymptotically

spans the unit square.
With this notation, the constraints in (6) can be written

f̄ (cw� cb)=
(
Lw

cw

)(
Lb

cb

) K∑
k=1

K∑
s=1

ηks�(k� s)
cw

(
1 −�(k� s))Lw−cw

×�(s�k)cb(1 −�(s�k))Lb−cb� (1)

for cw = (1� � � � �Lw) and cb = (0� � � � �Lb). Hence, our composite discretized optimization
problem is to

min
{ηks}

1 −

(
L

t

)
t∑

c′w=0

f̄
(
c′
w� t − c′

w

)
K∑
k=1

ηkk�(k�k)
t
(
1 −�(k�k))L−t

�

subject to (1) and
K∑
k=1

K∑
s=1

ηks = 1� ηks ≥ 0�

for k= 1� � � � �K and m= 1� � � � �K. We solve this problem numerically using the Gurobi
software package. Because setting K too low will tend to yield artificially tight bounds, we
set K = 900 in all bound computation steps, which yields (900)2 = 810,000 distinct mass
points.

Appendix Table A.IV reports linear programming bounds for various choices of K.
As expected, the bounds stabilize with a sufficiently large K, and the quadratic spacing
described above produces more accurate results than an equally-spaced grid: we obtain
similar estimates for a quadratic grid with 3002 grid points and a rectangular grid with
9002 points.

APPENDIX D: SHAPE-CONSTRAINED GMM

To accommodate the Nunley, Pugh, Romero, and Seals (2015) study which employs
multiple application designs, we introduce the variable Lj = (Ljw�Ljb) which gives the
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number of white and black applications sent to job j. Collecting the design-specific call-
back probabilities {Pr(Cjw = cw�Cjb = cb|Lj = l)}cw�cb into the vector f̄l, our model relates
these probabilities to moments of the callback distribution via the linear system f̄l = Blμ,
for Bl a fixed matrix of binomial coefficients. Letting f̄ denote the vector formed by
“stacking” the {f̄l} across designs in an experiment, we write f̄ = Bμ. Let η be a K2 × 1
vector composed of the probability masses {ηks}K�Kk=1�s=1 (see Appendix C). For GMM esti-
mation, we set K = 150 (larger values yield very similar results). From (3), we can write
μ = Mη where M is a dim(μ) × K2 matrix composed of entries with typical element
�(k� s)m�(s�k)n. We then have the moment restriction f̄ = BMη.

Let f̃ denote the vector of empirical callback probabilities with typical element

J−1
J∑
j=1

1{Cjw = cw�Cjb = cb�Lj = l}

J−1
J∑
j=1

1{Lj = l}
�

Our shape-constrained GMM estimator of η can be written as the solution to the follow-
ing quadratic programming problem:

η̂= arg inf
η
(f̃ −BMη)′W (f̃ −BMη)

s.t. η≥ 0�1′η= 1� (2)

whereW is a fixed weighting matrix. Note that becauseG is not identified, there are many
possible solutions η̂ to this problem, but these solutions will all yield the same values of
BMη̂. Our shape-constrained estimate of the moments is μ̂=Mη̂, while our estimator of

the callback probabilities is ˆ̄f = BMη̂. We follow a two-step procedure, solving (2) with
diagonal weights proportional to the number of jobs used in the application design and

then choosing W = Σ̂−1, where Σ̂ = diag( ˆ̄f (1)) − ˆ̄f (1) ˆ̄f (1)′ is an estimate of the variance-
covariance matrix of the callback frequencies implied by the first-step shape-constrained

callback probability estimates ˆ̄f (1).

Hong and Li (2020) Standard Errors

Standard errors on the moment estimates μ̂ are computed via the numerical bootstrap
procedure of Hong and Li (2020) using a step size of J−1/3 (we found qualitatively similar
results with a step size of J−1/4). Our implementation of the numerical bootstrap proceeds
as follows: the bootstrap analogue μ∗ of μ̂ solves the quadratic programming problem in
(2) where f̃ has been replaced by (f̃ +J−1/3f ∗). The bootstrap probabilities f ∗ have typical
element

J1/2

( J∑
j=1

ω∗
j1{Cjw = cw�Cjb = cb�Lj = l}

J∑
j=1

ω∗
j1{Lj = l}

−

J∑
j=1

1{Cjw = cw�Cjb = cb�Lj = l}
J∑
j=1

1{Lj = l}

)
�
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where {ω∗
j }Jj=1 are a set of i.i.d. draws from an exponential distribution with mean

and variance 1. For any function φ(μ̂) of the moment estimates μ̂ reported, we use
as our standard error estimate the standard deviation across bootstrap replications of
J−1/3[φ(μ∗)−φ(μ̂)].

Chernozhukov, Newey, and Santos (2015) Goodness-of-Fit Test

To formally test whether there exists an η in the K2-dimensional probability simplex
such that f = BMη holds, we rely on the procedure of Chernozhukov, Newey, and Santos
(2015). Our test statistic (the “J-test”) can be written

Tn = inf
η
(f̃ −BMη)′Σ̂−1(f̃ −BMη)

s.t. η≥ 0�1′η= 1�

Letting F
∗ = f ∗ − f̃ denote the (centered) bootstrap analogue of the callback frequen-

cies f̃ and W ∗ a corresponding bootstrap weighting matrix, our bootstrap test statistic
takes the form

T ∗
n = inf

η�h

(
F

∗ −BMh)′
W ∗(

F
∗ −BMh)

s.t. (f̃ −BMη)′W (f̃ −BMη)= Tn�η≥ 0�1′η= 1�h≥ −η�1′h= 0� (3)

As in the full sample problem, we conduct a two-step GMM procedure in each boot-
strap replication, setting W ∗ = [diag(BMη(1)∗)− (BMη(1)∗)(BMη(1)∗)′]−1, where η(1)∗ is
a first-step diagonally weighted estimate of the probabilities in the bootstrap sample. The
goodness-of-fit p-value reported is the share of bootstrap samples for which T ∗

n > Tn.
To simplify computation of (3), we reformulate the problem in two ways. First, we define

primary and auxiliary vectors of errors for each moment condition. Letting ξh = F
∗ −

BMh and ξη = f̃ −BMη, the problem can be re-posed as

T ∗
n = inf

ξh�ξη
ξ′
hW

∗ξh�

s.t. ξ′
ηW ξη = Tn�BMh+ ξh = F

∗�BMη+ ξη = f̃ �1′h= 0�1′η= 1�h≥ −η�η≥ 0�

Now letting h+ = h+η, we can further rewrite the problem as

T ∗
n = inf

ξh�ξη
ξ′
hW

∗ξh�

s.t. ξ′
ηW ξη = Tn�BMh+ + ξh + ξη = F

∗�BMη+ ξη = f̃ �
1′h+ = 1�1′η= 1�h+ ≥ 0�η≥ 0�

This final representation replaces a K2 ×K2 + 1 (inequality) constraint matrix encoding
ξh ≥ −ξη and ξη ≥ 0 with a 2K2 × 1 vector encoding h+ ≥ 0 and η ≥ 0. Because this
problem still involves a quadratic constraint in ξη, we make use of Gurobi’s Second Order
Cone Programming (SOCP) solver to obtain a solution.
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APPENDIX E: COMPUTING MAXIMUM RISK

We approximate G(pHw �p
L
w�p

H
b �p

L
b ) with the discretized distribution

GK

(
pHw �p

L
w�p

H
b �p

L
b

) =
K∑
k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′1
{
pHw ≤ �(k� s)�pLw ≤ �(

k′� s′
)
�pHb ≤ �(s�k)�

pLb ≤ �(
s′�k′)}�

which has K4 mass points. In practice, we choose K = 30, which yields the same number
of points as the approximation described in Appendix C.

Generalizing the notation of Appendix D, let the vectorLj = (LHjw�LLjw�LHjb�LLjb) record
the number of high quality and low quality applications of each race sent to job j and let
Cj = (CH

jw�C
L
jw�C

H
jb�C

L
jb) record the corresponding numbers of callbacks. The space of

auditing rules we consider is of the form δ(Cj�Lj� q)= 1{P(Cj�Lj�Glogit) > q}. With this
notation, we can write the risk function

R(q)=
∑
l∈A1

wlE

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
pxwj

) −Λ−1
(
pxbj

)
2

)}∣∣∣∣Lj = l
]
�

where A1 is the set of all 25 = 36 binary quality permutations possible in a design with
5 white and 5 black applications and wl =

( 5
lHw

)( 5
lH
b

)
(1/2)10 is the set of weights that arise

when quality is assigned at random within race.
To further evaluate the above risk expression, we can write

E

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
pxwj

) −Λ−1
(
pxbj

)
2

)}∣∣∣∣Lj = l
]

=
aHjw∑
cHw =0

aH
jb∑

cH
b

=0

aLjw∑
cLw=0

aL
jb∑

cL
b

=0

K∑
k=1

K∑
s=1

K∑
k′≥k

K∑
s′≥s
δ(c� l� q)ηksk′s′

(
lHw
cHw

)(
lHb
cHb

)(
lLw
cLw

)(
lLb
cLb

)

×�(k� s)cHw (
1 −�(k� s))lHw −cHw �(s�k)c

H
b
(
1 −�(s�k))lHb −cH

b

×�(
k′� s′

)cLw(1 −�(
k′� l= s′))lLw−cLw�

(
s′�k′)cLb (1 −�(

s′�k′))lLb −cL
b

×
{
κ−Λ

(
Λ−1

(
�(k� s)

) −Λ−1
(
�(s�k)

)
2

+ Λ−1
(
�

(
k′� s′

)) −Λ−1
(
�

(
s′�k′))

2

)}
�

Using this expression, maximal risk can therefore be written as the solution to the follow-
ing linear programming problem:

Rm(q)= max
{ηksk′s′ }

∑
l∈A1

wlE

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
pxwj

) −Λ−1
(
pxbj

)
2

)}∣∣∣∣Lj = l
]
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subject to the constraint that the ηklk′l′ are nonnegative and sum to 1 and that the follow-
ing moment restrictions hold:

Pr(Cj = c|Lj = l)=
(
lHw
cHw

)(
lHb
cHb

)(
lLw
cLw

)(
lLb
cLb

) K∑
k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′

×�(k� s)cHw (
1 −�(k� s))lHw −cHw �(s�k)c

H
b
(
1 −�(s�k))lHb −cH

b

×�(
k′� s′

)cLw(1 −�(
k′� s′

))lLw−cLw�
(
s′�k′)cLb (1 −�(

s′�k′))lLb −cL
b �

We impose these restrictions for the following set of designs, all of which are present in
the Nunley et al. (2015) experiment: A2 = {(2�0�2�0)� (2�0�0�2)� (0�2�2�0)� (0�2�0�2)}.
To operationalize these constraints, we replace the unknown cell probabilities Pr(Cj =
c|Lj = l) for all c and l in A2 with their predictions under the logit model reported in
column (2) of Table V. Using the logit predictions serves as a form of smoothing that
allows us to avoid problems that arise with small cells when considering quality variation
due to covariates.

APPENDIX: FIGURES AND TABLES

FIGURE A.1.—Mixed logit model fit. Notes: This figure compares mixed logit predicted frequencies for call-
back events in the Nunley et al. (2015) data with corresponding empirical frequencies. The horizontal axis
plots model-predicted probabilities for each possible combination of white and black callback counts (exclud-
ing zero total callbacks), separately by experimental design. Model predictions are calculated by simulating
the logit model in column (2) of Table V 10,000 times for each job in the Nunley et al. data set. The vertical
axis plots the observed frequency of each event. Green dots show frequencies for a design with two white and
two black applications, while orange, blue, red, and gray points show frequencies for designs with 3 white and
1 black, 1 white and 3 black, 4 white and zero black, and 0 white and 4 black applications, respectively. The
dashed line is the 45-degree line. The test statistic and p-value come from a Wald test that all model-predicted
and empirical frequencies match, treating the model predictions as fixed.
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FIGURE A.2.—Bayes and minimax investigation thresholds. Notes: This figure compares Bayes and minimax
decisions for various values of the investigation cost parameter κ. The horizontal axis displays the posterior
investigation threshold for a Bayes regulator for each value of κ, and the vertical axis shows the corresponding
threshold for a minimax regulator. The dashed line is the 45-degree line.

TABLE A.I

MOMENTS OF CALLBACK RATE DISTRIBUTION, BM DATAa

No Constraints Shape Constraints

Moment (1) (2)

E[pw] 0�094 0�094
(0�006) (0�007)

E[pb] 0�063 0�063
(0�006) (0�006)

E[(pw −E[pw])2] 0�040 0�040
(0�005) (0�005)

E[(pb −E[pb])2] 0�023 0�023
(0�004) (0�004)

E[(pw −E[pw])(pb −E[pb])] 0�028 0�028
(0�004) (0�003)

E[(pw −E[pw])2(pb −E[pb])] 0�015 0�014
(0�003) (0�002)

E[(pw −E[pw])(pb −E[pb])2] 0�023 0�012
(0�003) (0�002)

E[(pw −E[pw])2(pb −E[pb])2] 0�010 0�010
(0�003) (0�002)

J-statistic: 0.0
p-value: 1.00

Sample size 1112

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white and
black callback rates in the Bertrand and Mullainathan (2004) data. Estimates in column (2) come from a shape-constrained GMM
procedure imposing that the moments are consistent with a well-defined probability distribution. The J-statistic is the minimized
shape-constrained GMM criterion function. The p-value comes from a bootstrap test of the hypothesis that the model restrictions are
satisfied.
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TABLE A.II

MOMENTS OF CALLBACK RATE DISTRIBUTION, NPRS DATAa

Design-Specific Estimates

(2�2) Design (3�1) Design (1�3) Design P-Value Combined Estimates

Moment (1) (2) (3) (4) (5)

E[pw] 0�174 0�199 0�142 0�027 0�176
(0�010) (0�025) (0�015) (0�007)

E[pb] 0�148 0�149 0�157 0�854 0�153
(0�010) (0�015) (0�013) (0�007)

E[(pw −E[pw])2] 0�089 0�108 – 0�097 0�095
(0�007) (0�009) (0�005)

E[(pb −E[pb])2] 0�085 – 0�083 0�857 0�084
(0�007) (0�008) (0�005)

E[(pw −E[pw])(pb −E[pb])] 0�083 0�084 0�080 0�926 0�084
(0�006) (0�009) (0�009) (0�004)

E[(pw −E[pw])3] – 0�051 – 0�106
(0�008) (0�007)

E[(pb −E[pb])3] – – 0�044 0�091
(0�007) (0�006)

E[(pw −E[pw])2(pb −E[pb])] 0�044 0�043 – 0�875 0�040
(0�004) (0�007) (0�002)

E[(pw −E[pw])(pb −E[pb])2] 0�047 – 0�045 0�819 0�042
(0�005) (0�007) (0�002)

E[(pw −E[pw])3(pb −E[pb])] – 0�034 – – 0�035
(0�005) (0�002)

E[(pw −E[pw])(pb −E[pb])3] – – 0�037 – 0�037
(0�006) (0�002)

E[(pw −E[pw])2(pb −E[pb])2] 0�036 – – – 0�037
(0�004) (0�002)

J-statistic: 23.0
p-value: 0.226

Sample size 1146 544 550 2240

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white
and black callback rates in the Nunley et al. (2015) data. Columns (1), (2), and (3) show estimates based on jobs that received 2 white
and 2 black, 3 white and 1 black, and 1 white and 3 black applications, respectively. Column (4) shows p-values from tests that the
moments are the same in each design. Estimates in column (5) come from a shape-constrained GMM procedure imposing that the
moments are consistent with a well-defined probability distribution. The J-statistic is the minimized shape-constrained GMM criterion
function. The p-value come from a bootstrap test of the hypothesis that the model restrictions are satisfied.
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TABLE A.III

MOMENTS OF CALLBACK RATE DISTRIBUTION, AGCV DATAa

No
Constraints

Shape
Constraints

No
Constraints

Shape
Constraints

Moment (1) (2) Moment (3) (4)

E[pf ] 0�136 0�137 E[(pf −E[pf ])4] 0�024 0�026
(0�010) (0�010) (0�004) (0�003)

E[pm] 0�103 0�109 E[(pm −E[pm])4] 0�019 0�023
(0�009) (0�009) (0�004) (0�003)

E[(pf −E[pf ])2] 0�066 0�066 E[(pf −E[pf ])4(pm −E[pm])] 0�012 0�012
(0�006) (0�006) (0�003) (0�002)

E[(pm −E[pm])2] 0�047 0�052 E[(pf −E[pf ])(pm −E[pm])4] 0�013 0�013
(0�005) (0�006) (0�003) (0�002)

E[(pf −E[pf ])(pm −E[pm])] 0�043 0�043 E[(pf −E[pf ])3(pm −E[pm])2] 0�012 0�011
(0�005) (0�004) (0�003) (0�002)

E[(pf −E[pf ])3] 0�032 0�064 E[(pf −E[pf ])2(pm −E[pm])3] 0�012 0�013
(0�005) (0�007) (0�003) (0�002)

E[(pm −E[pm])3] 0�025 0�048 E[(pf −E[pf ])4(pm −E[pm])2] 0�010 0�010
(0�005) (0�007) (0�002) (0�002)

E[(pf −E[pf ])2(pm −E[pm])] 0�021 0�018 E[(pf −E[pf ])2(pm −E[pm])4] 0�010 0�010
(0�004) (0�003) (0�002) (0�002)

E[(pf −E[pf ])(pm −E[pm])2] 0�022 0�020 E[(pf −E[pf ])3(pm −E[pm])3] 0�010 0�009
(0�004) (0�003) (0�002) (0�002)

E[(pf −E[pf ])3(pm −E[pm])] 0�015 0�015 E[(pf −E[pf ])4(pm −E[pm])3] 0�008 0�008
(0�003) (0�002) (0�002) (0�001)

E[(pf −E[pf ])(pm −E[pm])3] 0�016 0�017 E[(pf −E[pf ])3(pm −E[pm])4] 0�008 0�008
(0�003) (0�002) (0�002) (0�002)

E[(pf −E[pf ])2(pm −E[pm])2] 0�016 0�016 E[(pf −E[pf ])4(pm −E[pm])4] 0�007 0�001
(0�003) (0�002) (0�002) (0�001)

J-statistic: 2.7
p-value: 0.891

Sample size: 799

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white
and black callback rates in the Arceo-Gomez and Campos-Vasques (2014) data. Estimates in columns (2) and (4) come from a shape-
constrained GMM procedure imposing that the moments are consistent with a well-defined probability distribution. The J-statistic is
the minimized shape-constrained GMM criterion function. The p-value comes from a bootstrap test of the hypothesis that the model
restrictions are satisfied.
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TABLE A.IV

SENSITIVITY OF MOMENTS AND BOUNDS TO DISCRETIZATION GRIDa

J-Statistic Share
Discriminating

Share Disc.,
One Call

Share Disc.,
Two Calls

Share Disc.,
Three Calls

Grid Spacing (1) (2) (3) (4) (5)

A. Nunley et al. data
K1 = 50 K2 = 200 Quadratic 23�00 0.267 0.485 0.553 0.680
K1 = 100 K2 = 200 Quadratic 22�97 0.369 0.701 0.716 0.845

K2 = 400 Quadratic 0.332 0.619 0.652 0.788
K2 = 600 Quadratic 0.322 0.597 0.636 0.769

K1 = 150 K2 = 300 Quadratic 22�96 0.404 0.771 0.778 0.884
K2 = 600 Quadratic 0.371 0.699 0.717 0.840
K2 = 900 Quadratic 0.361 0.679 0.700 0.826

Rectangular 0.412 0.787 0.793 0.890
B. Arceo-Gomez & Campos-Vasquez data

K1 = 50 K2 = 200 Quadratic 3�5 0.220 0.762 0.709 0.570
K1 = 100 K2 = 200 Quadratic 2�8 0.218 0.738 0.717 0.599

K2 = 400 Quadratic 0.209 0.732 0.710 0.583
K2 = 600 Quadratic 0.209 0.730 0.708 0.579

K1 = 150 K2 = 300 Quadratic 2�7 0.220 0.727 0.718 0.606
K2 = 600 Quadratic 0.208 0.722 0.709 0.587
K2 = 900 Quadratic 0.207 0.721 0.708 0.584

Rectangular 0.215 0.713 0.707 0.590

aThis table explores the sensitivity of our shape-constrained generalized method of moments (SCGMM) and linear programming
bounds results to the number of grid points used to approximate the joint distribution of callback probabilities. K1 refers to the number
of mass points used in the quadratic programming SCGMM step, while K2 refers to the number of mass points used in the linear
programming bounds step. Quadratic grid spacing refers to the scheme described in Appendix A, and rectangular spacing refers to a
grid with equally spaced points. Column (1) shows the minimized SCGMM criterion function for each value of K1. Column (2) displays
the lower bound on the fraction of discriminating jobs for each combination of K1 and K2. Columns (3)–(5) show corresponding
bounds conditional on the total number of callbacks. Panel A displays results for an application design with two white and two black
applicants in the Nunley et al. (2015) data, and panel B displays results for the Arceo-Gomez and Campos-Vasquez (2014) data. Bold
lines indicate the preferred specification used in the main text.
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