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Aitken�s GLS and Weighted LS

The Generalized Classical Regression Model (in Goldberger�s (1990) terminology) has

E(yjX) = X�; V(yjX) = �;

where the matrix � is not proportional to an identity matrix. The special case of a heteroskedastic linear

model �spelled with a "k" (McCulloch 1985) �assumes � is a diagonal matrix, i.e.,

� = diag[�2i ]

for some variances f�2i ; i = 1; : : : ; Ng which can vary across observations (usually as some functions of xi).

For example, in the grouped-data regression model

yij = x
0
ij� + "ij ; j = 1; ; ; ; :Mi; i = 1; : : : ; N;

where only the group average values yi � 1
Mj

P
j yij and xi � 1

Mj

P
j xij are observed, the diagonal

elements of the � matrix are of the form �2i = �
2=Mi.

When the diagonal elements of� are known (as in the grouped-data regression model), we can transform

the data to satisfy the conditions of the Classical Regression Model; the Classical Least Squares Estimator

applied to the transformed data yields the Generalized Least Squares Estimator, which in this case reduces

to Weighted Least Squares (WLS):

�̂WLS = (X0��1X)�1(X0��1y)

= argmin
c
(y �Xc)0��1(y �Xc)

� argmin
c

NX
i=1

wi(yi�x0ic)2;

where wi � 1=�2i . That is, each term in the sum of squares is weighted by the inverse of its error variance.

If the covariance matrix � involves unknown parameters (aside from a constant of proportionality), then
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this estimator isn�t feasible; to construct a Feasible WLS estimator for �, replacing an estimator �̂ for the

unknown �, we need a model for the variance terms V ar(yi) = �2i .

Multiplicative Heteroskedasticity Models

Virtually all of the applications of Feasible WLS assume a multiplicative heteroskedasticity model, in

which the linear model yi = x0i� + ui has error terms of the form

ui � ci"i

for "i � i:i:d:; E("i) = 0; V ("i) = �2: (If the errors are normally distributed given xi, then this representa-

tion is always available.) Also, it is almost always assumed that the heteroskedasticity function c2i has an

underlying linear (or �single index�) form,

c2i = h(z
0
i�);

The variables zi are some observable functions of the regressors xi (excluding a constant term); and the

function h(�) is normalized so that h(0) = 1 with a derivative h0(�) assumed to be nonzero at zero, h0(0) 6= 0:

Here are some examples of models which �t into this framework.

(1) Random Coe¢ cients Model: The observable variables xi and yi are assumed to satisfy

yi = �i + xi�i;

where �i and �i are jointly i:i:d: and independent of xi; with E[�i] = �; E[�i] = �; V ar(�i) = �2;

V(�i) = �; C(�i;�i) = : De�ning

ui = (�i � �) + x0i(�i��);

the regression model can be rewritten in standard form as

yi � �+ x0i� + ui;

with

E(uijxi) = 0;

V (uijxi) = �2 + 2x0i + x
0
i�xi

� �2(1 + z0i�);
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where zi has the levels and cross-products of the components of the regression vector xi: When �i and

�i are jointly normal, it is straightforward to write the error term ui as a multiple of an i.i.d error term

"i � N(0; �2); as for the multiplicative heteroskedasticity model.

(2) Exponential Heteroskedasticity: Here it is simply assumed that ci = expfx0i�=2g; so that

�2i = �
2 expfx0i�g;

with zi� xi:

(3) Variance Proportional to Square of Mean: Assume

yi = �+ x
0
i� + "i;

with E("ijxi) = 0; V ("ijxi) = 2(�+ x0i�)2, so that

�2i = �
2(1 + x0i�)

2;

for �2 � 2=�2 and � � �=� (assuming � 6= 0).

�Squared Residual Regression�Tests for Heteroskedasticity

For these models, a diagnostic test of heteroskedasticity reduces to a test of the null hypothesis H0 :

ci � 1() H0 : � = 0. Under H0; E("2i ) = E(u
2
i ) = �

2 and V ("2i ) = V (u
2
i ) � � for some � > 0. Thus, the

null hypothesis generates a linear model for the squared error terms,

"2i � �2 + z0i� + ri;

where E(rijzi) = 0; V (rijzi) � � , and the true � = 0 under H0 : � = 0: (A Taylor�s series expansion would

suggest that � �= �2h0(0) � � if � �= 0:) If "2i were observed, we could test � = 0 in usual way; since it isn�t,

we can use the squared values of the least squares residuals e2i � (yi � x0i�̂)2 in their place, since these are

consistent estimators of the true squared errors. The resulting test, termed the �Studentized LM Test�

by Koenker (1981), is a modi�cation of the Score or Lagrange Multiplier (LM) test for heteroskedasticity

proposed by Breusch and Pagan (1979). The steps to carry out this test of H0 : � = 0 are:

(1) Construct the squared least squares residuals

e2i � (yi � x0i�̂)2;

3



where �̂ = (X
0
X)�1X0y;

(2) Regress the squared residuals e2i on 1 and zi, and obtain the R
2 from this �squared residual

regression.�

(3) To test H0 : � = 0 = �, we can use the test statistic

T � NR2;

under H0; T
d! �2(p), where p = dim(�) = dim(zi), so we would reject Ho if T exceeds the upper critical

value of a chi-squared variate with p degrees of freedom.

(3�) A more familiar variant would use the �F�statistic

F = (N �K) R
2=p

1�R 2

A� F (p;N �K);

which should have F �= T=p for large N (since (N � p)=N �= 1 and, under H0; 1�R2 �= 0). Critical values

from the F tables rather than the chi-squared tables would be appropriate here, though the results would

converge to the corresponding chi-squared test results for large N:

(3�) When the error terms "i are assumed to be normally distributed, Breusch and Pagan (1979)

showed that the Score test statistic for the null hypothesis that � = 0 is of the form

S � RSS

2�̂4
;

where

RSS �
NX
i=1

[(zi�z)
0�̂]2

is the �regression (or explained) sum of squares�from the squared residual regression and

�̂2 � 1

N

NX
i=1

e2i

is the ML estimator of �2 under the null of homoskedasticity. For the normal distribution, � � V ar("2� ) =

2[V ar("i)]
2 = 2�4; more generally though, no such relation exists between the second moment and � =

E("4i )��4: It is straightforward to show that the Studentized LM test statistic can be written in the form

T � RSS

�̂
;
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for

�̂ � 1

N

NX
i=1

e4i � �̂4

which is the same form as the Score test with a more general estimator for V ar("2i ):

Feasible WLS

If the null hypothesis H0 : � = 0 is rejected, a �correction for heteroskedasticity� (either by Feasible

WLS or a heteroskedasticity-consistent covariance matrix estimator for LS) is needed. To do Feasible WLS,

we can use fact that E("2i jxi) � �2i = �2 � h(z0i�), which is a nonlinear regression model for the squared

error terms "2i . This proceeds in two steps:

(i) Replace "2i by e
2
i
�= "2i , and then estimate � (and �2) by nonlinear LS (which, in many cases, can be

reduced to linear LS).

(ii) Do Feasible WLS using 
̂ = diag[h(z0i�̂)]; that is, replace yi and xi with

y�i � yi=
q
h(z0i�̂); x�i = xi � [h(z0i�̂)]�1=2;

and do LS using y�i ; x
�
i . If �

2
i = �

2h(z0i�) is a correct speci�cation of heteroskedasticity, the usual standard

errors formulae for LS using the transformed data will be (asymptotically) correct.

Some examples of the �rst step for particular models are as follows:

(1) Random Coe¢ cients Model: Since

V ("ijxi) = �2 + 2x0i + x
0
i�xi

= �2(1 + z0i�)

� �2 + z0i�;

yields the linear regression model

"2i = �
2 + z0i� + vi

with E[vijzi] = 0; regress e2i on a constant and zi to estimate �2 and � = � � �2:

(2) Exponential Heteroskedasticity: When

"2i = u
2
i expfx0i�g;
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we can take logarithms of both sides to obtain

log("2i ) = log(u
2
i ) + x

0
i�;

and, making the additional assumption that ui is independent of xi (not just zero mean and constant

variance), we get that E[log("2i )] = �+ x
0
i�, where � � E[log(ui)], i.e.,

log("2i ) = �+ x
0
i� + vi

with E(vijxi) � 0, so we would regress ln(ei) on a constant and xi to get the preliminary estimator ~�.

(3) Variance Proportional to Square of Mean: Here

�2i = E("
2
i jxi) = 2(�+ x0i�)2;

where � and � are already estimated by the intercept term �̂ and slope coe¢ cients �̂ of the classical LS

estimator b. Since  is just a scaling factor common to all observations, we can take h(z0i�̂) = (�̂+x
0
i�̂)

2.

Consistent Asymptotic Covariance Matrix Estimation

A possible problem with the use of Feasible WLS is that the form of the true heteroskedasticity may

be misspeci�ed, i.e., �2i 6= h(z0i�). For example, it could be true that the original model is homoskedastic,

�2 = 1, but a diagnostic test may have falsely rejected this null hypothesis, leading to a mistaken use

of Feasible GLS. In a general heteroskedastic setting, we can calculate the covariance matrix of the WLS

estimator �̂GLS = (X
0
�1X)�1X 0
�1y to be

V � (X0
�1X)�1X0�X(X0
�1X)�1;

where


 � diag[h(z0i�)]

� � diag[�2i =(h(z
0
i�))

2]:

If �2i 6= �2h(z0i�), then the feasible WLS estimator

�̂FWLS= (X
0
̂�1X)�1X0
̂�1y

A� N (�;V)

in general if the original linear model for yi is correctly speci�ed (where 
̂ = 
(�̂)), but the usual estimator

of the covariance matrix V (assuming a correct speci�cation of the form of heteroskedasticity) will be

inconsistent. A consistent estimator of V (properly normalized) would use
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̂ = diag[h(z0i~�)];

~� = diag[~e2i =(h(z
0
i
~�))2]

in place of 
 and � in the expression for V above, where ~ei = yi � x0i�̂FWLS are the residuals from

the Feasible WLS �t. The resulting estimator V̂ is known as the Huber-Eicker-White covariance matrix

estimator (after Huber 1967, Eicker 1967 and White 1980), and is usually applied in the special case of

no heteroskedasticity correction - that is, with 
̂ = I, so that the heteroskedasticity-consistent covariance

matrix estimator for least squares is

V̂(�̂LS) = (X
0X)�1X0fdiag[(yi � x0i�̂LS)2]gX(X

0X)�1:

As a side note, White proposed this estimator in the context of a test for consistency of the traditional

estimator �̂2(X0X)�1 of the covariance matrix of the classical LS estimator, and showed how such a test

was equivalent to the test of the null hypothesis of homoskedasticity against the alternative of a random

coe¢ cients model, as described above.

Goldfeld-Quandt Test

When the error terms can be assumed to be normally distributed, and the regressor matrix X can be

taken to be �xed (as in the Classical or Neoclassical Normal Regression Model), Goldfeld and Quandt

(1965) proposed an exact test of the null hypothesis of homoskedasticity. Their tests presumes that the

possible form of heteroskedasticity permits division of the sample into �high�and �low�heteroskedasticity

groups (without preliminary estimates of heteroskedasticity parameters). Separate least squares �ts are

obtained for the two groups, and the ratio of the residual variances will have an F distribution under the

null hypothesis. A one-sided test would reject if the ratio of the �high�to �low heteroskedasticity�residual

variances exceeds the upper � critical value from an F table, while a two-sided test would reject if either

the ratio or its inverse exceeded the upper �=2 cuto¤ point (assuming an equal number of observations in

each subsample). Goldfeld and Quandt suggest that the power of the test can be improved by dropping

10% to 20% of the observations with �intermediate�magnitudes of the conditional variances under the

alternative.
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