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The Classical Linear Model

The object of least squares regression methods is to model and estimate the relationship between a scalar

dependent variable Y and a vector x of explanatory variables. In the classical model, the dependent and

explanatory variables are treated di¤erently, with Y assumed to be a random variable, with nondegenerate

distribution that depends upon x; which is viewed as nonrandom and under the control (in principle) of

the researcher. A sample of N observations on Y; fY1; :::; YNg; with corresponding values fx1; :::;xNg of

the explanatory variables (termed �regressors�), can be written in the more compact matrix form

y =

0BB@
Y1
Y2
:::
YN

1CCA ; X =

2664
x01
x02
:::
x0N

3775 ;
with y an N -dimensional vector and X an (N �K) matrix, where K is the number of regressors, i.e., the

number of components of xi:

The classical linear regression model imposes strong assumptions on the nature of the relationship of y

to X; these assumptions, which are typically quite unrealistic in empirical economics, nonetheless provide

an essential starting point for econometric practice. These conditions, referred henceforth as the �standard

assumptions�are:

1. (Linear Expectation) E(y) = X�; for someK-dimensional vector of unknown �regression coe¢ cients�

�:

2. (Scalar Covariance Matrix) V(y) � E
�
(y �E(y)) (y �E(y))0

�
= �2I; for some nonnegative �vari-

ance parameter��2; with I being an (N �N) identity matrix.

3. (Nonstochastic Regressors) The (N �K) matrix X is nonrandom.

4. (Full Rank Regressors) The rank of the matrix X is K; or, equivalently, the (K �K) matrix (X0X)

is invertible.
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While these assumptions restrict only the �rst and second moments of the joint distribution of y

(and the invertibility of X0X; which can be directly checked), those restrictions reduce the problem of

determining the �relationship� between y and X to estimation of the vector of unknown coe¢ cients �;

and determination of the strength of that relationship reduces to estimation of �2: Typically, the �rst

component of xi is assumed to be identically equal to one, so that the corresponding component �1 of �

is interpreted as an intercept term in the linear relation of the mean of the dependent variable in terms of

the regressors.

Often the standard assumptions are stated, not in terms of the vector of dependent variables y; but in

terms of a vector of �error terms�"; de�ned as

" � y �X�:

In this notation, the standard assumptions are

1. (Linear Expectation) E(") = 0:

2. (Scalar Covariance Matrix) V(") = �2I:

3. (Nonstochastic Regressors) The (N �K) matrix X is nonrandom.

4. (Full Rank Regressors) The rank of the matrix X is K; or, equivalently, the (K �K) matrix (X0X)

is invertible.

We will treat these assumptions as interchangeable; sometimes it is convenient to investigate their

plausibility for the observable variable y; and other times for the unobservable error vector "; which

represents the e¤ect of �left out regressors�in the determination of y:

Classical Least Squares

The classical least squares (LS) estimator �̂ of the unknown parameter � is de�ned in terms of a

minimization problem:

�̂ � arg min
c2RK

(y �Xc)0(y �Xc) (1)

= arg min
c2RK

NX
i=1

(Yi � x0ic)
2;
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which, under standard assumption 4, has the algebraic form

�̂ =
�
X0X

��1
X0y

=

 
1

N

NX
i=1

xix
0
i

!�1 
1

N

NX
i=1

xiYi

!
:

In the latter representation, the estimator �̂ is evidently a function of the sample second moments of the

dependent and explanatory variables, and in either form the estimator is clearly a linear function of y;

with coe¢ cients a function of the nonrandom matrix of regressors, X: The estimator �̂ is the solution to

the �normal equations�

0 = X0(y �X�̂):

Accompanying the LS estimator of � is an estimator of the unknown variance parameter �2;

s2 � 1

N �K

�
y �X�̂

�0 �
y �X�̂

�
;

which is a quadratic form in the vector of residuals

ê � y �X�̂

= (I�X(X0X)�1X0)y

� N

Mxy:

The unusual normalization (dividing by N �K rather than N) yields an estimator that is mean-unbiased

under the standard assumptions.

If one of the columns of X (usually the �rst) is a column vector "�" identically equal to one, so that

the corresponding component of � is interpreted as an intercept term, a summary measure of �goodness

of �t�of the �tted values

ŷ � X�̂

= X(X0X)�1Xy

� Pxy

3



to the original dependent variable y is the squared multiple correlation coe¢ cient,

R2 � 1�

�
y �X�̂

�0 �
y �X�̂

�
(y��y�)0 (y��y�)

= 1� ê0ê

(y��y�)0 (y��y�)
;

where �y is the (scalar) sample average of the dependent variable,

�y � 1

N

X
i

Yi;

and � is the N -dimensional vector of ones, i.e., � � (1;1; :::;1)0: The last term in the de�nition of R2

never exceeds one, since the denominator can be viewed as a constrained minimizer of the least squares

criterion in (1), subject to the constraint that all components of c equal zero except for the coe¢ cient

on the column of X that equals �: (When no column of X equals �; it is customary instead to use the

�no-constant-adjusted�R2 measure, which substitutes 0 for �y in the usual formula for R2:)

Regression Algebra

Often it is useful to know the algebraic relations between the LS regression coe¢ cients using the entire

X matrix and those which use only an N �K1 submatrix X1 of the original matrix of regressors �that is,

the relation between the unconstrained LS estimator and the LS estimator which constrains the coe¢ cients

on the remaining submatrix X2 of X to be zero. Partitioning the matrix of regressors as

X � [X1;X2] ;

with a compatible partitioning of the unconstrained LS estimator

�̂ �
�
�̂1
�̂2

�
;

we can derive a relationship between the subvector �̂1 of the �long regression�coe¢ cients using all of X

to the �short regression�coe¢ cients

�̂
�
1 � (X01X1)�1X01y

which use only the submatrix X1 of regressors. That relationship is

�̂
�
1 = �̂1 + (X

0
1X1)

�1X01X2�̂2;
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i.e., the di¤erence �̂
�
1 � �̂1 between the short and long regression coe¢ cients is the product of the matrix

of regression coe¢ cients of the omitted regressors X2 on the included regressors X1 and the subvector �̂2

of the long regression coe¢ cients for the omitted regressors. (Say that three times, quickly!)

Another useful algebraic relationship is the �residual regression�representation of a subvector, say �̂1;

of the long regression coe¢ cients �̂: De�ning the (idempotent) projection matrix

P2 � X2(X02X2)�1X02;

which projects vectors into the linear subspace spanned by the columns ofX2; the long regression coe¢ cients

can be written as

�̂1 = (X01 (I�P2)X1)�1X01 (I�P2)X1

= (X�01X
�
1)
�1X�01 y

= (X�01X
�
1)
�1X�01 y

�;

where

X�1 � (I�P2)X1

and

y� � (I�P2)y

are the residuals of the regression of X1 and y on X2: In (many) words, the long regression coe¢ cients

can be obtained by �rst getting the residuals of a regression of X1 and y on X2; and then regressing the

residuals for y on the residuals for X2: When X2 is a column vector of ones, i.e., X2 = �; application

of the residual regression formula yields an alternative representation for the squared multiple correlation

coe¢ cient,

R2 � (ŷ��y�)0 (ŷ��y�)
(y��y�)0 (y��y�)

;

so that R2 measures the variation (squared length) of the �tted values ŷ = X�̂ around their mean values

relative to the corresponding variation in the vector of dependent variables y:

Moments of the LS Estimator

The rules for calculation of the mean vector and variance covariance matrix of a linear function Ay of
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a random vector y (with A nonrandom) are:

E [Ay] = AE[y];

V [Ay] = AV[y]A0:

Applying these rules to the LS estimator �̂ (with A = (X0X)�1X0) yields, under the standard assumptions,

E[�̂] = (X0X)�1X0E[y]

= (X0X)�1X0X�

= �;

so the LS estimator is mean-unbiased, and

V[�̂] = (X0X)�1X0V[y]X(X0X)�1

= (X0X)�1X[�2I]X(X0X)�1

= �2(X0X)�1:

Similar, but more complicated, calculations (involving interchange of the trace and expectations operators)

can be used to show that s2 is a mean-unbiased estimator of �2;

E[s2] = �2;

but calculation of its variance would require more restrictions than imposed in the standard assumptions.

The renowned e¢ ciency result for the classical least squares estimator, known as the Gauss-Markov

Theorem, states that, under the standard conditions, the LS estimator �̂ de�ned above is the �best linear

unbiased estimator�, or BLUE, where �best� is de�ned in terms of smallest variance-covariance matrix.

More precisely, if ~� is an estimator of � that is linear in y; i.e.,

~� = Ay

for some K �N nonrandom matrix A; and if ~� is mean unbiased, meaning

E[~�] = �

for all possible � 2RK ; then under the standard assumptions the covariance matrix of ~� is at least as large

as that for �̂; in the sense thatV[~�]�V[�̂] is positive semi-de�nite. This result is obtained by decomposing
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the alternative estimator ~� as the sum of �̂ and ~� � �̂; and showing that these two components have zero

covariance (using the unbiasedness restriction AX = I); so that

V[~�] = V[�̂] +V[~� � �̂];

from which the result immediately follows. As a consequence, the best linear unbiased estimator of any lin-

ear combination � � a0� of the unknown regression coe¢ cients (with a a �xed, nonrandom K-dimensional

vector) is �̂ = a0�̂; since its variance exceeds that of the alternative linear unbiased estimator ~� = a0~� by

the quantity a0V[~� � �̂]a; which is nonnegative.

The mean-variance rules can also be used to calculate the expectation and variance of the �short

regression coe¢ cients� �̂
�
1 de�ned above:

E[�̂
�
1] = E[�̂1] + (X

0
1X1)

�1X01X2E[�̂2]

= �1 + (X
0
1X1)

�1X01X2�2;

which equals the true value �1 only if the regression coe¢ cients of X2�2 on X1 are all zero. (This result

is known as the �omitted variable bias�formula.) Since, using the variance calculation rules,

V[�̂
�
1] = �

2(X01X1)
�1

and

V[�̂1] = �
2(X�

0
1 X

�
1)
�1;

it follows that the variance-covariance matrix for the short regression coe¢ cients �̂
�
1 is no larger (in a

positive de�nite sense) than that for �̂1; since

X01X1 �X�
0
1 X

�
1 = X

0
1P2X1

is nonnegative de�nite.

The Classical Normal Regression Model

To obtain the �nite-sample distributions of the LS estimator �̂ and the variance estimator s2; stronger

assumptions are needed than those imposed by the standard assumptions, which only restrict the �rst and

second moments of the random vector y: A very convenient distribution for y is the multivariate normal

distribution. To obtain the normal linear regression model, we append to standard assumptions 1 through

4 the additional assumption
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5. (Normality) The vector y (or, equivalently, " = y �X�) has a multivariate normal distribution.

Under assumptions 1 through 5, the joint distribution of the vector y is

y �N(X�;�2I)

with

" = (y �X�) �N(0;�2I):

Since �̂ is a linear function of the vector y; and since linear functions of multinormals are themselves

multinormal, it follows that �̂ is itself multinormal under the normal linear model,

�̂ �N
�
�;�2(X0X)�1

�
;

and thus that a linear function �̂ = R�̂ of �̂ (with R a nonrandom r�K matrix with full row rank K) is

also multivariate normal

�̂ � R�̂ �N
�
�;�2R(X0X)�1R0

�
;

with � � R�. A more delicate derivation, which uses the fact that s2 is proportional to a quadratic form

in y; yields the result that s2 is proportional to a chi-squared random variable with N � K degrees of

freedom,
(N �K) s2

�2
� �2N�K ;

furthermore, it can be shown that s2 and �̂ are statistically independent under assumptions 1. through 5.

These distributional results provide the foundation for statistical inference regarding the unknown

regression coe¢ cient vector � (as well as the variance parameter �2): For example, if R is a row vector

(i.e., a 1 �K matrix), then it follows that a standardized version of �̂ = R�̂; replacing the unknown �2

with the estimator �2; will have a Student�s t distribution with N �K degrees of freedom,

�̂ � �q
s2R(X0X)�1R0

� tN�K ;

which can be used to construct con�dence intervals for the unknown � = R�; or to test null hypotheses like

H0 : R� ��0 (against a one-sided alternative) or H 0
0 : R� =�0 (with a two-sided alternative), in the usual

way. And, if R has more than one row, then a quadratic form in the estimated vector �̂ = R�̂ around the
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inverse of its estimated covariance matrix will have Snedecor�s F distribution with r and N �K degrees

of freedom, �
�̂ � �

�0 h
s2R(X0X)�1R0

i�1 �
�̂ � �

�
=r � Fr;N�K :

This result can be used to test the linear hypothesis H0 : R� = �0 by replacing the unknown � with

its hypothesized value �0 in this formulae and comparing the result to a critical value from an F table.

Furthermore, the set of possible values of �0 for which the F-test fails to reject the null hypothesis H0 :

R� = �0 at size � forms a (random) 1� � con�dence region for the unknown value of �:

For the special case that the matrix of regressorsX can be partitioned asX = [X1;X2] ; withX1 being a

column vector of ones (X1 = �) and with the corresponding partition of �; the null hypothesis H0 : �2 = 0

can be tested using the R2 statistic. Speci�cally, under assumptions 1. through 5. and the null hypothesis,

(N �K)
(K � 1)

R2

1�R2 � FK�1;N�K ;

so under the normal linear regression model the squared multiple correlation coe¢ cient R2 is monotoni-

cally related to an F-statistic for testing the null hypothesis that all slope (i.e., non-intercept) regression

coe¢ cients are zero. Variations of this approach can be used to test the null hypothesis that a particular

subvector of � is equal to zero, by constructing a test statistic using the di¤erence in R2 statistics when

the null hypothesis is or is not imposed.

Departures from the Standard Assumptions

Given the strong assumptions of the normal linear regression model, the next part of a traditional

econometrics course (a¤ectionately known as �Part II�, although it is in Parts III and IV in Ruud�s text)

is investigation of the consequences of relaxing those assumptions, and appropriate adjustment of the

statistical procedures should they fail to hold. Working in reverse order, here is an outline of the issues

that arise when each assumption fails, along with the jargon that accompanies each problem.

5. (Nonnormality) If y is not multinormally distributed, then the exact distributional results for the LS

estimators (normality of �̂ and a chi-squared distribution for s2) no longer apply. Fortunately, asymptotic

theory can be applied to show that �̂ is approximately normally distributed, and the approximation error

shrinks to zero as the sample size increases. Asymptotic normal theory combines two di¤erent types

of approximations. First, there are classical limit theorems, which give general conditions under which

the distributions of weighted sums of random variables are approximately multinormal, with shrinking
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variances of the approximating distributions; second, there are Slutsky theorems, which show how smooth

functions of sample averages (like �̂ and s2 ) are approximately weighted sums of random variables, to

which the limit theorems can be applied. If the standard assumptions are strengthened to make the limit

and Slutsky theorems applicable, the result is that the LS estimator is approximately normal,

�̂
A�N

�
�;�2(X0X)�1

�
;

where �A��means �is approximately distributed as,� in a sense to be made more precise later. Results

like these imply that the inference procedures developed for the normal linear regression model can be

approximately valid when the dependent variable is not assumed to be normally distributed.

4. (Multicollinearity) If the X matrix is not of full column rank, then X0X is noninvertible and the

true parameter vector � is not identi�ed from the observed data, though some linear combinations (e.g.,

the projection ŷ of y into the space spanned by the columns of X) can be uniquely determined. If the goal

is to obtain point estimates of � for some policy exercise (e.g., manipulation of one of the regressors), then

such perfect multicollinearity is a killer. Enough said.

3. (Stochastic Regressors) If X is random, but the standard assumptions (and the extra normality

assumption) hold conditional on X (that is, E(yjX) = X�; V(yjX) =�2I; etc.), then little change in the

inference procedures is required; LS is still the BLU estimator conditional on the observed X; and the

normal and chi-squared distributions of �̂ and s2 hold conditionally on X: In fact, since the conditional

distribution of s2 does not depend on X; it is proportional to a chi-squared random variable regardless of

whether X is �xed or random. And since the F- and t-statistics also have distributions under the null that

do not depend upon X; they too have the same null distributions whether X is viewed as stochastic or not.

A more complex setting for random regressors is a dynamic model, in which some lagged values of

y are used as regressors for time series data. Here the standard assumptions cannot hold conditional

on X; because of the overlap between y and some components of X: The classical LS estimator �̂ is

necessarily a nonlinear function of y in this context. Nevertheless, asymptotic theory can usually be used

(with appropriate limit theorems for dependent data) to show that the LS estimator is still approximately

normal, since it is a smooth function of (approximately normal) weighted sums of the components of y:

2. (Nonscalar Covariance Matrix ) When the covariance matrix of y (or ") is not proportional to an

identity matrix �V(y) � � 6=�2I for any �2 �then the classical LS estimator, while linear and unbiased,
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is no longer �best� in that class. If � is known up to a constant of proportionality �� = �2
; with 


known �then the original y and X data can be transformed (by premultiplying by a matrix square root

of the inverse of 
) to yield a BLU estimator of � by applying LS to the transformed data. This approach

yields Aitken�s Generalized Least Squares (GLS) estimator,

�̂GLS �
�
X0
�1X

��1
X0
�1y;

which is BLU for a given (nonsingular) 
; and includes classical LS as a special case (when 
 = I). If y

is multinormal and 
 is known (not estimated), then the multinormality of the GLS estimator follows in

the same way as for LS. If 
 involves unknown parameters, which must be estimated using the dependent

variable y; then the �feasible�version of GLS which uses the estimated 
̂ in place of 
 will be a nonlinear

function of y; and the distribution of the GLS estimator will not be exactly normal. Again, asymptotic

theory can be used to show that the feasible GLS estimator has approximately the same normal distribution

as its exact counterpart, provided 
̂ is a suitably close approximation for 
 as the sample size increases.

Depending upon the particular application, 
 can depart from an identity matrix in a number of di¤er-

ent ways; each sort of departure has its own nomenclature. Heteroskedastic models have 
 being a diagonal

matrix with non-constant diagonal elements, so that the di¤erent components of y have di¤erent variances

(but are mutually uncorrelated). Models with serial correlation have 
 being a band-diagonal matrix,

with some nonzero components o¤ the main diagonal. Models which have both nonconstant variances and

nonzero covariances among the components of y include Zellner�s seemingly unrelated regressions model

and panel data (i.e., pooled cross-section and time series) models.

1. (Endogenous Regressors) Failure of the assumption that the expectation of y (givenX) is not a linear

combination of X is the most serious complication for the classical LS procedure. While E(yjX) = X�

may fail because the true conditional mean is nonlinear in the regressors, a typical problem in empirical

economics is nonzero correlation between the error terms " � y �X� and some columns of X, termed

endogenous regressors. Such endogeneity can arise for a number of reasons, including measurement error

in the observed regressors, simultaneity, sample selectivity, omitted regressors, and other empirical problems

(to be de�ned and described in more detail later). The standard econometric approach to estimation of �

with endogenous regressors involves collection of data on additional variables, termed instrumental variables

and often denoted by an L �K matrix Z (with number of rows L at least as large as the corresponding

number of rows K in X); which are posited to be uncorrelated with the error vector " but correlated (in an
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appropriate sense) with the columns of the matrix X: Variants of such instrumental variables estimation

methods, including two-stage least squares and generalized method of moment estimators, are arguably

the most original contribution of econometrics to statistical methodology, and will be covered in detail

henceforth.
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