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The Problem

Missing data is ubiquitous in modern economic research

• Roughly one quarter of earnings observations in CPS and Census.
• Problem can be worse in proprietary surveys and experiments.

Equally ubiquitous solutions: Missing at Random (MAR)
• Justification for imputation procedures in CPS and Census.
• And for ignoring missingness altogether...

Question: How can we evaluate sensitivity of conclusions to MAR?
• Want to consider plausible deviations from MAR without presuming

much about selection mechanism.
• And to enable study of sensitivity at different points in conditional

distribution (tails likely more sensitive).
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The Model

Consider a triplet (Y,X,D) with Y ∈ R, X ∈ Rl, D ∈ {0, 1}.

Y = X ′β(τ) + ε P (ε ≤ 0|X) = τ

and D = 1 if Y is observable, and D = 0 if Y is missing.

Without Missing Data
• Quantile regression as a summary of conditional distribution.
• Under misspecification⇒ best approximation to true model.

Without MAR
• Point identification fails.
• Need to consider misspecification and partial identification.

Patrick Kline UC Berkeley



The Model

Consider a triplet (Y,X,D) with Y ∈ R, X ∈ Rl, D ∈ {0, 1}.

Y = X ′β(τ) + ε P (ε ≤ 0|X) = τ

and D = 1 if Y is observable, and D = 0 if Y is missing.

Without Missing Data
• Quantile regression as a summary of conditional distribution.
• Under misspecification⇒ best approximation to true model.

Without MAR
• Point identification fails.
• Need to consider misspecification and partial identification.

Patrick Kline UC Berkeley



The Model

Consider a triplet (Y,X,D) with Y ∈ R, X ∈ Rl, D ∈ {0, 1}.

Y = X ′β(τ) + ε P (ε ≤ 0|X) = τ

and D = 1 if Y is observable, and D = 0 if Y is missing.

Without Missing Data
• Quantile regression as a summary of conditional distribution.
• Under misspecification⇒ best approximation to true model.

Without MAR
• Point identification fails.
• Need to consider misspecification and partial identification.

Patrick Kline UC Berkeley



Missing Data

Define the conditional distribution functions,

Fy|x(c) ≡ P (Y ≤ c|X = x) Fy|d,x(c) ≡ P (Y ≤ c|D = d,X = x)

Missing at Random
• Rubin (1974). Assume that Fy|x(c) = Fy|1,x(c) for all c ∈ R.

Nonparametric Bounds
• Manski (1994). Exploit that 0 ≤ Fy|0,x(c) ≤ 1 for all c ∈ R.
• Often bounds are uninformative.
• And typically overly conservative.

Between these extremes lie a continuum of selection mechanisms...
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Deviation from MAR

Characterize selection as distance between Fy|1,x and Fy|0,x:

d(Fy|1,x, Fy|0,x) ≤ k

• A way of nonparametrically indexing set of selection mechanisms:

◦ Missing at random corresponds to imposing k = 0.

◦ Manski Bounds corresponds to imposing k =∞.

• Allows study of sensitivity to deviations from MAR
(e.g. what level of k is necessary to overturn conclusions regarding β(τ)?)

• And in some cases k may be estimated using validation data.
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General Outline

Nominal Identified Set
• Find possible quantiles under restriction d(Fy|1,x, Fy|0,x) ≤ k.
• Bound β(τ) as a function of τ, k allowing for misspecification.

Inference
• Obtain distribution of estimates of boundary of nominal identified set.
• Exploit distribution as a function of (τ, k) for sensitivity analysis.

Changes in Wage Structure
• Examine changes in wage structure across Decennial Censuses.
• Measure departures from MAR in matched CPS-SSA.
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Sensitivity Analysis:
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1 Nominal Identified Set

2 Parametric Approximation

3 Inference

4 Changes in Wage Structure

5 CPS-SSA Analysis

Patrick Kline UC Berkeley



Bounds on Conditional Quantiles

Define true conditional quantile q(τ |x) and non-missing probability p(x):

Fy|x(q(τ |x)) = τ p(x) ≡ P (D = 1|X = x)

Goal: Obtain identified set for q(τ |x) under hypothetical d(Fy|1,x, Fy|0,x) ≤ k.

For the distance metric we use Kolmogorov-Smirnov, which is given by:

S(F ) ≡ sup
x∈X

KS(Fy|1,x, Fy|0,x) = sup
x∈X

sup
c∈R
|Fy|1,x(c)− Fy|0,x(c)|

Comments

• KS provides control over maximal distance between Fy|1,x and Fy|0,x.
• Nests a wide nonparametric class of potential selection mechanisms.
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Choice of Metric

Information necessarily lost with scalar index of selection, but ...
• Not ruling out selection mechanisms as done in parametric approaches.
• Different levels of selection can be considered at each quantile.
• Easy extension to different weights on covariate realizations.
• Scalar metric well suited to sensitivity analysis.

What is a big S(F )?

Example: Suppose the data generating process is given by:

(Y, v) ∼ N(0,
( 1 ρ
ρ 1

)
) D = 1{µ+ v > 0} .

where µ is chosen so that the missing probability is 25% to match data.

ρ S(F ) ρ S(F ) ρ S(F )
0.10 0.0672 0.40 0.2778 0.70 0.5165
0.20 0.1355 0.50 0.3520 0.80 0.6158
0.30 0.2069 0.60 0.4304 0.90 0.7377
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Figure: Missing and Observed Outcome CDFs

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Missing and Observed Outcome CDFs

 

 
Observed (ρ=.1)

Missing (ρ=.1)
Observed (ρ=.5)

Missing (ρ=.5)

Patrick Kline UC Berkeley



Figure: Distance Between Missing and Observed Outcome CDFs
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Mixture Interpretation

Suppose a fraction k of the missing population is distributed according to an
arbitrary CDF F̃y|x, while the remaining fraction 1− k of that population are
missing at random in the sense that they are distributed according to Fy|1,x.
Then:

Fy|0,x(c) = (1− k)Fy|1,x(c) + kF̃y|x(c) ,

where F̃y|x is unknown, and the above holds for all x ∈ X and any c ∈ R.
Now:

S(F ) = sup
x∈X

sup
c∈R
|Fy|1,x(c)− kF̃y|x(c)− (1− k)Fy|1,x(c)|

= k × sup
x∈X

sup
c∈R
|Fy|1,x(c)− F̃y|x(c)| .

Worst Case: S(F ) = k. Thus, k gives bound on the fraction of the missing
sample that is not well represented by the observed data distribution.
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Nominal Identified set for q(τ |·)

Assumption (A)
(i) X ∈ Rl has finite support X .
(ii) Fy|d,x(c) is continuous, strictly increasing ∀c with 0 < Fy|d,x(c) < 1.
(iii) D equals one if Y is observable and zero otherwise.

Lemma Under (A), if S(F ) ≤ k, then the identified set for q(τ |·) is:

C(τ, k) ≡ {θ : X → R : qL(τ, k|x) ≤ θ(x) ≤ qU (τ, k|x)}

where the bounds qL(τ, k|x) and qU (τ, k|x) are given by:

qL(τ, k|x) ≡ F−1y|1,x

(τ −min{τ + kp(x), 1}{1− p(x)}
p(x)

)
qU (τ, k|x) ≡ F−1y|1,x

(τ −max{τ − kp(x), 0}{1− p(x)}
p(x)

)
Patrick Kline UC Berkeley



Example – No Covariates and p(x) = 2/3

Bounds on Quantiles as a Function of k
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Sensitivity Example 1 (Pointwise Analysis)

Suppose X is binary so that X ∈ {0, 1}, and write:

Y = q(τ |X) + ε P (ε ≤ 0|X) = τ

Suppose that under MAR we have q(τ0|X = 1) 6= q(τ0|X = 0) for some τ0.

We can evaluate sensitivity of this conclusion to MAR by defining:

k0 ≡ inf k : qL(τ0, k|X=1)−qU (τ0, k|X=0) ≤ 0 ≤ qU (τ0, k|X=1)−qL(τ0, k|X=0)

Comment

• k0 is the minimal level for overturning q(τ0|X = 1) 6= q(τ0|X = 0).
• Large k0 indicates robust conclusion.
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Example 2 (Distributional Analysis)

We want to know if Fy|x=1 first order stochastically dominates Fy|x=0.

Suppose that under MAR we find q(τ |X = 1) > q(τ |X = 0) at all τ .

We evaluate sensitivity of FOSD conclusion by examining:

k0 ≡ inf k : qL(τ, k|X = 1) ≤ qU (τ, k|X = 0) for some τ ∈ (0, 1)

Comment

• k0 is the minimal level of selection under which the conclusion of FOSD
may be undermined.
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Example 3 (Breakdown Analysis)

Y = q(τ |X) + ε P (ε ≤ 0|X) = τ

Suppose that under MAR we have q(τ |X = 1) 6= q(τ |X = 0) for multiple τ .

More nuanced analysis can consider the quantile specific critical level:

κ0(τ)≡inf k : qL(τ, k|X=1)−qU (τ, k|X=0) ≤ 0 ≤ qU (τ, k|X=1)−qL(τ, k|X=0)

Comment

• Changes in τ map out a “breakdown function” τ 7→ κ0(τ).
• Reveals differential sensitivity of the entire conditional distribution.
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1 Nominal Identified Set

2 Parametric Approximation

3 Inference

4 Changes in Wage Structure

5 CPS-SSA Analysis
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Adding Parametric Structure

With lots of covariates, convenient to assume a linear parametric model:

q(τ |X) = X ′β(τ)

Identified set for β(τ) is intersection of C(τ, k) with parametric models:{
β(τ) ∈ Rl : qL(τ, k|X) ≤ X ′β(τ) ≤ qU (τ, k|X)

}

Comments:

• Set of functions in identified set may be severely restricted.
• Inadvertently rewards misspecification.

Identification by misspecification
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Figure: Linear Conditional Quantile Functions as a Subset of the Identified Set
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Adding Parametric Structure

Instead allow for misspecification in the linear quantile model

Y = X ′β(τ) + η

• If identified, misspecification as “pseudo true” approximation

β(τ) ≡ arg min
γ∈Rl

∫
(q(τ |x)− x′γ)2dS(x)

• If partially identified, each θ ∈ C(τ, k) implies a pseudo true vector β(τ)

P(τ, k) ≡
{
β ∈ Rl : β = arg min

γ∈Rl

∫
(θ(x)− x′γ)2dS(x) for some θ ∈ C(τ, k)

}
⇒ i.e. consider β ∈ Rl that are best approximation to some θ ∈ C(τ, k).

Patrick Kline UC Berkeley



Figure: Conditional Quantile and its Pseudo-True Approximation
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Misspecification

Choice of quadratic loss allows for simple characterization of P(τ, k).

Lemma: Under (A), if S(F ) ≤ k and
∫
xx′dS(x) is invertible:

P(τ, k) =
{
β =

[ ∫
xx′dS(x)

]−1 ∫
xθ(x)dS(x) : q(τ, k|x) ≤ θ(x) ≤ q(τ, k|x)

}
Note: It follows that P(τ, k) is convex.

One more assumption: We will assume the measure S is known.

• Analogous to having a known loss function.
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Parameter of Interest

Inference on parameters of the form λ′β(τ) for some λ ∈ Rl.

Corollary: The identified set for λ′β(τ) is [πL(τ, k), πU (τ, k)], where:

πL(τ, k) ≡ inf
θ
λ′
[ ∫

xx′dS
]−1∫

xθ(x)dS(x) s.t. qL(τ, k|x)≤ θ(x) ≤qU (τ, k|x)

πU (τ, k) ≡ sup
θ
λ′
[ ∫

xx′dS
]−1∫

xθ(x)dS(x) s.t. qL(τ, k|x)≤ θ(x) ≤qU (τ, k|x)

Comments:
• Examples: individual coefficients and fitted values.
• Bounds sharp for fixed τ and k.
• Bounds become wider with k and change across τ .
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Bounds on the Process

Previous corollary implies that if S(F ) ≤ k, then λ′β(·) belongs to:

G(k) ≡
{
g : [0, 1]→ R : πL(τ, k) ≤ g(τ) ≤ πU (τ, k) for all τ

}
Unfortunately, G(k) is not a sharp identified set of the process λ′β(·).

However ...

• The bounds πL(·, k) and πU (·, k) are in identified set where finite.
• The bounds of G(k) are sharp at every point of evaluation τ .
• If θ /∈ G(k), then the function θ(·) cannot equal λ′β(·).
• Ease of analysis and graphical representation.
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Example 1 (cont)

Y = α(τ) +X ′β(τ) + η

Suppose that under MAR we have β(τ0) 6= 0 for some specific quantile τ0.

We can evaluate sensitivity of this conclusion to MAR by defining:

k0 ≡ inf k : πL(τ0, k) ≤ 0 ≤ πU (τ0, k)

Comment

• k0 is the minimal level of selection necessary to overturn β(τ0) 6= 0.
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Example 2 (cont)

Y = α(τ) +X ′β(τ) + η

Suppose that under MAR we have β(τ) > 0 for multiple τ .

We evaluate sensitivity to conclusion of Fy|x being increasing at some τ :

k0 ≡ inf k : πL(τ, k) ≤ 0 for all τ ∈ [0, 1]

Comment

• k0 is the minimal level of selection that overturns β(τ) > 0 for some τ .
• πL(·, k0) is in identified set for β(·) under S(F ) ≤ k.
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Example 3 (cont)

Y = α(τ) +X ′β(τ) + η

Suppose that under MAR we have β(τ) 6= 0 for multiple τ .

More nuanced analysis can consider the quantile specific critical level:

κ0(τ) ≡ inf k : πL(τ, k) ≤ 0 ≤ πU (τ, k)

Comment

• Changing τ maps out a “breakdown function” τ 7→ κ0(τ).
• Reveals differential sensitivity of the entire conditional distribution.
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1 Nominal Identified Set

2 Parametric Approximation

3 Inference

4 Changes in Wage Structure

5 CPS-SSA Analysis
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Estimating Bounds

• Study estimators for bound functions πL(τ, k), πU (τ, k) given by:

π̂L(τ, k) ≡ inf
θ
λ′
[ ∫

xx′dS(x)
]−1∫

xθ(x)dS(x) s.t. q̂L(τ, k|x)≤θ(x)≤ q̂U (τ, k|x)

π̂U (τ, k) ≡ sup
θ
λ′
[ ∫

xx′dS(x)
]−1∫

xθ(x)dS(x) s.t. q̂L(τ, k|x)≤θ(x)≤ q̂U (τ, k|x)

• Need distribution as processes on L∞(B), where for 0 < 2ε < infx p(x):

B ≡
{

(τ, k) :
(i) kp(x)(1− p(x)) + 2ε ≤ τp(x) (iii) k ≤ τ
(ii) kp(x)(1− p(x) + 2ε ≤ (1− τ)p(x) (iv) k ≤ 1− τ

}

Comments:
• The bounds πL(τ, k) and πU (τ, k) are finite everywhere on B.
• Large or small values of τ must be accompanied by small values of k.
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Estimating Bounds

• Recall qL(τ, k|x) and qU (τ, k|x) were defined as quantiles of Fy|1,x:

qL(τ, k|x)=arg min
c∈R

Qx(c|τ, τ+kp(x)) qU (τ, k|x)=arg min
c∈R

Qx(c|τ, τ−kp(x))

where the family of criterion functions Qx(c|τ, b) is given by:

Qx(c|τ, b) ≡ (P (Y ≤ c,X = x,D = 1) + bP (D = 0, X = x)− τP (X = x))2

• This suggests an extremum estimation approach given by:

q̂L(τ, k|x)=arg min
c∈R

Qx,n(c|τ, τ+kp̂(x)) q̂U (τ, k|x)=arg min
c∈R

Qx,n(c|τ, τ−kp̂(x))

where the criterion function Qx,n(c|τ, b) is the immediate sample analogue.

Patrick Kline UC Berkeley



Asymptotic Distribution

Assumptions (B)
(i) Fy|1,x has a continuous bounded derivative fy|1,x
(ii) fy|1,x has a continuous bounded derivative f ′y|1,x
(iii) The matrix

∫
xx′dS(x) is invertible.

(iv) fy|1,x is positive “over relevant range”.

Theorem Under Assumptions (A) and (B), if {Yi, Xi, Di}ni=1 is IID, then:

√
n
(
π̂L − πL
π̂U − πU

)
L−→ G ,

where G is a gaussian process on L∞(B)× L∞(B).
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Proof Outline

Step 1: Study distribution of minimizers of Qx,n(c|τ, b) as a function of (τ, b).

• Obtain uniform asymptotic expansions for the minimizers.
• Qx,n(c|τ, b) has enough structure to establish equicontinuity.

Step 2: Find distribution (q̂L, q̂U ) in L∞(B × X )× L∞(B × X ).
• Simply a restriction of the process derived in Step 1.

Step 3: Establish the distribution of (π̂L, π̂U ) on L∞(B).
• Straightforward due to linear program.
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Example 1 (cont)

Suppose under MAR we find that β(τ0) 6= 0 for some specific quantile τ0.
Minimal level of selection necessary to undermine this conclusion is:

k0 ≡ inf k : πL(τ0, k) ≤ 0 ≤ πU (τ0, k)

Let r(i)1−α(k) be the 1− α quantile of G(i)(τ0, k) and define:

k̂0 ≡ inf k : π̂L(τ0, k)−
r
(1)
1−α(k)
√
n
≤ 0 ≤ π̂U (τ0, k) +

r
(2)
1−α(k)
√
n

Then k0 ∈ [k̂0, 1] with asymptotic probability greater than or equal to 1− α.

Comments

• One sided confidence interval (rather than two sided) is natural.
• Relevant critical value depends on transformation of G.
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Example 2 (cont)

Suppose under MAR we find that β(τ) > 0 for multiple τ and recall that

k0 ≡ inf k : πL(τ, k) ≤ 0 for all τ ∈ [0, 1]

Let r1−α(k) be the 1− α quantile of supτ G
(1)(τ, k)/ωL(τ, k) and define:

k̂0 ≡ inf k : sup
τ
π̂L(τ, k)− r1−α(k)√

n
ωL(τ, k) ≤ 0

Then k0 ∈ [k̂0, 1] with asymptotic probability greater than or equal to 1− α.

Comments

• Weight function ωL allows to adjust for different asymptotic variances.
• Result exploits uniformity in τ but not in k.
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Example 3 (cont)

Suppose under MAR we find that β(τ) 6= 0 for multiple τ and recall that:

κ0(τ) ≡ inf k : πL(τ, k) ≤ 0 ≤ πU (τ, k)

For (ωL, ωU ) positive weight functions, let r1−α be the 1− α quantile of:

sup
τ,k

max
{ |G(1)(τ, k)|

ωL(τ, k)
,
|G(2)(τ, k)|
ωU (τ, k)

}

Then with asymptotic probability at least 1− α for all τ , κ0(τ) lies between:

κ̂L(τ) ≡ inf k : π̂L(τ, k)− r1−α√
n
ωL(τ, k) ≤ 0 and 0 ≤ π̂U (τ, k) +

r1−α√
n
ωU (τ, k)

κ̂U (τ) ≡ sup k : π̂L(τ, k) +
r1−α√
n
ωL(τ, k) ≥ 0 or 0 ≥ π̂U (τ, k)− r1−α√

n
ωU (τ, k)
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Weighted Bootstrap

Question How do we obtain a consistent estimator for r1−α?

Answer Perturb the objective function and recompute (weighted bootstrap).

In all examples, r1−α is quantile of L(Gω) where L is Lipschitz and

Gω(τ, k) =
( G(1)(τ, k)/ωL(τ, k)
G(2)(τ, k)/ωU (τ, k)

)
In Particular
• In Example 1 θ 7→ L(θ) is L(Gω) = G

(i)
ω (τ0, k).

• In Example 2 θ 7→ L(θ) is L(Gω) = supτ G
(1)
ω (τ, k).

• In Example 3 θ 7→ L(θ) is L(Gω) = supτ,k max{|G(1)
ω (τ, k)|, |G(2)

ω (τ, k)|}.

Goal Construct a general bootstrap procedure for quantiles of L(Gω).
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Weighted Bootstrap

Step 1 Generate a random sample of weights {Wi} and define the criterion:

Q̃x,n(c|τ, b) ≡
( 1
n

n∑
i=1

Wi{1{Yi ≤ c,Xi=x,Di=1}+b1{Di=0,Xi=x}−τ1{Xi=x}}
)2

Using Q̃x,n instead of Qx,n obtain analogues to q̂L(τ, k|x) and q̂U (τ, k|x)

q̃L(τ, k|x) = arg min
c∈R

Q̃x,n(c|τ, τ+kp̃(x)) q̃U (τ, k|x) = arg min
c∈R

Q̃x,n(c|τ, τ−kp̃(x))

where p̃(x) ≡ (
∑
iWi1{Di = 1, Xi = x})/(

∑
iWi1{Xi = x}).

Step 2 Using the bounds q̃L(τ, k|x) and q̃U (τ, k|x) from Step 1, obtain:

π̃L(τ, k) ≡ inf
θ
λ′
[ ∫

xx′dS(x)
]−1∫

xθ(x)dS(x) s.t. q̃L(τ, k|x)≤θ(x)≤ q̃U (τ, k|x)

π̃U (τ, k) ≡ sup
θ
λ′
[ ∫

xx′dS(x)
]−1∫

xθ(x)dS(x) s.t. q̃L(τ, k|x)≤θ(x)≤ q̃U (τ, k|x)
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Weighted Bootstrap

Step 3 Using the bounds π̃L(τ, k) and π̃U (τ, k) from Step 2, define:

G̃ω(τ, k) =
√
n
(

(π̃L − π̂L)/ω̂L
(π̃U − π̂U )/ω̂U

)
where ω̂L(τ, k) and ω̂U (τ, k) are estimators for ωL(τ, k) and ωU (τ, k).

Step 4 Estimate r1−α, the 1− α quantile of L(Gω) by r̃1−α defined as:

r̃1−α ≡ inf
{
r : P

(
L(G̃ω) ≥ r

∣∣∣{Yi, Xi, Di}ni=1

)
≥ 1− α

}

Comments
• Notice probability is conditional on {Yi, Xi, Di}ni=1 but not on {Wi}ni=1.
• In practice r̃1−α can be obtained through simulations
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Weighted Bootstrap

Assumptions (C)
(i) ωL and ωU are strictly positive and continuous on B.
(ii) ω̂L and ω̂U are uniformly consistent on B.
(iii) W is positive a.s. independent of (Y,X,D).
(iv) W satisfies E[W ] = 1 and V ar(W ) = 1.
(v) The transformation L is Lipschitz continuous.
(vi) The cdf of L(Gω) is strictly increasing and continuous at r1−α.

Theorem Under Assumptions (A)-(C), if {Yi, Xi, Di,Wi}ni=1 are IID, then:

r̃1−α
p→ r1−α
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1 Nominal Identified Set

2 Parametric Approximation

3 Inference

4 Changes in Wage Structure

5 CPS-SSA Analysis
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Roadmap

Goal: Revisit results of Angrist, Chernozhukov and Fernandez-Val (2006)
regarding changes across Decennial Censuses in quantile specific returns
to schooling.
• Assess sensitivity of results to deviations from MAR.

Then... How worried should we be?
• Investigate nature of deviations from MAR in matched CPS-SSA data
• Test for and measure departures from ignorability using KS metric.
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Quantile Specific Returns

Like Angrist, Chernozhukov and Fernandez-Val (2006) we estimate:

Yi = X ′iγ(τ) + Eiβ(τ) + εi P (εi ≤ 0|Xi, Ei) = τ

where Yi is log average weekly earnings, Ei is years of schooling, and Xi

consists of intercept, black dummy and quadratic in potential experience.

Sample Restrictions

• 1% Unweighted Extracts of 1980, 1990, 2000 PUMS Samples.
• Black and white men age 40-49 with education ≥ 6 years.
• Yi treated as missing for all obs with allocated earnings or weeks

worked.
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Data quality is deteriorating

Table: Fraction of Observations in Estimation Sample with Missing Weekly Earnings

Census Total Number Allocated Allocated Fraction of Total
Year of Observations Earnings Weeks Worked Missing
1980 80,128 12,839 5,278 19.49%
1990 111,070 17,370 11,807 23.09%
2000 131,265 26,540 17,455 27.70%
Total 322,463 56,749 34,540 23.66%
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Figure: Worst Case Nonparametric Bounds on 1990 Medians and Linear Model Fits
for Two Experience Groups of White Men.
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Figure: Nonparametric Bounds on 1990 Medians and Best Linear Approximations
for Two Experience Groups of White Men Under S(F ) ≤ 0.05.
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Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year
Under Missing at Random Assumption (S(F ) = 0).
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Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year
Under S(F ) ≤ 0.05.
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Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year
Under S(F ) ≤ 0.175 (1980 vs. 1990).
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Figure: Confidence Intervals for Fitted Values Under S(F ) ≤ 0.05.
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Distributional Sensitivity

Found critical k at which π80
U (τ, k) ≥ π90

L (τ, k) for all τ .

... more informative find a τ specific critical k for each τ .

Define τ -“breakdown” point κ0(τ) as the smallest k ∈ [0, 1] for which

π80
U (τ, k)− π90

L (τ, k) ≥ 0

⇒ pointwise defines a function κ0 which at each τ gives critical k.

Comments
• κ0 function summarizes distributional sensitivity to MAR assumption.
• Use (τ, k) uniformity to build confidence interval for κ0(τ) uniform in τ .
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Figure: Breakdown Curve (1980 vs 1990).
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How worried should we be?

Goal: Employ 1973 CPS-SSA File to assess S(F ).

Data on SSA and IRS earnings for respondents to March CPS

Sample Restrictions

• Black and white men between ages of 25 and 55.
• More than 6 years of schooling.
• Must have reported working at least one week in past year.
• Drop self-employed and occupations likely to receive tips.
• Drop observations with IRS earnings ≤ $1000 or ≥ $50000.

Comments

• Roughly 7.2% of observations have unreported CPS earnings.
• Use IRS rather than SSA earnings due to topcoding.
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Assessing S(F )

Define,

pL(x, τ)≡P (D=1|X=x, Fy|x(Y )≤τ) pU (x, τ)≡P (D=1|X=x, Fy|x(Y )>τ)

Leads to alternative expression for distance between Fy|1,x and Fy|0,x

|Fy|1,x(q(τ |x))−Fy|0,x(q(τ |x))| =
√

(pL(x, τ)− p(x))(pU (x, τ)− p(x))τ(1− τ)

p(x)(1− p(x))

Comments
• Emphasizes the effect of selection.
• Only need estimate of P (D = 1|X = x, Fy|x(Y ) = τ).
• Use earnings information on nonrespondents to estimate selection.
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Three Logit Models

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(β1τ + β2τ
2 + δx) (1)

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(β1τ + β2τ
2 + γ1δxτ + γ2δxτ

2 + δx) (2)

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(β1,xτ + β2,xτ
2 + δx) (3)

Comments
• Five year age categories, Four schooling (< 12, 12, 13− 15, 16).
• Drop small cells (< 50 obs).
• Only need estimate of P (D = 1|X = x, Fy|x(Y ) = τ).
• Model (2) substantially increases Likelihood over model (1).
• LR test cannot reject model (2) for model (3).
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Table: Logit Estimates of P (D = 0|X = x, Fy|x(Y ) = τ) in 1973 CPS-IRS Sample

Model 1 Model 2 Model 3
b1 -1.06 0.05

(0.43) (5.44)
b2 1.09 3.75

(0.41) (4.08)
γ1 0.45

(2.30)
γ2 1.15

(1.73)
Log-Likelihood -3,802.91 -3798.48 -3759.97
Parameters 37 39 105
Number of observations 15,027 15,027 15,027
Demographic Cells 35 35 35
Ages 25-55
Min KS Distance 0.02 0.02 0.01
Median KS Distance 0.02 0.05 0.12
Max KS Distance (S(F )) 0.02 0.17 0.67
Ages 40-49
Min KS Distance 0.02 0.02 0.01
Median KS Distance 0.02 0.05 0.08
Max KS Distance (S(F )) 0.02 0.09 0.39
Note: Asymptotic standard errors in parentheses.
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Comments

MAR clearly violated
• Very high and very low earning individuals mostly likely to have missing

earnings on average.
• But missingness pattern appears to be heterogenous across

demographic cells.
• Difficult to have guessed pattern a priori.

Degree of Heterogeneity Affects Bottom Line
• Model 1: S(F ) = 0.02

• Model 2: S(F ) = 0.09

• Model 3: S(F ) = 0.39
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Conclusion

Theory: When data are poor, useful to check sensitivity to violations of
MAR.
• KS provides natural metric for assessing violations of MAR.
• Methods developed here enable study of parametric approximating

models.
• And allow for assessment of distributional sensitivity to MAR

assumption.

Empirics: Reexamine the quantile specific returns to education.
• Measured changes in wage structure between 1980-1990 fairly robust

(except at low end of distribution).
• But changes over 1990-2000 easily confounded by a bit of selection

and deterioration in quality of Census data.
• 1973 CPS-SSA file provides evidence of selection and heterogeneity.
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