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Labor market discrimination

Title VII of the Civil Rights of 1964 prohibits employment discrimination
on the basis of race, sex, and other protected characteristics

I Empirical literature focuses on measuring market-level averages of
discrimination (Altonji and Blank, 1999; Guryan and Charles, 2013)

I Observational studies of “unexplained” gaps (Oaxaca, 1978)

I Correspondence experiments (Bertrand and Mullainathan, 2004)

I Variation in discrimination across employers influences
I Effects on minority workers (Becker, 1957; Charles and Guryan, 2008)

I Difficulty of enforcing the law – e.g., targeting of EEOC
investigations / charge priority system

I Today: tools for using correspondence experiments to quantify
heterogeneity and detect discrimination by individual jobs



Correspondence studies as ensembles

Correspondence studies send multiple applications to each job opening

I We view such studies as ensembles of small micro-experiments

I Use the ensemble in service of two goals
I Learn about the distribution of discrimination across employers
I Interpret the evidence against particular employers – “indirect

evidence” (Efron, 2010)

I Methodological contribution: extend non-parametric Empirical
Bayes (EB) methods to settings where each experiment too small
for normality to ensue
I Shape constrained GMM for estimating heterogeneity moments
I Robust posteriors for detection / decision-making



Preview of findings

Apply methods to three high-quality correspondence experiments

I Key findings
I Tremendous heterogeneity: a few jobs discriminate intensely,

most discriminate little
I Discrimination against both genders
I Imbalances in callback rates can provide robust evidence of

discrimination by particular jobs

I Policy implications
I 10 applications sufficient to reliably detect non-trivial share of

discriminating jobs
I Parametric EB decision rule yields performance close to

minimax



Preliminaries



Setup and Notation

I Sample of J jobs, each receiving Lw white and Lb black applications
(total L = Lw + Lb)

I Rj` ∈ {w , b} indicates assigned race of application ` to job j

I Potential callbacks from job j to application ` as fn of race:

(Yj` (w) ,Yj` (b)) ∈ {0, 1}2

I Observed callback outcome is Yj` = Yj`(Rj`)

I (Cjw ,Cjb) count callbacks for each race:

Cjw =
L∑
`=1

1{Rj` = w}Yj`, Cjb =
L∑
`=1

1{Rj` = b}Yj` .



Bernoulli Trials

Assumption 1. Bernoulli trials:

Yj`(r)|Rj1...RjL
iid∼ Bernoulli(pjr ), r ∈ {w , b}

I Potential outcomes are independent of {Rjk}Lk=1 by virtue of
random assignment

I Key restriction is that callbacks are independent trials
I Rules out serial dependence (“runs”) in callbacks
I Rules out interference between apps – e.g., firms calling back

first qualifed app and ignoring subsequent apps

I Surprisingly good approximation for L ≤ 8.



Defining Discrimination

I Under Assumption 1, each job is characterized by a stable pair of
race-by-job callback probabilities (pjw , pjb)

I Define discrimination as Dj = 1{pjw 6= pjb}

I Distinguish idiosyncratic/ex-post (Yj`(w) 6= Yj`(b)) vs.
systematic/ex-ante (pjw 6= pjb) discrimination

I Systematic definition is relevant for prospective enforcement: EEOC
mission is to “prevent and remedy unlawful employment
discrimination”



Binomial Mixtures

Probability of callback config (Cjw = cw ,Cjb = cb) at job j is:

f (cw , cb|pjw , pjb) =

(
Lw

cw

)
pcw
jw (1− pjw )Lw−cw ×

(
Lb

cb

)
pcb
jb (1− pjb)Lb−cb

Assumption 2. Random sampling:

(pjw , pjb)
iid∼ G (., .)

I Unconditional callback probabilities are mixtures of binomials:

Pr(Cjw = cw ,Cjb = cb) =

∫
f (cw , cb|pw , pb)dG (pw , pb) ≡ f̄ (cw , cb)

I “Mixing distribution” G (·, ·) governs heterogeneity in callback rates
across employers



Importance of G (·, ·)

G (·, ·) characterizes prevalence and severity of discrimination

I Prevalence of discrimination:

π̄ = Pr (Dj = 1) =

∫
pw 6=pb

dG (pw , pb)

I Severity reflected in moments∫
(pw − pb)k dG (pw , pb)



Indirect Evidence

By Bayes’ rule, prevalence of discrimination among jobs with callback
configuration (Cjw = cw ,Cjb = cb) is:

π (cw , cb) = Pr(Dj = 1|Cjw = cw ,Cjb = cb)

=

∫
pw 6=pb

f (cw , cb|pw , pb)dG (pw , pb)

f̄ (cw , cb)

= P

cw , cb︸ ︷︷ ︸
direct

,G (·, ·)︸ ︷︷ ︸
indirect


I “Posterior” P blends direct evidence on a job’s own behavior with

indirect evidence on the population from which it was drawn

I If “prior” π̄ ∈ {0, 1}, no need for direct evidence



Empirical Bayes

EB approach forms empirical posteriors

π̂ (cw , cb) = P
(
cw , cb, Ĝ (·, ·)

)
I Closely related to mult. testing literature on False Discovery Rates

(Benjamini and Hochberg, 1995).
I Here, 1− π (cw , cb) corresponds to the pFDR of Storey (2002)
I π̂ (cw , cb) enables computation of “q-value” of detection rule

I Illustrate more complex uses of Ĝ when prevalence and intensity
both important



Identification



Moments of G (·, ·)
With L ≤ 20, inappropriate to treat counts as truth plus normal noise
(Brown, 2008).

I Obstructs identification of G but some moments identified

I Marginal callback probabilities are related to moments of G by

f̄ (cw , cb) = E
[(

Lw
cw

)
pcwjw (1− pjw )Lw−cw ×

(
Lb
cb

)
pcbjb (1− pjb)Lb−cb

]

=

(
Lw
cw

)(
Lb
cb

)Lw−cw∑
x=0

Lb−cb∑
s=0

(−1)x+s

(
Lw − cw

x

)(
Lb − cb

s

)

×E
[
pcw+x
jw pcb+s

jb

]
.

I Collect into system relating callback probs f̄ ’s to moments
µ(m, n) = E[pmjwp

n
jb]:

f̄ = Bµ =⇒ µ = B−1 f̄



Identification

Lemma 1. (Identification of Moments): Under Assumptions 1 and 2, all
moments µ(m, n) for 0 ≤ m ≤ Lw and 0 ≤ n ≤ Lb are identified.

I Example: Variance of discrimination is

V [pjb − pjw ] = [µ(0, 2)−µ(0, 1)2]+[µ(2, 0)−µ(1, 0)2]−2[µ(1, 1)−µ(0, 1)µ(1, 0)]

I Lemma 1 implies this variance is identified with two or more
applications per race

I Overdispersion intuition: success probabilities must be
heterogeneous if callback frequencies are more variable than would
be predicted by Bernoulli uncertainty



Posteriors and prevalence

What features of G are needed to form posterior P (cw , cb,G (·, ·))?

I Define π̄t = Pr (Dj = 1|Cwj + Cbj = t) as prevalence in callback
stratum t ∈ {0, ..., L}

I Exploiting binomial structure, can write posterior P as details

1− [1− π̄cw+cb ]︸ ︷︷ ︸
prior that D = 0

(
Lw
cw

)(
Lb
cb

)
(

L

cw + cb

)
︸ ︷︷ ︸

likelihood if D = 0

∑Lw

x=0 f̄ (x , cw + cb − x)

f̄ (cw , cb)︸ ︷︷ ︸
1/marginal︸ ︷︷ ︸

pFDR

I Callback probs f̄ identified ⇒ P known up to stratum specific
prevalences {π̄t}Lt=0

Robust Bayes approach: use identified moments µ to bound posterior P



Bounds on prevalence

Sharp lower bound on prevalence of discrimination given callback probs f̄ :

π̄ ≥ min
G∈G

∫
pw 6=pb

dG (pw , pb) s.t. f̄ = BµG

I Search over space G of discretized bivarate CDFs (Noubiap et al., 2001)

I Objective and constraints are linear in p.m.f associated with G (·, ·)
=⇒ apply linear programming routine details

I Tighter bound than in FDR literature (Efron et al, 2001; Storey, 2002)

Same approach can be used to bound prevalence of directional notions of
discrimination

I Share discriminating against blacks

∫
pb<pw

dG (pb, pw )

I Share “reverse” discriminating against whites

∫
pb>pw

dG (pb, pw )

Lower bounds on {π̄t}Lt=0 7→ lower bounds on P



Correspondence Experiments



Data

Apply methods to data from three resume correspondence studies:

I Bertrand and Mullainathan (2004): Racial discrimination in
Boston/Chicago

I Nunley et al. (2015): Racial discrimination among recent college
graduates in the US

I Arceo-Gomez and Campos-Vasquez (2014, “AGCV”): Gender
discrimination in Mexico



Bertrand & Arceo-Gomez &
Mullainathan Nunley et al. Campos-Vasquez

(1) (2) (3)
Number of jobs 1,112 2,305 799

Applications per job 4 4 8

Treatment/control Black/white Black/white Male/female

Callback rates:    Total 0.079 0.167 0.123

Treatment 0.063 0.154 0.108

Control 0.094 0.180 0.138

Difference -0.031 -0.026 -0.033
(0.007) (0.007) (0.008)

Table I: Descriptive statistics for resume correspondance studies



Are Callbacks Independent Trials?



Testing Assumption 1

Our key iid trials assumption has testable implications

I Test 1: Exploit information on order of resumes in AGCV
I In strata defined by total callbacks, all possible sequences

should be equally likely
I With dependence would generally expect “runs” of consecutive

successes/failures
I Compare Pearson χ2 and exact multinomial goodness of fit

p-values (Cressie and Read, 1989) details

I Test 2: Look for interference using observed characteristics
I Random assignment of resume characteristics =⇒ some

resumes face stronger competition
I Ask whether callbacks are affected by characteristics of other

applications to the same job
I In Nunley et al. data, racial mix of resumes varies randomly –

yields overidentification of some moments



No Evidence of Dependence in AGCV

Observations 𝜒2 statistic d.f. P -value Exact p- value
Callbacks (1) (2) (3) (4) (5)

1 142 1.4 3 0.708 0.794

2 99 10.0 5 0.075 0.155

3 64 3.2 3 0.367 0.513

1 56 7.8 7 0.347 0.504

2 37 23.6 27 0.651 0.697

3 36 58.4 55 0.352 0.397

4 39 75.2 69 0.286 0.457

5 16 40.7 55 0.924 1.000

6 20 28.6 27 0.379 0.469

7 6 8.4 7 0.300 0.539

Regression of callback on  frac. females sent earlier: coef. = -0.003, s.e. = 0.013, p  = 0.788

Panel C. Joint tests
Independence in all callback strata: 𝜒2 (247) = 242.7, p = 0.565

No order effects: 𝜒2 (7) = 5.3, p = 0.622

Regression of callback on order: coef. = -0.0021,  s.e. =  0.0015, p = 0.147 

Tests for dependence, AGCV data

Panel A. Four-application sequences

Panel B. Eight-application sequences
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No Evidence That Callbacks Are Rival in Nunley et al

Main effect Leave-out mean
Variable (1) (2)
Black -0.028 -0.019

(0.010) (0.027)
Female 0.010 0.009

(0.010) (0.027)
High SES -0.233 -0.674

(0.174) (0.522)
GPA -0.043 -0.153

(0.066) (0.198)
Business major 0.008 0.010

(0.008) (0.021)
Employment gap 0.011 0.034

(0.009) (0.023)
Current unemp.: 3+ 0.013 0.005

(0.012) (0.032)
6+ -0.008 -0.038

(0.012) (0.029)
12+ 0.001 0.021

(0.012) (0.032)
Past unemp.:    3+ 0.029 0.065

(0.012) (0.031)
6+ -0.011 -0.016

(0.012) (0.033)
12+ -0.004 0.019

(0.012) (0.031)
Predicted callback rate 0.476 -0.041

(0.248) (0.626)
Joint p -value
Sample size 9,220

0.452

Tests for dependence, NPRS data



Moment Estimates



Moment Estimation

I Estimate moments by GMM, and “shape-constrained” GMM
requiring moments to be consistent with a coherent probability
distribution

I Shape-constrained estimator finds set of discrete G (·, ·)’s that come
closest to matching observed callback frequencies details

I Standard errors based on “numerical bootstrap” of Hong and Li
(2017) details

I Test model restrictions using bootstrap method of Chernozhukov,
Newey, and Santos (2015) details



First Two Moments of G (·, ·) Are Identified in BM

Moment Estimate
0.094

(0.006)

0.063
(0.006)

0.040
(0.005)

0.023
(0.004)

0.028
(0.004)

0.015
(0.003)
0.023

(0.003)

0.010
(0.003)

Sample size 1,112

Table A.I: Moments of callback rate distribution, BM data
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Shape Constraints Do Not Bind

No Shape 
constraints constraints

Moment (1) (2)
0.094 0.094

(0.006) (0.007)

0.063 0.063
(0.006) (0.006)

0.040 0.040
(0.005) (0.005)

0.023 0.023
(0.004) (0.004)

0.028 0.028
(0.004) (0.003)

0.015 0.014
(0.003) (0.002)
0.023 0.012

(0.003) (0.002)

0.010 0.010
(0.003) (0.002)
J -statistic: 0.0
P -value: 1.00

Sample size

Table A.I: Moments of callback rate distribution, BM data

1,112
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Substantial Variation in Discrimination

p b p w p b  - p w

(1) (2) (3)
Mean 0.063 0.094 -0.031

(0.006) (0.007) (0.006)

Standard deviation 0.152 0.199 0.082
(0.012) (0.012) (0.016)

Correlation with p w or p f 0.927 1.00 -0.717
(0.051) - (0.119)

Table III.A: Treatment effect variation in BM (2004)



First Two Moments in Nunley et al. Data

(2,2)
Moment design

0.174
(0.010)

0.148
(0.010)

0.089
(0.007)

0.085
(0.007)

0.083
(0.006)

0.044
(0.004)
0.047

(0.005)

0.036
(0.004)

Sample size 1,146

Table A.II: Moments of callback rate distribution, NPRS data
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Extra Designs Identify Additional Moments

(2,2) (3,1) (1,3)
design design design

Moment (1) (2) (3)
0.174 0.199 0.142

(0.010) (0.025) (0.015)

0.148 0.149 0.157
(0.010) (0.015) (0.013)

0.089 0.108 -
(0.007) (0.009)

0.085 - 0.083
(0.007) (0.008)

0.083 0.084 0.080
(0.006) (0.009) (0.009)

- 0.051 -
(0.008)

- - 0.044
(0.007)

0.044 0.043 -
(0.004) (0.007)
0.047 - 0.045

(0.005) (0.007)

- 0.034 -
(0.005)

- - 0.037
(0.006)

0.036 - -
(0.004) 0

Sample size 1,146 544 550

Table A.II: Moments of callback rate distribution, NPRS data
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Joint Test of All Restrictions Fails to Reject

(2,2) (3,1) (1,3) Combined
design design design P -value estimates

Moment (1) (2) (3) (4) (5)
0.174 0.199 0.142 0.027 0.177

(0.010) (0.025) (0.015) (0.007)

0.148 0.149 0.157 0.854 0.153
(0.010) (0.015) (0.013) (0.007)

0.089 0.108 - 0.097 0.095
(0.007) (0.009) (0.005)

0.085 - 0.083 0.857 0.084
(0.007) (0.008) (0.005)

0.083 0.084 0.080 0.926 0.084
(0.006) (0.009) (0.009) (0.004)

- 0.051 - 0.106
(0.008) (0.007)

- - 0.044 0.092
(0.007) (0.006)

0.044 0.043 - 0.875 0.040
(0.004) (0.007) (0.002)
0.047 - 0.045 0.819 0.042

(0.005) (0.007) (0.002)

- 0.034 - - 0.035
(0.005) (0.002)

- - 0.037 - 0.037
(0.006) (0.002)

0.036 - - - 0.038
(0.004) (0.002)0

23.1
0.190

Sample size 1,146 544 550 2,240

Table A.II: Moments of callback rate distribution, NPRS data
Design-specific estimates

J -statistic:
P -value:
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Treatment Effects Are Variable and Skewed

p b p w p b  - p w

(1) (2) (3)
Mean 0.153 0.177 -0.023

(0.007) (0.007) (0.005)

Standard deviation 0.290 0.308 0.102
(0.008) (0.007) (0.012)

Correlation with p w or p f 0.944 1.00 -0.336
(0.017) - (0.066)

Skewness 3.76 3.65 -4.45
(0.08) (0.08) (0.82)

Table III.B: Treatment effect variation in NPRS (2015)



Thick Tail of Extreme Discriminators in AGCV

p m p f p m  - p f

(1) (2) (3)
Mean 0.109 0.137 -0.028

(0.009) (0.010) (0.008)

Standard deviation 0.229 0.257 0.178
(0.012) (0.011) (0.014)

Correlation with p w or p f 0.738 1.00 -0.498
(0.039) - (0.058)

Skewness 4.04 3.74 -1.64
(0.13) (0.10) (0.56)

Excess kurtosis 8.59 5.91 13.6
(1.13) (0.71) (3.5)

Table III.C: Treatment effect variation in AGCV (2014)



Prevalence and Posteriors



In BM, At Least 13% of Jobs Discriminate

Share
discriminating:

Pr(p w  ≠ p b )
(1)

0.130
J -statistic: 29.26

P -value (bound = 0): 0.000

Lower bounds on discrimination probabilities, BM data



At Least 44% Making Two Total Calls Discriminate

Share
discriminating:

Pr(p w  ≠ p b )
Callbacks (1)

All 0.130
0 0.038

1 0.424

2 0.442

3 0.508

4 0.212
J -statistic: 29.26

P -value (bound = 0): 0.000

Lower bounds on discrimination probabilities, BM data



Cannot Reject Absence of Discrimination Against Whites

Share Share disc. Share disc.
discriminating: against whites: against blacks:

Pr(p w  ≠ p b ) Pr(p w  < p b ) Pr(p b  < p w )
Callbacks (1) (2) (3)

All 0.130 0.000 0.130
0 0.038 0.000 0.038

1 0.424 0.000 0.424

2 0.442 0.000 0.442

3 0.508 0.000 0.508

4 0.212 0.000 0.212
J -statistic: 29.26 0.00 29.26

P -value (bound = 0): 0.000 1.000 0.000

Lower bounds on discrimination probabilities, BM data



At Least 72% With (Cjw ,Cjb) = (2, 0) Discriminate

Figure I: Lower bounds on posterior probabilities of discrimination, BM data



In Nunley et al., Cannot Reject Pr(pjw < pjb) = 0

Share Share disc. Share disc.
discriminating: against whites: against blacks:

Pr(p w  ≠ p b ) Pr(p w  < p b ) Pr(p b  < p w )
Callbacks (1) (2) (3)

All 0.358 0.154 0.173
0 0.152 0.093 0.048

1 0.672 0.185 0.433

2 0.691 0.016 0.675

3 0.821 0.067 0.736

4 0.421 0.257 0.128
J -statistic: 62.64 23.46 62.64

P -value (bound = 0): 0.000 0.120 0.000

Lower bounds on discrimination probabilities, Nunley et al. data



At Least 68% That Make Two Calls Have pjb < pjw

Share Share disc. Share disc.
discriminating: against whites: against blacks:

Pr(p w  ≠ p b ) Pr(p w  < p b ) Pr(p b  < p w )
Callbacks (1) (2) (3)

All 0.358 0.154 0.173
0 0.152 0.093 0.048

1 0.672 0.185 0.433

2 0.691 0.016 0.675

3 0.821 0.067 0.736

4 0.421 0.257 0.128
J -statistic: 62.64 23.46 62.64

P -value (bound = 0): 0.000 0.120 0.000

Lower bounds on discrimination probabilities, Nunley et al. data



Lower Bounds on Posteriors Above 85%

Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data



In AGCV, Discrimination Against Both Men and Women

Share Share disc. Share disc.
discriminating:

against 
women: against men:

Pr(p f  ≠ p m ) Pr(p f  < p m ) Pr(p m  < p f )
Callbacks (1) (2) (3)

All 0.207 0.064 0.142
0 0.065 0.023 0.042

1 0.721 0.307 0.414

2 0.708 0.226 0.481

3 0.584 0.050 0.533

4 0.518 0.053 0.465
5 0.320 0.153 0.167
6 0.372 0.176 0.197

7 0.453 0.122 0.331
8 0.069 0.008 0.062

J -statistic: 427.8 27.1 421.0
P -value: 0.000 0.018 0.000

Lower bounds on discrimination probabilities, AGCV data



Lower Bounds on Posteriors Above 90%

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data
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Detection Error Tradeoffs



Experimental Design and Detection Error Tradeoffs

Results so far establish that some callback patterns produce high posterior
probabilities of discrimination even with few applications per job

I But few jobs produce these patterns. Can correspondence experiments
serve as a useful tool for detecting discrimination when prevalence is low?

I Consider alternative hypothetical experiments based on models fit to the
Nunley et al. (2015) data

I Take the perspective of hypothetical regulator who knows G(·, ·) and
must decide which jobs to investigate based upon callbacks

I Investigations are costly, want to detect most extreme
discriminators

I Start with a parametric model for G(·, ·) then ask how regulator’s
decisions are affected by second-guessing parametric assumptions

I Detection/error tradeoff (DET) curves: tradeoff between true
negatives and true positives for a fixed number of apps



Mixed Logit

Logit model for callback to application ` at job j :

Pr (Yj` = 1|αj , βj ,Rj`,Xj`) = Λ
(
αj − βj1{Rj` = b}+ X ′j`ψ

)
.

I Λ(x) ≡ exp(x)/(1 + exp(x)) is the logistic CDF

I Rj` indicates race, Xj` includes other randomly-assigned
characteristics (GPA, experience, etc.)

I Two-type mixing:

αj ∼ N
(
α0, σ

2
α

)
,

βj =

{
β0, with prob. Λ(τ0 + τααj),

0, with prob. 1− Λ(τ0 + τααj).



Discrimination is Rare But Intense

Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.71 -4.93 -4.93
(0.22) (0.24) (0.28)

𝜎𝛼 4.74 4.99 4.98
(0.22) (0.25) (0.29)

  Discrimination intensity:  𝛽0 0.456 4.05 4.05
(0.108) (1.56) (1.58)

   Discrimination logit:      𝜏0 - -1.59 -1.56
(0.42) (1.10)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.00 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table V: Mixed logit parameter estimates, NPRS data
Types



Covariates Generate Variation in Posteriors
Figure IV: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data



Regulator’s Problem

Consider a regulator who knows G and must choose whether to investigate,
δj ∈ {0, 1}, based upon callbacks (Cjw ,Cjb)

I Regulator seeks to minimize loss function:

Lj(δj) = δj ×
(
κ− Λ

(
Λ−1(pjw )− Λ−1(pjb)

))
I Intuition: regulator wants to investigate employers with large logit

coefficients on race

Optimal decision rule δ(Cjb,Cjw ) minimizes expected loss (risk)

R(G , δ) ≡ E[Lj(δ(Cjw ,Cjb))]

I In the two-type mixed logit, this results in a posterior cutoff rule:

δ(Cjw ,Cjb) = 1

{
P(Cjw ,Cjb,G(., .)) >

κ− 1/2

Λ(β0)− 1/2

}
I Focus on example where κ is such that posterior cutoff is 80%.



With 2 Pairs, 80% Threshold Yields Few Investigations

Figure V: Detection/error tradeoffs, NPRS data
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Sending 5 Pairs Boosts Detection Substantially

Figure V: Detection/error tradeoffs, NPRS data
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Leveraging Covariates Yields Further Gains

Figure V: Detection/error tradeoffs, NPRS data
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Fixing Size at 0.01 Yields More (Mostly False) Accusations
Figure V: Detection/error tradeoffs, NPRS data
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Accommodating Ambiguity



Beyond Logit: Policy When Partially Identified

I How would decisions change if the regulator fears that G(·, ·) is not logit?

I Important (extreme) benchmark for decisionmaking under ambiguity:
minimax decision rule

I Max risk function and minimax decision rule when auditor knows G lies in
some identified set Θ:

Rm(Θ, δ) ≡ sup
G∈Θ

R(G , δ), δmm ≡ arg inf
δ
Rm(Θ, δ)

I Minimax regulator chooses δmm to minimize risk, assuming nature will
select the least favorable distribution in Θ in response to any decision rule
(“Γ-minimax”)

I Manage space of decision rules by considering a restricted set defined by
logit posterior cutoffs

I Contrast risk and decisions based upon mixed logit prior and minimax
details



Minimax Regulator Chooses Slightly Higher Threshold

Figure VI: Bayes and minimax risk, NPRS data



Concluding Thoughts

I Tremendous heterogeneity in discrimination ⇒ enforcing equal
opportunity is a difficult inferential problem
I Results today suggest favorable detection rates achievable with

minor modifications to standard audit designs

I Ongoing work
I Jobs vs firms: is bad behavior clustered in particular

companies? How to construct reliable rankings?
I Optimal experimental design: dynamic auditing to detect

effects at lower cost

I Methods applicable to other settings where behavioral responses of
individual units are of interest. Examples:
I Workplace safety audits (Levine et al., 2012)

I Choice experiments (Halevy et al., 2018)

I Evaluating schools / teachers (Chetty et al., 2014; Angrist et al,

2017)



Bonus



Dynamic Auditing (Avivi, Kline, Rose, Walters, in progress)

Letting Hn denote the job history information available as of app #n, we
can write the value function:

V (Hn) =



max

 max
r∈{w ,b},x∈{hi,lo}

vrx (Hn)︸ ︷︷ ︸
send optimal app

, vI (Hn)︸ ︷︷ ︸
investigate

, 0︸︷︷︸
give up

 if n < K

max

 vI (Hn)︸ ︷︷ ︸
investigate

, 0︸︷︷︸
give up

 if n = K

where r is race, x is quality, K = 8 is max # of apps to a job and:

I vrx (Hn) = −c + En [V (Hn+1)]

I vI (Hn) =

∫
En [pjw (x)− pjb (x)] dF (x)︸ ︷︷ ︸

investigation yield

− κ︸︷︷︸
cost



Dynamic auditor (0 pairs) requires <1/2 as many apps to
detect discriminators as static auditor (4 pairs)



Dynamic auditing detects intense discriminators



Discretization of G

I We approximate G(pw , pb) with the discrete distribution:

GK (pw , pb) =
K∑

k=1

K∑
l=1

ηkl1 {pw ≤ % (k, l) , pb ≤ % (l , k)}

I {ηkl}K ,Kk=1,l=1 are probability masses

I {% (k, l) , % (l , k)}K ,Kk=1,l=1 are a set of mass point coordinates generated by

% (x , y) =
min {x , y} − 1

K︸ ︷︷ ︸
diagonal

+
max {0, x − y}2

K (1 + K − y)︸ ︷︷ ︸
off-diagonal

.

I Gives a two-dimensional grid with K 2 elements, equally spaced along the
diagonal and quadratically spaced off the diagonal according to distance
from diagonal



Shape Constrained GMM

I Let f̃ denote vector of empirical callback frequencies

I Shape constrained GMM estimator of η solves quadratic programming
problem:

η̂ = arg inf
η

(f̃ − BMη)′W (f̃ − BMη) s.t. η ≥ 0, 1′η = 1.

I M is a dim(µ)× K 2 matrix defined so that Mη = µ for GK

I Yields shape constrained moment estimates: µ̂ = M η̂

I W is weighting matrix – use two-step optimal weighting

I Set K = 150 for GMM estimation

back



Hong and Li (2017) Standard Errors

I Bootstrap µ∗ solves QP problem replacing f̃ with (f̃ + J−1/4f ∗), where
elements of f ∗ given by:

√
J
[∑

j ω
∗
j 1{Cjw =cw ,Cjb=cb}∑

j ω
∗
j

−
∑

j 1{Cjw =cw ,Cjb=cb}
J

]
.

I Weights ω∗j drawn iid from exponential distribution with mean 0 and
variance 1

I Standard errors for φ(µ̂) computed as standard deviation of
J−1/4[φ(µ∗)− φ(µ̂)] across bootstrap replications

back



Chernozhukov et al. (2015) Goodness of Fit Test

I “J-test” goodness of fit statistic:

Tn = inf
η

(f̃ − BMη)′Σ̂−1(f̃ − BMη) s.t. η ≥ 0, 1′η = 1

I Letting F ∗ denote (centered) bootstrap analogue of f̃ and W ∗ a
weighting matrix, bootstrap test statistic is

T ∗n = inf
π,h

(F ∗ − BMη)′W ∗(F ∗ − BMη)

s.t. (f̃ − BMη)′W (f̃ − BMη) = Tn, η ≥ 0, 1′η = 1, h ≥ −η, 1′h = 0.

I As in the full sample, conduct two-step GMM estimation in bootstrap
replications

I Calculate p-value as fraction of bootstrap samples with T ∗n > Tn

I Solve via Second Order Cone Programming

back



Testing for Dependence Across Trials
I Consider set of Jk jobs making k total calls

I Under the null of iid trials, all sequences yielding k successes are equally
likely

I With L = 4 and k = 2, six possible sequences: (1,1,0,0), (1,0,1,0),
(1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)

I Test statistic:

T̂k =

q−1
k∑
s=1

(q̂s,k − qk)2

qk(1− qk)/Jk

I q̂s,k is empirical frequency of sequence s among those with k calls,

qk =

(
L
k

)−1

is expected frequency under the null

I Under the null T̂k is χ2 distributed with

(
L
k

)
− 1 degrees of freedom

back



Importance of π̄t

I Define the t-conditional quantities where t = cw + cb is total callbacks

(pwj , pbj) |Cwj + Cbj = t ∼ Gt (·, ·)

f̄t(cw ) =
f̄ (cw , t − cw )∑Lw
x=0 f̄ (x , t − x)

ft(cw |pw , pb) =
f (cw , t − cw |pw , pb)∑Lw
x=0 f (x , t − x |pw , pb)

I Note by standard sufficiency arguments that

ft(cw |p, p) =

(
Lw

cw

)(
Lb

t − cw

)
(
L

t

) = B (t, cw )



Importance of π̄t

I Now rewrite the posterior P (cw , cb,G (·, ·)) as Pt (cw ,G (·, ·))

Pt (cw ,G (·, ·)) =

∫
pw 6=pb

ft(cw |pw , pb)dGt(pw , pb)

f̄t(cw )

= 1−

∫
p

ft(cw |p, p)dGt(p, p)

f̄t(cw )

= 1− B (t, cw )

∫
p
dGt(p, p)

f̄t(cw )

= 1− B (t, cw )
1− π̄t

f̄t(cw )

I Note f̄t(cw ) is identified from experimental frequencies, so only unknown
here is π̄t !

back



Linear Programming

I Optimization problem for computing lower bound on share discriminating:

max
{ηkl}

K∑
l=1

K∑
k=1

ηkl1{%(k, l) = %(l , k)} s.t.
K∑

k=1

K∑
l=1

ηkl = 1, ηkl ≥ 0

I Additional moment constraints for all (cw , cb):

f̄ (cw , cb) =

(
Lw

cw

)(
Lb

cb

)∑K
k=1

∑K
l=1 ηkl

×% (k, l)cw (1− % (k, l))Lw−cw % (l , k)cb (1− % (l , k))Lb−cb .

I Set K = 900 for computing bounds

back



Computing Maximum Risk
I Letting H and L refer to high and low quality covariate values, we approximate

G(pHw , p
L
w , p

H
b , p

L
b ) with

GK (pHw , p
L
w , p

H
b , p

L
b ) =

K∑
k=1

K∑
l=1

K∑
k′=1

K∑
l′=1

ηklk′ l′

×1
{
pHw ≤ % (k, l) , pLw ≤ % (k ′, l ′) , pHb ≤ % (l , k) , pLb ≤ % (l ′, k ′)

}
.

I Maximal risk function for posterior cutoff q:

Rm
J (q) =

J max
{ηklk′ l′}

∑
l∈A1

wlE

δ(Cj , l , q)

κ− Λ

 ∑
x∈{H,L)

Λ−1(pxwj )−Λ−1(pxbj )

2

 |Lj = l


I A1 is list of possible quality configurations with corresponding probabilities wa

I Constraints: ηklk′ l′ positive and sum to 1, along with matching a list of
logit-smoothed callback frequencies

I Joint probabilities Pr
(
δ
(
Cj , a, q

)
= 1,Dj = d

)
linear in ηklk′ l′ (see Appendix D)

I Set K = 30 when computing maximal risk in practice

back
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