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Regression vs. Reweighting

Several common approaches to adjusting for covariates:

Regression based approaches (OLS, Blinder-Oaxaca)

Propensity score methods (matching, reweighting)

Doubly robust methods (Robins, Rotnitzky, and Zhao, 1994;
Egel, Graham, and Pinto, 2009)



Today

Study estimators of counterfactual mean
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]
Show that a classic regression based approach, Blinder-Oaxaca
estimation, is a DR estimator.

Under misspeci�cation B-O provides MMSE approxiation to
appropriate propensity score based weights.



Blinder-Oaxaca

Exogenous regime switching setup:
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i Di +(1−Di )Y
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E [ε1i |Xi ,Di ] = 0, E [ε0i |Xi ,Di ] = 0

Original application (Oaxaca, 1973):
(
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)
male/female wages

and
(
β 1,β 0

)
latent skill prices. Di�erent prices imply

discrimination.



Blinder-Oaxaca

B-O model allows identi�cation of counterfactual means but not
(without further assumptions) distributions. Mean independence of
errors implies:
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Blinder-Oaxaca

B-O estimator simply replaces population quantity δBO with
sample analogue � predicted values from a regression among the
controls. Several advantages of this approach:

Estimation simply requires less than perfect multicollinearity
among Xi in the Di = 0 sample. Useful in a number of
evaluation designs where many more controls are available
than treated units.

Easy to conduct inference.

Weakness: linear model may provide a poor �t at points far
from E [Xi ].



Reweighting Approach

Alternative approach: reweight controls by

dFX |D=1 (x)

dFX |D=0 (x)

so that distribution of covariates among two samples is
identical.

By balancing distribution, the in�uence of these covariates will
be removed.

Then form estimate of counterfactual mean as∫
E [Y |X = x ,D = 0]dFX |D=1 (x).



Unconfoundedness

Unconfoundedness:
Y 1
i ,Y

0
i ⊥ Di |Xi

Stronger than earlier mean independence, but nonparametric about
dependence of

(
Y 1
i
,Y 0

i

)
on Xi .

Unconfoundedness in B-O framework would require

E
[
g
(

ε
d
i

)
|Xi ,Di

]
= 0 d ∈ {0,1}

for any continuous function g (.) not vanishing outside a �nite
interval.



Propensity Score

Propensity score (Rosenbaum and Rubin, 1983):

e (Xi )≡ P (Di = 1|Xi )

Overlap condition
e (Xi )< 1

Not directly testable without further assumptions.



Propensity Score Reweighting

De�ne

π ≡ P (Di = 1)

w (Xi )≡
1−π

π

e (Xi )

1− e (Xi )

By Bayes' Rule

w (x) =
dFX |D=1 (x)

dFX |D=0 (x)



Adding Up

Although w (Xi ) is distributed on [0,∞), refer to w (Xi ) as
propensity score �weights� because

E [w (Xi ) |Di = 0] =
∫
w (x)dFX |D=0 (x)

=
∫
dFX |D=1 (x)

= 1



A useful result

Unconfoundedness and overlap imply:

µ
1
0 = E

[
e (Xi )

π
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1− e (Xi )
Yi

]
= E

[
w (Xi )

1−Di

1−π
Yi

]
= E [w (Xi )Yi |Di = 0]

Hence, a weighted average of untreated outcomes identi�es the
counterfactual mean of interest µ1

0 .



Estimation

Identi�cation result motivates plug-in estimators where,
typically, e (Xi ) is estimated via a �exible logit or probit model
and π is chosen to ensure E [w (Xi ) |Di = 0] = 1 (Imbens,
2004; Hirano, Imbens, and Ridder, 2003).

Useful in cases where researcher knows more about assignment
mechanism than process generating outcomes.

May be di�cult to estimate propensity score in small samples
or with unbalanced design (perfect prediction problem)

Problems may arise when estimated e (Xi ) is near one since
lots of weight given to a few observations. (e.g. Kang and
Schae�er, 2007; Huber, Lechner, and Wunsch, 2010)



Equivalence

Given the overlap condition, it is straightforward to show that
E [X |Di = 1] = E [w (Xi )X |Di = 0] and hence that:

δ
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]
Interpretation:

B-O weights provide MMSE approximation to true
nonparametric weights w (Xi )

Approximation is exact if e(Xi )
1−e(Xi )

= X ′γ (log-logistic) as

opposed to logistic model which assumes e(Xi )
1−e(Xi )

= exp (X ′γ)



Double Robustness

Result implies B-O estimator is �doubly robust� (Robins,
Rotnitzky, and Zhao, 1994) � consistent if either log-logistic
model for propensity score or linear model for E

[
Y 0
i
|Xi

]
is

correct.

Propensity score model justi�ed by latent variable model of the
form

Di = 1
[
X ′i γ + vi

]
where vi ∼ Fv (.) and Fv (z) =

z

1+z .



Misspeci�cation

In practice, neither the outcome nor the propensity score
model is likely to hold globally. Simply convenient local
approximations.

Bias in B-O estimator is:

µ
1
0 −δ

BO = E [(w (Xi )− w̃ (Xi ))Yi |Di = 0]

Can show that E [w (Xi )− w̃ (Xi )] = 0, so bias emerges from
correlation of speci�cation errors with E

[
Y 0
i
|Xi

]
.



Misspeci�cation

B-O approximates the weights w (Xi ) directly, while typical
plugin estimators approximate e (Xi ) and then form implied
weights. Best approximation to e (Xi ) will not guarantee best
approximation to w (Xi ).

A very poor approximation to the weights will avoid bias
provided the approximation errors are uncorrelated with control
outcomes.

Conversely, a very good approximation may perform poorly if
the errors are strongly correlated with outcomes.

Relative performance of the two approaches will ultimately
depend on process generating outcomes.



Sample Properties

Blinder-Oaxaca estimator:

δ̂
BO =

1

N1
D
′
X
(
X
′
WX

)−1
X
′
WY

= ωY

where W = diag {1−Di} and N1 = ∑Di .



Sample Properties

Sample weight vector ω has some interesting properties:

Weights sum to one � potentially important (Busso, Dinardo,
McCrary, 2010)

Weights are zero for treated observations

Weights may be negative for some observations (when
estimated odds of treatment go negative)



Application

Revisit Dehejia and Wahba (1999)'s reanalysis of LaLonde's
classic 1986 analysis of the National Supported Work (NSW)
program.

Compare three estimators (OLS, B-O, and Logistic
reweighting) to experimental benchmark.

Sample consists of experimental NSW data and observational
control sample (CPS-3) of poor and recently unemployed men
from the CPS with nonmissing 1975 and 1976 earnings.

In all cases Yi is 1978 earnings and Xi contains: an intercept,
age, age squared, years of schooling, black, hispanic, married,
no degree,1975 earnings, and 1976 earnings.



B-O vs. Logistic Weights



Results



Conclusion

Blinder-Oaxaca has dual interpretation as propensity score
reweighting estimator

Provides MMSE approximation to weights without imposing
side restriction that weights must be non-negative.

Performance of B-O relative to conventional reweighting
estimators will depend on DGP

B-O likely to be of most use in situations with unbalanced
design (few treated, many controls) and lots of covariates.
Or where estimated propensity scores imply very large weight
on a few observations. (Kang and Schae�er, 2007)



Possible Extensions - Estimands

If true propensity score is LPM, OLS can be shown to identify

E [e (Xi )(1− e (Xi )(Y
1
i
−Y 0

i
)]

E [e (Xi )(1− e (Xi ))]

even even if outcome means are not linear in Xi .

Two-sided B-O is DR for ATE.

DR B-O decompositions?



Other Extensions

Dual interpretation to IV-BO?

Semiparametric doubly robust estimators of LATE already exist
(Tan, 2006; Uysal, 2010)
Does IV estimation among the controls provide predictions
with a dual interpretation?

Nonlinear estimators?


	Motivation
	Blinder-Oaxaca
	Reweighting
	Equivalence
	Sample Properties
	Application
	Conclusion

