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A large literature focuses on the use of pro-
pensity score methods as a semi-parametric 
alternative to regression for estimation of aver-
age treatments effects.1 We show here that the 
classic regression-based estimator of coun-
terfactual means studied by Ronald Oaxaca 
(1973) and Alan S. Blinder (1973) constitutes 
a propensity score reweighting estimator based 
upon a linear model for the conditional odds of 
being treated—a functional form that emerges, 
for example, from an assignment model with a 
latent log-logistic error.2

As such, it enjoys the status of a “doubly robust” 
estimator of counterfactuals as in James Robins, 
Andrea Rotnitzky, and Lue Ping Zhao (1994): 
estimation is consistent if either the propensity 
score assumption or the model for outcomes is 
correct. To illustrate the method, the Oaxaca-
Blinder (O-B) estimator is applied to LaLonde’s 
(1986) study of the National Supported Work 
Demonstration, where it is found to compare 
favorably with competing approaches.

I. The Oaxaca-Blinder Estimator

Consider a population of individuals fall-
ing into two groups indexed by  D i  ∈ {0, 1}. We 
will refer to observations with  D i  = 1 as the 
treatment group and those with  D i  = 0 as the 
controls. Let  X i  be a K × 1 vector of random 

1 Guido W. Imbens (2004) provides a review. 
2 John DiNardo (2002) shows the equivalence of non-

parametric Oaxaca-Blinder and propensity score methods 
in the special case of fully saturated models with discrete 
covariates. 
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covariates (which we assume includes an inter-
cept) and  Y i  some outcome of interest. We begin 
by indexing the potential outcomes associated 
with treatment as follows:

 Y i  =  D i   Y  i  
1  +  (1 −  D i )  Y  i  

0 ,

where  Y  i  
1  is the outcome individual i would 

experience if treated and  Y   i  
0  is the outcome that 

would obtain in the absence of treatment.
The O-B approach is predicated upon a model 

for the potential outcomes of the form

(1)  Y  i  
d   =  X  i  ′   β  d  +  ε  i  

d ,

(2) E  [ ε  i  
d  |  X i   ,  D i  ]   = 0 for d ∈  {0, 1}  .

Hence, knowledge of  ( β 1 ,  β  0 )  is sufficient to 
compute counterfactual means for either group. 
Natural estimators of these parameters come 
from linear regression in the two populations 
indexed by  D i .

Suppose in particular that we are interested in 
the counterfactual mean outcomes the treatment 
group would have experienced in the absence of 
treatment, a quantity we denote as

  μ  0  
1  ≡ E  [  Y   i  

0  |  D i  = 1] .

We assume throughout that E [ X i   X  i  ′  |  D i  = 0] is 
finite and invertible so that a regression among 
the controls identifies  β  0 . According to the 
model in (1) and (2):

 μ  0  
1   = E [ X i  |  D i  = 1]′ β  0  

 = E [ X i  |  D i  = 1]′

  × E [ X i   X  i  ′  |  D i  = 0]−1 E [ X i   Y i  |  D i  = 0]

 ≡  δ  OB .
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When each of the moments in  δ  OB  is replaced by 
its sample analogue, one obtains the O-B esti-
mate of the counterfactual mean, which, by stan-
dard arguments, can be shown to be consistent 
for the parameter of interest. This estimator may 
be particularly convenient in settings where K is 
large and few treated observations are  available, 
as estimation requires only that collinearity 
problems be absent among the controls.3

II. Reweighting Estimators

A popular alternative to regression-based 
methods is to use propensity score weighted 
averages of outcomes as estimates of counter-
factual means. This approach is typically moti-
vated by the following conditional independence 
assumption:

(3) ( Y  i  
1 ,  Y   i  

0 )  ‖   D i  |  X i  .

This restriction, termed “unconfoundedness” 
by Paul R. Rosenbaum and Donald B. Rubin 
(1983), amounts to assuming that treatment 
status was assigned randomly conditional 
on covariates. Note that the parametric O-B 
model would satisfy this condition were we to 
strengthen the mean independence assumption 
(2) to encompass full conditional indepen-
dence of the errors.4 However,  (3) is usually 
considered less restrictive than the O-B assump-
tions since it is agnostic about the dependence 
of the potential outcomes on the covariates. It 
is instructive, then, to consider the population 
moments that identify  μ  0  

1  using only the non-
parametric restrictions inherent in (3).

We must first make the following “common 
support” assumption ensuring identification:

(4) e( X i ) < 1,

where e( X i ) ≡ P( D i  = 1 |  X i ) is the propensity 
score. This condition, which guarantees that 
suitable controls can be found for every treated 
unit, allows us to derive the following  well-known 

3 See Matias Busso, Jesse Gregory, and Patrick M. Kline 
(2010) for a recent application .

4 This would be equivalent to assuming, in addition to 
(2), that E [g( ε  i  

d  ) |  X i ,  D i ] = E [ g( ε  i  
d  ) |  X i  ] for any continu-

ous function g(·) vanishing outside a finite interval and for 
d ∈  {0, 1} . See, e.g., Theorem 1.17 in chapter V of William 
Feller (1966). 

result justifying the use of propensity score 
reweighting estimators:

PROPOSITION 1: if (3) and (4) hold, then

(5)  μ  0  
1  =  E [   e ( X i )  _ π     1 −  D i  _ 

1 − e ( X i ) 
    Y i  ]

 =  E [ w ( X i )  Y i  |  D i  = 0],

where w ( X i )  ≡ ((1 − π)/π)e ( X i ) /(1 − e ( X i ) ) 
and π ≡ P ( D i  = 1) .

PROOF:

E [w( X i )  Y i  |  D i  = 0] = E [w( X i ) Y  i  
  0  |  D i  =0]

 = E [w( X i )E [  Y  i  
  0  |  X i  ] |  D i  = 0]

 = ∫E [  Y  i  
0  |  X i  = x] w(x) d F X | D=0 (x)

 = ∫E [  Y  i  
0  |  X i  = x] d F X | D=1 (x)

 = E [  Y  i  
0  |  D i  = 1].

the second line follows from (3) and 
the fourth from the fact that by Bayes’ rule 
d F X | D=1 (x)/d F X | D=0 (x) = w(x).

Thus, a weighted average of the control 
outcomes, with weights proportional to the 
conditional odds of treatment, identifies the 
counterfactual mean of the treated population. 
A large literature considers using sample ana-
logues of (5) for estimation of  μ  0  

1 , where e ( X i )  
is replaced by some parametric or nonparamet-
ric estimator.5 A difficulty with such approaches 
often arises in settings with few treated obser-
vations where simple propensity score models 
may perfectly predict treatment even if (4) holds 
in the population. Even when prediction is not 
perfect, recent studies suggests propensity score 
estimators that assign disproportionate weight 
to a few observations often exhibit poor finite 
sample performance.6

5 See DiNardo, Nicole M. Fortin, and Thomas Lemieux 
(1996), Keisuke Hirano, Imbens, and Geert Ridder (2003), 
and Imbens (2004). 

6 See Joseph D. Y. Kang and Joseph L. Schafer (2007), 
Robins et al. (2007), and Martin Huber, Michael Lechner, 
and Conny Wunsch (2010). 
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III. Equivalence

Let us now return to the parametric O-B 
estimand  δ  OB . That this quantity has an inter-
pretation as a weighted average of the control 
outcomes is self-evident. The following proposi-
tion shows that these weights have a propensity 
score based interpretation given only the com-
mon support assumption (4).

PROPOSITION 2: if (4) holds, then:

  δ  OB   = E [   ̃  w  ( X i )  Y i  |  D i  = 0],

  ˜ w  ( X i )   =  X  i  ′  E   [  X i   X  i  ′  |  D i  = 0]  −1 

 × E  [  X i    
1 − π _ π     

e ( X i )  _ 
1 − e ( X i ) 

   |  D i  = 0] .
PROOF:

Bayes’ rule and (4) imply E [ X i  |  D i  = 1] 
= E [  X i  ((1 − π)/π)(e ( X i ) /(1 − e ( X i ) )) |  D i  = 0]. 
Plugging this into the definition of  δ  OB  yields the 
result.

Note that the O-B weights   ˜ w  ( X i )  are simply 
the normalized projection of the true treatment 
odds e ( X i ) /(1 − e ( X i ) ) onto the column space 
of  X i  —i.e., they are the predicted values from 
an (infeasible) population regression of w ( X i )  
on  X i . Hence, the O-B specification provides a 
minimum mean squared error approximation to 
the true nonparametric weights w ( X i ) .

Of course, if the true odds of treatment are 
actually linear in  X i , then   ˜ w  ( X i )  = w ( X i ) , and 
Proposition 1 implies the O-B estimand will 
identify  μ  0  

1  even if the model for the outcomes is 
misspecified, provided that (3) and (4) hold. A 
linear model for the treatment odds arises natu-
rally from an assignment model of the form

  D i  = 1  [ X  i  ′  δ  +  v i  > 0],

where 1 [·]  is an indicator for whether the condi-
tion in brackets is true and the assignment error  
v i  is an i.i.d. draw from a standardized log-logis-
tic distribution with CDF F (z)  = z/(1 + z).7

7 This is to be contrasted with the standard logistic assign-
ment model, which assumes the odds of treatment take the 
form exp (X  i   ′ γ) for some coefficient vector γ. The log-logistic 
distribution is similar to a log-normal but with heavier tails 
(the mean of the distribution does not exist). The fact that the 

Conversely, if the model for the outcomes 
in (1) and (2) is correct, the O-B estimand will 
identify  μ  0  

1  even if the common support condi-
tion (4) fails and/or the implicit model for the 
propensity score is incorrect. Hence the estima-
tor is “doubly robust” (Robins, Rotnitzky, and 
Zhao 1994) as it identifies the parameter of inter-
est under two independent sets of assumptions.

A. A Remark on misspecification

The double robustness property offers little 
comfort to the applied econometrician who 
suspects any propensity score model, like any 
model for the conditional mean, to provide only 
a rough approximation to the data-generating 
process. Note from Propositions 1 and 2 that the 
population bias in the O-B approximation may 
be written as

  μ  0  
1  −  δ  OB  = E [(w ( X i )  −   ˜ w  ( X i ) ) Y i  |  D i  = 0].

Though the O-B weights may yield specifica-
tion errors at particular values of  X i , those errors 
will induce bias only if they are correlated with 
outcomes in the control sample.8 If, for instance, 
  ˜ w  ( X i )  = w ( X i )  +  ξ i , where  ξ i  is a random speci-
fication error obeying E [ ξ i   Y i  |  D i  = 0] = 0, then 
the O-B estimator will retain consistency.

An important question, then, is whether, in 
the absence of prior knowledge of the propen-
sity score, approximations ought to be sought 
with respect to the propensity score or the 
weights themselves.9 The O-B estimator follows 
the latter approach, while conventional propen-
sity score methods follow the former. Which 
approach removes more bias in a misspecified 
environment will depend on the specifics of the 
true data-generating process.

IV. Sample Properties

Thus far we have focused on the proper-
ties of the population moments defining the 
Oaxaca-Blinder estimator. It turns out that 

support of the distribution is nonnegative is not restrictive, as  
X i  will usually include an intercept. 

8 Both sets of weights can be shown to have mean one, 
which implies E [w ( X i )  −   ˜ w  ( X i )  |  D i  = 0] = 0. 

9 See Robins et al. (2007) and Xiaohong Chen, Han 
Hong, and Alessandro Tarozzi (2008) for further discussion 
of this issue. 
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the sample moments have some interesting 
properties as well. Define  N 1  =  ∑ i  

 
    D i   and X 

= [1,  x 2 , … ,  x K ], where 1 is an N × 1 vector of 
ones and the elements of { x 2 , … ,  x K } are N × 1 
covariate vectors. Then we may write the O-B 
estimate of the counterfactual mean in matrix 
notation as

     μ   0  1   ≡   1 _ 
 N 1 

    D′  HY,

 H ≡ X  ( X′ SX)  −1   X′ S,

where Y is the N × 1 vector of outcomes, D is an 
N × 1 vector whose elements consist of  D i , and S 
is an N × N diagonal selector matrix taking val-
ues equal to 1 −  D i  along the diagonal, and zero 
elsewhere. The N × N matrix H is a generaliza-
tion of the conventional “hat” matrix associated 
with OLS (David D. Hoaglin and Roy E. Welch 
1978). Averaging the rows of the hat matrix over 
the treated observations yields the 1 × N vector 
of O-B sample weights ω ≡ (1/ N 1 )  D′  H used 
to form an estimate     μ   0  1  of the average counter-
factual outcome in the treated sample. A few 
properties of these weights are notable:

•  The weights are zero for treated 
observations;

•  The weights sum to one;10

•  Some of the weights may be negative. This 
occurs when the treatment odds implied by 
the linear model are negative.

Like conventional propensity score weights, 
O-B weights can be thought of as reweighting 
the controls to match the covariate distribution 
of the treated units. Note that for any covariate  
x j  in X, we have, by the properties of projection 
matrices, that

   1 _ 
 N 1 

    D′  H x j  =   1 _ 
 N 1 

    D′  x j  .

In words, the reweighted mean of every control 
covariate exactly equals its mean value among 
the treated sample. Hence, the weights embod-
ied in the Oaxaca-Blinder approach ensure exact 

10 Though seemingly mundane, this property may be 
important in practice. See for example Busso, DiNardo, and 
Justin McCrary (2009). 

balance of moments included in the regression 
model, a property shared by the recently pro-
posed doubly robust estimator of Daniel Egel, 
Bryan S. Graham, and Christine Campos de 
Xavier Pinto (2009).

V. Application

To illustrate use of the Oaxaca-Blinder esti-
mator, we revisit LaLonde’s (1986) classic anal-
ysis of the National Supported Work (NSW) 
Demonstration using observational controls 
from the Current Population Survey (CPS). 
Attention is confined to a sample of men studied 
by Rajeev H. Dehejia and Sadek Wahba (1999) 
with valid earnings data in both 1974 and 1975 
who were present either in the NSW experi-
mental sample or in Lalonde’s “CPS-3” control 
group which consists of the poor and recently 
unemployed.11 Because these data have been 
studied many times, I omit summary statistics 
which are reported elsewhere.12 Three estima-
tors, OLS, O-B, and reweighting based upon a 
logistic propensity score, are contrasted, each 
using the set of demographic controls consid-
ered in Dehejia and Wahba (1999), along with 
1974 and 1975 earnings.

Figure 1 plots a scatter of the renormalized 
O-B weights (the elements of  D′ H) against the 
weights (   e  ( X i ) /(1 −    e  ( X i ) )) ((1 −    π )/   π ) derived 

11 See Jeffrey A. Smith and Petra E. Todd (2005) for 
a detailed discussion of the implications of these sample 
restrictions. 

12 See, for example, Dehejia and Wahba (1999), Smith 
and Todd (2005), and Joshua D. Angrist and Jörn-Steffen 
Pischke (2009). 
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from a propensity score reweighting estimator, 
where    e  ( X i )  are predicted probabilities from a 
logit model estimated by maximum likelihood 
and    π  is chosen to ensure the weights sum to  
N 1  among the controls. Unsurprisingly, the 
relationship between the two sets of weights is 
approximately logarithmic. However the O-B 
weights are often negative, a sign the implicit 
log-logistic propensity score model is likely 
misspecified. Of course, the logistic model, 
despite yielding predictions in the unit interval, 
may also be misspecified. Ultimately, interest 
centers not on whether a propensity score model 
is literally correct, but on the quality of approxi-
mation that can be provided to the true counter-
factual  μ  0  

1 .
Table 1 assesses this question empirically by 

comparing treatment effect estimates generated 
by each estimator using the observational CPS-3 
controls and the experimental NSW controls.13

Clearly, covariate adjustments of virtually 
any sort help to remove bias in the observational 
sample. However, the O-B estimator yields 
observational impacts closest to those found 
in the experimental sample, suggesting the 
assumption of near linearity of untreated earn-
ings in covariates provides no worse an approxi-
mation to the data-generating process than the 
implicit assumptions of the workhorse logistic 
reweighting estimator. Also of note is that the 

13 The O-B treatment effect estimator simply subtracts     μ   0  1  
from the mean sample outcome of treated units. 

O-B estimator yields slightly smaller standard 
error estimates than logistic reweighting, even 
in the experimental sample.

VI. Conclusion

The regression-based Oaxaca-Blinder esti-
mator of counterfactual means is equivalent to 
a propensity score reweighting estimator mod-
eling the odds of treatment as a linear function 
of the covariates. This is be to contrasted with 
the standard practice in the applied literature 
of modeling the propensity score via a logit or 
probit and using the estimated parameters to 
form estimates of the odds of treatment. The 
latter approach can be thought of as indirectly 
approximating the unknown odds via a different 
set of basis functions, albeit a set that imposes 
the side constraint that the odds are nonnegative. 
Whether, in the presence of misspecification, the 
imposition of this side constraint yields a better 
approximation to the counterfactual of interest 
is an empirical question and will depend on the 
data-generating process.

Despite its allowance of negative weights, 
the Oaxaca-Blinder estimator has several fea-
tures to commend it. It is easily implemented in 
unbalanced designs with few treated units and 
many controls, and allows for straightforward 
computation of standard errors and regression 
diagnostics. It is consistent if either the linear 
model for the potential outcomes or the implicit 
log-logistic model for the propensity score is 
correct. And unlike standard reweighting esti-
mators, the O-B weights yield exact covariate 
balance and are finite sample unbiased for the 
counterfactual under proper specification of the 
outcome equation.
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