Abstract

This paper empirically evaluates the cost-effectiveness of Head Start, the largest early-childhood education program in the United States. Using data from the Head Start Impact Study (HSIS), we show that Head Start draws roughly a third of its participants from competing preschool programs that receive public funds. This both attenuates measured experimental impacts on test scores and reduces the program’s net budgetary costs. A calibration exercise indicates that accounting for the public savings associated with reduced enrollment in other subsidized preschools substantially increases estimates of Head Start’s rate of return, defined as the after-tax lifetime earnings generated by an extra dollar of public spending. Control function estimation of a semi-parametric selection model reveals substantial heterogeneity in Head Start’s test score impacts with respect to counterfactual care alternatives as well as observed and unobserved child characteristics. Head Start is about as effective at raising test scores as competing preschools and its impacts are greater on children from families less likely to participate in the program. Expanding Head Start to new populations is therefore likely to boost the program’s rate of return, provided that the proposed technology for increasing enrollment is not too costly.

Keywords: Program Evaluation, Head Start, Early-Childhood Education, Cost-Benefit Analysis, Control Function, Marginal Treatment Effects
1 Introduction

Many government programs provide services that can be obtained, in roughly comparable form, via markets or through other public organizations. The presence of close program substitutes complicates the task of program evaluation by generating ambiguity regarding which causal estimands are of interest. Standard intent-to-treat impacts from experimental demonstrations can yield unduly negative assessments of program effectiveness if most participants would receive similar services in the absence of an intervention (Heckman et al., 2000). On the other hand, experiments that artificially restrict substitution alternatives may yield impacts that are not representative of the costs and benefits of actual policy changes. In particular, neglecting program substitution can lead to overstatement of a program’s net budgetary cost if competing programs are also publicly financed.

This paper assesses the cost-effectiveness of Head Start – a prominent program for which close public and private substitutes are widely available. Head Start is the largest early-childhood education program in the United States. Launched in 1965 as part of President Lyndon Johnson’s war on poverty, the program has evolved from an eight-week summer program into a year-round program that offers education, health, and nutrition services to disadvantaged children and their families. By 2013, Head Start enrolled about 900,000 3- and 4-year-old children at a cost of $7.6 billion (US DHHS, 2013).

Views on the effectiveness of Head Start vary widely (Ludwig and Phillips, 2007 and Gibbs, Ludwig and Miller, 2011 provide reviews). A number of observational studies find substantial short- and long-run impacts on test scores and other outcomes (Currie and Thomas, 1995; Garces et al., 2002; Ludwig and Miller, 2007; Deming, 2009; Carneiro and Ginja, forthcoming). By contrast, a recent randomized evaluation – the Head Start Impact Study (HSIS) – finds small impacts on test scores that fade out quickly (Puma et al., 2010, 2012a). These results have generally been interpreted as evidence that Head Start is ineffective and in need of reform (Barnett, 2011; Klein, 2011).

Two observations suggest such conclusions are premature. First, research on early childhood interventions finds long run gains in adult outcomes despite short run fadeout of test score impacts (Heckman et al., 2010a, 2013; Chetty et al., 2011, 2014b). Second, roughly one-third of the HSIS control group participated in alternate forms of preschool. This suggests that the HSIS may have shifted many students between different sorts of preschools without altering their exposure to preschool services. The aim of this paper is to clarify how the presence of substitute preschools affects the interpretation of the HSIS results and the cost-effectiveness of the Head Start program.

Our study begins by revisiting the experimental impacts of the HSIS on student test scores. We replicate the fade-out pattern found in previous work but find that adjusting for experimental non-compliance leads to statistically imprecise impact estimates beyond the first year of the experiment. As a result, the conclusion of complete effect fadeout is less clear than naive intent-to-treat estimates suggest. Turning to substitution patterns, we find that roughly one third of Head Start compliers in the HSIS experiment would have participated in other forms of preschool had they not been lottered into the program. Surveys of center administrators indicate that these compliers would
have attended competing preschool programs that draw heavily on public funding, which mitigates the net costs to government of enrolling them in Head Start.

These facts motivate a theoretical analysis clarifying which parameters are (and are not) policy relevant when publicly subsidized program substitutes are present. We work with a stylized model where test score impacts are valued according to their effects on children’s after-tax lifetime earnings. We show that, when competing preschool programs are not rationed, the policy-relevant causal parameter governing the benefits of an expansion in Head Start is an average effect of Head Start participation on test scores relative to the next best alternative, regardless of whether that alternative is a competing program or home care. This parameter coincides with the local average treatment effect (LATE) identified by a randomized experiment with imperfect compliance when the experiment contains a representative sample of program “compliers” (Angrist, Imbens, and Rubin, 1996). Hence, imperfect compliance and program substitution, often thought to be confounding limitations of social experiments, turn out to be virtues when the substitution patterns in the experiment replicate those found in the broader population.

We use this result to derive an estimable benefit cost ratio associated with Head Start expansions. This ratio scales Head Start’s projected impacts on the after-tax earnings of children by its net costs to government inclusive of fiscal externalities. Chief among these externalities is the cost savings that arise when Head Start draws children away from competing subsidized preschool programs. While such effects are typically ignored in cost-benefit analyses of Head Start and other similar programs (e.g., Council of Economic Advisers, 2015), we find via a calibration exercise that such omissions can be quantitatively important: Head Start roughly breaks even even when the cost savings associated with program substitution are ignored, but yields benefits nearly twice as large as costs when these savings are incorporated. This appears to be a robust finding – after accounting for fiscal externalities, Head Start’s benefits exceed its costs whenever short run test score impacts yield earnings gains within the range found in the recent literature.

A limitation of our baseline analysis is that it assumes changes in program scale do not alter the mix of program compliers. To address this issue, we also consider “structural reforms” to Head Start that change the mix of compliers without affecting test score outcomes. Examples of such reforms might include increased transportation services, marketing efforts, or spending on program features that parents value. Households who respond to structural reforms may differ from experimental compliers on unobserved dimensions, including their mix of counterfactual program choices. Assessing these reforms therefore requires knowledge of causal parameters not directly identified by the HSIS experiment. Specifically, we show that such reforms require identification of a variant of the marginal treatment effect (MTE) concept of Heckman and Vytlacil (1999).

To assess reforms that attract new children, we develop a semi-parametric selection model that parameterizes treatment effect heterogeneity with respect to counterfactual care alternatives as well as observed and unobserved child characteristics. We provide a constructive proof of identification of the model parameters and propose a two-step control function estimator that exploits heterogeneity across covariate groups in the response to experimental Head Start offers to infer relationships
between unobserved factors driving preschool enrollment and potential outcomes. The estimator is shown to pass a variety of specification tests and to accurately reproduce patterns of treatment effect heterogeneity found in the experiment. We find that Head Start has large positive short run effects on the test scores of children who would have otherwise been cared for at home, and small effects for children who would otherwise attend other preschools – a finding corroborated by Feller et al. (2014), who reach similar conclusions using principal stratification methods (Frangakis and Rubin, 2002). Our estimates also reveal a “reverse Roy” pattern of selection whereby children with unobserved characteristics that make them less likely to enroll in Head Start experience larger test score gains. These results suggest that expanding the program to new populations can boost its effectiveness.

We conclude with an assessment of prospects for increasing Head Start’s rate of return via outreach to new populations. Our estimates suggest that expansions of Head Start could substantially boost the program’s rate of return provided that the proposed technology for increasing enrollment (e.g. improved transportation services) is not too costly. We also use our estimated selection model to examine the robustness of our results to rationing of competing preschools. Rationing implies that competing subsidized preschools do not contract when Head Start expands, which shuts down a form of public savings. On the other hand, expanding Head Start generates opportunities for new children to fill vacated seats in substitute programs. Our estimates indicate that the effect on test scores (and therefore earnings) of moving eligible children from home care to competing preschools is substantial, leading us to conclude that rationing is unlikely to undermine the favorable estimated rates of return found in our baseline analysis.

The rest of the paper is structured as follows. Section 2 provides background on Head Start. Section 3 describes the HSIS data and basic experimental impacts. Section 4 presents evidence on substitution patterns. Section 5 introduces a theoretical framework for assessing public programs with close substitutes. Section 6 provides a cost-benefit analysis of Head Start. Section 7 develops our econometric selection model and discusses identification and estimation. Section 8 reports estimates of the model. Section 9 simulates the effects of structural program reforms. Section 10 concludes.

2 Background on Head Start

Head Start provides preschool for disadvantaged children in the United States. The program is funded by federal grants awarded to local public or private organizations. Grantees are required to match at least 20 percent of their Head Start awards from other sources and must meet a set of program-wide performance criteria. Eligibility for Head Start is generally limited to children from households below the federal poverty line, though families above this threshold may be eligible if they meet other criteria such as participation in the Temporary Aid for Needy Families (TANF) program. Up to 10 percent of a Head Start center’s enrollment can also come from higher-income families. The program is free: Head Start grantees are prohibited from charging families fees for
services (US DHHS, 2014). It is also oversubscribed: in 2002, 85 percent of Head Start participants attended programs with more applicants than available seats (Puma et al., 2010).

Head Start is not the only form of subsidized preschool available to poor families. Preschool participation rates for disadvantaged children have risen over time as cities and states expanded their public preschool offerings (Cascio and Schanzenbach, 2013). Moreover, the Child Care Development Fund program provides block grants that finance childcare subsidies for low-income families, often in the form of childcare vouchers that can be used for center-based preschool (US DHHS, 2012). Most states also use TANF funds to finance additional childcare subsidies (Schumacher et al., 2001). Because Head Start services are provided by local organizations who themselves must raise outside funds, it is unclear to what extent Head Start and other public preschool programs actually differ in their education technology.

A large non-experimental literature suggests that Head Start produced large short- and long-run benefits for early cohorts of program participants. Several studies estimate the effects of Head Start by comparing program participants to their non-participant siblings (Currie and Thomas, 1995; Garces et al., 2002; Deming, 2009). Results from this research design show positive short run effects on test scores and long run effects on educational attainment, earnings and crime. Other studies exploit discontinuities in Head Start program rules to infer program effects (Ludwig and Miller, 2009; Carneiro and Ginja, forthcoming). These studies show longer run improvements in health outcomes and criminal activity.

In contrast to these non-experimental estimates, results from a recent randomized controlled trial reveal smaller, less-persistent effects. The 1998 Head Start reauthorization bill included a congressional mandate to determine the effects of the program. This mandate resulted in the HSIS: an experiment in which more than more than 4,000 applicants were randomly assigned via lottery to either a treatment group with access to Head Start or a control group without access in the Fall of 2002. The experimental results showed that a Head Start offer increased measures of cognitive achievement by roughly 0.1 standard deviations during preschool, but that these gains faded out by kindergarten. Moreover, the experiment showed little evidence of effects on non-cognitive or health outcomes (Puma et al., 2010, 2012a). These results suggest both smaller short-run effects and faster fadeout than non-experimental estimates for earlier cohorts. Scholars and policymakers have generally interpreted the HSIS results as evidence that Head Start is ineffective and in need of reform (Barnett, 2011). The experimental results have also been cited in the popular media to motivate calls for dramatic restructuring or elimination of the program (Klein, 2011; Stossel, 2014).\footnote{Subsequent analyses of the HSIS data suggest caveats to this negative interpretation, but do not overturn the finding of modest mean test score impacts accompanied by rapid fadeout. Gelber and ISEN (2013) find persistent effects on parental engagement with children. BITLER et al. (2014) find larger experimental impacts at low quantiles of the test score distribution. These quantile treatment effects fade out by first grade, though there is some evidence of persistent effects at the bottom of the distribution for Spanish-speakers. WALTERS (2015) finds evidence of substantial heterogeneity in impacts across experimental sites and investigates the relationship between this heterogeneity and observed program characteristics. WALTERS finds smaller effects for Head Start centers that draw more children from other preschools rather than home care, a finding we explore in more detail here.}
Differences between the HSIS results and the non-experimental literature could be due to changes in program effectiveness over time or to selection bias in non-experimental sibling comparisons. Another explanation, however, is that these two research designs identify different parameters. Most non-experimental analyses have focused on recovering the effect of Head Start relative to home care. In contrast, the HSIS measures the effect of Head Start relative to a mix of alternative care environments, including other preschools. Participation rates in other public preschool programs have risen dramatically over time, so alternative preschool options were likely more accessible for HSIS applicants than for earlier cohorts of Head Start participants (Cascio and Schanzenbach, 2013). Indeed, many children in the HSIS control group attended other public or private preschools, and some children in the treatment group declined the Head Start offer in favor of other preschools. One aim of our analysis is to clarify the impact of this program substitution on the results of the HSIS experiment.

3 Data and Experimental Impacts

Before turning to an analysis of program substitution issues, we first describe the HSIS data and report experimental impacts on test scores and program compliance.

Data

Our core analysis sample includes 3,571 HSIS applicants with non-missing baseline characteristics and Spring 2003 test scores. Appendix A describes construction of this sample. The outcome of interest is a summary index of cognitive test scores that averages Woodcock Johnson III (WJIII) test scores with Peabody Picture and Vocabulary Test (PPVT) scores, normed to have mean zero and variance one in the control group by cohort and year. We use WJIII and PPVT scores because these are among the most reliable tests in the HSIS data; both are also available in each year of the experiment, allowing us to produce comparable estimates over time.

Table 1 provides summary statistics for our analysis sample. The HSIS experiment included two age cohorts: 55 percent of applicants were randomized at age 3 and could attend Head Start for up to two years, while the remaining 45 percent were randomized at age 4 and could attend for up to one year. The demographic information in Table 1 shows that the Head Start population is disadvantaged. Less than half of Head Start applicants live in two-parent households, and the average applicant’s household earns about 90 percent of the federal poverty line. Column (2) of Table 1 compares these and other baseline characteristics for the HSIS treatment and control groups to check balance in randomization. The results here indicate that randomization was successful: baseline characteristics were similar for offered and non-offered applicants.\(^2\)

\(^2\)Random assignment in the HSIS occurred at the Head Start center level, and offer probabilities differed across centers. We weight all models by the inverse probability of a child’s assignment, calculated as the site-specific fraction of children assigned to the treatment group. Because the numbers of treatment and control children at each center were fixed in advance, this is an error-free measure of the probability of an offer (Puma et al., 2010).
Columns (3) through (5) of Table 1 report summary statistics for children attending Head Start, other preschool centers, and no preschool. Children in non-Head Start preschools tend to be less disadvantaged than children in Head Start or no preschool, though most differences between these groups are modest. The other preschool group has a lower share of high school dropout mothers, a higher share of mothers who attended college, and higher average household income than the Head Start and no preschool groups. Children in other preschools outscore the other groups by about 0.1 standard deviations on a baseline summary index of cognitive skills. The other preschool group also includes a relatively large share of four-year-olds, likely reflecting the fact that alternative preschool options are more widely available for four-year-olds (Cascio and Schanzenbach 2013).

Experimental impacts

Table 2 reports experimental impacts on test scores. Columns (1), (4) and (7) report intent-to-treat impacts of the Head Start offer, separately by year and age cohort. To increase precision, we regression-adjust these treatment/control differences using the baseline characteristics in Table 1. The intent-to-treat estimates mirror those previously reported in the literature (e.g., Puma et al., 2010). In the first year of the experiment, children offered Head Start scored higher on the summary index. For example, three-year-olds offered Head Start gained 0.19 standard deviations in test score outcomes relative to those denied Head Start. The corresponding effect for four-year-olds is 0.14 standard deviations. However, these gains diminish rapidly: the pooled impact falls to a statistically insignificant 0.04 standard deviations by year three. Our data includes a fourth year of follow-up for the three-year-old cohort. Here too, the intent-to-treat is small and statistically insignificant (0.038 standard deviations).

Interpretation of these intent-to-treat impacts is clouded by noncompliance with random assignment. Columns (2), (5) and (8) of Table 2 report first-stage effects of assignment to Head Start on the probability of participating in Head Start. Columns (3), (6) and (9) report instrumental variables (IV) estimates, which scale the intent-to-treat by the first stage. These estimates can be interpreted as local average treatment effects (LATEs) for “compliers” – children who respond to the Head Start offer by enrolling in Head Start. Assignment to Head Start increases the probability of participation by two-thirds in the first year after random assignment. The corresponding

3 Preschool attendance is measured from the HSIS “focal arrangement type” variable, which combines information from parent interviews and teacher/care provider interviews to construct a summary measure of the childcare setting. See Appendix A for details.

4 The control vector includes gender, race, assignment cohort, teen mother, mother’s education, mother’s marital status, presence of both parents, an only child dummy, a Spanish language indicator, dummies for quartiles of family income and missing income, urban status, an indicator for whether the Head Start center provides transportation, the Head Start quality index, and a third-order polynomial in baseline test scores.

5 Here we define Head Start participation as enrollment at any time prior to the test. This definition includes attendance at Head Start centers outside the experimental sample. An experimental offer may cause some children to switch from an out-of-sample center to an experimental center; if the quality of these centers differs, the exclusion restriction required for our IV approach is violated. Appendix Table A1 compares characteristics of centers attended by children in the control group (always takers) to those of the experimental centers to which these children applied. These two groups of centers are very similar, suggesting that substitution between Head Start centers is unlikely to bias our estimates.
IV estimate implies that Head Start attendance boosts first-year test scores by 0.247 standard deviations.

Compliance for the three-year-old cohort falls after the first year as members of the control group reapply for Head Start, resulting in substantially larger standard errors for estimates in later years of the experiment. The first stage for three-year-olds falls to 0.36 in the second year; the intent-to-treat falls roughly in proportion, generating a second-year IV estimate of 0.245 for this cohort. Estimates in years three and four are statistically insignificant and imprecise. The fourth-year estimate for the three-year-old cohort (corresponding to first grade) is 0.110 standard deviations, with a standard error of 0.098. The corresponding first grade estimate for four year olds is 0.081 with a standard error of 0.060. Notably, the 95-percent confidence intervals for first-grade impacts include effects as large as 0.2 standard deviations for four-year-olds and 0.3 standard deviations for three-year-olds. These results show that although the longer-run estimates are insignificant, they are relatively imprecise due to experimental noncompliance. Evidence for fadeout is therefore less definitive than the naive intent-to-treat estimates suggest. This observation helps to reconcile the HSIS results with observational studies based on sibling comparisons, which show effects that partially fade out but are still detectable in elementary school (Currie and Thomas, 1995; Deming, 2009).

4 Substitution patterns in the HSIS

We now turn to documenting program substitution patterns in the HSIS and their potential influence on the HSIS results. It is helpful to develop some notation to describe the role of alternative care environments in the HSIS. Each Head Start applicant participates in one of three possible treatments: Head Start, which we label \(h \); other center-based preschool programs, which we label \(c \); and no preschool (i.e., home care), which we label \(n \). Let \(D_i \in \{h,c,n\} \) denote household \(i \)'s treatment choice. Treatment choices may be affected by the experimental Head Start offer. Let \(Z_i \in \{0,1\} \) indicate whether household \(i \) has a Head Start offer, and \(D_i(z) \) denote potential treatment status as a function of the offer. Then observed treatment status can be written \(D_i = D_i(Z_i) \).

The structure of the HSIS leads to natural theoretical restrictions on substitution patterns. We expect a Head Start offer to induce some children who would otherwise participate in \(c \) or \(n \) to enroll in Head Start. By revealed preference, no child should switch between \(c \) and \(n \) in response to a Head Start offer, and no child should be induced by an offer to leave Head Start. These restrictions can be expressed succinctly by the following condition:

\[
D_i(1) \neq D_i(0) \implies D_i(1) = h,
\]

One might also be interested in the effects of Head Start on non-cognitive outcomes, which appear to be important mediators of the effects of early childhood programs in other contexts (Chetty et al., 2011; Heckman et al., 2013). The HSIS includes short-run parent-reported measures of behavior and teacher-reported measures of teacher/student relationships, and Head Start appears to have no impact on these outcomes (Puma et al., 2010; Walters, 2015). The HSIS non-cognitive outcomes differ significantly from those analyzed in previous studies, however, and it is unclear whether they capture the same skills.
which extends the monotonicity assumption of Imbens and Angrist (1994) to a setting with multiple counterfactual treatments. This restriction states that anyone who changes behavior as a result of the Head Start offer does so to attend Head Start.\footnote{See Engberg et al. (2014) for discussion of related restrictions in the context of attrition from experimental data.}

Under restriction (1), the population of Head Start applicants can be partitioned into five groups defined by their values of $D_i(1)$ and $D_i(0)$:

1. n-compliers: $D_i(1) = h, D_i(0) = n$,
2. c-compliers: $D_i(1) = h, D_i(0) = c$,
3. n-never takers: $D_i(1) = D_i(0) = n$,
4. c-never takers: $D_i(1) = D_i(0) = c$,
5. always takers: $D_i(1) = D_i(0) = h$.

The n- and c- compliers switch to Head Start from home care and competing preschools, respectively, when offered a seat. The two groups of never takers choose not to attend Head Start regardless of the offer. Always takers manage to enroll in Head Start even when denied an offer, presumably by applying to other Head Start centers outside the HSIS sample.

Using this rubric, the group of children enrolled in alternative preschool programs is a mixture of c-never takers and c-compliers denied Head Start offers. Similarly, the group of children in home care includes n-never takers and n-compliers without offers. The two complier subgroups switch into Head Start when offered; as a result, the set of children enrolled in Head Start is a mixture of always takers and the two groups of offered compliers.

Table 3 presents corresponding empirical evidence on substitution patterns by comparing program participation choices for offered and non-offered households. In the first year of the experiment 8.3 percent of households decline Head Start offers in favor of other preschool centers; this is the share of c-never takers. Similarly, column (3) shows that 9.5 percent of households are n-never takers. As can be seen in column (4), 13.6 percent of households manage to attend Head Start without an offer, which is the share of always takers. The Head Start offer reduces the share of children in other centers from 31.5 percent to 8.3 percent, and reduces the share of children in home care from 55 percent to 9.5 percent. This implies that 23.2 percent of households are c-compliers, and 45.5 percent are n-compliers.

Notably, in the first year of the experiment, three year olds have uniformly higher participation rates in Head Start and lower participation rates in competing centers, which likely reflects the fact that many state provided programs only accept four year olds. In the second year of the experiment, participation in Head Start drops among children in the three year old cohort with a program offer, suggesting that many families enrolled in the first year decided that Head Start was a bad match for their child. We also see that Head Start enrollment rises among those families that did not obtain an offer in the first round, which reflects reapplication behavior.
Interpreting IV

How do the compliance patterns displayed in Table 3 affect the interpretation of the HSIS test score impacts? Formally, let $Y_i(d)$ denote child i's potential test score if he or she participates in treatment $d \in \{h, c, n\}$. Observed scores are given by $Y_i = Y_i(D_i)$. Assume that Head Start offers affect test scores only through program participation choices, an exclusion restriction that seems plausible in this context. Under assumption (1), IV identifies a variant of the Local Average Treatment Effect (LATE) of Imbens and Angrist (1994) giving the average effect of Head Start participation for compliers relative to the relevant set of counterfactual alternatives. Specifically, under (1) and excludability of Head Start offers:

$$\frac{E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]}{E[1\{D_i = h\}|Z_i = 1] - E[1\{D_i = h\}|Z_i = 0]} = E[Y_i(h) - Y_i(D_i(0))|D_i(1) = h, D_i(0) \neq h] = \text{LATE}_h. \quad (2)$$

The left-hand side of (2) is the population coefficient from a model that instruments Head Start attendance with the Head Start offer. This equation implies that the IV strategy employed in Table 2 yields the average effect of Head Start for compliers relative to their own counterfactual care choices, a quantity we label LATE_h.

We can decompose LATE_h into a weighted average of “subLATEs” measuring the effects of Head Start for compliers drawn from specific counterfactual alternatives as follows:

$$\text{LATE}_h = S_c \text{LATE}_{ch} + (1 - S_c) \text{LATE}_{nh}, \quad (3)$$

where

$$\text{LATE}_{dh} \equiv E[Y_i(h) - Y_i(d)|D_i(1) = h, D_i(0) = d], \ d \in \{c, n\},$$

$$S_c \equiv \frac{P(D_i(1) = h, D_i(0) = c)}{P(D_i(1) = h, D_i(0) \neq h)}. \quad (4)$$

The weight S_c gives the fraction of compliers drawn from other preschools, which can be estimated using the sample analogue of the following equation:

$$S_c = \frac{E[1\{D_i = c\}|Z_i = 1] - E[1\{D_i = c\}|Z_i = 0]}{E[1\{D_i = h\}|Z_i = 1] - E[1\{D_i = h\}|Z_i = 0]}$$

Column (7) of Table 3 shows that 34 percent of compliers would have otherwise attended competing preschools in the first year of the HSIS experiment. IV estimates combine effects for these compliers with effects for compliers who would not otherwise attend preschool.

Characteristics of Competing Preschools

In light of the above result, it is of some interest to study the characteristics of the competing preschools from which Head Start draws a third of its students. Panel A of Table 4 reports...
information on funding sources for Head Start and competing preschool centers. These data come from a survey administered to the directors of Head Start centers and other centers attended by children in the HSIS experiment. Column (2) shows that competing preschools receive financing from a mix of sources, and many receive public subsidies. Thirty-nine percent of competing centers did not complete the survey, but among respondents, only 25 percent (0.153/0.606) report parent fees as their largest source of funding. The modal funding source is state preschool programs (30 percent), and an additional 16 percent report that other childcare subsidies are their primary funding source. Column (3) reports characteristics of competing preschools attended by c-compliers, estimated using a generalization of the methods for characterizing compliers described by Abadie (2002) (see Appendix B). In the absence of a Head Start offer, c-compliers attend preschools that rely slightly more on parent fees, but most are financed by a mix of state preschool programs, childcare subsidies, and other funding sources.

Panel B of Table 4 compares key inputs and practices in Head Start and competing preschool centers attended by children in the HSIS sample. On some dimensions, Head Start centers appear to provide higher-quality services than competing programs. Columns (1) and (2) show that Head Start centers are more likely to provide transportation to preschool and frequent home visiting than competing centers. Average class size is also smaller in Head Start, and Head Start center directors have more experience than their counterparts in competing preschools. As a result of these differences, Head Start centers score higher on a composite measure of quality. On the other hand, teachers at alternative programs are more likely to have bachelors degrees and certification, and these programs are more likely to provide full-day service. Column (3) shows that competing preschools attended by Head Start compliers are very similar to the larger set of alternative preschools in the HSIS sample.

Taken together, the statistics in Table 4 show that competing preschool programs provide services similar to Head Start and often rely heavily on public subsidies. We next consider the implications of these facts for assessments of Head Start’s cost-effectiveness.

5 A Model of Head Start Provision

In this section, we develop a model of Head Start participation with the goal of conducting a cost-benefit analysis that acknowledges the presence of publicly subsidized program substitutes. Our model is highly stylized and focuses on obtaining an estimable lower bound on the rate of return to potential reforms of Head Start measured in terms of lifetime earnings. The analysis ignores redistributional motives and any effects of human capital investment on criminal activity (Lochner and Moretti, 2004; Heckman et al., 2010a), health (Deming, 2009; Carneiro and Ginja, 2014), or grade repetition (Currie, 2001). Adding such features would tend to raise the implied return to Head Start. We also abstract from parental labor supply decisions because prior analyses of the

8The quality variable aggregates information on center characteristics (teacher and center director education and qualifications, class size) and practices (variety of literacy and math activities, home visiting, health and nutrition) measured in interviews with center directors, teachers, and parents of children enrolled in the preschool center.
Head Start Impact Study find no short term impacts on parents’ work decisions (Puma et al., 2010, 2012a). Again, incorporating parental labor supply responses would likely raise the program’s rate of return.

Our discussion emphasizes that the cost-effectiveness of Head Start is contingent upon assumptions regarding the structure of the market for preschool services and the nature of the specific policy reforms under consideration. Building on the heterogeneous effects framework of the previous section, we derive expressions for policy relevant “sufficient statistics” (Saez, 2002; Chetty, 2009) in terms of microeconomic causal estimands. Specifically, we show that a variant of the Local Average Treatment Effect (LATE) concept of Imbens and Angrist (1994) is policy relevant when considering program expansions in an environment where slots in competing preschools are not rationed. With rationing, a mix of LATEs becomes relevant, which poses challenges to identification with the HSIS data. When considering reforms to Head Start program features that change selection into the program, the policy relevant parameter is shown to be a variant of the Marginal Treatment Effect (MTE) concept of Heckman and Vytlacil (1999).

Setup

Consider a continuum of households, indexed by i, each with a single preschool-aged child. Each household can enroll its child in Head Start, a competing preschool program (e.g., state subsidized preschool), or care for the child at home. The government rations Head Start participation via program offers Z_i, which arrive at random via lottery with probability $\delta \equiv P(Z_i = 1)$. Offers are distributed in a first period. In a second period, households make enrollment decisions. Tenacious applicants who have not received an offer can enroll in Head Start by exerting additional effort. We begin by assuming that competing programs are not rationed and then relax this assumption below.

Each household has utility over its enrollment options given by the function $U_i(d, z)$. The argument $d \in \{h, c, n\}$ indexes child care environments, while the argument $z \in \{0, 1\}$ indexes offer status. Head Start offers raise the value of Head Start and have no effect on the value of other options, so that:

$$U_i(h, 1) > U_i(h, 0), U_i(c, z) = U_i(c), U_i(n, z) = U_i(n).$$

The valuations $\{U_i(h, 1), U_i(h, 0), U_i(c), U_i(n)\}$ are distributed according to a differentiable joint distribution function $F_{U}(., ., ., .)$.

Household i’s enrollment choice, as a function of its offer status z, is given by:

$$D_i(z) = \arg \max_{d \in \{h, c, n\}} U_i(d, z).$$

It is straightforward to show that this model satisfies the monotonicity restriction $[1]$. Since offers are assigned at random, market shares for the three care environments can be written $P(D_i = d) = \dots$
\(\delta P \left(D_i (1) = d \right) + (1 - \delta) P \left(D_i (0) = d \right). \)

Benefits and costs

Debate over the effectiveness of educational programs often centers on their test score impacts. A standard means of valuing such impacts is in terms of their effects on later life earnings (Heckman et al., 2010a, 2013; Chetty et al., 2011, 2014b)\(^{10}\). Let the symbol \(B \) denote the total after-tax lifetime income of a cohort of children. We assume that \(B \) is linked to test scores by the equation:

\[
B = B_0 + (1 - \tau) p E [Y_i],
\]

where \(p \) gives the market price of human capital, \(\tau \) is the tax rate faced by the children of eligible households, and \(B_0 \) is an intercept reflecting how test scores are normed. Note that our focus on mean test scores neglects distributional concerns which will likely lead us to undervalue Head Start’s test score impacts (see Bitler et al., 2014).

The net costs to government of financing preschool are given by:

\[
C = C_0 + \phi_h P \left(D_i = h \right) + \phi_c P \left(D_i = c \right) - \tau p E [Y_i],
\]

where the term \(C_0 \) reflects fixed costs of administering the program and the scalar \(\phi_h \) gives the administrative cost of providing Head Start services to an additional child. Likewise, \(\phi_c \) gives the administrative cost to government of providing competing preschool services (which often receive public subsidies) to another student. The term \(\tau p E [Y_i] \) captures the revenue generated by taxes on the adult earnings of Head Start-eligible children. This formulation abstracts from the fact that program outlays must be determined before the children enter the labor market and begin paying taxes, a complication we will adjust for in our empirical work via discounting.

Changing offer probabilities

Consider now the effects of adjusting Head Start enrollment by changing the rationing probability \(\delta \). An increase in \(\delta \) draws additional households into Head Start from competing programs and home care. As shown in Appendix C, the effect of a change in the offer rate \(\delta \) on average test scores is given by:

\[
\frac{\partial E [Y_i]}{\partial \delta} = \frac{\text{LATE}_h \cdot P \left(D_i (1) = h, D_i (0) \neq h \right)}{\# \text{ of compliers}}.
\]

In words, the aggregate impact on test scores of a small increase in offer probabilities equals the average impact of Head Start on complier test scores times the number of compliers. By the arguments in Section 4\(^{11}\), both \(\text{LATE}_h \) and \(P \left(D_i (1) = h, D_i (0) \neq h \right) \) are identified by the HSIS

\(^{10}\)Appendix C.1 considers how such valuations should be adjusted when test score impacts yield labor supply responses.
experiment. Hence, (7) implies that the hypothetical effects of a market-level change in offer probabilities can be inferred from an individual-level randomized trial with a fixed offer probability. This convenient result follows from the assumption that Head Start offers are distributed at random and that δ does not directly enter the alternative specific choice utilities, which in turn implies that the composition of compliers (and hence $LATE_h$) does not change with δ. Below we shall explore how this expression changes when the composition of compliers responds to a policy change.

From (5), the marginal benefit of an increase in δ is given by

$$\frac{\partial B}{\partial \delta} = (1 - \tau) LATE_h \cdot P(D_i(1) = h, D_i(0) \neq h).$$

The offsetting marginal cost to government of financing such an expansion can be written:

$$\frac{\partial C}{\partial \delta} = \left(\phi_h - \phi_c S_c - \tau p LATE_h \right) \cdot P(D_i(1) = h, D_i(0) \neq h).$$

This cost consists of the number of compliers times the administrative cost ϕ_h of enrolling them in Head Start minus the probability S_c that a complying household comes from a substitute preschool times the expected government savings ϕ_c associated with reduced enrollment in substitute preschools. The quantity $\phi_h - \phi_c S_c$ can be viewed as a local average treatment effect of Head Start on government spending for compliers. Subtracted from this effect is any extra revenue the government gets from raising the productivity of the children of complying households.

The ratio of marginal impacts on after-tax income and government costs gives the marginal value of public funds (Mayshar, 1990; Hendren, 2014), which we can write:

$$MVPF_\delta \equiv \frac{\partial B/\partial \delta}{\partial C/\partial \delta} = \frac{(1 - \tau) p LATE_h}{\phi_h - \phi_c S_c - \tau p LATE_h}.$$
requiring identification of the complier share S_c, which governs the degree of public savings realized as a result of reducing subsidies to competing programs.

Rationed substitutes

The above analysis presumes that Head Start expansions yield reductions in the enrollment of competing preschools. However, if competing programs are also over-subscribed, the slots vacated by $c-$compliers may be filled by other households. This will reduce the public savings associated with Head Start expansions but also generate the potential for additional test score gains.

With rationing in substitute preschool programs, the utility of enrollment in c can be written $U_i(c, Z_{ic})$, where Z_{ic} indicates an offered slot in the competing program. Household i’s enrollment choice, $D_i(Z_{ih}, Z_{ic})$, depends on both the Head Start offer Z_{ih} and the competing program offer. Assume these offers are assigned independently with probabilities δ_h and δ_c, but that δ_c adjusts to changes in δ_h to keep total enrollment in c constant. In addition, assume that all children induced to move into c as a result of an increase in δ_c come from n rather than h.

We show in the appendix that under these assumptions the marginal impact of expanding Head Start becomes:

$$
\frac{\partial E[Y_i]}{\partial \delta_h} = \text{LATE}_h \cdot P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h)
+ \text{LATE}_{nc} \cdot P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) = c),
$$

where $\text{LATE}_{nc} \equiv E[Y_i(c) - Y_i(n) | D_i(Z_{ih}, 1) = c, D_i(Z_{ih}, 0) = n]$. Intuitively, every $c-$complier now spawns a corresponding n-to-c complier who fills the vacated preschool slot.

The marginal cost to government of effecting this change in test scores can be written:

$$
\frac{\partial C}{\partial \delta_h} = (\phi_h - \tau_p \text{LATE}_h) \cdot P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h)
- \tau_p \text{LATE}_{nc} \cdot P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) = c).
$$

Relative to (8), rationing eliminates the public savings from reduced enrollment in substitute programs but adds another fiscal externality in its place: the tax revenue associated with any test score gains of shifting children from home care to competing preschools. The resulting marginal value of public funds can be written:

$$
\text{MVPF}_{\delta, \text{rat}} = \frac{(1 - \tau)p(\text{LATE}_h + \text{LATE}_{nc} \cdot S_c)}{\phi_h - \tau_p(\text{LATE}_h + \text{LATE}_{nc} \cdot S_c)}.
$$

(10)

While the impact of rationed substitutes on the marginal value of public funds is theoretically ambiguous, there is good reason to expect $\text{MVPF}_{\delta, \text{rat}} > \text{MVPF}_{\delta}$ in practice. To see this, consider a case where $\text{LATE}_{nc} = \text{LATE}_{nh} = \text{LATE} > 0$ and $\text{LATE}_{ch} = 0$, as might be expected if Head Start and competing preschools provide comparable services. Then we have $\text{MVPF}_{\delta, \text{rat}} = \ldots$
\(\frac{(1-\tau)p_{LATE}}{\phi_h - \tau p_{LATE}} > MVPF_{h} = \frac{(1-\tau)p_{LATE}}{\phi_c - \tau p_{LATE}} \) whenever \(\phi_c < \phi_h \)

Hence, ignoring rationing of competing programs is likely to yield a lower bound estimate of the rate of return to Head Start expansions if Head Start and other forms of center based care have roughly comparable effects on test scores and competing programs are cheaper. Unfortunately, effects for \(n \)-to-\(c \) compliers are not nonparametrically identified by the HSIS experiment since one cannot know which households that care for their children at home would otherwise choose to enroll them in competing preschools. We return to this issue in Section 9.

Structural reforms

An important assumption in the previous analyses is that changing lottery probabilities does not alter the mix of program compliers. Consider now the effects of altering some structural feature \(f \) of the Head Start program that households value but which has no impact on test scores. For example, Executive Order \#13330, issued by President Bush in February 2004, mandated enhancements to the transportation services provided by Head Start and other federal programs (Federal Register, 2004). Expanding Head Start transportation services should not directly influence educational outcomes but may yield a compositional effect by drawing in households from a different mix of counterfactual care environments. By shifting the composition of program participants, changes in \(f \) may boost the program’s rate of return.

To establish notation, we assume that households now value Head Start participation as:

\[
\tilde{U}_i(h, Z_i, f) = U_i(h, Z_i) + f.
\]

Utilities for other preschools and home care are assumed to be unaffected by changes in \(f \). This implies that increases in \(f \) make Head Start more attractive for all households. For simplicity, we return to our prior assumption that competing programs are not rationed. As shown in Appendix C, the assumption that \(f \) has no effect on potential outcomes implies:

\[
\frac{\partial}{\partial f} E[Y_i] = \frac{\partial P(D_i = h)}{\partial f} \cdot MTE_h,
\]

where

\[
MTE_h = E[Y_i(h) - Y_i(c) | U_i(h, Z_i) + f = U_i(c), U_i(c) > U_i(n)] \tilde{S}_c
\]

\[
+ E[Y_i(h) - Y_i(n) | U_i(h, Z_i) + f = U_i(n), U_i(n) > U_i(c)] (1 - \tilde{S}_c),
\]

and \(\tilde{S}_c \) gives the share of children on the margin of participating in Head Start who prefer the competing program to preschool non-participation. Following the terminology in Heckman et al. (2008), the marginal treatment effect \(MTE_h \) is the average effect of Head Start on test scores.

\[11\]

Note that, in the unrationed case, \(\phi_c \geq \phi_h \) would imply moving a child from a competing preschool to Head Start yields actually reduces government expenditures. The loss of this large fiscal externality in the rationed case outweighs the extra gain in test scores from moving additional children into preschool.
among households indifferent between Head Start and the next best alternative. This is a marginal version of the result in (7), where integration is now over a set of children who may differ from current program compliers in their mean impacts. Like \(\text{LATE}_h \), \(\text{MTE}_h \) is a weighted average of “subMTEs” corresponding to whether the next best alternative is home care or a competing preschool program.

The test score effects of improvements to the program feature must be balanced against the costs. We suppose that changing program features changes the \(\text{average cost} \ \phi_h(f) \) of Head Start services, so that the net costs to government of financing preschool are now:

\[
C(f) = C_0 + \phi_h(f) P(D_i = h) + \phi_c P(D_i = c) - \tau p E[Y_i],
\]

where \(\phi'_h(f) \geq 0 \). The marginal costs to government (per program complier) of a change in the program feature can be written:

\[
\frac{C'(f)}{\partial P(D_i = h)} = \phi_h + \frac{\phi'_h(f)}{\partial \ln P(D_i = h)} - \phi_c S_c - \tau p \text{MTE}_h.
\]

The first term on the right hand side of (12) gives the administrative cost of enrolling another child. The second term gives the increased cost of providing inframarginal families with the improved program feature. The third term is the expected savings in reduced funding to competing preschool programs. And the final term gives the additional tax revenue raised by the boost in the marginal enrollee’s human capital.

Letting \(\eta \equiv \frac{\partial \ln \phi(f)}{\partial f} \) be the elasticity of costs with respect to enrollment, we can write the marginal value of public funds associated with a change in program features as:

\[
\text{MVPF}_f = \frac{\partial B/\partial f}{C'(f)} = \frac{(1 - \tau) p \text{MTE}_h}{\phi_h (1 + \eta) - \phi_c S_c - \tau p \text{MTE}_h}.
\]

As in our analysis of optimal program scale, equation (12) shows that it is not necessary to separately identify the “subMTEs” that compose \(\text{MTE}_h \) to determine the optimal value of \(f \). Rather, it is sufficient to identify the average causal effect of Head Start for children on the margin of participation along with the average net cost of an additional seat in this population.

6 A Cost-Benefit Analysis

We next use the HSIS data to conduct a formal cost-benefit analysis of changes to Head Start’s offer rate under the assumption that competing programs are not rationed (we consider the case with rationing in Section 9). This exercise requires estimates of each term in equation (8). We
estimate \(LATE_h \) and \(S_c \) from the HSIS, and calibrate the remaining parameters using estimates from the literature. Calibrated parameters are listed in panel A of Table 5. To be conservative, we deliberately bias our calibrations towards understating Head Start’s benefits and overstating its costs in order to arrive at a lower bound rate of return. As we shall see, this lower bound estimate yields a surprisingly favorable assessment of the program.

Representativeness of the HSIS data

The HSIS data are a nationally-representative random sample of Head Start applicants, and HSIS offers are distributed randomly (Puma et al., 2010). The HSIS is therefore ideal for estimating values of \(LATE_h \) and \(S_c \) in the population of Head Start applicants. Fortunately, the current Head Start application rate is high, which limits the scope for selection into the applicant pool that might change with program scale. Currie (2006) reports that two-thirds of eligible children participated in Head Start in 2000. This is higher than the Head Start participation rate in the HSIS sample (49 percent). However, fifteen percent of participants attend undersubscribed centers outside the HSIS sample, which implies that about 57 percent \((0.85 \cdot 0.49 + 0.15)\) of all applicants participate in Head Start (Puma et al., 2010). For this to be consistent with a participation rate of two-thirds among eligible households, virtually all eligible households must apply. Therefore, selection into the Head Start applicant pool is unlikely to be quantitatively important for our analysis.

Program benefits

The term \(p \) in equation (8) gives the dollar value of a one standard deviation increase in test scores. Although earnings are unavailable for the HSIS sample, a growing body of evidence shows a consistent link between short-run test score effects and earnings impacts. Rather than choose a particular value for \(p \), we consider a range of values consistent with the literature, focusing on how low of a value would be necessary to undermine the conclusion that Head Start pays for itself.

Appendix Table A3 summarizes several studies that compare test score and earnings impacts for the same intervention. The most closely related study is by Chetty et al. (2011), an analysis of the Tennessee STAR class size experiment. Chetty et al. (2011, p.7 online appendix) show that a one standard deviation increase in kindergarten test scores induced by an experimental change in classroom quality yields a 13.1 percent increase in earnings at age 27. The STAR results also

12 As detailed in Appendix A, our analysis excludes HSIS applicants without followup data (20 percent of the sample), and we use weights that capture the probability a child is assigned to Head Start but not the probability a Head Start center is sampled from the larger population of centers. Our estimates may not be representative of the full population of Head Start applicants if children without followup data differ systematically from other children or if applicant populations differ in a way that is systematically related to center-level sampling probabilities.

13 Effects in standard deviation units may have different meanings if score distributions differ across populations or over time. For example, Cascio and Staiger (2012) show that test score norming partially explains fadeout in effects of educational interventions. Sojourner (2009) shows that the standard deviation of nationally-normed scores in the STAR sample is 87 percent of the national standard deviation. The standard deviations of Spring 2003 PPVT and WJIII scores in the HSIS are 70 percent and 91 percent of the national standard deviation, for a mean of 81 percent. This suggests we should rescale the STAR estimate of 13.1 percent to 12.2 percent in our sample; our
suggest that immediate test score effects of early-childhood programs predict earnings gains better than test score effects in other periods: classrooms that boost test scores in the short run increase earnings in the long run despite fadeout of test score impacts in the interim. We therefore project earnings gains based on our first-year estimates of $LATE_h$.

The STAR classroom quality estimate of 13.1 percent is smaller than a corresponding OLS estimate controlling for rich family characteristics in the STAR sample (18 percent), and comparable to estimates from Chetty et al. (2014b) linking test score and earnings impacts for teacher value-added (10.3 percent for value-added, 12 percent for OLS with controls). The Chetty et al. (2014b) findings also replicate the pattern of long-run earnings impacts coupled with fadeout of medium-run test score effects. In an analysis of the Perry Preschool Project, Heckman et al. (2010) estimate larger ratios of earnings per standard deviation of test scores (24 to 29 percent). Sibling fixed effects estimates from studies of Head Start by Currie and Thomas (1995) and Garces et al. (2002) suggest much larger ratios, though the earnings estimates are also very statistically imprecise. To be conservative, our baseline calibrations assume an earnings impact of 10 percent per standard deviation of earnings, which is at the bottom of the range of estimates reported in Table A3.\footnote{The only estimates below 10 percent in Table A3 are from Murnane et al. (1995) and Currie and Thomas (1999). Murnane et al. use High School and Beyond data to construct an OLS estimate relating 12th grade scores to log wages at age 24 for males (7.7 percent). The same approach produces a larger estimate for females (10.9 percent). Currie and Thomas report partial effects from models that include both math and reading scores. Since these scores are very highly correlated, the total effect for a single test score is likely to be larger.}

Calculating percentage changes in earnings requires a prediction of average earnings in the HSIS population. Chetty et al. (2011) calculate that the average present discounted value of earnings in the United States is approximately $522,000 at age 12 in 2010 dollars. Using a 3-percent discount rate, this yields a present discounted value of $438,000 at age 3.4 (the average age of applicants in the HSIS). Children who participate in Head Start are disadvantaged and therefore likely to earn less than the US average. The average household participating in Head Start earned 46 percent of the US average in 2013 (US DHHS, 2013; Noss, 2014). Lee and Solon (2009) find an average intergenerational income elasticity in the United States of roughly 0.4, implying that the average child in Head Start is expected to earn 78 percent of the US average $(1 − (1 − 0.46) · 0.4)$.\footnote{Chetty et al. (2014) find that the IGE is not constant across the parent income distribution. Appendix Figure IA in their study shows that the elasticity of mean child income with respect to mean parent income is 0.414 for families between the 10th and 90th percentile of parent income but lower for families below the 10th percentile. Since Head Start families are drawn from these poorer populations, it is reasonable to expect that the relevant IGE for this population is below 0.4, implying that our rate of return calculations are conservative.}

These calculations yield a present value of earnings \bar{e} equal to $343,492$ at age 3.4.

Thus, our baseline estimate is that the marginal benefit of enrolling an additional child in Head Start is $0.1 \cdot 343,492 \cdot LATE_h$. Using the pooled first-year estimate of $LATE_h$ reported in Section 3, we project an earnings impact of $0.1 \cdot 343,492 \cdot 0.247 = 8,472$. We set $\tau = 0.35$ based upon estimates from the Congressional Budget Office (2012, Figure 2) that account for federal and state taxes along with food stamps participation. This generates a discounted after-tax lifetime earnings gain of $5,513$ for compliers.\footnote{Baseline calibrations use a more conservative estimate of 10 percent.}
Program costs

Equation (8) shows that the net marginal social cost of Head Start enrollment depends on the costs to government of enrollment in Head Start and competing preschools along with the share of compliers drawn from other preschools. Per-pupil expenditure in Head Start is approximately $8,000 (US DHHS, 2013). As reported in Column (7) of Table 3, the estimated share of compliers drawn from other preschools is 0.34. We conduct cost-benefit analyses under three assumptions: ϕ_c is either zero, 50%, or 75% of ϕ_h. Table 4 suggests that roughly 75% of competing programs are financed primarily by public subsidies. Of course, even centers that are financed primarily by fees are likely to receive subsidies for enrolling the disadvantaged students in our sample (who are unlikely to be able to pay full price). Based upon this, we use as our “preferred” estimate that $\phi_c = 0.75\phi_h$, which is a conservative estimate if Head Start and competing preschools are equally costly and 75% of Head Start eligible students had their tuition fully subsidized at competing preschools while others receive partial subsidies. Our “pessimistic” scenario where $\phi_c = 0.5\phi_h$ corresponds roughly to the case where all of the non-responding centers in Table 4 relied on private fees for financing. Finally, the “naive” assumption that $\phi_c = 0$ is useful as a benchmark for assessing the importance of fiscal externalities.

Marginal value of public funds

Panel B of Table 5 reports estimates of the marginal value of public funds associated with an expansion of Head Start offers ($MVPF_δ$). To account for sampling uncertainty in our estimates of $LATE_h$ and S_c we report standard errors calculated via the delta method. Because asymptotic delta method approximations can be inaccurate when the statistic of interest is highly nonlinear (Lafontaine and White, 1986), we also report bootstrap p-values from one-tailed tests of the null hypothesis that the benefit/cost ratio is less than one. This approach can be shown to yield a higher-order refinement to p-values based upon the standard delta method approximation (Hall, 1992).

The results show that accounting for the public savings associated with enrollment in competing preschools has a large effect on the estimated social value of Head Start. Setting $\phi_c = 0$ yields a $MVPF_δ$ of 1.10. Setting ϕ_c equal to $0.5\phi_h$ and $0.75\phi_h$ raises the $MVPF_δ$ to 1.50 and 1.84, respectively. This indicates that the fiscal externality generated by program substitution has an important effect on the social value of Head Start. Bootstrap tests decisively reject values of $MVPF_δ$ less than one when $\phi_c = 0.5\phi_h$ or $0.75\phi_h$. Notably, our preferred estimate of 1.84 is well

16This reflects the costs of enrolling a child in Head Start for one year. Children in the three-year-old cohort who enroll for two years generate additional costs. As shown in Table 3, a Head Start offer raises the probability of enrollment in the second year by only 0.16, implying that first-year offers have modest net effects on second-year costs. Enrollment for two years may also generate additional benefits, but these cannot be estimated without strong assumptions on the Head Start dose/response function. We therefore consider only first-year benefits and costs in our calculations.

17This test is computed by a non-parametric block bootstrap of the studentized t-statistic that resamples Head Start sites. We have found in Monte Carlo exercises that Delta method based confidence intervals for $MVPF_δ$ tend to severely over-cover, while bootstrap-t tests have approximately correct size.
above the estimated rates of return of comparable expenditure programs summarized in Hendren (2014, Table 1). For example, Hendren computes MVPFs of between 0.53 and 0.66 for food stamps, and 0.79 for public housing. Our preferred estimate of $MVPF_\delta$ for Head Start is comparable to the marginal value of public funds associated with increases in the top marginal tax rate (between 1.33 and 2.0).

To assess the sensitivity of our results to alternative assumptions regarding the relationship between test score effects and earnings, Table 5 also reports “breakeven” values of p/\bar{e} that set $MVPF_\delta$ equal to one for each value of ϕ_c. When $\phi_c = 0$ the breakeven earnings effect is 9 percent, only slightly below our calibrated value of 10 percent. This indicates that when substitution is ignored, Head Start is close to breaking even and small changes in assumptions will yield values of $MVPF_\delta$ below one. Increasing ϕ_c to 0.5ϕ_h or 0.75ϕ_h reduces the breakeven earnings effect to 8 percent or 7 percent, respectively. The latter is less than all of the estimates in Table A3 and well below the Chetty et al. (2011) benchmark estimate of 13 percent. Therefore, after accounting for fiscal externalities, Head Start’s costs are estimated to exceed its benefits only if its test score impacts translate into earnings gains at a lower rate than similar interventions for which earnings data are available.

7 Econometric Model

Thus far, we have evaluated the return to a marginal expansion of Head Start under the assumption that the mix of compliers can be held constant. However, it is likely that major reforms to Head Start would entail changes to program features such as accessibility that could in turn change the mix of program compliers. To evaluate such reforms, it is necessary to predict how selection into Head Start is likely to change and how this impacts the program’s rate of return.

To accomplish this goal, we now develop an econometric model geared toward characterizing the substitution patterns present in the HSIS experiment and their link to test score outcomes. The model allows us to conduct three analyses that are not possible with the basic experimental impacts. First, we separately estimate the “subLATEs” in equation (3) giving average impacts of Head Start on subgroups of compliers drawn from other preschools and home care. Substantial subLATE heterogeneity could explain why prior observational studies that compare home care to Head Start find impacts larger than those present in the HSIS. The subLATEs also indicate how the effects of Head Start might change if the program were altered to target children who would not otherwise attend preschool. Second, we compute social returns to reforms that expand Head Start by increasing its attractiveness (e.g. by providing transportation services) rather than simply changing offer probabilities. Finally, we conduct a cost/benefit analysis that accommodates rationing of competing public preschool programs.
Alternative approaches

Before introducing our selection model, it is worth noting a few alternative approaches to identification of subLATEs. Computing subLATEs requires assumptions that allow the means of $Y_i(h)$ for the n- and c- compliers to be extracted from the pooled complier mixture. One approach to extracting these means is to conduct two-stage least squares (2SLS) estimation treating Head Start enrollment and enrollment in other preschools as separate endogenous variables. A common strategy for generating additional instruments in settings with multiple endogenous variables is to interact a single instrument with observed covariates or site indicators (e.g., Kling, Liebman and Katz, 2007; Abdulkadiroglu et al., 2014). Intuitively, such approaches presume that the instruments differ in their reduced form effects on outcomes only because of differences in their effects on the endogenous variables. We formalize this intuition in Appendix D, which shows that interacted 2SLS will only identify subLATEs in our setting if covariate groups differ in their compliance shares S_c but not their respective group-specific subLATEs (see Kirkboen et al., 2014 and Hull, 2015 for related results). Appendix Table A4 reports estimates from this interacted 2SLS approach using the same key covariates included in the selection model to follow. The overidentifying restrictions in these models are rejected, indicating the presence of effect heterogeneity not explained by counterfactual care choices.

A second approach to the identification problem, based on the principal stratification framework of Frangakis and Rubin (2002), uses a parametric model to deconvolve the pooled complier mixture into distributions for subgroups. Feller et al. (2014) apply this method to estimate effects of Head Start relative to other preschools and home care in the HSIS. They assume normal distributions for potential outcomes within each of the five compliance groups. Under this assumption any non-normality in the pooled complier distribution must be due to differences between distributions for n- and c-compliers, which allows the components of the mixture to be recovered. Their results show large effects for n-compliers and negligible effects for c-compliers.

An important limitation of both principal stratification and the interacted IV approach is that these methods condition on realized selection patterns and therefore cannot be used to predict the effects of reforms that change the mix of compliers. We now turn to developing an econometric selection model that allows us to predict such changes.

Selection model

Our selection model parametrizes the preferences and potential outcomes introduced in the model of Section 5. Normalizing the value of preschool non-participation to zero, we assume households have utilities over program alternatives given by:

$$U_i(h, z_i) = \psi^0_h + X'_i \psi^x_h + \psi^z_h \cdot z_i + Z_i \cdot X'_{i1} \psi^{xz} + v_{ih},$$

$$U_i(c) = \psi^0_c + X'_i \psi^x_c + v_{ic},$$

$$U_i(n) = 0,$$ \hspace{1cm} (14)
where \(X_i = [X_{i1}, X_{i2}] \) denotes the vector of baseline household and experimental site characteristics used in the instrumental variables analyses of Section 3. To keep the model tractable, we allow a subset \(X_{i1} \) of these characteristics to shift the value of a Head Start offer \(Z_i \). Previous analyses of the HSIS have shown important effect heterogeneity with respect to baseline scores and first language, so these variables are included in \(X_{i1} \) (Bitler et al., 2014; Bloom and Weiland, 2015). We also include variables measuring whether a child’s center of random assignment offers transportation to Head Start, whether the center of random assignment is above the median of the composite quality measure, the education level of the child’s mother, whether the child is age four, whether the child is black, and an indicator for family income above the poverty line.

The stochastic components of utility \((v_{ih}, v_{ic})\) reflect unobserved differences in household demand for Head Start and competing preschools relative to home care. In addition to pure preference heterogeneity, these terms may capture unobserved constraints such as whether family members are available to help with child care. We suppose these components obey a multinomial probit specification:

\[
(v_{ih}, v_{ic}) | X_i, Z_i \sim N\left(0, \begin{bmatrix} 1 & \rho(X_{i1}) \\ \rho(X_{i1}) & 1 \end{bmatrix} \right),
\]

which allows for violations of the Independence from Irrelevant Alternatives (IIA) condition that underlies classic multinomial logit selection models such as that of Dubin and McFadden (1984). The correlation across alternatives is parameterized as follows:

\[
tanh^{-1}\left(\rho(X_{i1})\right) = \frac{1}{2} \ln \left(\frac{1 + \rho(X_{i1})}{1 - \rho(X_{i1})}\right) = \alpha_0 + X_i'\alpha_x.
\]

By allowing both the error correlation and the effect of the Head Start offer on utility to vary with \(X_{i1} \), the model can accommodate rich heterogeneity in program substitution patterns. Indeed, one can show that in the case where \(X_{i1} \) is fully saturated and \(X_{i2} \) is empty this choice model will fit the market shares of Head Start and competing preschools perfectly in each covariate group.

To model endogeneity in participation decisions, we allow for a linear dependence of mean potential outcomes on the selection errors \((v_{ih}, v_{ic})\). Specifically, for each program alternative \(d \in \{h, c, n\} \), we assume:

\[
E[Y_i(d)|X_i, Z_i, v_{ih}, v_{ic}] = \theta_0^d + X_i'\theta_x^d + \gamma_h^dv_{ih} + \gamma_c^dv_{ic}. \tag{15}
\]

This specification can be thought of as a multivariate extension of the canonical Heckman (1979) sample selection model. While moment restrictions of this sort are traditionally motivated by a joint normality assumption on both the selection errors and potential outcomes, (15) actually accommodates a wide variety of data generating processes for outcomes exhibiting conditional heteroscedasticity and non-normality18 The \(\{\gamma_h^d, \gamma_c^d\} \) terms in (15) capture “essential” heterogeneity:

18For example, the conditional distribution of potential outcomes could be a location-scale mixture of \(K \) normal components with density \(f_d(y) = \sum_{k=1}^{K} \frac{1}{\sigma_{dk}(X_i)} \tilde{\phi} \left(\frac{y - \theta_k^d - X_i'\theta_{xd}^d - \gamma_k^dv_{ih} - \gamma_{ck}^dv_{ic}}{\sigma_{dk}(X_i)} \right) \tilde{w}_{dk}(X_i) \), where \(\tilde{\phi} \) is the standard
treatment effect heterogeneity that is related to unobservables governing selection into treatment (Heckman, Urzua, and Vytlacil, 2006). This specification can accommodate a variety of selection schemes. For example, if $\gamma_h^h = -\gamma_h^n$ then households engage in Roy (1951)-style selection into Head Start based upon test score gains. By contrast, if $\gamma_d^h = \gamma_d^n$ then selection into Head Start is governed by potential outcome levels.

Our coupling of a multinomial probit choice model with a semi-parametric restriction on potential outcomes appears to be new (see Bourguignon et al. 2007 for a review of competing methods). This approach retains the ability of parametric methods to extrapolate out of sample while ensuring some robustness to distributional misspecification and allowing for flexible substitution patterns.

Identification

By iterated expectations, (15) implies the conditional expectation of realized outcomes can be written:

$$E[Y_i|X_i, Z_i, D_i = d] = \theta_d^0 + X_i^\prime\theta_d^e + \gamma_d^h \lambda_{dh} (X_i, Z_i) + \gamma_d^v \lambda_{dc} (X_i, Z_i),$$

where $\lambda_{dh} (X_i, Z_i) \equiv E[v_{dh}|X_i, Z_i, D_i = d]$ and $\lambda_{dc} (X_i, Z_i) \equiv E[v_{dc}|X_i, Z_i, D_i = d]$ are generalizations of the standard inverse Mills ratio correction term used in the two-step Heckman (1979) selection correction. Appendix E provides analytical expressions for the selection correction terms derived using formulas for truncated bivariate normal integrals provided in Tallis (1961). The selection correction terms are mean imputations of the unobservables driving endogeneity in the model. In a linear model, controlling for mean imputations of the unobservables is enough to remove their influence; hence, their moniker as “control functions.”

To demonstrate identification of the selection coefficients $\{\gamma_d^h, \gamma_d^v\}$ it is useful to eliminate the main effect of the covariates by differencing (16) across values of the program offer Z_i as follows:

$$E[Y_i|X_i, Z_i = 1, D_i = d] - E[Y_i|X_i, Z_i = 0, D_i = d] = \gamma_d^h [\lambda_{dh} (X_i, 1) - \lambda_{dh} (X_i, 0)] + \gamma_d^v [\lambda_{dc} (X_i, 1) - \lambda_{dc} (X_i, 0)].$$

(17)

Note that this difference measures how selected test score outcomes in a particular care alternative normal density, $\sigma_{dk} (X_i)$ is a conditional variance function, and $\{\tilde{\omega}_{dh} (X_i)\}_{k=1}^K$ is a set of mixing weights which may depend on the covariates X_i and the alternative d. As $K \to \infty$ this distribution can approximate any marginal distribution of potential outcomes (see Theorem 33.2 of DasGupta, 2008). It is straightforward to verify that this model obeys (15) with $\gamma_d^h = \sum_{k=1}^K \gamma_{dk} E[\tilde{\omega}_k (X_i)]$ and $\gamma_d^v = \sum_{k=1}^K \gamma_{dk} E[\tilde{\omega}_k (X_i)]$. See Olsen (1980) for a related argument in the context of the classic binary selection model.

Although it is conceptually straightforward to extend the model to allow for nonlinear dependence on the selection errors (e.g., as in Dahl, 2002), reliable estimation would require larger samples than are presently available. Below we conduct some specification tests which indicate that (15) provides a good approximation to the treatment effect heterogeneity patterns present in the data.

Control functions methods are closely related to instrumental variables methods. As detailed in Appendix E, least squares estimation of (16) can be thought of as an (infeasible) 2SLS regression of Y_i on X_i and the selection errors (v_{ih}, v_{ic}) in the $D_i = d$ population, where the selection errors are instrumented using a fully saturated set of $Z_i \cdot X_i$ interactions. Of course, we do not actually observe the selection errors; rather, we exploit the structure of the choice model to infer the “first stage fits” to the latent selection errors that rationalize observed choices. These first stage fits are the control functions which (as in the second step of 2SLS) can then be included as additional regressors to remove endogeneity.
respond to a Head Start offer. This response is driven entirely by compositional changes – i.e. from compliers switching between care alternatives. Appendix E shows that the control functions depend on \(X_i \) and \(Z_i \) only through the conditional probabilities \(\pi_h(X_i, Z_i) \) and \(\pi_c(X_i, Z_i) \) of enrolling in Head Start and other preschools. The selection coefficients \(\{ \gamma^h_d, \gamma^c_d \} \) parameterize the gaps in mean potential outcomes across compliance groups in terms of these choice probabilities.

With two points of support for the covariates \(X_i \), equation (17) can be evaluated twice, yielding two equations in the two unknown selection coefficients. Appendix E details the conditions under which this system is of full rank and provides explicit formulas for the selection coefficients in terms of population moments. This identification argument has the flavor of a “difference in differences” strategy – the impact of the offer on selected outcome means is compared across covariate groups to infer the selection coefficients. Intuitively, the more the covariate groups differ in their enrollment patterns (and response to a Head Start offer) the more that can be learned by comparing them. As in Brinch et al. (2012), when additional points of support are available for the covariates, the model becomes over-identified and tests of the model’s restrictions are possible.

Three important observations follow from this discussion. First, identification of the selection coefficients holds even if \(X_i \) is a fully saturated vector of exclusive and exhaustive indicator variables. Second, unlike the models justifying interacted IV approaches, (15) does not impose restrictions on average treatment effects across subgroups. The coefficients \(\theta^x_d \) can vary in an unrestricted way, which allows for arbitrary treatment effect heterogeneity with respect to \(X_i \). Finally, additive separability of the potential outcomes in observables and unobservables is essential for identification. If the selection coefficients in (17) were allowed to depend on \(X_i \) in an unrestricted fashion, there would be two unknowns for every value \(x \) of the covariates, and point identification would fail. Heuristically then, our key assumption is that selection on unobservables works “the same way” for every value of the covariates, which allows us to exploit heterogeneity in selected outcome responses across subgroups to infer the parameters governing the selection process. This assumption is testable because it implies we should obtain similar estimates of the selection coefficients based upon contrasts in the values of different subsets of the covariates.

Estimation

We estimate the model in two steps. First, we estimate the parameters of the Probit choice model via simulated maximum likelihood. The choice probabilities are efficiently evaluated using the Geweke-Hajivassiliou-Keane (GHK) simulator (Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994). Second, we use the parameters of the choice model to form control function estimates \(\hat{\lambda}_{dh}(X_i, Z_i), \hat{\lambda}_{dc}(X_i, Z_i) \), which are included as regressors in least squares estimation of (16).

\[^{21}\text{Even in the just-identified case, the model can be refuted if test scores but not choice probabilities exhibit covariate group heterogeneity in their response to a program offer. This is analogous to the refutability of IV restrictions in cases with a large reduced form but small first stage (Kitigawa, forthcoming; Huber and Mellace, 2015). For example, our model would be rejected if the gap in mean Head Start test scores between always takers and compliers was larger for blacks than whites but the choice probabilities } \pi_h(X_i, Z_i) \text{ and } \pi_c(X_i, Z_i) \text{ were the same for blacks and whites. Equation (17) implies that all compliance group gaps in mean potential outcomes are explained by the choice probabilities.}\]
When estimating the model we renorm the covariate vector X_i to have unconditional mean zero so that the coefficients θ_0^d can be interpreted as average potential outcomes. Hence, the intercept differences $\theta_0^h - \theta_0^0$ and $\theta_0^h - \theta_0^n$ capture average treatment effects of Head Start relative to no preschool and other preschools. To increase precision, we also estimate models that restrict the coefficients $\{ \theta_0^d, \theta_x^d, \gamma_h^d, \gamma_c^d \}_{d \in \{ h, c, n \}}$ across program alternatives. Our preferred specifications restrict the degree of treatment effect heterogeneity present in the model by forcing some of these coefficients to be equal across alternatives d – i.e., to effect an equal location shift in all three potential outcomes. We find that these restrictions fit the data well.

8 Model Estimates

Table 6 reports estimates of the choice model. Columns (1) and (2) show the coefficients governing the mean utility of enrollment in Head Start. As expected, an offer to participate in Head Start substantially raises the implied utility of program enrollment. Moreover, the effects of an offer are greater at high-quality centers and especially at centers offering transportation services. Offers are less influential for poor households. We strongly reject the null hypothesis that the program offer interaction effects in the Head Start utility equation are insignificant. Because the covariates were not randomly assigned, we cannot interpret their main effects causally. However, some interesting patterns are present here as well. For example, households are less likely to participate in Head Start in the absence of an offer at sites with good transportation services, and Spanish-speaking households have weaker preferences for competing preschools.

Column (4) reports the parameters governing the correlation in unmeasured tastes for Head Start and competing programs. On average, the correlation is significantly positive, indicating that households view preschool alternatives as more similar to each other than to home care. This finding indicates that the IIA condition underlying logit-based choice models is empirically violated. There is some evidence of heterogeneity in the correlation based upon mother’s education but we cannot reject the joint null hypothesis that the correlation is constant across covariate groups.

Although the program offer enters significantly into the choice model, it is useful to assess more directly whether the estimated parameters imply enough independent variation in the resulting control function terms to obtain identification. From (17) the model is under-identified if, for any alternative d, the control function difference $\lambda_d^h (X_i, 1) - \lambda_d^h (X_i, 0)$ is linearly dependent on the corresponding difference $\lambda_d^c (X_i, 1) - \lambda_d^c (X_i, 0)$. Figure 1 shows the results of regressing the empirical control function differences against each other without an intercept for households in each care alternative. The deviations from linear dependence are visually apparent. In all cases, a score test strongly rejects the null hypothesis that the control function coefficients are under-identified.

Table 7 reports second-step estimates of the parameters in (16). Column (1) omits all controls and simply reports naive differences in mean test scores across groups (the omitted category is home care). Head Start students score 0.2 standard deviations higher than students in home care.
care, while the corresponding difference for students in competing preschools is 0.26 standard deviations. Column (2) adds controls for baseline characteristics. Because the controls include a third order polynomial in baseline test scores, this column can be thought of as reporting “value-added” estimates of the sort that have received renewed attention in the education literature (Kane et al., 2008; Rothstein, 2010; Chetty et al., 2014a). Unlike conventional value-added models, the controls are fully interacted with program alternative, making this a trichotomous generalization of the selection on observables framework studied by Oaxaca (1973) and Kline (2011). Surprisingly, adding these controls does little to the estimated effect of Head Start relative to home care but improves precision. By contrast, the estimated impact of competing preschools relative to home care fall significantly once controls are added.

Column (3) adds control functions adjusting for selection on unobservables. To account for uncertainty in the estimated control functions, inference for the two-step models is conducted via the nonparametric bootstrap, clustered by experimental site. Unlike the specifications in previous columns, identification of these control function terms relies on the experimental variation in offer assignment. The control function terms are jointly significant (p-value = 0.014), indicating a formal rejection of the selection on observables assumptions underlying value added specifications. Adjusting for selection on unobservables raises the estimated average impacts of Head Start and other preschools dramatically. However, the estimates are also very imprecise. Imprecision in average treatment effects is not surprising given that non-parametric identification of such quantities would require a large support assumption on the instrument (Heckman, 1990), which does not hold in our setting. More troubling is that many of the control function coefficients are imprecise despite being jointly significant, a sign that the control functions are fairly collinear even if they are not perfectly linearly dependent.

To improve precision, we consider a variety of additional restrictions. Column (4) restricts the covariates in X_{i2} to have common coefficients across program alternatives, while continuing to allow heterogeneous effects with respect to X_{i1}. This restriction improves the precision of the average treatment effect estimates along with some of the coefficients governing selection. Column (5) restricts the selection correction coefficients to be equal in the Head Start and competing preschool alternatives (i.e. $\gamma_h^h = \gamma_c^h$ and $\gamma_h^c = \gamma_c^c$), which is a natural restriction given that these preschools likely provide similar services. Finally, column (6) restricts the average treatment effect of Head Start to equal that of competing preschools (i.e. $\theta_0^h = \theta_0^c$). None of these restrictions is rejected (p-values ≥ 0.372), which bolsters our presumption that Head Start and competing preschools produce similar impacts.

It is worth noting that even the heavily constrained model reported in columns (5), which will be our preferred specification, is still quite flexible, allowing for treatment effect heterogeneity with respect to baseline score and for selection into preschool based upon levels and gains. We find evidence for both sorts of selection in the data. Estimates of γ_h^h are negative and statistically significant in all specifications. In other words, children from households with stronger tastes for Head Start have lower scores when attending Head Start. Our estimates of γ_h^h are always...
statistically insignificant and positive. The difference $\gamma_h^h - \gamma_n^h$ is therefore negative, meaning that children who are more likely to attend Head Start receive smaller achievement benefits when shifted from home care to Head Start. This “reverse-Roy” pattern of negative selection on test score gains suggests large benefits for children with unobservables making them less likely to attend the program. Other preschool programs, by contrast, seem to exhibit positive selection on gains – the estimated difference between γ_c^c and γ_n^c is always positive (though these coefficients are imprecise). We reject the hypothesis of no selection on levels ($\gamma_k^d = 0 \forall (k,d)$) in all specifications, and the hypothesis of no selection on gains ($\gamma_k^d = \gamma_j^k$ for $d \neq j, k \in \{h,c\}$) is rejected at the 10-percent level in our most precise specifications.

One possible interpretation of the estimated selection patterns is that Head Start is viewed by parents as a preschool of last resort, leading to enrollment by the families most desperate to get help with child care. Such households cannot be selective about whether the local Head Start center is a good match for their child, which results in lower test score gains. By contrast, households considering enrollment in substitute preschools may have greater resources that afford them the luxury of being more selective about whether such programs are a good match for their child.

Model fit

The bottom row of Table 7 reports score tests for the additive separability of the control functions from the covariates. These tests are conducted by regressing residuals from the two-step models on interactions of X_{i1} and the control functions, along with the main effects from equation (16). In all specifications, we fail to reject additive separability at conventional levels, indicating that our assumption that selection works “the same way” for different covariate groups is not at odds with the data.

Table 8 provides a specification test for our preferred restricted model by comparing model-implied mean potential outcomes for different compliance groups to nonparametric IV estimates, wherever they exist. The IV estimates are obtained via the methods described in Appendix B. Table 8 also uses the model to impute potential outcome means that are not nonparametrically identified. Reassuringly, the discrepancies between IV and model-based estimates are small, and the hypothesis that our preferred model matches all moments is not rejected at conventional levels (p-value = 0.462; see Appendix E for details).

Ideally, the model should not only be able to reproduce mean potential outcomes but to char-

\[22\] We term this pattern reverse-Roy after Roy (1951)’s classic model of occupation choice, which implied pure selection on earnings gains. Walters (2014) finds a related pattern of negative selection in the context of charter schools, though in his setting the fallback potential outcome (as opposed to the charter school outcome) appears to respond positively to unobserved characteristics governing program participation. By contrast, we find that Head Start outcomes are strongly negatively dependent on unobserved factors driving program participation while home care outcomes exhibit weak positive dependence on these factors.

\[23\] In Appendix Table A5 we examine this issue from a different perspective by estimating the selection coefficients γ_h^h and γ_n^h using binary contrasts in the values of each child and site-level covariate in X_{i1}. Though each individual estimate is imprecise, the resulting selection coefficients all imply reverse-Roy selection. The fact that estimates based upon contrasts in both site and child-level characteristics yield qualitatively similar results is particularly reassuring and suggests that our additive index structure provides a reasonable summary of the selection process.
acterize treatment effect heterogeneity across covariate groups. To test this, we used the model to partition the sample into vingtiles based upon predicted values of $LATE_h$. Figure 2 plots the IV estimate of $LATE_h$ in each vingtile against the corresponding model based prediction. The fit of the model is extraordinarily good and indicates that a tremendous amount of covariate-based treatment effect heterogeneity is present in the experiment: average impacts on compliers range from essentially zero to nearly 0.5 standard deviations.24

SubLATEs

Table 9 reports implied treatment effects for each of our selection-corrected models. Identification of average treatment effects relies on parametric extrapolation beyond the population of program compliers, which leads to substantial imprecision in the point estimates. The model generates more precise estimates of the subLATEs, which we compute by integrating over the relevant regions of X_i, v_{ih} and v_{ic} as described in Appendix E.

The first row of Table 9 uses the model parameters to compute the pooled $LATE_h$, which is nonparametrically identified by the experiment. The model estimates line up closely with the nonparametric estimate obtained via IV. The remaining rows report estimates of effects relative to specific care alternatives. Estimates of the subLATE for n-compliers, $LATE_{nh}$, are stable across specifications and indicate that the impact of moving from home care to Head Start is large – on the order of 0.35 standard deviations. By contrast, estimates of $LATE_{ch}$, though somewhat more variable across specifications, never differ significantly from zero. If anything, the $LATE_{ch}$ estimates suggest that Head Start is slightly more effective at boosting test scores than competing preschools.

It is worth comparing these findings with those of Feller et al. (2014), who use the principal stratification framework of Frangakis and Rubin (2002) to estimate effects on n- and c-compliers in the HSIS. They also find large effects for compliers drawn from home and small effects for compliers drawn from other preschools, though their point estimate of $LATE_{nh}$ is somewhat smaller than ours (0.21 vs. 0.35). This difference reflects a combination of different test score outcomes (Feller et al. look only at PPVT scores) and different modeling assumptions. Specifically, their approach exploits a parametric prior over model parameters, restrictions on effect heterogeneity across subgroups, and a normality assumption on potential outcomes within each compliance group. By contrast, we consider a parametric choice model in conjunction with semi-parametric restrictions on the unselected distribution of potential outcomes. Since neither estimation approach nests the other, it is reassuring that these two approaches produce qualitatively similar findings.

24 The sources of this effect heterogeneity are consistent with previous studies of the HSIS. For example, as in Bloom and Weiland (2015) and Bitler et al. (2014), our model implies larger effects of both Head Start and competing preschools for Spanish-speakers. We also find larger effects of both preschool types for Black children and for children from urban areas. Interestingly, we find little relationship between baseline scores and preschool effects after accounting for counterfactual care choices and child characteristics.
9 Policy Counterfactuals

We now use our model estimates to consider a variety of policy counterfactuals that are not non-parametrically identified by the HSIS experiment.

Rationed substitutes

In the cost-benefit analysis of Section 6 we assumed that seats at competing preschools were not rationed. While this assumption is reasonable in states with universal preschool mandates, other areas may have preschool programs that face relatively fixed budgets and offer any vacated seats to new children. In this case, increases in Head Start enrollment will create opportunities for new children to attend substitute preschools rather than generating cost savings in these programs. Our model-based estimates allow us to assess the sensitivity of our cost/benefit results to the possibility of rationing in competing programs.

From (10), the marginal value of public funds under rationing depends on $LATE_{nc}$ – the average treatment effect of competing preschools on “n-to-c compliers” who would move from home care to a competing preschool program in response to an offered seat. We compute the $MVPF_{δ,\text{rat}}$ under three alternative assumptions regarding this parameter. First, we consider the case where $LATE_{nc} = 0$. Next, we consider the case where the average test score effect of competing preschools for marginal students equals the corresponding effect for Head Start compliers drawn from home care (i.e. $LATE_{nc} = LATE_{nh}$). Finally, we use our model estimates to compute a prediction for $LATE_{nc}$. Specifically, we add the offer coefficient $ψ^z_h$ to the competing center utility $U_i(c)$ and then compute average treatment effects for students induced to switch from n to c by this change. This calculation assumes that the value of an offered seat at a competing program is comparable to the value of an offer at Head Start. The results give the effect of moving from home to a substitute preschool for students who stay home in the current policy environment but could be induced to attend a substitute program by an offer.

Table 10 shows the results of this analysis. Setting $LATE_{nc} = 0$ yields an $MVPF_{δ,\text{rat}}$ of 1.10. This replicates the “naive” analysis with $φ_c = 0$ in the non-rationed analysis. Both of these cases ignore costs and benefits due to substitution from competing programs. Assuming that $LATE_{nc} = LATE_{nh}$ produces a benefit-cost ratio of 2.39. Finally, our preferred model estimates from Section 8 predict that $LATE_{nc} = 0.330$, which produces a ratio of 2.19. These results suggest that our cost/benefit results are robust to the possibility of rationing in competing programs. Under plausible assumptions about the effects of competing programs relative to home care, accounting for the benefits generated by vacated seats in these programs yields estimated social returns larger than those displayed in panel B of Table 5.

25 Ideally we would compute $LATE_{nc}$ for students who do not receive offers to competing programs but would attend these programs if offered. Since we do not observe offers to substitute preschools, it is not possible to distinguish between non-offered children and children who decline offers. Our estimate of $LATE_{nc}$ therefore captures a mix of effects for compliers who would respond to offers and children who currently decline offers but would be induced to attend competing programs if these programs became more attractive.
Structural reforms

The “reverse Roy” pattern revealed by the estimates in Table 7 suggests large potential effects of policies that target children who are currently unlikely to attend Head Start. Motivated by this finding, we next predict the social benefits of a reform that expands Head Start by making it more attractive rather than extending offers to additional households. We model this reform as an improvement in the structural program feature f, as described in Section 5. This can be viewed as a policy experiment that increases Head Start transportation services, outreach efforts, or spending on other services that make Head Start attractive to parents. We use estimates from our preferred model to compute marginal treatment effects for these alternative subgroups of compliers, treating changes in f as changes to the intercept ψ_0^h of the Head Start utility in (14).

Panel A of Figure 3 displays predicted effects of structural reforms on test scores. Since the program feature has no intrinsic scale, the horizontal axis is scaled in terms of the Head Start attendance rate, with a black vertical line indicating the current rate ($f = 0$). The right axis measures $\rightarrow S_c$, the share of marginal students drawn from other preschools, which is plotted in green. The left axis measures test score effects. Red and yellow curves plot marginal treatment effects for subgroups of marginal students drawn from home care and other preschools, while the blue curve plots MTE_h, a weighted average of alternative-specific effects. The credibility of these estimates is greatest in the range 0.15-0.85, which corresponds roughly to the range of Head Start market shares traced out by the experimental offer in the three year old cohort (see Table 3).

The figure shows that Head Start’s marginal treatment effect increases with the scale of the program. This pattern is driven by reverse Roy selection for children drawn from home care: increases in f attract children with weaker tastes for Head Start, who experience larger gains. This results in increasing marginal treatment effects for Head Start relative to no preschool. Predicted effects for children drawn from other preschools are small for all values of f. Interestingly, the model predicts increasing crowdout of other preschools as Head Start expands, indicated by a rising value of $\rightarrow S_c$. The overall marginal treatment effect therefore combines two offsetting forces: increasing gains for children drawn from home care, and an increasing share of children drawn from other preschools for whom gains are negligible. This leads to a modestly increasing schedule of MTE_h.

To investigate the consequences of this pattern for the social return to Head Start, Panel B plots $MVPF_f$, the marginal value of public funds for structural reforms. This Figure relies on the same parameter calibrations as Table 5. Calculations of $MVPF_f$ must account for the fact that changes in structural program features may increase the direct costs of the program. This effect is captured in (13) by the term η which gives the elasticity of the per-child cost of Head Start with respect to the scale of the program. Without specifying the program feature being manipulated, there is no natural value for η. We start with the extreme case where $\eta = 0$, which allows us to characterize costs and benefits associated with reforms that draw in children on the margin without changing the per-capita cost of the program. We then consider how the cost-benefit calculus changes when $\eta > 0$.

As in our basic cost/benefit analysis, the results in panel B of Figure 3 show that accounting for
the public savings associated with program substitution has an important effect on the marginal value of public funds. The red curve plots $MVPF_f$ setting $\phi_c = 0$. This calibration includes the attenuated benefits generated by increasing crowdout while effectively ignoring the attenuated costs. The blue curve accounts for public savings by setting ϕ_c equal to our preferred value of $0.75\phi_h$. This generates an upward shift and steepens the $MVPF_f$ schedule, indicating higher social returns that increase more quickly with program size. The implied marginal value of public funds at $f = 0$ is above 2. This is larger than 1.84, the value of $MVPF_\delta$ reported in Table 5, which implies larger social returns for expansions that attract new households than for expansions that raise the offer rate.

Finally, the green line in Panel B shows $MVPF_f$ when $\phi_c = 0.75\phi_h$ and $\eta = 0.5$. This scenario implies sharply rising marginal costs of Head Start provision: an increase in f that doubles enrollment raises per-capita costs by 50 percent. In this simulation the marginal value of public funds is roughly equal to one when $f = 0$, and falls below one for higher values. Hence, if η is at least 0.5, a dollar increase in Head Start spending generated by structural reform will result in less than one dollar transferred to Head Start applicants. This exercise illustrates the quantitative importance of determining provision costs when evaluating specific policy changes such as improvements to transportation services or marketing.

Our analysis of structural reforms suggests increasing returns to the expansion of Head Start, as larger expansions draw in households with weaker tastes for preschool with large potential gains. The social returns to attracting such students will be substantial unless program costs increase rapidly with enrollment. These findings imply that structural reforms targeting children who are currently unlikely to attend Head Start and children who are likely to be drawn from non-participation will generate larger effects than reforms that simply create more seats. Our results also echo other recent studies finding increasing returns to early-childhood investments, though the mechanism generating increasing returns in these studies is typically dynamic complementarity in human capital investments rather than selection and effect heterogeneity (see, e.g., Cunha et al., 2010).

10 Conclusion

Our analysis suggests that Head Start, in its current incarnation, passes a strict cost-benefit test predicated only upon projected effects on adult earnings. It is reasonable to expect that this conclusion would be strengthened by incorporating the value of any impacts on crime (e.g. as in Lochner and Moretti, 2004 and Heckman et al., 2010), or other externalities such as civic engagement (Milligan et al., 2004), or by incorporating the value to parents of subsidized care (e.g., as in Aaberge et al., 2010). We find evidence that Head Start generates especially large benefits for children who would not otherwise attend preschool and for children with weak unobserved tastes.

For this case, marginal costs are obtained by solving the differential equation $\phi'_h(f) = \eta \phi(f) (\partial \ln P(D_i = h) / \partial f)$ with the initial condition $\phi_h(0) = $8,000. This yields the solution $\phi_h(f) = $8,000 exp $(\eta (\ln P(D_i = h) - \ln P_0))$ where P_0 is the initial Head Start attendance rate.
for the program. This suggests that the program’s rate of return can be boosted by reforms that target new populations, though this necessitates the existence of a cost-effective technology for attracting these children.

The finding that returns are on average greater for nonparticipants is potentially informative for the debate over calls for universal preschool, which might reach high return households. However, it is important to note that if competing state level preschool programs become ubiquitous, the rationale for expansions to federal preschool programs could be undermined. To see this, consider how the marginal value of expanding Head Start changes as the compliance share S_c approaches one, so that nearly all denied Head Start applicants would otherwise enroll in competing programs. If Head Start and competing program have equivalent effects on test scores, then (9) indicates that we should decide between federal and state level provision based entirely on cost criteria. Since state programs are typically cheaper (Council of Economic Advisers, 2015) and are expanding rapidly, the case for federal preschool may actually be weaker now than at the time of the Head Start Impact Study.

It is important to note some other limitations to our analysis. First, our cost-benefit calculations rely on literature estimates of the link between test score effects and earnings gains. These calculations are necessarily speculative, as the only way to be sure of Head Start’s long-run effects is to directly measure long-run outcomes for HSIS participants. Second, we have ignored the possibility that substantial changes to program features or scale could, in equilibrium, change the education production technology. For example, implementing recent proposals for universal preschool could generate a shortage of qualified teachers (Rothstein, forthcoming). Finally, we have ignored the possibility that administrative program costs might change with program scale, choosing instead to equate average with marginal provision costs.

Despite these caveats, our analysis has shown that accounting for program substitution in the HSIS experiment is crucial for an assessment of the Head Start program’s costs and benefits. Similar issues arise in the evaluation of job training programs (Heckman et al., 2000), health insurance (Finkelstein et al., 2012), and housing subsidies (Kling et al., 2007; Jacob and Ludwig, 2012). The tools developed here are potentially applicable to a wide variety of evaluation settings where data on enrollment in competing programs are available.
References

Online Appendix

Appendix A: Data

This appendix describes the construction of the sample used in this article. The data come from the Head Start Impact Study (HSIS). This data set includes information on 4,442 children, each applying to Head Start at one of 353 experimental sites in Fall 2002. The raw data used here includes information on test scores, child demographics, preschool attendance, and preschool characteristics. Our core sample includes 3,571 children (80 percent of experimental participants) with non-missing values for key variables. We next describe the procedures used to process the raw data and construct this sample.

Test scores

Outcomes are derived from a series of tests given to students in the Fall of 2002 and each subsequent Spring. The followup window extends through Spring 2006 for the three-year-old applicant cohort and Spring 2005 for the four-year-old cohort.

We use these assessments to construct summary indices of cognitive skills in each period. These summary indices include scores on the Peabody Picture and Vocabulary Test (PPVT) and Woodcock Johnson III Preacademic Skills (WJIII) tests. The WJIII Preacademic Skills score combines performance on several subtests to compute a composite measure of cognitive performance. We use versions of the PPVT and WJIII scores derived from item response theory (IRT), which uses the reliability of individual test items to construct more a more accurate measure of student ability than the simple raw score. The summary index in each period is a simple average of standardized PPVT and WJIII scores, with each score standardized to have mean zero and standard deviation one in the control group, separately by applicant cohort and year. Our core sample excludes applicants without PPVT and WJIII scores in Spring 2003.

The HSIS data includes a number of other test scores in addition to the PPVT and WJIII. Previous analyses of the HSIS data have looked at different combinations of outcomes: Puma et al. (2010) show estimates for each individual test, Walters (2015) uses a summary index that combines all available tests, and Bitler et al. (2014) show separate results for the PPVT and WJIII. We focus on a summary index of the PPVT and WJIII because these tests are among the most reliable in the HSIS data (Puma et al., 2010), are consistently measured in each year (which allows for interpretable intertemporal comparisons), and can be most easily compared to the previous literature (for example, Currie and Thomas, 1995 estimate effects on PPVT scores). Estimates that include additional outcomes in the summary index or restrict attention to individual outcomes produced similar results, though these estimates were typically less precise.
Demographics

Baseline demographics come from a parental survey conducted in Fall 2002. Parents of eighty-one percent of children responded to this survey. We supplement this information with a set of variables in the HSIS “Covariates and Subgroups” data file, which includes additional data collected during experimental recruitment to fill in characteristics for non-respondents. When a characteristic is measured in both files and answers are inconsistent, the “Covariates and Subgroups” value is used. Our core sample excludes applicants with missing values for baseline covariates except income, which is missing more often than other variables. We retain children with missing income and include a missing dummy in all specifications.

Preschool attendance

Preschool attendance is measured from the HSIS “focal arrangement type” variable, which reconciles information from parent interviews and teacher/care provider interviews to construct a summary measure of the childcare setting. This variable includes codes for centers, non-relative’s homes, relative’s homes, own home (with a relative or non-relative), parent care, and Head Start. Children are coded as attending Head Start if this variable is coded “Head Start;” another preschool center if it is coded “Center;” and no preschool if it takes any other non-missing value. We exclude children with missing focal arrangement types in constructing the core sample.

Preschool characteristics

Our analysis uses experimental site characteristics and characteristics of the preschools children attend (if any), such as whether transportation is provided, funding sources, and an index of quality. This information is derived from interviews with childcare center directors conducted in the Spring of 2003. This information is provided in a student-level file, with the responses of the director of a child’s preschool center included as variables. Site characteristics are coded using values of these variables for treatment group children with focal care arrangements coded as “Head Start” at each center of random assignment. In a few cases, these values differed for Head Start attendees at the same site; we used the most frequently-given responses in these cases. An exception is the quality index, which synthesizes information from parent, center director, and teacher surveys. We use the mean value of this index reported by Head Start attendees at each site to construct site-specific measures of quality.

Weights

The probability of assignment to Head Start differed across experimental sites. The HSIS data includes several weight variables designed to account for these differences. These weights also include a factor that adjusts for differences in the probability that Head Start centers themselves were sampled (Puma et al., 2010). This weighting can be used to estimate the average effect of Head Start participation in the US, rather than the average effect in the sample; these parameters
may differ if effects differ across sites in a manner related to sampling probabilities. Probabilities of sampling differed widely across centers, however, leading to very large differences in weights across children and decreasing precision. Instead of using the HSIS weights, we constructed inverse probability weights based on the fraction of applicants at each site offered Head Start. The discussion in Puma et al. (2010) suggests that the numbers of treated and control students at each site were specified in advance, implying that this fraction correctly measures the *ex ante* probability that a child is assigned to the treatment group. Results using other weighting schemes were similar, but less precise.

We also experimented with models including center fixed effects rather than using weights. These models produced similar results, but our multinomial probit model is much more difficult to estimate with fixed effects than with weights. We therefore opted to use weights rather than fixed effects for all estimates reported in the article.
Appendix B: Identification of Complier Characteristics

This appendix extends results from Abadie (2002) to show identification of characteristics and marginal potential outcome distributions for subpopulations of compliers drawn from other preschools and no preschool. Let \(g(Y_i, X_i) \) be any measurable function of outcomes and exogenous covariates. Consider the quantity

\[
\kappa_c = \frac{E[g(Y_i, X_i) \cdot 1 \{D_i = c\} | Z_i = 1] - E[g(Y_i, X_i)] \cdot 1 \{D_i = c\} | Z_i = 0]}{E[1 \{D_i = c\} | Z_i = 1] - E[1 \{D_i = c\} | Z_i = 0]}
\]

The numerator can be written

\[
E[g(Y_i(D_i(1)), X_i) \cdot 1 \{D_i(1) = c\}] - E[g(Y_i(D_i(0)), X_i) \cdot 1 \{D_i(0) = c\}],
\]

where the conditioning on \(Z_i \) has been dropped because offers are independent of potential outcomes and covariates. This simplifies to

\[
\kappa_c = E[g(Y_i(c), X_i) | D_i(1) = c] \cdot P(D_i(1) = c) - E[g(Y_i(c), X_i) | D_i(0) = c] \cdot P(D_i(0) = c)
\]

\[
= E[g(Y_i(c), X_i) | D_i(1) = c, D_i(0) = c] \cdot P(D_i(1) = c, D_i(0) = c)
\]

\[
- E[g(Y_i(c), X_i) | D_i(1) = c, D_i(0) = c] \cdot P(D_i(1) = c, D_i(0) = c)
\]

\[
- E[g(Y_i(c), X_i) | D_i(1) = h, D_i(0) = c] \cdot P(D_i(1) = h, D_i(0) = c)
\]

\[
= -E[g(Y_i(c), X_i) | D_i(1) = h, D_i(0) = c] \cdot P(D_i(1) = h, D_i(0) = c),
\]

where the first equality uses the fact that \(P(D_i(0) = c | D_i(1) = c) = 1 \). The denominator is the effect of the offer on the probability that \(D_i = c \), which is minus the share of the population shifted from \(c \) to \(h \), \(-P(D_i(1) = h, D_i(0) = c)\). Hence,

\[
\kappa_c = \frac{-E[g(Y_i(c), X_i) | D_i(1) = h, D_i(0) = c] \cdot P(D_i(1) = h, D_i(0) = c)}{-P(D_i(1) = h, D_i(0) = c)}
\]

\[
= E[g(Y_i(c), X_i) | D_i(1) = h, D_i(0) = c],
\]

which completes the proof.

An analogous argument shows identification of \(E[g(Y_i(n), X_i) | D_i(1) = h, D_i(0) = n] \) by replacing \(c \) with \(n \) throughout. Moreover, replacing \(c \) with \(h \), the same argument shows identification of \(E[g(Y_i(h), X_i) | D_i(1) = h, D_i(0) \neq h] \), which can be used to characterize the distribution of \(Y_i(h) \) for the full population of compliers.

Note that \(\kappa_c \) is the population coefficient from an instrumental variables regression of \(g(Y_i, X_i) \cdot 1 \{D_i = c\} \) on \(1 \{D_i = c\} \), instrumenting with \(Z_i \). The characteristics of the population of compliers shifted from \(c \) to \(h \) can therefore be estimated using the sample analogue of this regression. In Table 4 we estimate the characteristics of non-Head Start preschool centers attended by compliers drawn from \(c \) by setting \(g(Y_i, X_i) \) equal to a characteristic of the preschool center a child attends (set to zero for children not in preschool). In Table 8 we set \(g(Y_i, X_i) = Y_i \) to estimate the means of \(Y_i(c), Y_i(n), \) and \(Y_i(h) \) for compliers.
Appendix C: Cost Benefit Analysis

This appendix discusses our approach to cost-benefit analysis and derives the expressions for the marginal value of public funds in equations (9), (10) and (13).

C.1 Valuing test score impacts

Here we consider more carefully how to value test score impacts in dollar terms. Specifically, we show that if test score impacts yield corresponding labor supply responses, an adjustment to lifetime earnings impacts is necessary to properly capture the welfare benefits of a policy change. This argument implies that we should use projected impacts on wages (as opposed to earnings) to value test score gains.

Letting \(y \) denote a child’s human capital level (as proxied by test scores), we are interested in deriving a child’s willingness to pay (as an adult) for an intervention shifting her human capital level from \(y_0 \) to \(y_1 > y_0 \). If this willingness to pay exceeds the net cost to government of financing the human capital increase, then the intervention is efficiency improving in the Kaldor-Hicks sense that all parties could be made better off.

We work with a simple static model where children face a competitive labor market with no uncertainty and are free to choose lifetime labor supply in accord with utility maximization. Suppose children have utility over consumption \((q)\) and leisure \((\bar{l})\) given by the function \(u(q,\bar{l})\). The lifetime budget constraint of a child with human capital level \(y\) can be written:

\[
q = w(y)(T - \bar{l}) + b,
\]

where \(w(y) = (1 - \tau)py \equiv \omega\) is the after-tax wage, \(T\) is a time endowment, and \(b\) is unearned income. The uncompensated (Marshallian) labor supply function is \(l(\omega,b)\).

Define the excess expenditure function:

\[
e(\omega,\bar{u}) \equiv \min \{ q - \omega(T - \bar{l}) : u(q,\bar{l}) \geq \bar{u} \},
\]

as the minimal level level of unearned income necessary to obtain utility level \(\bar{u}\) at wage level \(\omega\). By the envelope theorem

\[
\frac{\partial}{\partial \omega} e(\omega,\bar{u}) = -l_c(\omega,\bar{u}),
\]

where \(l_c(\omega,\bar{u})\) is the compensated (Hicksian) labor supply function.

Suppose that at human capital level \(y_0\) the child is able to obtain utility level \(u_0\). The compensating variation:

\[
CV(y_0, y_1) \equiv e(w(y_0), u_0) - e(w(y_1), u_0),
\]

measures how much income a child could give away at human capital level \(y_1\) and still obtain his
old utility level u_0. A first order Taylor approximation yields:

$$CV(y_0, y_1) \approx (1 - \tau) p l_c (w(y_0), u_0) (y_1 - y_0)$$

$$= (1 - \tau) p l (w(y_0), b) (y_1 - y_0).$$

(18)

In words, the value to a child of a small increase in test scores is given by the mechanical impact this increase in her wage would have on her lifetime earnings if her labor supply were fixed at $l(w(y_0), b)$.

This is to be contrasted with the actual effect of the human capital increase on his earnings which can be written:

$$w(y_1) l(w(y_1), b) - w(y_0) l(w(y_0), b) \approx (1 - \tau) p l (w(y_0), b) (1 + \epsilon) (y_1 - y_0)$$

where $\epsilon \equiv \frac{w(y_0)}{l(w(y_0), b)} \frac{\partial}{\partial \omega} l(w(y_0), b)$ gives the uncompensated elasticity of labor supply. Relative to (18), this expression has an extra term $(1 + \epsilon)$ that reflects how the child adjusts her lifetime labor supply in response to the increase in her after-tax wage. By the envelope theorem, these behavioral changes (when they are small) do not yield additional utility.

The upshot of this analysis is that empirical estimates of the impact of test scores on earnings need to be deflated by $\frac{1}{1 + \epsilon}$ to reflect the child’s valuation of the intervention. Much of the literature finds small (or even negative) long run uncompensated labor supply elasticities suggesting that the necessary adjustment is probably small (Ashenfelter et al., 2010; Blundell et al., 2015). Consistent with this view, Lindqvist and Vestman (2011) find the proportional response of wages to test scores to be only slightly below the corresponding response of earnings (see Table A3).

C.2 Program Scale

First, consider the case where competing programs are not rationed. From (5), the effect of a change in δ on the average after-tax lifetime income of children is

$$\frac{\partial B}{\partial \delta} = (1 - \tau) p \frac{\partial E[Y_i]}{\partial \delta}.$$

The test score for child i can be written

$$Y_i = Y_i(D_i(1))Z_i + Y_i(D_i(0))(1 - Z_i),$$

so

$$E[Y_i] = E[Y_i(D_i(1))|Z_i = 1] \delta + E[Y_i(D_i(0))|Z_i = 0](1 - \delta)$$

$$= E[Y_i(D_i(1))] \delta + E[Y_i(D_i(0))](1 - \delta),$$

where the second line follows from the assumption that Head Start offers are independent of potential outcomes and potential treatment choices. Then
\[\frac{\partial E[Y_i]}{\partial \delta} = E[Y_i(D_i(1))] - E[Y_i(D_i(0))] \]

\[= E[Y_i(D_i(1)) - Y_i(D_i(0))] \]

\[= E[Y_i(D_i(1)) - Y_i(D_i(0))|D_i(1) \neq D_i(0)] P(D_i(1) \neq D_i(0)). \]

Since \(U_i(n) \) and \(U_i(c) \) do not depend on \(Z_i \) and \(U_i(h, 1) > U_i(h, 0) \), the condition \(D_i(1) \neq D_i(0) \) implies that \(D_i(1) = h \). We can therefore rewrite the last expression as

\[\frac{\partial E[Y_i]}{\partial \delta} = E[Y_i(h) - Y_i(D_i(0))|D_i(1) = h, D_i(0) \neq h] P(D_i(1) = h, D_i(0) \neq h) \]

\[= \text{LATE}_h \cdot P(D_i(1) = h, D_i(0) \neq h), \]

which is equation (7). It follows that

\[\frac{\partial B}{\partial \delta} = (1 - \tau)p \cdot \text{LATE}_h \cdot P(D_i(1) = h, D_i(0) \neq h). \]

From equation (6), the effect of a change in \(\delta \) on the government budget is

\[\frac{\partial C}{\partial \delta} = \phi_h \frac{\partial P(D_i = h)}{\partial \delta} + \phi_c \frac{\partial P(D_i = c)}{\partial \delta} - \tau p \frac{\partial E[Y_i]}{\partial \delta}. \]

The probability of Head Start participation is

\[P(D_i = h) = E[1\{D_i(1) = h\}] \delta + E[1\{D_i(0) = h\}] (1 - \delta), \]

which implies

\[\frac{\partial P(D_i = h)}{\partial \delta} = E[1\{D_i(1) = h\}] - E[1\{D_i(0) = h\}] \]

\[= E[1\{D_i(1) = h\} - 1\{D_i(0) = h\}] \]

\[= E[1\{D_i(1) = h, D_i(0) \neq h\}] \]

\[= P(D_i(1) = h, D_i(0) \neq h), \]

where the second-to-last equality again used the fact that \(D_i(1) \neq D_i(0) \) implies \(D_i(1) = h \). Similarly,

\[\frac{\partial P(D_i = c)}{\partial \delta} = E[1\{D_i(1) = c\} - 1\{D_i(0) = c\}] \]

\[= -E[1\{D_i(1) = h, D_i(0) = c\}] \]

\[= -P(D_i(1) = h, D_i(0) = c). \]
Plugging these expressions into $\partial C/\partial \delta$ yields

$$\frac{\partial C}{\partial \delta} = \phi_h P(D_i(1) = h, D_i(0) \neq h) - \phi_c P(D_i(1) = h, D_i(0) = c) - \tau pLATE_h P(D_i(1) = h, D_i(0) \neq h) = (\phi_h - \phi_c S_c - \tau pLATE_h) P(D_i(1) = h, D_i(0) \neq h),$$

which is equation (8).

The marginal value of public funds associated with a change in δ is the ratio of the impact on B to the impact on C:

$$MVPF_{\delta} \equiv \frac{\partial B/\partial \delta}{\partial C/\partial \delta}.$$

By plugging in expressions for these derivatives we obtain

$$MVPF_{\delta} = \frac{(1 - \tau)pLATE_h}{\phi_h - \phi_c S_c - \tau pLATE_h},$$

which is equation (9).

C.3 Rationed Substitutes

We next consider the case where seats in competing programs are rationed. As in Head Start, we assume that seats in the competing program are distributed randomly. Let Z_{ih} and Z_{ic} denote offers in options h and c, and let δ_h and δ_c denote the corresponding offer probabilities. Preferences now depend on both offers. Utilities are described by

$$U_i(h, Z_{ih}), U_i(c, Z_{ic}), U_i(n),$$

and preschool enrollment choices are defined by

$$D_i(z_h, z_c) = \arg \max_{d \in \{h, c, n\}} U_i(d, z_h, z_c).$$

Let $\pi_d(z_h, z_c) = P(D_i(z_h, z_c) = d)$ denote the probability of enrollment in option d as a function of the two offers. Total enrollment in option c is

$$P(D_i = c) = \delta_h \delta_c \pi_c(1, 1) + \delta_h (1 - \delta_c) \pi_c(1, 0) + (1 - \delta_h) \delta_c \pi_c(0, 1) + (1 - \delta_h)(1 - \delta_c) \pi_c(0, 0). \quad (19)$$

We assume that competing preschools adjust δ_c so that $dP(D_i = c)/d\delta_h = 0$. Totally differentiating equation (19) with respect to δ_h yields

$$\frac{d\delta_c}{d\delta_h} = -\frac{\delta_c (\pi_c(1, 1) - \pi_c(0, 1)) + (1 - \delta_c) (\pi_c(1, 0) - \pi_c(0, 0))}{\delta_h (\pi_c(1, 1) - \pi_c(0, 1)) + (1 - \delta_h) (\pi_c(0, 1) - \pi_c(0, 0))}.$$

$$= \frac{P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) = c)}{P(D_i(Z_{ih}, 1) = c, D_i(Z_{ih}, 0) \neq c)},$$

48
To keep enrollment constant, δ_c adjusts by the ratio of the effect of an offer at h on attendance at c to the effect of an offer at c on attendance at c.

Average test scores are given by

$$E[Y_i] = \delta_h (\delta_c E[Y_i(D_i(1,1))] + (1 - \delta_c)E[Y_i(D_i(1,0))])$$

$$+(1 - \delta_h) (\delta_c E[Y_i(D_i(0,1))] + (1 - \delta_c)E[Y_i(D_i(0,0))]),$$

so

$$\frac{dE[Y_i]}{d\delta_h} = \delta_c (E[Y_i(D_i(1,1)) - Y_i(D_i(1,0))])$$

$$+(1 - \delta_c) (E[Y_i(D_i(1,0))] - E[Y_i(D_i(0,0))])$$

$$+\frac{d\delta_c}{d\delta_h} \cdot (\delta_h E[Y_i(D_i(1,1)) - Y_i(D_i(1,0))] + (1 - \delta_h) E[Y_i(D_i(0,1)) - Y_i(D_i(0,0))]),$$

which can be rewritten

$$\frac{dE[Y_i]}{d\delta_h} = E[Y_i(D_i(1,Z_{ic})) - Y_i(D_i(0,Z_{ic}))]$$

$$+\frac{d\delta_c}{d\delta_h} \cdot (E[Y_i(D_i(Z_{ih},1)) - Y_i(D_i(Z_{ih},0))])$$

$$= \text{LATE}_h \cdot P(D_i(1,Z_{ic}) = h, D_i(0,Z_{ic}) \neq h)$$

$$+\text{LATE}_c \cdot P(D_i(1,Z_{ic}) = h, D_i(0,Z_{ic}) = c).$$

Here the local average treatment effects are defined as

$$\text{LATE}_h = E[Y_i(h) - Y_i(D_i(0,Z_{ic}))|D_i(1,Z_{ic}) = h, D_i(0,Z_{ic}) \neq h],$$

$$\text{LATE}_c = E[Y_i(c) - Y_i(D_i(Z_{ih},0))|D_i(Z_{ih},1) = c, D_i(Z_{ih},0) \neq c].$$

This can be further simplified to

$$\frac{dE[Y_i]}{d\delta_h} = (\text{LATE}_h + S_c \text{LATE}_c) \cdot P(D_i(1,Z_{ic}) = h, D_i(0,Z_{ic}) \neq h).$$

The effect of an increase in δ_h on the government’s budget is

$$\frac{dC}{d\delta_h} = \phi_h \cdot \frac{dP(D_i = h)}{d\delta} - \tau_p \cdot \frac{dE[Y_i]}{d\delta_h}.$$

Since δ_c adjusts to keep $P(D_i = c)$ constant, we have $dP(D_i = c)/d\delta_h = 0$. We assume that all marginal children drawn into c by offers come from n rather than h. This implies $\text{LATE}_c = \text{LATE}_{nc}$, and furthermore
\[
\frac{dP(D_i = h)}{d\delta_h} = P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h).
\]

Then the marginal value of public funds is
\[
MVPF_{\delta, rat} = \frac{dB/d\delta_h}{dC/d\delta_h} = (1 - \tau)p (LATE_h + S_c LATE_{nc}) P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h)
\]
\[
\times \left[\phi_h P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h) - \tau p (LATE_h + S_c LATE_{nc}) P(D_i(1, Z_{ic}) = h, D_i(0, Z_{ic}) \neq h) \right]^{-1}
\]
\[
= \frac{(1 - \tau)p (LATE_h + LATE_{nc} \cdot S_c)}{\phi_h - \tau p (LATE_h + LATE_{nc} \cdot S_c)},
\]

which is equation (10).

C.4 Structural Reforms

Next, consider structural reforms that alter the program feature \(f \). A change in \(f \) generates the following impacts on income and the government budget:
\[
\frac{\partial B}{\partial f} = (1 - \tau)p \frac{\partial E[Y_i]}{\partial f},
\]
\[
\frac{\partial C}{\partial f} = \phi_h \frac{\partial P(D_i = h)}{\partial f} + \phi'_h(f) P(D_i = h) + \phi_c \frac{\partial P(D_i = c)}{\partial f} - \tau p \frac{\partial E[Y_i]}{\partial f}
\]
\[
= \frac{\partial P(D_i = h)}{\partial f} \left[\phi_h + \phi'_h(f) \partial (\ln P(D_i = h)/\partial f) \right]^{-1} + \phi_c \frac{\partial P(D_i = c)/\partial f}{\partial P(D_i = h)/\partial f} - \tau p \frac{\partial E[Y_i]/\partial f}{\partial P(D_i = h)/\partial f} \right].
\]

We can write mean test scores as
\[
E[Y_i] = E[Y_i(h) \cdot 1 \{U_i(h, Z_i) + f \geq U_i(c), U_i(h, Z_i) + f \geq 0\}]
\]
\[
+ E[Y_i(c) \cdot 1 \{U_i(c) \geq U_i(h, Z_i) + f, U_i(c) \geq 0\}]
\]
\[
+ E[Y_i(n) \cdot 1 \{U_i(h, Z_i) + f \leq 0, U_i(c) \leq 0\}],
\]

where we have normalized \(U_i(n) \) to zero. The third term in this expression is
\[
E[Y_i(n) \cdot 1 \{U_i(h, Z_i) + f \leq 0, U_i(c) \leq 0\}] = \int_{-\infty}^{0} \int_{-\infty}^{\max(f, 0)} \int_{-\infty}^{f} y \cdot g_{yu}(y, u_h, u_c) du_h du_c dy,
\]

where \(g_{yu} \) is the joint density function of \(Y_i, U_i(h, Z_i) \) and \(U_i(c) \). Using Leibniz’s rule for differentiation under the integral sign and Fubini’s theorem, we have
\[
\frac{\partial E[Y_i(n) \cdot 1 \{U_i(h, Z_i) + f \leq 0, U_i(c) \leq 0\}]}{\partial f} = \int_{-\infty}^{0} \int_{-\infty}^{\max(0, f)} \int_{-\infty}^{f} y \cdot g_{yu}(y, u_h, u_c) du_h du_c dy.
\]
where \(g_{yu}(\cdot) \) is the density of \(Y_i(n) \) conditional on the utilities, \(g_u(\cdot) \) is the joint density of the utilities, and \(g_{uh}(\cdot) \) is the marginal density of \(U_i(h, Z_i) \). The last factor in this expression is the average of \(Y_i(n) \) for individuals who are indifferent between Head Start and home care, and strictly prefer home care to the competing program. The first two factors give the total density associated with this event.

Similar arguments show the effects of a change in \(f \) on scores in \(c \) and \(h \):

\[
\frac{\partial E[Y_i(c) \cdot 1 \{U_i(c) \geq U_i(h, Z_i) + f, U_i(c) \geq 0\}]}{\partial f} = -g_{c-h}(f) P(U_i(c) > 0|U_i(h, Z_i) + f = U_i(c)) \cdot \frac{\partial E[Y_i(c)|U_i(h, Z_i) + f = U_i(c), U_i(c) > 0]}{\partial f},
\]

\[
\frac{\partial E[Y_i(h) \cdot 1 \{U_i(h, Z_i) + f \geq U_i(c), U_i(h) + f \geq 0\}]}{\partial f} = \{g_{c-h}(f) P(U_i(c) > 0|U_i(h, Z_i) + f = U_i(c)) + g_{uh}(-f) P(U_i(c) < 0|U_i(h, Z_i) + f = 0)\} \times E[Y_i(h)|U_i(h, Z_i) + f = \max\{U_i(c), U_i(n)\}],
\]

where \(g_{c-h}(\cdot) \) is the density of \(U_i(c) - U_i(h, Z_i) \).

The corresponding effects on choice probabilities are

\[
\frac{\partial P(D_i = h)}{\partial f} = g_{uh}(-f) P(U_i(c) < 0|U_i(h, Z_i) + f = 0) + g_{c-h}(f) P(U_i(c) > 0|U_i(h, Z_i) + f = U_i(c)),
\]

\[
\frac{\partial P(D_i = c)}{\partial f} = -g_{c-h}(f) P(U_i(c) > 0|U_i(h, Z_i) + f = U_i(c)).
\]

The share of marginal children drawn from the competing program is then given by

\[
\overrightarrow{S}_c = -\frac{\partial P(D_i = c)/\partial f}{\partial P(D_i = h)/\partial f}.
\]
\[
\frac{g_{c-h}(f) P(U_i(c) > 0 | U_i(h, Z_i) + f = U_i(c))}{g_{uh}(-f) P(U_i(c) < 0 | U_i(h, Z_i) + f = 0) + g_{c-h}(f) P(U_i(c) > 0 | U_i(h, Z_i) + f = U_i(c))},
\]

By plugging these equations into the expressions for costs and benefits and dividing by the total density of marginal compliers, we obtain

\[
MVPF_f = \frac{(1 - \tau)pMTE_h}{\phi_h(1 + \eta) - \phi_c \overline{S_c} - \tau pMTE_h},
\]

which is equation (12).
Appendix D: Interacted Two-stage Least Squares

This Appendix investigates the use of the interacted two-stage least squares approach described in Section 7 to estimate models treating both Head Start and other preschools as endogenous variables. We begin with a simple example that clarifies the parameters estimated by this strategy, then apply the strategy to the HSIS data.

Interacted 2SLS estimand

Suppose there is a single binary covariate $X_i \in \{0, 1\}$. Under the assumptions described in Section 4, covariate-specific instrumental variables coefficients give local average treatment effects:

\[
E[Y_i|Z_i = 1, X_i = x] - E[Y_i|Z_i = 0, X_i = x]
\]

Furthermore, we have

\[
\text{LATE}_h(x) = S_c(x)\text{LATE}_{ch}(x) + (1 - S_c(x))\text{LATE}_{nh}(x),
\]

where $S_c(x) = \frac{P(D_i(1)=h,D_i(0)=c|X_i=x)}{P(D_i(1)=h,D_i(0)\neq h|X_i=x)}$ is the covariate-specific share of compliers drawn from other preschools. The $S_c(x)$ are identified, but if we assume LATE_{ch} and LATE_{nh} vary with x in an unrestricted way we have two equations in four unknowns and cannot use the available information to recover subLATEs.

Suppose instead we assume that the subLATEs don’t vary with x, so that $\text{LATE}_{dh}(x) = \text{LATE}_{dh} \forall x, d \in \{c, n\}$. Our two equations are

\[
\text{LATE}_h(1) = S_c(1)\text{LATE}_{ch} + (1 - S_c(1))\text{LATE}_{nh},
\]

\[
\text{LATE}_h(0) = S_c(0)\text{LATE}_{ch} + (1 - S_c(0))\text{LATE}_{nh}.
\]

The solution to this system is

\[
\text{LATE}_{nh} = \frac{S_c(0)\text{LATE}_h(1) - S_c(1)\text{LATE}_h(0)}{S_c(0) - S_c(1)},
\]

\[
\text{LATE}_{ch} = \frac{(1 - S_c(0))\text{LATE}_h(1) - (1 - S_c(1))\text{LATE}_h(0)}{(1 - S_c(0)) - (1 - S_c(1))}.
\]

The right-hand sides tell us the probability limits of 2SLS coefficients from a model instrumenting $1\{D_i = h\}$ and $1\{D_i = c\}$ with Z_i and $Z_i \cdot X_i$ and controlling for X_i. Specifically, the Head Start coefficient from this interacted 2SLS strategy equals LATE_{nh} and the other preschool coefficient equals $\text{LATE}_{nh} - \text{LATE}_{ch}$. To see this note that the 2SLS system is just-identified under constant effects which implies constant subLATEs. There is therefore exactly one way to solve for the two effects of interest using the available information; since the equations above yield these effects they must give this solution.

If the constant effects assumption is wrong, the interacted 2SLS strategy yields a Head Start coefficient equal to
\[
LATE_{nh} = \frac{S_c(0)S_c(1)}{S_c(0) - S_c(1)} LATE_{ch}(1) + \frac{S_c(0)(1-S_c(1))}{S_c(0) - S_c(1)} LATE_{nh}(1) \\
- \frac{S_c(1)S_c(0)}{S_c(0) - S_c(1)} LATE_{ch}(0) - \frac{S_c(1)(1-S_c(0))}{S_c(0) - S_c(1)} LATE_{nh}(0),
\]

which can be written

\[
LATE_{nh} = \frac{S_c(0)S_c(1)}{S_c(0) - S_c(1)} \cdot (LATE_{ch}(1) - LATE_{ch}(0)) \\
+ (w_n(1)LATE_{nh}(1) + (1 - w_n(1))LATE_{nh}(0)),
\]

where

\[
w_n(1) = \frac{S_c(0)(1-S_c(1))}{S_c(0) - S_c(1)}.
\]

This expression shows that the interacted 2SLS strategy yields a Head Start coefficient equal to a weighted average of the subLATEs \(LATE_{nh}(x) \), plus a term that depends on heterogeneity in \(LATE_{ch}(x) \). If there is heterogeneity in this other subLATE, this strategy does not recover the causal effect of \(h \) relative to \(n \) for any well-defined subpopulation. This result is a special case of the results in Kirkboen et al. (2014) and Hull (2015), who show that 2SLS does not generally recover causal effects in models with multiple endogenous variables.

Interacted 2SLS estimates

To empirically explore the interacted 2SLS strategy we generate additional instruments by interacting the Head Start offer indicator with the vector \(X_1^i \) (introduced in equation (14)) which consists of indicators for whether a child’s center of random assignment offers transportation, above-median center quality, mother’s education, age four, and an indicator for family income above the poverty line. Table A4 displays the resulting interacted 2SLS estimates. The first row in column (1) displays the 2SLS estimate of \(LATE_h \) pooled across age cohorts in the first year of the experiment. This yields the same value of 0.247 found in column (9) of Table 2. The second row uses as additional instruments linear interactions of the \(Z_i \) and \(X_1^i \). Adding these instruments slightly improves precision but leads to a rejection of the model’s overidentifying restrictions (p-value = 0.007). This may be caused either by heterogeneity in \(S_c \) or the subLATEs.

Columns (2) and (3) of Table A4 treat Head Start and other preschools as separate endogenous variables. The resulting 2SLS estimates suggests that Head Start and competing preschools have roughly similar effects, but the instruments generate relatively weak independent variation in competing preschools: the Angrist and Pischke (2009) partial F-statistic for other preschools is 1.9, far short of the standard rule of thumb of 10.0. Nonetheless, the overidentifying restrictions are still rejected (\(p = 0.006 \)), which suggests the presence of additional heterogeneity not explained by counterfactual fallbacks. Equation (20) shows that this rejection may be caused by heterogeneity in either or both of the subLATEs, which implies that at least one of the two preschool coefficients cannot be interpreted as a well-defined causal effect.
Appendix E: Selection Model

E.1 Control Functions

This appendix derives the control function terms used in the two-step models in Section 7. For ease of notation, we rewrite the model in (14) as

\[
U_i(h, Z_i) = \psi_h(X_i, Z_i) + v_{ih}, \\
U_i(c) = \psi_c(X_i) + v_{ic}, \\
U_i(n) = 0.
\]

Households participate in Head Start \((D_i = h)\) when

\[
\psi_h(X_i, Z_i) + v_{ih} > \psi_c(X_i) + v_{ic}, \quad \psi_h(X_i, Z_i) + v_{ih} > 0,
\]

which can be re-written

\[
\frac{v_{ic} - v_{ih}}{\sqrt{2(1 - \rho(X_i))}} < \frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}, \quad -v_{ih} < \psi_h(X_i).
\]

Note that the random variables \(\frac{v_{ic} - v_{ih}}{\sqrt{2(1 - \rho(X_i))}}\) and \((-v_{ih})\) have a bivariate standard normal distribution with correlation \(\sqrt{\frac{1-\rho(X_i)}{2}}\). Then using the formulas in Tallis (1961) for the expectations of bivariate standard normal random variables truncated from above, we have

\[
E \left[\frac{v_{ic} - v_{ih}}{\sqrt{2(1 - \rho(X_i))}} | X_i, Z_i, D_i = h \right] = \Lambda \left(\frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}; \frac{1-\rho(X_i)}{2} \right),
\]

\[
E \left[-v_{ih} | X_i, Z_i, D_i = h \right] = \Lambda \left(\psi_h(X_i), \frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}; \frac{1-\rho(X_i)}{2} \right),
\]

where

\[
\Lambda(a_1, b_1; \xi) \equiv - \left[\phi(a_1) \Phi \left(\frac{b_1 - \xi a_1}{\sqrt{1 - \xi^2}} \right) + \xi \phi(b_1) \Phi \left(\frac{a_1 - \xi b_1}{\sqrt{1 - \xi^2}} \right) \right] / \Phi(a_1, b_1; \xi).
\]

Here \(\phi(\cdot)\) and \(\Phi(\cdot)\) are the PDF and CDF of the standard normal distribution, while \(\Phi_b(\cdot)\) is the bivariate standard normal CDF.

Defining \(\lambda_{ik} (X_i, Z_i) \equiv E [v_{ik} | X_i, Z_i, D_i = d]\), this implies that we can write

\[
\lambda_{hh}(X_i, Z_i) = -\Lambda \left(\psi_h(X_i), \frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}; \frac{1-\rho(X_i)}{2} \right),
\]

\[
\lambda_{hc}(X_i, Z_i) = -\Lambda \left(\psi_h(X_i), \frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}; \frac{1-\rho(X_i)}{2} \right)
\]

\[
+ \sqrt{2(1 - \rho(X_i))} \cdot \Lambda \left(\frac{\psi_h(X_i, Z_i) - \psi_c(X_i)}{\sqrt{2(1 - \rho(X_i))}}; \psi_h(X_i); \frac{1-\rho(X_i)}{2} \right).
\]

55
Solving these equations for the selection coefficients yields

\[\lambda_{ch}(X_i, Z_i) = -\Lambda \left(\psi_c(X_i), \frac{\psi_h(X_i) - \psi_c(X_i, Z_i)}{\sqrt{2(1 - \rho(X_i))}} \sqrt{\frac{1 - \rho(X_i)}{2}} \right) \]

\[+ \sqrt{2(1 - \rho(X_i))} \cdot \Lambda \left(\frac{\psi_c(X_i) - \psi_h(X_i, Z_i)}{\sqrt{2(1 - \rho(X_i))}} \right), \]

\[\lambda_{cc}(X_i, Z_i) = -\Lambda \left(\psi_c(X_i), \frac{\psi_c(X_i) - \psi_c(X_i, Z_i)}{\sqrt{2(1 - \rho(X_i))}} \sqrt{\frac{1 - \rho(X_i)}{2}} \right), \]

\[\lambda_{nh}(X_i, Z_i) = \Lambda (-\psi_h(X_i, Z_i), -\psi_c(X_i); \rho(X_i)), \]

\[\lambda_{nc}(X_i, Z_i) = \Lambda (-\psi_c(X_i), -\psi_h(X_i, Z_i); \rho(X_i)). \]

E.2 Identification

We next consider identification of the selection model parameters and the subLATEs in a model with one binary covariate, \(X_i \in \{0, 1\} \). In this case the choice model is fully saturated and there are four parameters for each value of \(X_i \): \(\psi_h(x, 1), \psi_h(x, 0), \psi_c(x), \) and \(\rho(x) \). These parameters are just-identified and perfectly fit the four independent conditional choice probabilities

\[\pi_d(x, z) = Pr[D_i = d|X_i = x, Z_i = z], \; d \in \{h, c\}, \; z \in \{0, 1\}. \]

The parameters of the selection model are therefore implicit functions of the choice probabilities.

Let \(\Delta_d(x) \) denote the difference in mean outcomes between offered and non-offered children, conditional on \(X_i \) and \(D_i \):

\[\Delta_d(x) = E[Y_i|X_i = x, Z_i = 1, D_i = d] - E[Y_i|X_i = x, Z_i = 0, D_i = d]. \]

Evaluating equation (17) for \(X_i = 1 \) and \(X_i = 0 \) gives

\[\Delta_d(1) = \gamma^h_d (\lambda_{dh}(1, 1) - \lambda_{dh}(1, 0)) + \gamma^c_d (\lambda_{dc}(1, 1) - \lambda_{dc}(1, 0)), \]

\[\Delta_d(0) = \gamma^h_d (\lambda_{dh}(0, 1) - \lambda_{dh}(1, 0)) + \gamma^c_d (\lambda_{dc}(0, 1) - \lambda_{dc}(0, 0)). \]

Solving these equations for the selection coefficients yields

\[\gamma^h_d = \frac{\Delta_d(1)(\lambda_{dc}(0, 1) - \lambda_{dc}(0, 0)) - \Delta_d(0)(\lambda_{dc}(1, 1) - \lambda_{dc}(1, 0))}{(\lambda_{dh}(1, 1) - \lambda_{dh}(1, 0))(\lambda_{dc}(0, 1) - \lambda_{dc}(0, 0)) - (\lambda_{dh}(0, 1) - \lambda_{dh}(0, 0))(\lambda_{dc}(1, 1) - \lambda_{dc}(1, 0))}, \]

\[\gamma^c_d = \frac{\Delta_d(1)(\lambda_{dh}(0, 0) - \lambda_{dh}(0, 1)) - \Delta_d(0)(\lambda_{dh}(1, 0) - \lambda_{dh}(1, 1))}{(\lambda_{dh}(1, 1) - \lambda_{dh}(1, 0))(\lambda_{dc}(0, 1) - \lambda_{dc}(0, 0)) - (\lambda_{dh}(0, 1) - \lambda_{dh}(0, 0))(\lambda_{dc}(1, 1) - \lambda_{dc}(1, 0))}. \]

These expressions have the form of multivariate instrumental variables coefficients. Specifically, they are coefficients from an infeasible IV model that uses \(Z_i \) and \(Z_iX_i \) as instruments for \(v_{ih} \) and \(v_{ic} \) in the \(D_i = d \) sample, controlling for a main effect of \(X_i \). Though \(v_{ih} \) and \(v_{ic} \) are unobserved, the \(\lambda_{dh}(X_i, Z_i) \) functions capture their conditional means and can therefore be used to construct the first stage for the IV model.
The expressions for γ_c^d and γ_h^d have the same denominator. A necessary and sufficient condition for identification of the two selection coefficients is that this denominator is non-zero. To interpret the requirements for identification, note that the $\lambda_{dk}(x, z)$ are functions of the selection model parameters, so they are implicitly functions of the choice probabilities $\pi(x, z)$. This implies that if $\pi_d(x, 1) = \pi_d(x, 0) \forall d$, then $\lambda_{dh}(x, 1) = \lambda_{dh}(x, 0)$ and $\lambda_{dc}(x, 1) = \lambda_{dc}(x, 0)$, resulting in a denominator equal to zero. A necessary condition for identification is therefore that the Head Start offer shifts choice probabilities for both covariate groups. Similarly, if $\pi_d(1, z) = \pi_d(0, z) \forall d$ for either $z = 0$ or $z = 1$, the denominator equals zero. A second necessary condition is therefore that choice probabilities differ across covariate groups conditional on the Head Start offer. This requires differences in compliance group shares (always takers, c-never takers, n-never takers, c-compliers and n-compliers). Finally, note that the denominator may be zero even if the offer shifts behavior for both covariate groups and choice probabilities differ conditional on Z_i. Identification requires Head Start offers to shift the selected means of both v_{ih} and v_{ic} in such a way that the mean changes in the two unobservables are not proportional.

E.3 Estimating SubLATEs

After estimating the selection model we use it to predict mean potential outcomes for subpopulations that respond differently to the Head Start offer. We then use these predictions to compute treatment effects and assess the fit of the model. For example, we construct estimates of LATE_{nh}, the effect of Head Start relative to home care for children that switch from home care to Head Start in response to an offer.

N-compliers switch from n to h when offered, and are therefore described by

$$\psi_h(X_i, 1) + v_{ih} > 0 > \psi_h(X_i, 0) + v_{ih}, \psi_c(X_i) + v_{ic} < 0.$$

We can rewrite these conditions

$$-\psi_h(X_i, 1) < v_{ih} < -\psi_h(X_i, 0), \psi_c(X_i) < v_{ic}.$$

The selection errors v_{ih} and v_{ic} are truncated between $(-\psi_h(X_i, 1), -\psi_h(X_i, 0))$ and $(-\infty, -\psi_c(X_i))$ for n-compliers. Equation (15) therefore implies that mean potential outcomes for n-compliers are

$$E [Y_i(d)|X_i, -\psi_h(X_i, 1) < v_{ih} < -\psi_h(X_i, 0), \psi_c(X_i) < v_{ic}] = \theta_d + X_i'\theta_d^* + \gamma_h^d A_0 (-\psi_h(X_i, 1), -\psi_h(X_i, 0), -\infty, -\psi_c(X_i); \rho(X_i)) + \gamma_c^d A_0 (-\infty, -\psi_c(X_i), -\psi_h(X_i, 1), -\psi_h(X_i, 0); \rho(X_i)),$$

where
\[\Lambda_0(a_0, a_1, b_0, b_1; \xi) = \frac{\phi(a_0) \left[\Phi \left(\frac{b_1 - \xi a_0}{\sqrt{1 - \xi^2}} \right) - \Phi \left(\frac{(1 - \xi) a_0}{\sqrt{1 - \xi^2}} \right) \right] - \phi(a_1) \left[\Phi \left(\frac{b_1 - \xi a_1}{\sqrt{1 - \xi^2}} \right) - \Phi \left(\frac{b_0 - \xi a_1}{\sqrt{1 - \xi^2}} \right) \right]}{\Phi_b(a_1, b_1; \xi) - \Phi_b(a_1, b_0; \xi) - \Phi_b(a_0, b_1; \xi) + 2 \Phi_b(a_0, b_0; \xi)} + \frac{\xi \phi(b_0) \left[\Phi \left(\frac{a_0 - \xi b_0}{\sqrt{1 - \xi^2}} \right) - \Phi \left(\frac{a_0 - \xi b_1}{\sqrt{1 - \xi^2}} \right) \right] - \xi \phi(b_1) \left[\Phi \left(\frac{a_1 - \xi b_1}{\sqrt{1 - \xi^2}} \right) - \Phi \left(\frac{a_0 - \xi b_1}{\sqrt{1 - \xi^2}} \right) \right]}{\Phi_h(a_1, b_1; \xi) - \Phi_b(a_1, b_0; \xi) - \Phi_b(a_0, b_1; \xi) + 2 \Phi_b(a_0, b_0; \xi)}.\]

The \(\Lambda_0(\cdot)\) function gives means of bivariate standard normal random variables truncated from both sides (Tallis, 1961). Analogous derivations give mean potential outcomes for \(c\)-compliers, always takers, \(n\)-never takers, and \(c\)-never takers.

An estimate of mean \(Y_i(d)\) for \(n\) compliers with covariates \(X_i\) is given by

\[
\hat{\mu}_n^h(X_i) = \hat{\theta}_d + X_i' \hat{\theta}_d^x + \hat{\gamma}_d^h \Lambda_0 \left(-\hat{\psi}_h(X_i, 1), -\hat{\psi}_h(X_i, 0), -\infty, -\hat{\psi}_c(X_i); \hat{\rho}(X_i) \right) + \hat{\gamma}_d^c \Lambda_0 \left(-\infty, -\hat{\psi}_c(X_i), -\hat{\psi}_h(X_i, 1), -\hat{\psi}_h(X_i, 0); \hat{\rho}(X_i) \right),
\]

where \(\hat{\psi}_h\) and \(\hat{\rho}\) come from a first-step multinomial probit model and \(\hat{\theta}_d, \hat{\theta}_d^x, \hat{\gamma}_d^h\) and \(\hat{\gamma}_d^c\) come from a second-step least squares regression. To obtain unconditional estimates, we integrate over the distribution of \(X_i\) for \(n\)-compliers. An estimate of the marginal mean of \(Y_i(d)\) for \(n\)-compliers is given by

\[
\hat{\mu}_n^{nh} = \sum_i \left(\frac{\hat{\omega}_n^{nh}}{\sum_j \hat{\omega}_n^{nh}} \right) \hat{\mu}_n^{nh}(X_i),
\]

where

\[
\hat{\omega}_n^{nc} = \left[\Phi_b \left(-\hat{\psi}_h(X_i, 0), -\hat{\psi}_c(X_i); \hat{\rho}(X_i) \right) - \Phi_b \left(-\hat{\psi}_h(X_i, 1), -\hat{\psi}_c(X_i); \hat{\rho}(X_i) \right) \right] w_i
\]

is an estimate of the probability that individual \(i\) is an \(n\)-complier conditional on his or her covariates, multiplied by the HSIS sample weight \(w_i\). We then construct the subLATE estimate

\[
LAT_{E_{nh}} = \hat{\mu}_n^{nh} - \hat{\mu}_n^{nh}.\]

Estimates of mean potential outcomes and treatment effects for other subgroups are obtained via similar calculations.

E.4 Specification tests

Testing for underidentification

The identification argument in section E.2 shows that the selection coefficients for enrollment alternative \(d\) are identified when there exist an \(x\) and \(x'\) in the support of \(X_i\) such that

\[
(\lambda_{dh}(x, 1) - \lambda_{dh}(x, 0)) (\lambda_{dc}(x', 1) - \lambda_{dc}(x', 0)) \neq (\lambda_{dh}(x', 1) - \lambda_{dh}(x', 0)) (\lambda_{dc}(x, 1) - \lambda_{dc}(x, 0)).
\]

Equivalently, \(\gamma_d^h\) and \(\gamma_d^c\) are not identified if

\[
\lambda_{dh}(x, 1) - \lambda_{dh}(x, 0) = q_1 (\lambda_{dc}(x, 1) - \lambda_{dc}(x, 0)) \forall x
\]

58
for some proportionality factor \(q_1 \). We test the null hypothesis that the model is underidentified by fitting the least squares regression

\[
\hat{\lambda}_{dh}(X_i, 1) - \hat{\lambda}_{dh}(X_i, 0) = \sum_{k=0}^{3} q_{dk} \left(\hat{\lambda}_{dc}(X_i, 1) - \hat{\lambda}_{dc}(X_i, 0) \right)^k + \eta_{id}
\]

in the sample with \(D_i = d \). The null hypothesis that \(q_{d0} = q_{d2} = q_{d3} = 0 \) is compatible with underidentification of the outcome equation for alternative \(d \); if this hypothesis is false, the control function differences are not proportional and the selection parameters are identified.

To account for estimation error in the first-step multinomial probit parameters we conduct inference via the nonparametric bootstrap. Let \(\hat{\theta}_d = (\hat{\theta}_{d0}, \hat{\theta}_{d2}, \hat{\theta}_{d3})' \) denote full-sample estimates from equation (21) and let \(\hat{\theta}_d^b \) denote corresponding estimates in bootstrap sample \(b \). We form the test statistic

\[
\hat{F}_d = \frac{\hat{\theta}_d' \hat{V}^{-1} \hat{\theta}_d}{3},
\]

where

\[
\hat{V}_d = \frac{1}{T} \sum_{b=1}^{T} \left(\hat{\theta}_d^b - \bar{\theta}_d \right) \left(\hat{\theta}_d^b - \bar{\theta}_d \right)',
\]

and \(\bar{\theta}_d \) is the mean of \(\theta^b_d \) across bootstrap samples. We then compare \(\hat{F}_d \) to critical values of the \(F(3, \infty) \) distribution. The results of this test are reported in Figure 1.

Testing additive separability

The key restriction in equation (21) is additive separability: mean potential outcomes are additively separable in \(X_i \), \(v_{ih} \) and \(v_{ic} \). As a result, the selection coefficients do not depend on \(X_i \) and these coefficients can be identified via comparisons of gaps in selected outcomes by offer status across covariate groups. The additive separability restriction cannot be tested with a single binary covariate, but it is testable if \(X_i \) takes more than two values.

To test the additive separability restriction for care alternative \(d \) we estimate regressions of the form

\[
\hat{\epsilon}_{id} = \hat{\theta}_{d0}^b + X_i' \hat{\theta}_d^b + \hat{\gamma}_{dh} \hat{\lambda}_{dh}(X_i, Z_i) + \hat{\gamma}_{dc} \hat{\lambda}_{dc}(X_i, Z_i) + \hat{\lambda}_{dh}(X_i, Z_i)X_{1i} \hat{\xi}_{dh} + \hat{\lambda}_{dc}(X_i, Z_i)X_{1i} \hat{\xi}_{dc} + \hat{\epsilon}_{id}
\]

for each care alternative, where \(\hat{\epsilon}_{id} \) is the residual from two-step estimation of (16). We then construct an \(F \)-statistic for the joint null hypothesis that \(\hat{\xi}_{dh} = \hat{\xi}_{dc} = 0 \) for all three care alternatives. Let \(\hat{F} \) denote the full-sample \(F \)-statistic for this test, and let \(\hat{\xi}_{dh} \) and \(\hat{\xi}_{dc} \) denote full-sample estimates of \(\xi_{dh} \) and \(\xi_{dc} \). In bootstrap sample \(b \) we form corresponding estimates \(\hat{\xi}_{dh}^b \) and \(\hat{\xi}_{dc}^b \) and test the hypothesis that \(\hat{\xi}_{dh}^b = \hat{\xi}_{dh} \) and \(\hat{\xi}_{dc}^b = \hat{\xi}_{dc} \) for all \(d \), generating the test statistic \(\hat{F}^b \). A bootstrap \(p \)-value for a score test of additive separability is then
\[p_T = \frac{1}{T} \sum_{t=1}^{T} 1 \left[\hat{F}_b > \hat{F} \right]. \]

Table 7 reports \(p \)-values for this test.

Testing model fit

Our control function approach requires correct specification of both the choice model and the model for outcomes. To assess the fit of the choice model we use the multinomial probit estimates to predict probabilities of Head Start and substitute preschool participation, \(\tilde{\pi}_h(X_i, Z_i) \) and \(\tilde{\pi}_c(X_i, Z_i) \). We then split the sample into 25 cells defined by interactions of quintiles of the two probabilities. Cells with fewer than 50 observations are grouped into a single cell, leaving 17 total groups. Finally, we test that empirical choice probabilities match mean predicted probabilities in each cell, treating the mean predictions as fixed. Appendix Figure 1 plots empirical choice probabilities against cell means of the two model predictions. The nonparametric means are very close to the model predictions and a joint test of equality generates a joint \(p \)-value of 0.88. This suggests that the choice model fits well.

To test the fit of the model for outcomes we compare instrumental variables estimates of mean potential outcomes that are nonparametrically identified to corresponding estimates from the selection model. As shown in Appendix B, for example, an estimate of mean \(Y_i(n) \) for \(n \)-compliers can be obtained by estimating the instrumental variables model

\[
Y_i 1 \{D_i = n\} = \kappa_0 + \kappa_n 1 \{D_i = n\} + u_i, \\
1 \{D_i = n\} = m_0 + m_1 Z_i + e_i.
\]

The IV estimate \(\hat{\kappa}_n \) is a consistent estimate of \(E[Y_i(n)|D_i(1) = h, D_i(0) = n] \), which can be compared to the two-step control function estimate \(\hat{\mu}_{nh} \).

We use a bootstrap covariance matrix to test the fit of the outcome model. Let \(\hat{\tau} \) denote a vector of differences between nonparametrically estimated and model-predicted moments (for example, \(\tilde{\kappa}_n - \hat{\mu}_{nh} \)), and let \(\hat{\tau}_b \) denote the corresponding estimate in bootstrap sample \(b \). We form the test statistic

\[
\hat{W} = \hat{\tau}' \hat{V}_\tau^{-1} \hat{\tau}
\]

where

\[
\hat{V}_\tau = \frac{1}{T} \sum_{b=1}^{T} (\hat{\tau}_b - \bar{\tau}) (\hat{\tau}_b - \bar{\tau})'.
\]

Here \(\bar{\tau} \) is the mean of \(\hat{\tau}_b \) across bootstrap trials. We then compare \(\hat{W} \) to critical values of the \(\chi^2_t \) distribution, where \(t \) is the number of elements in \(\hat{\tau} \). The results of this test are shown in Table 8.
Figure 1: Relationships Between Control Function Differences Conditional on Preschool Choice

Notes: This figure plots differences in control functions that predict the Head Start taste \(v_h \) and other preschool taste \(v_c \) conditional on each household's preschool choice and covariates. The horizontal axis shows the difference in predicted \(v_h \) with the Head Start offer switched on and off, and the vertical axis shows the difference in predicted \(v_c \) with the offer switched on and off. Identification of the selection model requires that these values do not all lie on a line through the origin for each preschool choice. Dashed lines show OLS fits through the origin, and points show means of control function differences by percentile of the difference in predicted \(v_h \). Tests are based on regressions of the difference in predicted \(v_c \) on a constant and a third-order polynomial in the difference in predicted \(v_h \) for each preschool choice. \(F \)-statistics and \(p \)-values come from bootstrapped Wald tests of the hypothesis that the constant, second- and third-order terms are zero. See Appendix E for details.
Notes: This figure plots model-predicted local average treatment effects against IV estimates. The sample is divided into vingtiles on the basis of the model-predicted LATE. Points show IV estimates by vingtile vs. average model-predicted LATE by vingtile. The dashed line is the 45 degree line. Test statistic and p-value come from a Wald test of the hypothesis that the 45 degree line fits all points up to sampling error. See Appendix E for details.
Figure 3: Effects of Structural Reforms

Notes: This figure plots predicted test score effects and marginal values of public funds for various values of the program feature f, which shifts the utility of Head Start attendance. Horizontal axes shows the Head Start attendance rate at each f. Panel A shows marginal treatment effects and competing preschool compliance shares. The left axis measures test score effects. MTE_h (blue) is the average effect for marginal students, while MTE_{nh} and MTE_{ch} (red and yellow) are effects for subgroups of marginal students drawn from home care and other preschools. The right axis measures S_c (green), the share of marginal students drawn from other preschools. The shaded region shows a 90-percent symmetric bootstrap confidence interval for MTE_h. Panel B shows predicted marginal values of public funds for structural reforms, using the same parameter calibrations as Table 5. The red curve sets the cost of competing programs and the elasticity of Head Start's cost with respect to program scale equal to zero. The blue curve sets the cost of competing programs equal to three-fourths of Head Start's cost. The green curve sets the cost elasticity to 0.5. P-values come from bootstrap tests of the hypothesis that the marginal value of public funds is less than or equal to one at the current program scale ($f = 0$).
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>By offer status</th>
<th>By preschool choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-offered mean</td>
<td>Offer differential</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Male</td>
<td>0.505</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Black</td>
<td>0.298</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.369</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Teen mother</td>
<td>0.174</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Mother married</td>
<td>0.448</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Both parents in household</td>
<td>0.488</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Mother is high school dropout</td>
<td>0.397</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Mother attended some college</td>
<td>0.281</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Spanish speaker</td>
<td>0.273</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Special education</td>
<td>0.108</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Only child</td>
<td>0.139</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Income (fraction of FPL)</td>
<td>0.896</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Age 4 cohort</td>
<td>0.451</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Baseline summary index</td>
<td>0.012</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Urban</td>
<td>0.835</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Center provides transportation</td>
<td>0.604</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Center quality index</td>
<td>0.470</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Joint p-value: 0.506

Notes: All statistics weight by the reciprocal of the probability of a child's experimental assignment. Standard errors are clustered at the center level. The transportation and quality index variable refer to a child's Head Start center of random assignment. Income is missing for 19 percent of observations. Missing values are excluded in statistics for income. The joint p-value is from a test of the hypothesis that all coefficients equal zero.
<table>
<thead>
<tr>
<th>Year</th>
<th>Three-year-old cohort</th>
<th>Four-year-old cohort</th>
<th>Cohorts pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduced form</td>
<td>First stage</td>
<td>IV</td>
</tr>
<tr>
<td>Year 1</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>0.194</td>
<td>0.699</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.025)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>N</td>
<td>1970</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>0.087</td>
<td>0.356</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.028)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>N</td>
<td>1760</td>
<td>1416</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>-0.010</td>
<td>0.365</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.028)</td>
<td>(0.085)</td>
</tr>
<tr>
<td>N</td>
<td>1659</td>
<td>1336</td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>0.038</td>
<td>0.344</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.029)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>N</td>
<td>1599</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports experimental estimates of the effects of Head Start on a summary index of test scores. Columns (1), (4) and (7) report coefficients from regressions of test scores on an indicator for assignment to Head Start. Columns (2), (5) and (8) report coefficients from first-stage regressions of Head Start attendance on Head Start assignment. The attendance variable is an indicator equal to one if a child attends Head Start at any time prior to the test. Columns (3), (6) and (9) report coefficients from two-stage least squares (2SLS) models that instrument Head Start attendance with Head Start assignment. All models weight by the reciprocal of a child's experimental assignment, and control for sex, race, Spanish language, teen mother, mother marital status, presence of both parents in the home, family size, special education status, income quartile dummies, urban, and a cubic polynomial in baseline score. Missing values for covariates are set to zero, and dummies for missing are included. Standard errors are clustered by center of random assignment.
Table 3: Preschool Choices by Year, Cohort, and Offer Status

<table>
<thead>
<tr>
<th>Time period</th>
<th>Cohort</th>
<th>Offered</th>
<th>Not offered</th>
<th>Other center complier share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Head Start (1)</td>
<td>Other centers (2)</td>
<td>No preschool (3)</td>
</tr>
<tr>
<td>Year 1</td>
<td>3-year-olds</td>
<td>0.851</td>
<td>0.058</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>4-year-olds</td>
<td>0.787</td>
<td>0.114</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>Pooled</td>
<td>0.822</td>
<td>0.083</td>
<td>0.095</td>
</tr>
<tr>
<td>Year 2</td>
<td>3-year-olds</td>
<td>0.657</td>
<td>0.262</td>
<td>0.081</td>
</tr>
</tbody>
</table>

Notes: This table reports shares of offered and non-offered students attending Head Start, other center-based preschools, and no preschool, separately by year and age cohort. All statistics are weighted by the reciprocal of the probability of a child's experimental assignment. Column (7) reports estimates of the share of compliers drawn from other preschools, given by minus the ratio of the offer's effect on attendance at other preschools to its effect on Head Start attendance.
Table 4: Characteristics of Head Start and Substitute Preschool Centers

<table>
<thead>
<tr>
<th>Largest funding source</th>
<th>Head Start (1)</th>
<th>Other centers (2)</th>
<th>Other centers attended by $c \rightarrow h$ compliers (3)</th>
<th>Panel B: Inputs and practices</th>
<th>Head Start (4)</th>
<th>Other centers (5)</th>
<th>Other centers attended by $c \rightarrow h$ compliers (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Start</td>
<td>0.842</td>
<td>0.027</td>
<td>0.038</td>
<td>Transportation provided</td>
<td>0.629</td>
<td>0.383</td>
<td>0.324</td>
</tr>
<tr>
<td>Parent fees</td>
<td>0.004</td>
<td>0.153</td>
<td>0.191</td>
<td>Quality index</td>
<td>0.702</td>
<td>0.453</td>
<td>0.446</td>
</tr>
<tr>
<td>Child and adult care food program</td>
<td>0.011</td>
<td>0.026</td>
<td>0.019</td>
<td>Fraction of staff with bachelor's degree</td>
<td>0.345</td>
<td>0.527</td>
<td>0.491</td>
</tr>
<tr>
<td>State pre-K program</td>
<td>0.004</td>
<td>0.182</td>
<td>0.155</td>
<td>Fraction of staff with teaching license</td>
<td>0.113</td>
<td>0.260</td>
<td>0.247</td>
</tr>
<tr>
<td>Child care subsidies</td>
<td>0.013</td>
<td>0.097</td>
<td>0.107</td>
<td>Center director experience</td>
<td>18.2</td>
<td>12.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Other funding or support</td>
<td>0.022</td>
<td>0.118</td>
<td>0.113</td>
<td>Student/staff ratio</td>
<td>6.80</td>
<td>8.24</td>
<td>8.54</td>
</tr>
<tr>
<td>No funding or support</td>
<td>0.000</td>
<td>0.003</td>
<td>0.001</td>
<td>Full day service</td>
<td>0.637</td>
<td>0.735</td>
<td>0.698</td>
</tr>
<tr>
<td>Missing</td>
<td>0.105</td>
<td>0.394</td>
<td>0.375</td>
<td>More than three home visits per year</td>
<td>0.192</td>
<td>0.073</td>
<td>0.072</td>
</tr>
</tbody>
</table>

Notes: This table reports characteristics of Head Start and other preschool centers obtained from surveys of center directors. Panel A displays information on the largest funding source for each center type, and panel B shows information on center inputs and practices. Columns (3) and (6) reports characteristics of other preschool centers attended by non-offered compliers who would be induced to attend Head Start by an experimental offer. Estimates in these columns are produced using the methods for characterizing compliers described in Appendix B.
Table 5: Benefits and Costs of Head Start

Panel A. Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Effect of a 1 SD increase in test scores on earnings</td>
<td>0.1\bar{e}</td>
<td>Table A3</td>
</tr>
<tr>
<td>e_{US}</td>
<td>US average present discounted value of lifetime earnings at age 3.4</td>
<td>$438,000</td>
<td>Chetty et al. 2011 with 3% discount rate</td>
</tr>
<tr>
<td>e_{parent}/e_{US}</td>
<td>Average earnings of Head Start parents relative to US average</td>
<td>0.46</td>
<td>Head Start Program Facts</td>
</tr>
<tr>
<td>IGE</td>
<td>Intergenerational income elasticity</td>
<td>0.40</td>
<td>Lee and Solon 2009</td>
</tr>
<tr>
<td>\bar{e}</td>
<td>Average present discounted value of lifetime earnings for Head Start applicants</td>
<td>$343,392</td>
<td>[1 - (1 - $e_{parent}/e_{US})]IGE$${e{US}}$</td>
</tr>
<tr>
<td>$0.1\bar{e}$</td>
<td>Effect of a 1 SD increase in test scores on earnings of Head Start applicants</td>
<td>$34,339</td>
<td></td>
</tr>
<tr>
<td>$LATE_h$</td>
<td>Local Average Treatment Effect</td>
<td>0.247</td>
<td>HSIS</td>
</tr>
<tr>
<td>τ</td>
<td>Marginal tax rate for Head Start population</td>
<td>0.35</td>
<td>CBO 2012</td>
</tr>
<tr>
<td>S_c</td>
<td>Share of Head Start population drawn from other preschools</td>
<td>0.34</td>
<td>HSIS</td>
</tr>
<tr>
<td>ϕ_h</td>
<td>Marginal cost of enrollment in Head Start</td>
<td>$8,000</td>
<td>Head Start program facts</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>Marginal cost of enrollment in other preschools</td>
<td>$0</td>
<td>Naïve assumption: $\phi_c = 0$</td>
</tr>
<tr>
<td></td>
<td>$4,000</td>
<td>Pessimistic assumption: $\phi_c = 0.5\phi_h$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6,000</td>
<td>Preferred assumption: $\phi_c = 0.75\phi_h$</td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Marginal value of public funds

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMB</td>
<td>Marginal benefit to Head Start population net of taxes</td>
<td>$5,513</td>
<td>(1 - $\tau$$LATE_h$)</td>
</tr>
<tr>
<td>MFC</td>
<td>Marginal fiscal cost of Head Start enrollment</td>
<td>$5,031</td>
<td>$\phi_h - \phi_cS_c - \tau$$LATE_h$, naïve assumption</td>
</tr>
<tr>
<td></td>
<td>$3,671</td>
<td>Pessimistic assumption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2,991</td>
<td>Preferred assumption</td>
<td></td>
</tr>
<tr>
<td>$MVPF$</td>
<td>Marginal value of public funds</td>
<td>1.10 (0.22)</td>
<td>NMB/MFC (s.e.), naïve assumption</td>
</tr>
</tbody>
</table>

Notes: This table reports results of cost/benefit calculations for Head Start. Estimated parameter values are obtained from the sources listed in column (4). Standard errors for MVPF ratios are calculated using the delta method. P-values are from one-tailed tests of the null hypotheses that the MVPF is less than one. These tests are performed via nonparametric block bootstrap of the t-statistic, clustered at the Head Start center level. Breakevens give percentage effects of a standard deviation of test scores on earnings that set MVPF equal to one.
Table 6: Multinomial Probit Estimates

<table>
<thead>
<tr>
<th>Head Start utility</th>
<th>Main effect (1)</th>
<th>Offer interaction (2)</th>
<th>Other center utility (3)</th>
<th>Arctanh (\rho) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.923</td>
<td>2.147</td>
<td>-0.381</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.089)</td>
<td>(0.054)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Center provides transportation</td>
<td>-0.553</td>
<td>0.756</td>
<td>-0.020</td>
<td>-0.135</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.191)</td>
<td>(0.126)</td>
<td>(0.167)</td>
</tr>
<tr>
<td>Above-median center quality</td>
<td>-0.381</td>
<td>0.605</td>
<td>0.023</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(0.190)</td>
<td>(0.108)</td>
<td>(0.151)</td>
</tr>
<tr>
<td>Black</td>
<td>0.177</td>
<td>0.269</td>
<td>0.412</td>
<td>-0.189</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.189)</td>
<td>(0.143)</td>
<td>(0.191)</td>
</tr>
<tr>
<td>Spanish speaker</td>
<td>0.109</td>
<td>-0.380</td>
<td>-0.482</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.182)</td>
<td>(0.186)</td>
<td>(0.175)</td>
<td>(0.188)</td>
</tr>
<tr>
<td>Mother's education</td>
<td>-0.065</td>
<td>0.194</td>
<td>0.115</td>
<td>-0.186</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.095)</td>
<td>(0.060)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>Income above FPL</td>
<td>0.243</td>
<td>-0.308</td>
<td>0.138</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.153)</td>
<td>(0.142)</td>
<td>(0.178)</td>
</tr>
<tr>
<td>Baseline score</td>
<td>0.080</td>
<td>0.064</td>
<td>0.245</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.097)</td>
<td>(0.082)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>Age 4</td>
<td>0.061</td>
<td>-0.139</td>
<td>0.464</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.148)</td>
<td>(0.107)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>(P)-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Log-likelihood: -2582.0

Notes: This table reports simulated maximum likelihood estimates of a multinomial probit model of preschool choice. The likelihood is evaluated using the GHK simulator, and likelihood contributions are weighted by the reciprocal of the probability of experimental assignments. \(P \)-values are from tests that all coefficients in a column except the constant term are zero. The Head Start and other center utilities also include the main effects of gender, teen mother, mother's marital status, presence of both parents, an only child dummy, special education, dummies for quartiles of family income and missing income, urban status, and second- and third-order terms in baseline test scores. Standard errors are clustered at the center level.
Table 7: Selection-corrected Estimates of Preschool Effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Least squares</th>
<th>Two-step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No controls</td>
<td>Baseline controls</td>
</tr>
<tr>
<td>θₕ - θₙ</td>
<td>Effect of Head Start relative to no preschool</td>
<td>0.202</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.037)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>θₖ - θₙ</td>
<td>Effect of other preschools relative to no preschool</td>
<td>0.262</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.052)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>γₕ</td>
<td>Coefficient on Head Start taste in Head Start outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γₖ</td>
<td>Coefficient on Head Start taste in other preschool outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γₙ</td>
<td>Coefficient on Head Start taste in no preschool outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γₖ</td>
<td>Coefficient on other preschool taste in Head Start outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γₖ</td>
<td>Coefficient on other preschool taste in other preschool outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γₖ</td>
<td>Coefficient on other preschool taste in no preschool outcome equation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-value for all restrictions</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value for additional restrictions</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value: No selection on gains</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value: No selection on gains or levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: This table reports selection-corrected estimates of the effects of Head Start and other preschool centers in Spring 2003. Each column shows coefficients from regressions of test scores on an intercept and controls, separately for children attending Head Start, other preschools, and no preschool. The first two rows report differences in intercepts between Head Start and no preschool, and other preschools and no preschool. Column (1) shows estimates with no controls. Column (2) adds controls for the same baseline covariates used in Table 8. Covariates are de-meaned in the estimation sample, so that differences in intercepts can be interpreted as effects at the mean. Column (3) adds selection-correction terms. Column (4) restricts coefficients on the covariates to be the same in each care alternative, except transportation, above-median quality, black, Spanish speaker, mother's education, income above the poverty line, baseline score and age 4. Column (5) restricts the coefficient on the Head Start utility to be the same in the Head Start and other center equations, and similarly for the other center utility. Column (6) restricts the intercepts in the Head Start and other center equations to be the same. Standard errors are bootstrapped and clustered at the center level.
<table>
<thead>
<tr>
<th>Type probability</th>
<th>(E[Y(h)])</th>
<th>(E[Y(n)])</th>
<th>(E[Y(c)])</th>
<th>(E[Y(n)])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV (1)</td>
<td>Two-step (2)</td>
<td>IV (3)</td>
<td>Two-step (4)</td>
</tr>
<tr>
<td>(n)-compliers</td>
<td>0.454</td>
<td>0.447</td>
<td>-</td>
<td>0.268</td>
</tr>
<tr>
<td>(c)-compliers</td>
<td>0.232</td>
<td>0.236</td>
<td>-</td>
<td>0.200</td>
</tr>
<tr>
<td>All compliers</td>
<td>0.686</td>
<td>0.683</td>
<td>0.233</td>
<td>0.245</td>
</tr>
<tr>
<td>(n)-never takers</td>
<td>0.095</td>
<td>0.097</td>
<td>-</td>
<td>0.442</td>
</tr>
<tr>
<td>(c)-never takers</td>
<td>0.083</td>
<td>0.082</td>
<td>-</td>
<td>0.414</td>
</tr>
<tr>
<td>Always takers</td>
<td>0.136</td>
<td>0.138</td>
<td>-0.028</td>
<td>-0.019</td>
</tr>
<tr>
<td>Full population</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0.229</td>
</tr>
</tbody>
</table>

\(p \)-value: \(IV = \text{Two-step} \)

\(p \)-value for all moments: 0.462

Notes: This table compares nonparametric estimates of mean potential outcomes for subpopulations to estimates implied by the two-step model in column (5) of Table 7.
Table 9: Treatment Effects for Subpopulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IV (1)</th>
<th>Two-step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unrestricted (2)</td>
<td>Covariates restricted (3)</td>
</tr>
<tr>
<td>LATE</td>
<td>0.247 (0.031)</td>
<td>0.263 (0.034)</td>
</tr>
<tr>
<td>(n \rightarrow h) subLATE</td>
<td>-</td>
<td>0.356 (0.147)</td>
</tr>
<tr>
<td>(c \rightarrow h) subLATE</td>
<td>-</td>
<td>0.088 (0.260)</td>
</tr>
<tr>
<td>(n \rightarrow h) ATE</td>
<td>-</td>
<td>0.718 (0.172)</td>
</tr>
<tr>
<td>(c \rightarrow h) ATE</td>
<td>-</td>
<td>0.241 (0.487)</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of treatment effects for subpopulations. Column (1) reports an IV estimate of the effect of Head Start. Columns (2)-(5) show estimates of treatment effects computed from two-step models. Standard errors are bootstrapped and clustered at the center level.
Table 10: Benefits and Costs of Head Start when Competing Preschools are Rationed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$LATE_h$</td>
<td>Head Start Local Average Treatment Effect</td>
<td>0.247</td>
<td>HSIS</td>
</tr>
<tr>
<td>$LATE_{nc}$</td>
<td>Effect of other centers for marginal children</td>
<td>0</td>
<td>Naïve assumption: No effect of competing preschools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.375</td>
<td>Homogeneity assumption: $n\rightarrow c$ sub$LATE$ equals $n\rightarrow h$ sub$LATE$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.330</td>
<td>Model-based prediction</td>
</tr>
<tr>
<td>NMB</td>
<td>Marginal benefit to Head Start population net of</td>
<td>$5,513$</td>
<td>(1 - τ)$p(LATE_h + S_{cLATE_{nc}})$, naïve assumption</td>
</tr>
<tr>
<td></td>
<td>taxes</td>
<td>$8,359$</td>
<td>Homogeneity assumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$8,018$</td>
<td>Model-based prediction</td>
</tr>
<tr>
<td>MFC</td>
<td>Marginal fiscal cost of Head Start enrollment</td>
<td>$5,031$</td>
<td>$\phi_h - \tau p(LATE_h + S_{cLATE_{nc}})$, naïve assumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3,499$</td>
<td>Homogeneity assumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3,683$</td>
<td>Model-based prediction</td>
</tr>
<tr>
<td>$MVPF$</td>
<td>Marginal value of public funds</td>
<td>1.10</td>
<td>Naïve assumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.39</td>
<td>Homogeneity assumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.18</td>
<td>Model-based prediction</td>
</tr>
</tbody>
</table>

Notes: This table reports results of a rate of return calculation for Head Start, assuming that competing preschools are rationed and that marginal students offered seats in these programs as a result of Head Start expansion would otherwise receive home care. Estimated parameter values are obtained from the sources listed in column (4).
Notes: This figure plots empirical probabilities of participating in Head Start and competing preschools against corresponding model predictions. Cells are defined by interactions of quintiles of the two predicted probabilities from the model. Cells with fewer than 50 observations are combined into a single cell. Panel A compares empirical probabilities of Head Start participation against cell means of the corresponding model-predicted probability, and panel B shows corresponding results for substitute preschools. Each panel shows the results of a test that the empirical and model-predicted probabilities are equal, treating the model predictions as fixed. The joint p-value for a test that the model fits in both panels equals 0.88.
Table A1: Characteristics of Head Start Centers Attended by Always Takers

<table>
<thead>
<tr>
<th></th>
<th>Experimental center</th>
<th>Attended center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation provided</td>
<td>0.421</td>
<td>0.458</td>
</tr>
<tr>
<td>Quality index</td>
<td>0.701</td>
<td>0.687</td>
</tr>
<tr>
<td>Fraction of staff with bachelor's degree</td>
<td>0.304</td>
<td>0.321</td>
</tr>
<tr>
<td>Fraction of staff with teaching license</td>
<td>0.084</td>
<td>0.099</td>
</tr>
<tr>
<td>Center director experience</td>
<td>19.08</td>
<td>18.24</td>
</tr>
<tr>
<td>Student/staff ratio</td>
<td>6.73</td>
<td>6.96</td>
</tr>
<tr>
<td>Full day service</td>
<td>0.750</td>
<td>0.715</td>
</tr>
<tr>
<td>More than three home visits per year</td>
<td>0.112</td>
<td>0.110</td>
</tr>
<tr>
<td>N</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.318</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports characteristics of Head Start centers for children assigned to the HSIS control group who attended Head Start. Column (1) shows characteristics of the centers of random assignment for these children, while column (2) shows characteristics of the centers they attended. The p-value is from a test of the hypothesis that all mean center characteristics are the same. The sample excludes children with missing values for either characteristics of the center of random assignment or the center attended.
Table A2: Effects on Maternal Labor Supply

<table>
<thead>
<tr>
<th></th>
<th>Full-time (1)</th>
<th>Full- or part-time (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer effect</td>
<td>0.020</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Mean of dep. var.</td>
<td>0.334</td>
<td>0.501</td>
</tr>
<tr>
<td>N</td>
<td>3314</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports coefficients from regressions of measures of maternal labor supply in Spring 2003 on the Head Start offer indicator. Column (1) displays effects on the probability of working full-time, while column (2) shows effects on the probability of working full- or part-time. Children with missing values for maternal employment are excluded. All models use inverse probability weights and control for baseline covariates. Standard errors are clustered at the Head Start center level.
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Test score effect (std. dev. units)</th>
<th>Log earnings effect (4)</th>
<th>Log wage effect (4)</th>
<th>Ratio: wages or earnings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chetty et al. (2011)</td>
<td>Tennessee STAR</td>
<td>0.024</td>
<td></td>
<td></td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 s.d. of class quality, kindergarten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chetty et al. (2014b)</td>
<td>OLS with controls</td>
<td>1.0</td>
<td>0.18</td>
<td>-</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(kindergarten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.013</td>
<td></td>
<td></td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.12</td>
<td>-</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Currie and Thomas (1999)</td>
<td>OLS with controls</td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(age 7)</td>
<td></td>
<td></td>
<td></td>
<td>(math),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(reading)</td>
<td></td>
</tr>
<tr>
<td>Currie and Thomas (1995), Garces et al.</td>
<td>Head Start</td>
<td>0.217</td>
<td>0.566</td>
<td>-</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(whites, mother fixed effects, age 4+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.009</td>
<td>0.073</td>
<td>-</td>
<td>8.11</td>
<td></td>
</tr>
<tr>
<td>Heckman et al. (2006)</td>
<td>OLS with controls</td>
<td>1.0</td>
<td></td>
<td>0.121</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(males, ages 14-22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>0.169</td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td>Heckman et al. (2010b)</td>
<td>Perry Preschool Project</td>
<td>0.787</td>
<td>0.189</td>
<td>-</td>
<td>0.240</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(males, age 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.980</td>
<td>0.286</td>
<td>-</td>
<td>0.292</td>
<td></td>
</tr>
<tr>
<td>Lindqvist and Vestman (2011)</td>
<td>OLS with controls</td>
<td>1.0</td>
<td>0.136</td>
<td>0.104</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(males, w/controls, ages 18-19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murnane et al. (1995)</td>
<td>OLS with controls</td>
<td>1.0</td>
<td></td>
<td>0.077</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(males, grade 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>0.109</td>
<td>0.109</td>
<td></td>
</tr>
</tbody>
</table>

Notes: We convert all test score effects to standard deviation units (column (2)) and all earnings effects to percentages (column (3)).

1Table II: A 1 s.d. increase in class quality (peer scores) raises kindergarten test scores by 0.662 percentile points and age 27 earnings by $50.61.

2Table I: Controlling for covariates, a 1 percentile point increase in kindergarten test scores raises average annual earnings from age 25 to age 27 by $93.79.

3Table II: A 1 s.d. increase in teacher value-added raises test scores by 0.13 standard deviations and boosts age 28 earnings by $285.55.

4Appendix Table III: Controlling for covariates, a 1 s.d. increase in test scores raises age 28 earnings by $2,585.

5Tables 3 and 4 report partial effects of scoring in the top vs. bottom quartile of reading and math scores at age 7 on log wages at age 33 for British children. We use Krueger's (2003) conversion of effects on quartiles to standard deviation units.

6Currie and Thomas (1995), Table 4: Head Start participation raises test scores by 5.88 percentile points at age 4+ for whites. Garces et al. (2002), Table 2: Head Start participation raises log earnings between age 23 and age 25 by 0.566 for whites.

7Currie and Thomas (1995), Table 4: Head Start participation raises test scores by 0.247 percentile points at age 4+ for whites. Garces et al. (2002), Table 2: Head Start participation raises log earnings between age 23 and age 25 for blacks.

8Table 4: Controlling for covariates, a 1-point increase in senior-year math scores increases age 24 log wages by 0.017 for females in the High School and Beyond Survey (the std. dev. of math scores is approximately 6.25 points).
Table A4: Interacted Two-stage Least Squares Estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>Single endogenous variable:</th>
<th>Two endogenous variables:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head Start (1)</td>
<td>Head Start (2) Other centers (3)</td>
</tr>
<tr>
<td>Just-identified</td>
<td>0.247</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td></td>
</tr>
<tr>
<td>Overidentified</td>
<td>0.241</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>First-stage F</td>
<td>276.2</td>
<td>17.7</td>
</tr>
<tr>
<td>Overid. p-value</td>
<td>0.007</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Notes: This table reports two-stage least squares estimates of the effects of Head Start and other preschool centers in Spring 2003. Column (1) shows estimates treating Head Start as the endogenous variable. Columns (2) and (3) show estimates of a model treating Head Start and other preschools as separate endogenous variables. The just-identified model instruments with the Head Start offer. Overidentified models instrument with the offer interacted with transportation, above-median center quality, above-median income, age 4, mother's education, Spanish language, Black, and baseline test score. All models weight by the reciprocal of the probability of a child's experimental assignment, and control for baseline covariates. Standard errors are clustered at the center level. F-statistics are Angrist/Pischke (2009) partial F's.
Table A5: Robustness of Selection Parameters to Choice of Covariate

<table>
<thead>
<tr>
<th>Variable</th>
<th>Head Start (1)</th>
<th>No preschool (2)</th>
<th>Difference (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center provides transportation</td>
<td>-0.169</td>
<td>0.300</td>
<td>-0.469</td>
</tr>
<tr>
<td></td>
<td>[-0.66, 0.32]</td>
<td>[-1.28, 1.88]</td>
<td>[-2.55, 1.61]</td>
</tr>
<tr>
<td>Above-median center quality</td>
<td>-0.171</td>
<td>0.547</td>
<td>-0.718</td>
</tr>
<tr>
<td></td>
<td>[-0.63, 0.29]</td>
<td>[-0.54, 1.63]</td>
<td>[-2.27, 0.83]</td>
</tr>
<tr>
<td>Black</td>
<td>-0.177</td>
<td>0.018</td>
<td>-0.195</td>
</tr>
<tr>
<td></td>
<td>[-0.29, -0.06]</td>
<td>[-1.50, 1.53]</td>
<td>[-1.68, 1.29]</td>
</tr>
<tr>
<td>Spanish speaker</td>
<td>-0.176</td>
<td>0.791</td>
<td>-0.966</td>
</tr>
<tr>
<td></td>
<td>[-0.31, -0.04]</td>
<td>[-1.43, 3.01]</td>
<td>[-3.23, 1.30]</td>
</tr>
<tr>
<td>Mother is high school dropout</td>
<td>-0.156</td>
<td>0.259</td>
<td>-0.415</td>
</tr>
<tr>
<td></td>
<td>[-0.27, -0.04]</td>
<td>[0.06, 0.46]</td>
<td>[-0.64, -0.19]</td>
</tr>
<tr>
<td>Income above FPL</td>
<td>-0.222</td>
<td>0.515</td>
<td>-0.737</td>
</tr>
<tr>
<td></td>
<td>[-0.67, 0.22]</td>
<td>[-1.29, 2.32]</td>
<td>[-2.78, 1.30]</td>
</tr>
<tr>
<td>Above-median baseline score</td>
<td>-0.186</td>
<td>1.037</td>
<td>-1.224</td>
</tr>
<tr>
<td></td>
<td>[-0.33, -0.04]</td>
<td>[-5.00, 7.08]</td>
<td>[-7.37, 4.92]</td>
</tr>
<tr>
<td>Age 4</td>
<td>-0.190</td>
<td>0.280</td>
<td>-0.470</td>
</tr>
<tr>
<td></td>
<td>[-0.50, 0.12]</td>
<td>[-0.50, 1.06]</td>
<td>[-1.45, 0.51]</td>
</tr>
<tr>
<td>Site characteristics</td>
<td>-0.175</td>
<td>0.550</td>
<td>-0.725</td>
</tr>
<tr>
<td></td>
<td>[-0.64, 0.29]</td>
<td>[-0.93, 2.03]</td>
<td>[-2.50, 1.05]</td>
</tr>
<tr>
<td>Child characteristics</td>
<td>-0.166</td>
<td>0.338</td>
<td>-0.504</td>
</tr>
<tr>
<td></td>
<td>[-0.28, -0.05]</td>
<td>[-1.17, 1.84]</td>
<td>[-0.73, -0.28]</td>
</tr>
<tr>
<td>All characteristics</td>
<td>-0.169</td>
<td>0.340</td>
<td>-0.509</td>
</tr>
<tr>
<td></td>
<td>[-0.28, -0.06]</td>
<td>[-1.15, 1.83]</td>
<td>[-0.74, -0.28]</td>
</tr>
</tbody>
</table>

Notes: Columns (1) and (2) show results of solving two equation system of average differences in Head Start outcomes with respect to offer status in terms of control function differences by values of binary covariates. Column (3) shows the estimated difference in control function coefficients. "Site characteristics" estimates are inverse variance weighted averages of estimates for transportation and center quality. "Child characteristics" estimates are inverse variance weighted averages of estimates using Black, Spanish, mother's education, income above FPL, above-median score, and Age 4. "All characteristics" estimates are inverse variance weighted averages of estimates for all variables. Variance weights are constructed via bootstrap. Brackets display 90-percent symmetric bootstrap confidence intervals.