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The Generalized Regression Model

Departures from the standard assumption of a scalar covariance matrix � that is, V(y) =�2I �

yield a particular extension of the classical regression model known as the generalized regression model,

or sometimes �generalized classical regression model.� A concise statement of the assumptions on the

N -dimensional vector y of dependent variables and the N �K matrix X of regressors is:

1. (Linear Expectation) E(y) = X�; for someK-dimensional vector of unknown �regression coe¢ cients�

�:

2. (Noncalar Covariance Matrix) V(y) � E
�
(y �E(y)) (y �E(y))0

�
= �; for some positive de�nite

(N �N) matrix �.

3. (Nonstochastic Regressors) The (N �K) matrix X is nonrandom.

4. (Full Rank Regressors) The rank of the matrix X is K; or, equivalently, the (K �K) matrix (X0X)

is invertible.

To this set of assumptions is sometimes appended the following assumption, which yields the generalized

normal regression model :

5. (Multinormality) The vector y has a multivariate normal distribution.

Often matrix � will be written as

� =�2
;

where �2 is an unknown scaling parameter; as is true for the best linear unbiased estimator for the classical

regression model (namely, classical LS), the BLU estimator for the generalized regression model does not

depend upon the value of �2: Typically the matrix 
 will also depend upon unknown parameters, but

extension of Gauss-Markov arguments to this model will require it to be known exactly.
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There are several varieties of linear models which yield a nonscalar covariance matrix, each with its

own nomenclature; four leading examples, to be studied in greater detail later, are:

Seemingly Unrelated Regression Model: The matrix 
 has a �Kronecker product form�(to be de�ned

later). That is 
 = �
 IN ; where � is a J � J covariance matrix and IN is an N � N identity matrix,

where now dim(y) =J � N: Such a model arises when N observations on J dependent variables yij are

each assumed to be generated from separate linear models

yij = x
0
ij�j+"ij ;

where the errors "ij are assumed to satisfy the assumptions of the standard regression model for j �xed,

but with Cov("ij ; "ik) � �jk; which might be nonzero if equations j and k are �related�through common

components in their error terms.

Models of Heteroskedasticity (�di¤erent scatter�): The matrix 
 is diagonal, i.e., 
 =diag[!ii]; this

arises from the model

yi = x
0
i�+ci � "i;

where ci =
p
!ii and "i satis�es the assumptions of the standard regression model.

Models of Serial Correlation (or �autocorrelated errors�): The matrix
 is band-diagonal, i.e.,
 � [!ij ] =

[c(ji� jj)] for some �autocorrelation function�c(�): A model which generates a special case is

yt = x0t�+ut;

ut = �ut�1 + "t;

where "t satis�es the assumptions of the standard regression model with V ar("t) � �2(1��2): For this case,

known as the �rst-order serial correlation model, the autocovariance function takes the form c(s) = �s:

Panel Data Models (or �pooled cross-section / time series models�): The matrix 
 again has Kronecker

product form, with 
 =�2"INT + �
2
u(�N �

0
N�

2
� 
 IT ) + �2v(IT 
 �T �0T ); where �2u; �2v; and �2" are positive

constants and �N denotes an N -dimensional column vector of ones, etc. This case arises for a doubly-

indexed dependent variable y =vec([yit]0) with dim(y) =N � T; satisfying the structural equation

yit = x
0
it�+ui + vt + "it;
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where the error terms fuig; fvtg; and f"itg are all mutually uncorrelated with variances �2u; �2v; and �2";

respectively.

There are many other variants, which typically combine two or more of these sources of di¤ering

variances and/or nonzero correlations.

Properties of Classical Least Squares

Recalling the algebraic form of the LS estimator

�̂ � �̂LS = (X0X)�1X0y;

this estimator remains unbiased under the assumptions of the generalized regression model; as before,

assumptions 1, 3, and 4 imply

E(�̂LS) = (X0X)�1X0E(y)

= (X0X)�1X0X�

= �:

But the form of the covariance matrix for �̂LS for the generalized regression model di¤ers from that under

the classical regression model:

V(�̂LS) = (X0X)�1X0V(y)X(X0X)�1X

= (X0X)�1X0�X(X0X)�1X

= �2(X0X)�1X0
X(X0X)�1X;

which generally does not equal �2(X0X)�1 except for special forms of 
 (like 
 = I). Also, in general

E(s2) � E

�
1

N �K (y �X�̂LS)
0(y �X�̂LS)

�
6= �2:

Similar conclusions hold for the large-sample properties of �̂LS : Assuming

plim
1

N
X0X = D;

plim
1

N
X0
X = C;
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and assuming suitable limit theorems are applicable, the classical LS estimator will have an asymptotically

normal distribution,
p
N
�
�̂LS � �

�
d! N(0; �2D�1CD�1);

but in general D�1CD�1 6= D�1 and plim s2 6= �2:

The bias and inconsistency of the usual estimator V̂(�̂LS) = s
2(X0X)�1 of the asymptotic covariance

matrix of �̂LS means that the standard normal-based inference will be incorrect. There are two types of

�solution�to this problem: either construct a consistent estimator of the asymptotic covariance matrix of

LS, or �nd an alternative estimation method to LS which does not su¤er from this problem.

Finally, the classical LS estimator is no longer best linear unbiased in general; the BLU estimator �̂GLS ;

the generalized least squares estimator, was derived by Aitken and is named after him.

Aitken�s Generalized Least Squares

To derive the form of the best linear unbiased estimator for the generalized regression model, it is

�rst useful to de�ne the square root H of the matrix 
�1 as satisfying


�1 = H0H;

which implies

H
H0 = IN :

In fact, several such matrices H exist, so that, for convenience, we can assume H = H0:

Now, to derive the form of the BLU estimator of � for the generalized regression model under the

assumption that 
 is known, de�ne

y� � Hy;

X� � HX;

by the usual mean-variance calculations,

E(y�) = HX�

= X��
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and

V(y�) = HV(y)H0

= H[�2
]H0

= �2IN :

Since X� = HX is clearly nonrandom with full column rank if X satis�es assumptions 3 and 4, the classical

regression model applies to y� and X�; so the Gauss-Markov theorem implies that the best linear (in terms

of y�) unbiased estimator of � is

�̂GLS � (X�0X�)�1X�0y�

= (X0
�1X)�1X0
�1y:

But since this estimator is also linear in the original dependent variable y; it follows that this �generalized

least squares� (GLS) estimator is best linear unbiased using y: Also, the usual estimator of the scalar

variance parameter �2 will also be unbiased if y� and X� are used:

s2GLS � 1

N �K (y
��X��̂GLS)0(y��X��̂GLS)

=
1

N �K (y �X�̂GLS)
0
�1(y �X�̂GLS)

has E[s2GLS ] = �
2 by the usual arguments.

If y is assumed multinormal,

y �N
�
X�;�2


�
;

then the existing results for classical LS imply that �̂GLS is also multinormal,

�̂GLS�N
�
�;�2(X0
�1X)�1

�
;

and is independent of s2GLS ; with
(N �K) s2GLS

�2
� �2N�K :

And the same arguments for consistency of the classical LS estimator under the classical regression model

imply the corresponding large-sample results for the GLS estimator under the generalized regression model,

assuming the usual limit theorems are applicable:

p
N
�
�̂GLS � �

�
d! N (0;V) ;
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with

V � �2 plim
�
1

N
X0
�1X

��1
= plim s2GLS

�
1

N
X0
�1X

��1
:

It is worth noting in passing that the de�nition of the squared multiple correlation coe¢ cient R2

generally must be adjusted for the GLS estimator. Even if one column � of the original matrix of regressors

X has elements identically equal to one, that is not generally true for the transformed regressors X� = HX:

Thus, the correct restricted sum of squares in the denominator of the R2 formula (imposing the restriction

that all coe¢ cients except the �intercept�are zero) is di¤erent from the usual (y��y�)0 (y��y�) :

Feasible GLS

If the matrix 
 involves unknown quantities, there are (at least) three possible strategies for

inference:

1. Parametrize the matrix 
 in terms of a �nite p-dimensional vector � of unknown parameters


 = 
(�);

which is constructed so that


(0) = I;

and conduct a diagonostic test of the null hypothesis H0 : 
 = I() � = 0: (The form of this test

will depend upon the particular parametric structure of 
(�).) If that test fails to reject, common

practice is to conclude that the classical regression model is appropriate, and use the usual LS methods

for inference.

2. Again parametrize the matrix 
 = 
(�) in terms of a �nite-dimensional parameter vector �; and

use the classical LS residuals e �
�
y �X�̂LS

�
to obtain consistent estimators �̂ and 
̂ = 
(�̂) of

� and 
: (The details of this step depend upon the particular model, e.g., heteroskedasticity, serial

correlation, etc.) Then replace the unknown 
 with the estimated 
̂ in the formula for GLS, yielding

the feasible GLS estimator

�̂FGLS = (X
0
̂�1X)�1X0
̂�1y;
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with a corresponding estimator s2FGLS of �
2: Because �̂ is typically a function of y; this estimator

will no longer be linear in y; and the �nite-sample results for GLS will no longer be applicable;

nevertheless, it is often possible to �nd conditions under which FGLS is asymptotically equivalent to

GLS,
p
N
�
�̂FGLS � �̂GLS

�
d! 0;

so that
p
N
�
�̂FGLS � �

�
d! N (0;V) ;

where

V = plim s2FGLS

�
1

N
X0
̂�1X

��1
:

3. If the form of the parametric form 
(�) for the covariance matrix is incorrect �for example, if it is

mistakenly assumed 
(�) = I �then application of the usual calculations will yield a particular form

for the asymptotically normal distribution of �̂FGLS :

p
N
�
�̂FGLS � �

�
d! N

�
0;D�1CD�1� ;

with

D � plim
�
1

N
X0
̂�1X

�
� plim D̂

and

C � plim 1

N
X0
̂�1�
̂

�1
X;

for � = V(y) as above. Consistent estimation of D is immediate; the trick is to �nd a consistent

estimator of the matrix C without imposing a parametric structure on the matrix �: The feasibility

of consistent estimation of the asymptotic covariance matrix D�1CD�1; termed robust covariance

matrix estimation, will vary with the particular restrictions on distributional heterogeneity and de-

pendence imposed (e.g., i.i.d. sampling, stationary data, etc.).
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