Sensitivity to Missing Data Assumptions: Theory and An Evaluation of the U.S. Wage Structure

Patrick Kline

Andres Santos

UC Berkeley

UC San Diego

September 21, 2012

The Problem

Missing data is ubiquitous in modern economic research

- Roughly one quarter of earnings observations in CPS and Census.
- Problem can be worse in proprietary surveys and experiments.

The Problem

Missing data is ubiquitous in modern economic research

- Roughly one quarter of earnings observations in CPS and Census.
- Problem can be worse in proprietary surveys and experiments.

Equally ubiquitous solutions: Missing at Random (MAR)

- Justification for imputation procedures in CPS and Census.
- And for ignoring missingness altogether...

The Problem

Missing data is ubiquitous in modern economic research

- Roughly one quarter of earnings observations in CPS and Census.
- Problem can be worse in proprietary surveys and experiments.

Equally ubiquitous solutions: Missing at Random (MAR)

- Justification for imputation procedures in CPS and Census.
- And for ignoring missingness altogether...

Question: How can we evaluate sensitivity of conclusions to MAR?

- Want to consider plausible deviations from MAR without presuming much about selection mechanism.
- And to enable study of sensitivity at different points in conditional distribution (tails likely more sensitive).

The Model

Consider a triplet (Y, X, D) with $Y \in \mathbf{R}$, $X \in \mathbf{R}^{l}$, $D \in \{0, 1\}$.

$$Y = X'\beta(\tau) + \epsilon$$
 $P(\epsilon \le 0|X) = \tau$

and D = 1 if Y is observable, and D = 0 if Y is missing.

The Model

Consider a triplet (Y, X, D) with $Y \in \mathbf{R}$, $X \in \mathbf{R}^{l}$, $D \in \{0, 1\}$.

$$Y = X'\beta(\tau) + \epsilon$$
 $P(\epsilon \le 0|X) = \tau$

and D = 1 if Y is observable, and D = 0 if Y is missing.

Without Missing Data

- Quantile regression as a summary of conditional distribution.
- Under misspecification \Rightarrow best approximation to true model.

The Model

Consider a triplet (Y, X, D) with $Y \in \mathbf{R}$, $X \in \mathbf{R}^{l}$, $D \in \{0, 1\}$.

$$Y = X'\beta(\tau) + \epsilon$$
 $P(\epsilon \le 0|X) = \tau$

and D = 1 if Y is observable, and D = 0 if Y is missing.

Without Missing Data

- Quantile regression as a summary of conditional distribution.
- Under misspecification \Rightarrow best approximation to true model.

Without MAR

- Point identification fails.
- Need to consider misspecification and partial identification.

Missing Data

Define the conditional distribution functions,

$$F_{y|x}(c) \equiv P(Y \le c | X = x) \qquad F_{y|d,x}(c) \equiv P(Y \le c | D = d, X = x)$$

Missing Data

Define the conditional distribution functions,

$$F_{y|x}(c) \equiv P(Y \le c | X = x) \qquad F_{y|d,x}(c) \equiv P(Y \le c | D = d, X = x)$$

Missing at Random

• Rubin (1974). Assume that $F_{y|x}(c) = F_{y|1,x}(c)$ for all $c \in \mathbf{R}$.

Missing Data

Define the conditional distribution functions,

$$F_{y|x}(c) \equiv P(Y \le c | X = x) \qquad F_{y|d,x}(c) \equiv P(Y \le c | D = d, X = x)$$

Missing at Random

• Rubin (1974). Assume that $F_{y|x}(c) = F_{y|1,x}(c)$ for all $c \in \mathbf{R}$.

Nonparametric Bounds

- Manski (1994). Exploit that $0 \le F_{y|0,x}(c) \le 1$ for all $c \in \mathbf{R}$.
- Often bounds are uninformative.
- And typically overly conservative.

Between these extremes lie a continuum of selection mechanisms...

Deviation from MAR

Characterize selection as distance between $F_{y|1,x}$ and $F_{y|0,x}$:

```
d(F_{y|1,x}, F_{y|0,x}) \le k
```

- A way of nonparametrically indexing set of selection mechanisms:
 - Missing at random corresponds to imposing k = 0.
 - Manski Bounds corresponds to imposing $k = \infty$.
- Allows study of sensitivity to deviations from MAR
 (e.g. what level of k is necessary to overturn conclusions regarding β(τ)?)
- And in some cases k may be estimated using validation data.

Nominal Identified Set

- Find possible quantiles under restriction $d(F_{y|1,x}, F_{y|0,x}) \le k$.
- Bound $\beta(\tau)$ as a function of τ, k allowing for misspecification.

Nominal Identified Set

- Find possible quantiles under restriction $d(F_{y|1,x}, F_{y|0,x}) \le k$.
- Bound $\beta(\tau)$ as a function of τ, k allowing for misspecification.

Inference

- Obtain distribution of estimates of boundary of nominal identified set.
- Exploit distribution as a function of (τ, k) for sensitivity analysis.

Nominal Identified Set

- Find possible quantiles under restriction $d(F_{y|1,x}, F_{y|0,x}) \le k$.
- Bound $\beta(\tau)$ as a function of τ, k allowing for misspecification.

Inference

- Obtain distribution of estimates of boundary of nominal identified set.
- Exploit distribution as a function of (τ, k) for sensitivity analysis.

Changes in Wage Structure

- Examine changes in wage structure across Decennial Censuses.
- Measure departures from MAR in matched CPS-SSA.

Missing Data:

Rubin (1974), Greenlees, Reece, & Zieschang (1982), Lillard, Smith & Welch (1986), Manski (1994,2003), Dinardo, McCrary, & Sanbonmatsu (2006), Lee (2008)

Sensitivity Analysis:

Altonji, Elder, and Taber (2005); Rosenbaum and Rubin (1983); Rosenbaum (1987, 2002).

Misspecification

White (1980, 1982), Chamberlain (1994), Angrist, Chernozhukov & Fernandez-Val (2006).

Misspecification and Partial Identification

Horowitz & Manski (2006), Stoye (2007), Ponomareva & Tamer (2009), Bugni, Canay & Guggenberger (2010).

Patrick Kline

4 Changes in Wage Structure

6 CPS-SSA Analysis

Patrick Kline

Bounds on Conditional Quantiles

Define true conditional quantile $q(\tau|x)$ and non-missing probability p(x):

$$F_{y|x}(q(\tau|x)) = \tau \qquad p(x) \equiv P(D=1|X=x)$$

Goal: Obtain identified set for $q(\tau|x)$ under hypothetical $d(F_{y|1,x}, F_{y|0,x}) \leq k$.

For the distance metric we use Kolmogorov-Smirnov, which is given by:

$$\mathcal{S}(F) \equiv \sup_{x \in \mathcal{X}} KS(F_{y|1,x}, F_{y|0,x}) = \sup_{x \in \mathcal{X}} \sup_{c \in \mathbf{R}} |F_{y|1,x}(c) - F_{y|0,x}(c)|$$

Comments

- KS provides control over maximal distance between $F_{y|1,x}$ and $F_{y|0,x}$.
- Nests a wide nonparametric class of potential selection mechanisms.

Choice of Metric

Information necessarily lost with scalar index of selection, but ...

- Not ruling out selection mechanisms as done in parametric approaches.
- Different levels of selection can be considered at each quantile.
- Easy extension to different weights on covariate realizations.
- Scalar metric well suited to sensitivity analysis.

Choice of Metric

Information necessarily lost with scalar index of selection, but ...

- Not ruling out selection mechanisms as done in parametric approaches.
- Different levels of selection can be considered at each quantile.
- Easy extension to different weights on covariate realizations.
- Scalar metric well suited to sensitivity analysis.

What is a big $\mathcal{S}(F)$?

Choice of Metric

Information necessarily lost with scalar index of selection, but ...

- Not ruling out selection mechanisms as done in parametric approaches.
- Different levels of selection can be considered at each quantile.
- Easy extension to different weights on covariate realizations.
- Scalar metric well suited to sensitivity analysis.

What is a big $\mathcal{S}(F)$?

Example: Suppose the data generating process is given by:

 $(Y,v) \sim N(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}) \qquad D = 1\{\mu + v > 0\}.$

where μ is chosen so that the missing probability is 25% to match data.

ρ	$\mathcal{S}(F)$
0.10	0.0672
0.20	0.1355
0.30	0.2069

ρ	$\mathcal{S}(F)$
0.40	0.2778
0.50	0.3520
0.60	0.4304

ρ	$\mathcal{S}(F)$
0.70	0.5165
0.80	0.6158
0.90	0.7377

Figure: Missing and Observed Outcome CDFs

Figure: Distance Between Missing and Observed Outcome CDFs

Suppose a fraction k of the missing population is distributed according to an arbitrary CDF $\tilde{F}_{y|x}$, while the remaining fraction 1 - k of that population are missing at random in the sense that they are distributed according to $F_{y|1,x}$. Then:

$$F_{y|0,x}(c) = (1-k)F_{y|1,x}(c) + k\tilde{F}_{y|x}(c) ,$$

where $\tilde{F}_{y|x}$ is unknown, and the above holds for all $x \in \mathcal{X}$ and any $c \in \mathbf{R}$. Now:

$$\begin{aligned} \mathcal{S}(F) &= \sup_{x \in \mathcal{X}} \sup_{c \in \mathbf{R}} |F_{y|1,x}(c) - k\tilde{F}_{y|x}(c) - (1-k)F_{y|1,x}(c)| \\ &= k \times \sup_{x \in \mathcal{X}} \sup_{c \in \mathbf{R}} |F_{y|1,x}(c) - \tilde{F}_{y|x}(c)| . \end{aligned}$$

Worst Case: S(F) = k. Thus, *k* gives bound on the fraction of the missing sample that is not well represented by the observed data distribution.

Assumption (A)

(i) $X \in \mathbf{R}^l$ has finite support \mathcal{X} .

(ii) $F_{y|d,x}(c)$ is continuous, strictly increasing $\forall c$ with $0 < F_{y|d,x}(c) < 1$. (iii) D equals one if Y is observable and zero otherwise.

Lemma Under (A), if $S(F) \leq k$, then the identified set for $q(\tau|\cdot)$ is:

$$\mathcal{C}(\tau,k) \equiv \{\theta: \mathcal{X} \to \mathbf{R}: q_L(\tau,k|x) \le \theta(x) \le q_U(\tau,k|x)\}$$

where the bounds $q_L(\tau, k|x)$ and $q_U(\tau, k|x)$ are given by:

$$q_L(\tau, k|x) \equiv F_{y|1,x}^{-1} \left(\frac{\tau - \min\{\tau + kp(x), 1\}\{1 - p(x)\}}{p(x)} \right)$$
$$q_U(\tau, k|x) \equiv F_{y|1,x}^{-1} \left(\frac{\tau - \max\{\tau - kp(x), 0\}\{1 - p(x)\}}{p(x)} \right)$$

Example – No Covariates and p(x) = 2/3

Sensitivity Example 1 (Pointwise Analysis)

Suppose *X* is binary so that $X \in \{0, 1\}$, and write:

 $Y = q(\tau|X) + \epsilon \qquad \qquad P(\epsilon \le 0|X) = \tau$

Suppose that under MAR we have $q(\tau_0|X=1) \neq q(\tau_0|X=0)$ for some τ_0 .

We can evaluate sensitivity of this conclusion to MAR by defining:

 $k_0 \equiv \inf k : q_L(\tau_0, k | X=1) - q_U(\tau_0, k | X=0) \le 0 \le q_U(\tau_0, k | X=1) - q_L(\tau_0, k | X=0)$

Comment

- k_0 is the minimal level for overturning $q(\tau_0|X=1) \neq q(\tau_0|X=0)$.
- Large k_0 indicates robust conclusion.

Example 2 (Distributional Analysis)

We want to know if $F_{y|x=1}$ first order stochastically dominates $F_{y|x=0}$. Suppose that under MAR we find $q(\tau|X=1) > q(\tau|X=0)$ at all τ .

We evaluate sensitivity of FOSD conclusion by examining:

 $k_0 \equiv \inf k : q_L(\tau, k | X = 1) \le q_U(\tau, k | X = 0)$ for some $\tau \in (0, 1)$

Comment

 k₀ is the minimal level of selection under which the conclusion of FOSD may be undermined.

Example 3 (Breakdown Analysis)

$$Y = q(\tau|X) + \epsilon \qquad \qquad P(\epsilon \le 0|X) = \tau$$

Suppose that under MAR we have $q(\tau|X=1) \neq q(\tau|X=0)$ for multiple τ .

More nuanced analysis can consider the quantile specific critical level:

 $\kappa_0(\tau) \equiv \inf k : q_L(\tau, k | X = 1) - q_U(\tau, k | X = 0) \le 0 \le q_U(\tau, k | X = 1) - q_L(\tau, k | X = 0)$

Comment

- Changes in τ map out a "breakdown function" $\tau \mapsto \kappa_0(\tau)$.
- Reveals differential sensitivity of the entire conditional distribution.

2 Parametric Approximation

4 Changes in Wage Structure

5 CPS-SSA Analysis

Adding Parametric Structure

With lots of covariates, convenient to assume a linear parametric model:

 $q(\tau|X) = X'\beta(\tau)$

Identified set for $\beta(\tau)$ is intersection of $\mathcal{C}(\tau, k)$ with parametric models:

 $\left\{\beta(\tau) \in \mathbf{R}^{l} : q_{L}(\tau, k|X) \le X'\beta(\tau) \le q_{U}(\tau, k|X)\right\}$

Comments:

- Set of functions in identified set may be severely restricted.
- Inadvertently rewards misspecification.

Identification by misspecification

Figure: Linear Conditional Quantile Functions as a Subset of the Identified Set

Adding Parametric Structure

Instead allow for misspecification in the linear quantile model

 $Y = X'\beta(\tau) + \eta$

• If identified, misspecification as "pseudo true" approximation

$$\beta(\tau) \equiv \arg\min_{\gamma \in \mathbf{R}^l} \int (q(\tau|x) - x'\gamma)^2 dS(x)$$

• If partially identified, each $\theta \in C(\tau, k)$ implies a pseudo true vector $\beta(\tau)$

 $\mathcal{P}(\tau,k) \equiv \left\{ \beta \in \mathbf{R}^l : \beta = \arg\min_{\gamma \in \mathbf{R}^l} \int (\theta(x) - x'\gamma)^2 dS(x) \text{ for some } \theta \in \mathcal{C}(\tau,k) \right\}$

 \Rightarrow i.e. consider $\beta \in \mathbf{R}^{l}$ that are best approximation to some $\theta \in \mathcal{C}(\tau, k)$.

Figure: Conditional Quantile and its Pseudo-True Approximation

Misspecification

Choice of quadratic loss allows for simple characterization of $\mathcal{P}(\tau, k)$. Lemma: Under (A), if $\mathcal{S}(F) \leq k$ and $\int xx' dS(x)$ is invertible:

$$\mathcal{P}(au,k) = \left\{eta = \left[\int xx'dS(x)
ight]^{-1}\int x heta(x)dS(x) \ : q(au,k|x) \le heta(x) \le q(au,k|x)
ight\}$$

Note: It follows that $\mathcal{P}(\tau, k)$ is convex.

One more assumption: We will assume the measure S is known.

• Analogous to having a known loss function.

Parameter of Interest

Inference on parameters of the form $\lambda'\beta(\tau)$ for some $\lambda \in \mathbf{R}^{l}$.

Corollary: The identified set for $\lambda'\beta(\tau)$ is $[\pi_L(\tau,k), \pi_U(\tau,k)]$, where:

$$\pi_L(\tau,k) \equiv \inf_{\theta} \lambda' \Big[\int xx' dS \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t. } q_L(\tau,k|x) \le \theta(x) \le q_U(\tau,k|x)$$
$$\pi_U(\tau,k) \equiv \sup_{\theta} \lambda' \Big[\int xx' dS \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t. } q_L(\tau,k|x) \le \theta(x) \le q_U(\tau,k|x)$$

Comments:

- Examples: individual coefficients and fitted values.
- Bounds sharp for fixed τ and k.
- Bounds become wider with k and change across τ .

Bounds on the Process

Previous corollary implies that if $\mathcal{S}(F) \leq k$, then $\lambda' \beta(\cdot)$ belongs to:

$$\mathcal{G}(k) \equiv \left\{ g: [0,1] \to \mathbf{R} : \pi_L(\tau,k) \le g(\tau) \le \pi_U(\tau,k) \quad \text{for all } \tau \right\}$$

Unfortunately, $\mathcal{G}(k)$ is not a sharp identified set of the process $\lambda'\beta(\cdot)$.

However ...

- The bounds $\pi_L(\cdot, k)$ and $\pi_U(\cdot, k)$ are in identified set where finite.
- The bounds of $\mathcal{G}(k)$ are sharp at every point of evaluation τ .
- If $\theta \notin \mathcal{G}(k)$, then the function $\theta(\cdot)$ cannot equal $\lambda' \beta(\cdot)$.
- Ease of analysis and graphical representation.
$Y = \alpha(\tau) + X'\beta(\tau) + \eta$

Suppose that under MAR we have $\beta(\tau_0) \neq 0$ for some specific quantile τ_0 .

We can evaluate sensitivity of this conclusion to MAR by defining:

$$k_0 \equiv \inf k : \pi_L(\tau_0, k) \le 0 \le \pi_U(\tau_0, k)$$

Comment

• k_0 is the minimal level of selection necessary to overturn $\beta(\tau_0) \neq 0$.

 $Y = \alpha(\tau) + X'\beta(\tau) + \eta$

Suppose that under MAR we have $\beta(\tau) > 0$ for multiple τ .

We evaluate sensitivity to conclusion of $F_{y|x}$ being increasing at some τ :

$$k_0 \equiv \inf k : \pi_L(\tau, k) \le 0$$
 for all $\tau \in [0, 1]$

- k_0 is the minimal level of selection that overturns $\beta(\tau) > 0$ for some τ .
- $\pi_L(\cdot, k_0)$ is in identified set for $\beta(\cdot)$ under $\mathcal{S}(F) \leq k$.

 $Y = \alpha(\tau) + X'\beta(\tau) + \eta$

Suppose that under MAR we have $\beta(\tau) \neq 0$ for multiple τ .

More nuanced analysis can consider the quantile specific critical level:

$$\kappa_0(\tau) \equiv \inf k : \pi_L(\tau, k) \le 0 \le \pi_U(\tau, k)$$

- Changing τ maps out a "breakdown function" $\tau \mapsto \kappa_0(\tau)$.
- Reveals differential sensitivity of the entire conditional distribution.

2 Parametric Approximation

3 Inference

4 Changes in Wage Structure

6 CPS-SSA Analysis

Patrick Kline

Estimating Bounds

• Study estimators for bound functions $\pi_L(\tau, k)$, $\pi_U(\tau, k)$ given by:

$$\hat{\pi}_{L}(\tau,k) \equiv \inf_{\theta} \lambda' \Big[\int xx' dS(x) \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t.} \quad \hat{q}_{L}(\tau,k|x) \leq \theta(x) \leq \hat{q}_{U}(\tau,k|x)$$
$$\hat{\pi}_{U}(\tau,k) \equiv \sup_{\theta} \lambda' \Big[\int xx' dS(x) \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t.} \quad \hat{q}_{L}(\tau,k|x) \leq \theta(x) \leq \hat{q}_{U}(\tau,k|x)$$

• Need distribution as processes on $L^{\infty}(\mathcal{B})$, where for $0 < 2\epsilon < \inf_{x} p(x)$:

$$\mathcal{B} \equiv \begin{cases} (\tau, k): & \text{(i) } kp(x)(1-p(x)) + 2\epsilon \leq \tau p(x) & \text{(iii) } k \leq \tau \\ \text{(ii) } kp(x)(1-p(x) + 2\epsilon \leq (1-\tau)p(x) & \text{(iv) } k \leq 1-\tau \end{cases} \end{cases}$$

- The bounds $\pi_L(\tau, k)$ and $\pi_U(\tau, k)$ are finite everywhere on \mathcal{B} .
- Large or small values of τ must be accompanied by small values of k.

Estimating Bounds

• Recall $q_L(\tau, k|x)$ and $q_U(\tau, k|x)$ were defined as quantiles of $F_{y|1,x}$:

 $q_L(\tau,k|x) = \arg\min_{c \in \mathbf{R}} Q_x(c|\tau,\tau+kp(x)) \quad q_U(\tau,k|x) = \arg\min_{c \in \mathbf{R}} Q_x(c|\tau,\tau-kp(x))$

where the family of criterion functions $Q_x(c|\tau, b)$ is given by:

 $Q_x(c|\tau, b) \equiv (P(Y \le c, X = x, D = 1) + bP(D = 0, X = x) - \tau P(X = x))^2$

• This suggests an extremum estimation approach given by:

$$\begin{split} \hat{q}_L(\tau,k|x) = \arg\min_{c\in\mathbf{R}} Q_{x,n}(c|\tau,\tau+k\hat{p}(x)) \quad \hat{q}_U(\tau,k|x) = \arg\min_{c\in\mathbf{R}} Q_{x,n}(c|\tau,\tau-k\hat{p}(x)) \\ \text{where the criterion function } Q_{x,n}(c|\tau,b) \text{ is the immediate sample analogue.} \end{split}$$

Assumptions (B)

- (i) $F_{y|1,x}$ has a continuous bounded derivative $f_{y|1,x}$
- (ii) $f_{y|1,x}$ has a continuous bounded derivative $f'_{y|1,x}$
- (iii) The matrix $\int xx' dS(x)$ is invertible.
- (iv) $f_{y|1,x}$ is positive "over relevant range".

Theorem Under Assumptions (A) and (B), if $\{Y_i, X_i, D_i\}_{i=1}^n$ is IID, then:

$$\sqrt{n} \left(\begin{array}{c} \hat{\pi}_L - \pi_L \\ \hat{\pi}_U - \pi_U \end{array} \right) \xrightarrow{\mathcal{L}} G ,$$

where G is a gaussian process on $L^{\infty}(\mathcal{B}) \times L^{\infty}(\mathcal{B})$.

Proof Outline

Step 1: Study distribution of minimizers of $Q_{x,n}(c|\tau, b)$ as a function of (τ, b) .

- Obtain uniform asymptotic expansions for the minimizers.
- $Q_{x,n}(c|\tau, b)$ has enough structure to establish equicontinuity.

Step 2: Find distribution (\hat{q}_L, \hat{q}_U) in $L^{\infty}(\mathcal{B} \times \mathcal{X}) \times L^{\infty}(\mathcal{B} \times \mathcal{X})$.

• Simply a restriction of the process derived in Step 1.

Step 3: Establish the distribution of $(\hat{\pi}_L, \hat{\pi}_U)$ on $L^{\infty}(\mathcal{B})$.

• Straightforward due to linear program.

Example 1 (cont)

Suppose under MAR we find that $\beta(\tau_0) \neq 0$ for some specific quantile τ_0 . Minimal level of selection necessary to undermine this conclusion is:

 $k_0 \equiv \inf k : \pi_L(\tau_0, k) \le 0 \le \pi_U(\tau_0, k)$

Let $r_{1-\alpha}^{(i)}(k)$ be the $1-\alpha$ quantile of $G^{(i)}(\tau_0,k)$ and define:

$$\hat{k}_0 \equiv \inf k : \hat{\pi}_L(\tau_0, k) - \frac{r_{1-\alpha}^{(1)}(k)}{\sqrt{n}} \le 0 \le \hat{\pi}_U(\tau_0, k) + \frac{r_{1-\alpha}^{(2)}(k)}{\sqrt{n}}$$

Then $k_0 \in [\hat{k}_0, 1]$ with asymptotic probability greater than or equal to $1 - \alpha$.

- One sided confidence interval (rather than two sided) is natural.
- Relevant critical value depends on transformation of G.

Example 2 (cont)

Suppose under MAR we find that $\beta(\tau) > 0$ for multiple τ and recall that

 $k_0 \equiv \inf k : \pi_L(\tau, k) \le 0$ for all $\tau \in [0, 1]$

Let $r_{1-\alpha}(k)$ be the $1-\alpha$ quantile of $\sup_{\tau} G^{(1)}(\tau,k)/\omega_L(\tau,k)$ and define:

$$\hat{k}_0 \equiv \inf k : \sup_{\tau} \hat{\pi}_L(\tau, k) - \frac{r_{1-\alpha}(k)}{\sqrt{n}} \omega_L(\tau, k) \le 0$$

Then $k_0 \in [\hat{k}_0, 1]$ with asymptotic probability greater than or equal to $1 - \alpha$.

- Weight function ω_L allows to adjust for different asymptotic variances.
- Result exploits uniformity in τ but not in k.

Example 3 (cont)

Suppose under MAR we find that $\beta(\tau) \neq 0$ for multiple τ and recall that:

 $\kappa_0(\tau) \equiv \inf k : \pi_L(\tau, k) \le 0 \le \pi_U(\tau, k)$

For (ω_L, ω_U) positive weight functions, let $r_{1-\alpha}$ be the $1-\alpha$ quantile of:

$$\sup_{\tau,k} \max\left\{\frac{|G^{(1)}(\tau,k)|}{\omega_L(\tau,k)}, \frac{|G^{(2)}(\tau,k)|}{\omega_U(\tau,k)}\right\}$$

Then with asymptotic probability at least $1 - \alpha$ for all τ , $\kappa_0(\tau)$ lies between:

$$\hat{\kappa}_L(\tau) \equiv \inf k : \hat{\pi}_L(\tau, k) - \frac{r_{1-\alpha}}{\sqrt{n}} \omega_L(\tau, k) \le 0 \text{ and } 0 \le \hat{\pi}_U(\tau, k) + \frac{r_{1-\alpha}}{\sqrt{n}} \omega_U(\tau, k)$$
$$\hat{\kappa}_U(\tau) \equiv \sup k : \hat{\pi}_L(\tau, k) + \frac{r_{1-\alpha}}{\sqrt{n}} \omega_L(\tau, k) \ge 0 \text{ or } 0 \ge \hat{\pi}_U(\tau, k) - \frac{r_{1-\alpha}}{\sqrt{n}} \omega_U(\tau, k)$$

Weighted Bootstrap

Question How do we obtain a consistent estimator for $r_{1-\alpha}$? **Answer** Perturb the objective function and recompute (weighted bootstrap).

In all examples, $r_{1-\alpha}$ is quantile of $L(G_{\omega})$ where L is Lipschitz and

$$G_{\omega}(\tau,k) = \begin{pmatrix} G^{(1)}(\tau,k)/\omega_L(\tau,k) \\ G^{(2)}(\tau,k)/\omega_U(\tau,k) \end{pmatrix}$$

In Particular

- In Example 1 $\theta \mapsto L(\theta)$ is $L(G_{\omega}) = G_{\omega}^{(i)}(\tau_0, k)$.
- In Example 2 $\theta \mapsto L(\theta)$ is $L(G_{\omega}) = \sup_{\tau} G_{\omega}^{(1)}(\tau, k)$.
- In Example 3 $\theta \mapsto L(\theta)$ is $L(G_{\omega}) = \sup_{\tau,k} \max\{|G_{\omega}^{(1)}(\tau,k)|, |G_{\omega}^{(2)}(\tau,k)|\}.$

Goal Construct a general bootstrap procedure for quantiles of $L(G_{\omega})$.

Weighted Bootstrap

Step 1 Generate a random sample of weights $\{W_i\}$ and define the criterion:

$$\tilde{Q}_{x,n}(c|\tau,b) \equiv \left(\frac{1}{n}\sum_{i=1}^{n} W_i\{1\{Y_i \le c, X_i = x, D_i = 1\} + b1\{D_i = 0, X_i = x\} - \tau 1\{X_i = x\}\}\right)^2$$

Using $\hat{Q}_{x,n}$ instead of $Q_{x,n}$ obtain analogues to $\hat{q}_L(\tau, k|x)$ and $\hat{q}_U(\tau, k|x)$ $\tilde{q}_L(\tau, k|x) = \arg\min_{c \in \mathbf{R}} \tilde{Q}_{x,n}(c|\tau, \tau+k\tilde{p}(x)) \quad \tilde{q}_U(\tau, k|x) = \arg\min_{c \in \mathbf{R}} \tilde{Q}_{x,n}(c|\tau, \tau-k\tilde{p}(x))$ where $\tilde{p}(x) \equiv (\sum_i W_i 1\{D_i = 1, X_i = x\})/(\sum_i W_i 1\{X_i = x\}).$

Step 2 Using the bounds $\tilde{q}_L(\tau, k|x)$ and $\tilde{q}_U(\tau, k|x)$ from **Step 1**, obtain:

$$\begin{split} \tilde{\pi}_L(\tau,k) &\equiv \inf_{\theta} \lambda' \Big[\int xx' dS(x) \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t. } \tilde{q}_L(\tau,k|x) \leq \theta(x) \leq \tilde{q}_U(\tau,k|x) \\ \tilde{\pi}_U(\tau,k) &\equiv \sup_{\theta} \lambda' \Big[\int xx' dS(x) \Big]^{-1} \int x\theta(x) dS(x) \quad \text{s.t. } \tilde{q}_L(\tau,k|x) \leq \theta(x) \leq \tilde{q}_U(\tau,k|x) \end{split}$$

Weighted Bootstrap

Step 3 Using the bounds $\tilde{\pi}_L(\tau, k)$ and $\tilde{\pi}_U(\tau, k)$ from **Step 2**, define:

$$\tilde{G}_{\omega}(\tau,k) = \sqrt{n} \left(\begin{array}{c} (\tilde{\pi}_L - \hat{\pi}_L) / \hat{\omega}_L \\ (\tilde{\pi}_U - \hat{\pi}_U) / \hat{\omega}_U \end{array} \right)$$

where $\hat{\omega}_L(\tau, k)$ and $\hat{\omega}_U(\tau, k)$ are estimators for $\omega_L(\tau, k)$ and $\omega_U(\tau, k)$.

Step 4 Estimate $r_{1-\alpha}$, the $1-\alpha$ quantile of $L(G_{\omega})$ by $\tilde{r}_{1-\alpha}$ defined as:

$$\tilde{r}_{1-\alpha} \equiv \inf\left\{r: P\left(L(\tilde{G}_{\omega}) \ge r \left| \{Y_i, X_i, D_i\}_{i=1}^n\right) \ge 1-\alpha\right\}\right\}$$

- Notice probability is conditional on $\{Y_i, X_i, D_i\}_{i=1}^n$ but not on $\{W_i\}_{i=1}^n$.
- In practice $\tilde{r}_{1-\alpha}$ can be obtained through simulations

Assumptions (C)

- (i) ω_L and ω_U are strictly positive and continuous on \mathcal{B} .
- (ii) $\hat{\omega}_L$ and $\hat{\omega}_U$ are uniformly consistent on \mathcal{B} .
- (iii) W is positive a.s. independent of (Y, X, D).
- (iv) W satisfies E[W] = 1 and Var(W) = 1.
- (v) The transformation *L* is Lipschitz continuous.
- (vi) The cdf of $L(G_{\omega})$ is strictly increasing and continuous at $r_{1-\alpha}$.

Theorem Under Assumptions (A)-(C), if $\{Y_i, X_i, D_i, W_i\}_{i=1}^n$ are IID, then:

 $\tilde{r}_{1-\alpha} \xrightarrow{p} r_{1-\alpha}$

5 CPS-SSA Analysis

Roadmap

Goal: Revisit results of Angrist, Chernozhukov and Fernandez-Val (2006) regarding changes across Decennial Censuses in quantile specific returns to schooling.

• Assess sensitivity of results to deviations from MAR.

Roadmap

Goal: Revisit results of Angrist, Chernozhukov and Fernandez-Val (2006) regarding changes across Decennial Censuses in quantile specific returns to schooling.

• Assess sensitivity of results to deviations from MAR.

Then... How worried should we be?

- Investigate nature of deviations from MAR in matched CPS-SSA data
- Test for and measure departures from ignorability using KS metric.

Quantile Specific Returns

Like Angrist, Chernozhukov and Fernandez-Val (2006) we estimate:

 $Y_i = X'_i \gamma(\tau) + E_i \beta(\tau) + \epsilon_i \qquad P(\epsilon_i \le 0 | X_i, E_i) = \tau$

where Y_i is log average weekly earnings, E_i is years of schooling, and X_i consists of intercept, black dummy and quadratic in potential experience.

Sample Restrictions

- 1% Unweighted Extracts of 1980, 1990, 2000 PUMS Samples.
- Black and white men age 40-49 with education ≥ 6 years.
- *Y_i* treated as missing for all obs with allocated earnings or weeks worked.

Data quality is deteriorating

Table: Fraction of Observations in Estimation Sample with Missing Weekly Earnings

Census	Total Number	Allocated	Allocated	Fraction of Total
Year	of Observations	Earnings	Weeks Worked	Missing
1980	80,128	12,839	5,278	19.49%
1990	111,070	17,370	11,807	23.09%
2000	131,265	26,540	17,455	27.70%
Total	322,463	56,749	34,540	23.66%

Figure: Worst Case Nonparametric Bounds on 1990 Medians and Linear Model Fits for Two Experience Groups of White Men.

Figure: Nonparametric Bounds on 1990 Medians and Best Linear Approximations for Two Experience Groups of White Men Under $S(F) \leq 0.05$.

Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year Under Missing at Random Assumption (S(F) = 0).

Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year Under $\mathcal{S}(F) \leq 0.05.$

Figure: Uniform Confidence Regions for Schooling Coefficients by Quantile and Year Under $S(F) \le 0.175$ (1980 vs. 1990).

Figure: Confidence Intervals for Fitted Values Under $S(F) \leq 0.05$.

Distributional Sensitivity

Found critical k at which $\pi_U^{80}(\tau, k) \ge \pi_L^{90}(\tau, k)$ for all τ .

... more informative find a τ specific critical k for each τ .

Define τ -"breakdown" point $\kappa_0(\tau)$ as the smallest $k \in [0,1]$ for which

 $\pi_U^{80}(\tau,k) - \pi_L^{90}(\tau,k) \ge 0$

 \Rightarrow pointwise defines a function κ_0 which at each τ gives critical k.

- κ_0 function summarizes distributional sensitivity to MAR assumption.
- Use (τ, k) uniformity to build confidence interval for $\kappa_0(\tau)$ uniform in τ .

Intersection of Sample Bounds

Figure: Breakdown Curve (1980 vs 1990).

Patrick Kline

UC Berkeley

5 CPS-SSA Analysis

How worried should we be?

Goal: Employ 1973 CPS-SSA File to assess S(F).

Data on SSA and IRS earnings for respondents to March CPS

Sample Restrictions

- Black and white men between ages of 25 and 55.
- More than 6 years of schooling.
- Must have reported working at least one week in past year.
- Drop self-employed and occupations likely to receive tips.
- Drop observations with IRS earnings \leq \$1000 or \geq \$50000.

- Roughly 7.2% of observations have unreported CPS earnings.
- Use IRS rather than SSA earnings due to topcoding.

Define,

 $p_L(x,\tau) \!\equiv\! P(D\!=\!1|X\!=\!x,F_{y|x}(Y) \!\leq\! \tau) \qquad p_U(x,\tau) \!\equiv\! P(D\!=\!1|X\!=\!x,F_{y|x}(Y) \!>\! \tau)$

Leads to alternative expression for distance between $F_{y|1,x}$ and $F_{y|0,x}$

$$|F_{y|1,x}(q(\tau|x)) - F_{y|0,x}(q(\tau|x))| = \frac{\sqrt{(p_L(x,\tau) - p(x))(p_U(x,\tau) - p(x))\tau(1-\tau)}}{p(x)(1-p(x))}$$

- Emphasizes the effect of selection.
- Only need estimate of $P(D = 1 | X = x, F_{y|x}(Y) = \tau)$.
- Use earnings information on nonrespondents to estimate selection.

$$P(D = 0|X = x, F_{y|x}(Y) = \tau) = \Lambda(\beta_1 \tau + \beta_2 \tau^2 + \delta_x)$$
(1)

$$P(D = 0|X = x, F_{y|x}(Y) = \tau) = \Lambda(\beta_1 \tau + \beta_2 \tau^2 + \gamma_1 \delta_x \tau + \gamma_2 \delta_x \tau^2 + \delta_x)$$
 (2)

$$P(D = 0|X = x, F_{y|x}(Y) = \tau) = \Lambda(\beta_{1,x}\tau + \beta_{2,x}\tau^2 + \delta_x)$$
(3)

- Five year age categories, Four schooling (< 12, 12, 13 15, 16).
- Drop small cells (< 50 obs).
- Only need estimate of $P(D = 1 | X = x, F_{y|x}(Y) = \tau)$.
- Model (2) substantially increases Likelihood over model (1).
- LR test cannot reject model (2) for model (3).

b_1	Model 1 -1.06	Model 2 0.05	Model 3
	(0.43)	(5.44)	
b_2	1.09	3.75	
	(0.41)	(4.08)	
γ_1		0.45	
		(2.30)	
γ_2		1.15	
		(1.73)	
Log-Likelihood	-3,802.91	-3798.48	-3759.97
Parameters	37	39	105
Number of observations	15,027	15,027	15,027
Demographic Cells	35	35	35
Ages 25-55			
Min KS Distance	0.02	0.02	0.01
Median KS Distance	0.02	0.05	0.12
Max KS Distance ($\mathcal{S}(F)$)	0.02	0.17	0.67
Ages 40-49			
Min KS Distance	0.02	0.02	0.01
Median KS Distance	0.02	0.05	0.08
Max KS Distance ($\mathcal{S}(F)$)	0.02	0.09	0.39

Table: Logit Estimates of $P(D = 0|X = x, F_{y|x}(Y) = \tau)$ in 1973 CPS-IRS Sample

Note: Asymptotic standard errors in parentheses.
Comments

MAR clearly violated

- Very high and very low earning individuals mostly likely to have missing earnings on average.
- But missingness pattern appears to be heterogenous across demographic cells.
- Difficult to have guessed pattern a priori.

Degree of Heterogeneity Affects Bottom Line

- Model 1: S(F) = 0.02
- Model 2: S(F) = 0.09
- Model 3: S(F) = 0.39

Conclusion

Theory: When data are poor, useful to check sensitivity to violations of MAR.

- KS provides natural metric for assessing violations of MAR.
- Methods developed here enable study of parametric approximating models.
- And allow for assessment of distributional sensitivity to MAR assumption.

Theory: When data are poor, useful to check sensitivity to violations of MAR.

- KS provides natural metric for assessing violations of MAR.
- Methods developed here enable study of parametric approximating models.
- And allow for assessment of distributional sensitivity to MAR assumption.

Empirics: Reexamine the quantile specific returns to education.

- Measured changes in wage structure between 1980-1990 fairly robust (except at low end of distribution).
- But changes over 1990-2000 easily confounded by a bit of selection and deterioration in quality of Census data.
- 1973 CPS-SSA file provides evidence of selection and heterogeneity.