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The Generalized Regression Model
Departures from the standard assumption of a scalar covariance matrix — that is, V(y) =o?I —
yield a particular extension of the classical regression model known as the generalized regression model,
or sometimes “generalized classical regression model.” A concise statement of the assumptions on the

N-dimensional vector y of dependent variables and the N x K matrix X of regressors is:

1. (Linear Expectation) E(y) = X3, for some K-dimensional vector of unknown “regression coefficients”

B.

2. (Noncalar Covariance Matrix) V(y) =E ((y — E(y)) (y — E(y))’) = %, for some positive definite

(N x N) matrix 3.
3. (Nonstochastic Regressors) The (N x K) matrix X is nonrandom.

4. (Full Rank Regressors) The rank of the matrix X is K, or, equivalently, the (K x K) matrix (X'X)

is invertible.

To this set of assumptions is sometimes appended the following assumption, which yields the generalized

normal regression model:
5. (Multinormality) The vector y has a multivariate normal distribution.

Often matrix X will be written as
> =02Q,

2 is an unknown scaling parameter; as is true for the best linear unbiased estimator for the classical

where o
regression model (namely, classical LS), the BLU estimator for the generalized regression model does not
depend upon the value of o2. Typically the matrix € will also depend upon unknown parameters, but

extension of Gauss-Markov arguments to this model will require it to be known exactly.



There are several varieties of linear models which yield a nonscalar covariance matrix, each with its

own nomenclature; four leading examples, to be studied in greater detail later, are:

Seemingly Unrelated Regression Model: The matrix € has a “Kronecker product form” (to be defined
later). That is @ = ¥ ® Iy, where ¥ is a J x J covariance matrix and Iy is an N x N identity matrix,
where now dim(y) =J x N. Such a model arises when N observations on J dependent variables y;; are

each assumed to be generated from separate linear models
vij = XijBjtei,

where the errors €;; are assumed to satisfy the assumptions of the standard regression model for j fixed,
but with Cov(e;j, €ix) = 0k, which might be nonzero if equations j and k are “related” through common

components in their error terms.

Models of Heteroskedasticity (“different scatter”): The matrix € is diagonal, i.e., Q@ =diag[w;;]; this
arises from the model

/
Yi = X;B+¢; - €,

where ¢; = \/w;; and ¢; satisfies the assumptions of the standard regression model.

Models of Serial Correlation (or “autocorrelated errors”): The matrix €2 is band-diagonal, i.e., Q = [w;;] =

[c(]i — j|)] for some “autocorrelation function” ¢(-). A model which generates a special case is

Yy = XiBtuy,

Ut = PU—1 + €t

where ¢; satisfies the assumptions of the standard regression model with Var(e;) = 02(1— p?). For this case,

known as the first-order serial correlation model, the autocovariance function takes the form c(s) = p®.

Panel Data Models (or “pooled cross-section / time series models”): The matrix € again has Kronecker
product form, with © =02Ixr + 02(entyo? @ Ir) + 02(Ir ® eril), where 02, 02, and o2 are positive
constants and ¢y denotes an N-dimensional column vector of ones, etc. This case arises for a doubly-

indexed dependent variable y =vec([y;]") with dim(y) =N x T, satisfying the structural equation

Yit = thﬂ+ui + vt + €it,
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where the error terms {u;},{v:}, and {e;} are all mutually uncorrelated with variances o2, 02, and o2,

respectively.

There are many other variants, which typically combine two or more of these sources of differing

variances and/or nonzero correlations.

Properties of Classical Least Squares

Recalling the algebraic form of the LS estimator
B=PBs = (X'X) Xy,

this estimator remains unbiased under the assumptions of the generalized regression model; as before,

assumptions 1, 3, and 4 imply
E(Brs) = (X'X)"'X'E(y)
= (X'X)"'X'Xp3
= f.

But the form of the covariance matrix for B 1.5 for the generalized regression model differs from that under

the classical regression model:

V(Brs) = (X'X)'X'V(y)XXX)'X
= (X'X)T'X'ZX(X'X)'X

= (X'X)'X'OX(X'X) !X,

which generally does not equal 02(X'X) ™" except for special forms of € (like © = I). Also, in general

B = Bty - XBuo)(y - XBrs)

£ o
Similar conclusions hold for the large-sample properties of 3 1g- Assuming
li L X'X D
im — =
p N )

1
lim —X'QX = C
phim N )



and assuming suitable limit theorems are applicable, the classical LS estimator will have an asymptotically
normal distribution,

VN <BLS - ,3) < N(0,0’D7'CD ),
but in general D~1CD™! # D~! and plim s? # o2.

The bias and inconsistency of the usual estimator V(3 Ls) = s2(X'X) ! of the asymptotic covariance
matrix of 3 1 means that the standard normal-based inference will be incorrect. There are two types of
“solution” to this problem: either construct a consistent estimator of the asymptotic covariance matrix of
LS, or find an alternative estimation method to LS which does not suffer from this problem.

Finally, the classical LS estimator is no longer best linear unbiased in general; the BLU estimator BG LS

the generalized least squares estimator, was derived by Aitken and is named after him.

Aitken’s Generalized Least Squares
To derive the form of the best linear unbiased estimator for the generalized regression model, it is

first useful to define the square root H of the matrix Q! as satisfying
Q! =HH,

which implies

HOQH' =1y.

In fact, several such matrices H exist, so that, for convenience, we can assume H = H'.
Now, to derive the form of the BLU estimator of 3 for the generalized regression model under the

assumption that € is known, define

X* = HX;
by the usual mean-variance calculations,

E(y*) = HXp

= X*B



and

Since X* = HX is clearly nonrandom with full column rank if X satisfies assumptions 3 and 4, the classical
regression model applies to y* and X*, so the Gauss-Markov theorem implies that the best linear (in terms

of y*) unbiased estimator of 3 is
BGLS = (X*/X*)—lx*ly*
= X'Q'xX)'xX'aly.
But since this estimator is also linear in the original dependent variable y, it follows that this “generalized

least squares” (GLS) estimator is best linear unbiased using y. Also, the usual estimator of the scalar

variance parameter o2 will also be unbiased if y* and X* are used:

StLs N K(y**X*BcLs),(y**X*BcLS)
1

= N K(y — XBars)' ¥y — XBars)

has E[s%; s] = 0 by the usual arguments.
If y is assumed multinormal,

y ~N(XB3,0°Q),

then the existing results for classical LS imply that BG g is also multinormal,
Bars~N (5,02(X/971X)71) )

and is independent of s%; s> With
2
(N - K) sgrs ~ X2
0_2 N-K-
And the same arguments for consistency of the classical LS estimator under the classical regression model

imply the corresponding large-sample results for the GLS estimator under the generalized regression model,

assuming the usual limit theorems are applicable:

VN (BGLS - ﬁ) 4 N0, V),



with

1 —1
V = o?pli —X'0 X
o~ plim (N )

1 -1
= plim s3p5 ( = X'Q7'X) .
pham Sqgrg <N )

It is worth noting in passing that the definition of the squared multiple correlation coefficient R?

generally must be adjusted for the GLS estimator. Even if one column ¢ of the original matrix of regressors

X has elements identically equal to one, that is not generally true for the transformed regressors X* = HX.

Thus, the correct restricted sum of squares in the denominator of the R? formula (imposing the restriction

that all coefficients except the “intercept” are zero) is different from the usual (y—g¢) (y—7t) .

Feasible GLS

If the matrix € involves unknown quantities, there are (at least) three possible strategies for

inference:

1.

Parametrize the matrix €2 in terms of a finite p-dimensional vector 8 of unknown parameters

which is constructed so that

and conduct a diagonostic test of the null hypothesis Hy : Q@ = I <= © = 0. (The form of this test
will depend upon the particular parametric structure of €2(0).) If that test fails to reject, common
practice is to conclude that the classical regression model is appropriate, and use the usual LS methods

for inference.

. Again parametrize the matrix Q = €(0) in terms of a finite-dimensional parameter vector 6, and

use the classical LS residuals e = <y -Xp3 LS) to obtain consistent estimators @ and € = (@) of
0 and Q. (The details of this step depend upon the particular model, e.g., heteroskedasticity, serial
correlation, etc.) Then replace the unknown € with the estimated €2 in the formula for GLS, yielding
the feasible GLS estimator

Brars = (X'Q7'X)'X'Q 1y,



with a corresponding estimator S%GLS of o2. Because 0 is typically a function of y, this estimator
will no longer be linear in y, and the finite-sample results for GLS will no longer be applicable;

nevertheless, it is often possible to find conditions under which FGLS is asymptotically equivalent to

GLS,
5 - d
VN <5FGLS - BGLS) — 0,
so that
- d
VN <5FGLS - 5) — N(0,V),
where
1 ) -1
V = pllm S%GLS (NX/Q_1X> .

. If the form of the parametric form €(0) for the covariance matrix is incorrect — for example, if it is
mistakenly assumed €2(0) = I — then application of the usual calculations will yield a particular form

for the asymptotically normal distribution of B FGLS
\/N (BFGLS' - B) i N(OaD_ICD_l) )

with

~

1o, n
D = plim <NX’Q—1X> = plim D
and

1 - ~_
C = plim —X'07'20 'X,

for ¥ = V(y) as above. Consistent estimation of D is immediate; the trick is to find a consistent
estimator of the matrix C without imposing a parametric structure on the matrix 3. The feasibility
of consistent estimation of the asymptotic covariance matrix D=1CD ™!, termed robust covariance
matriz estimation, will vary with the particular restrictions on distributional heterogeneity and de-

pendence imposed (e.g., i.i.d. sampling, stationary data, etc.).



