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Unconditional Moment Restrictions and Optimal GMM
Most estimation methods in econometrics can be recast as method-of-moments estimators, where

the p-dimensional parameter of interest g is assumed to satisfy an unconditional moment restriction
E[m(wi,0o)] = pu(0) =0 (*)

for some g-dimensional vector of functions m(wj, #) of the observable data vector w; and possible parameter
value 6 in some parameter space ©. Assuming that 6 is the unique solution of this population moment
equation (equivalent to identification when only (*) is imposed), a method-of-moments estimator @ is
defined as a solution (or near-solution) of a sample analogue to (*), replacing the population expectation
by a sample average.

Generally, for 6y to uniquely solve (*), the number of components ¢ of the moment function m(-) must
be at least as large as the number of components p in 6 — that is, ¢ > p, known as the “order condition”
for identification. When g is identified and ¢ = p — termed “just identification” — a natural analogue of

the population moment equation for 6y defines the method-of-moment estimator as the solution to the

p-dimensional sample moment equation
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where wy, ..., w, are all assumed to satisfy (*). The simplest setting, assumed hereafter, is that {w;} is
a random sample (i.e., w; is i.i.d), but this is hardly necessary; the {w;} can be dependent and/or have
heterogeneous distributions, provided an “ergodicity” result m (0) — E[m(6)] £ 0 can be established.
Examples of estimators in this class include the maximum likelihood estimator (with m(wj, #) the ”score
function,” i.e., derivative of the log density of w; with respect to 6 for an i.i.d. sample) and the classical
least squares estimator (with w; = (y;, «}) and m(w;, 0) = (y; — x}0)z;, the product of the residuals and

regressors). Another example is the instrumental variables estimator for the linear model

yi = w300 + €4,



where y; and x; € ¢P are subvectors of w; and the error term ¢; is assumed to be orthogonal to some other

subvector z; € ¢? of w;, i.e.,

E[sizi] = E[(yz - xé&o)zi] = 0.

When ¢ = p —i.e., the number of “instrumental variables” z; equals the number of right-hand-side regressors
x; — then the instrumental variables estimator
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is the solution to (**) when m(w;,0) = (y; — x,0)z;.
Returning to the general moment condition (*), if ¢ > p — termed “overidentification” of 6y — the

system of equations m(6) = 0 is overdetermined, and in general no solution of this sample analogue to (*)

will exist. In this case, an analogue estimator can be defined to make m(6) “close to zero,” by defining
0 = arg m@in Sn(0),
where S, () is a quadratic form in the sample moment function m(6),
Sn(0) = [m(6)]" Anm(0),

and A, some non-negative definite, symmetric “weight matrix,” assumed to converge in probability to

some limiting value Ay, i.e.,

A, —P Ap.

Here 0 is called a generalized method of moments (GMM) estimator, with large-sample properties that
will depend upon the limiting weight matrix Ag. Examples of possible (nonstochastic) weight matrices are

A, = I, an ¢ x ¢ identity matrix — which yields S, (#) = ||m(6)]|* — or

— IPO

for which the estimator  sets the first p components of ﬁz(@) equal to zero. More generally, A, will have
estimated components; once the asymptotic (normal) distribution of 0 is derived for a given value of Agp,
the optimal choice of Ay (to minimize the asymptotic variance) can be determined, and a feasible efficient

estimator can be constructed if this optimal weight matrix can be consistently estimated.



The consistency theory for 0 is standard for extremum estimators: the first step is to demonstrate

uniform consistency of S, () to its probability limit

S(0) = [1(0)] Aopu(8),

that is,

sup |5, (0) — S(0)] =70,
©

and then to establish that the limiting minimand S(€) is uniquely minimized at § = 6y, which follows if

APpO) £0  if 0400,

where A(lj/ % is any square root of the weight matrix Agy. Establishing both the uniform convergence of the
minimand S, to its limit S and uniqueness of #y as the minimizer of S will require primitive assumptions
on the distribution of w;, the form of the moment function m(-), and the limiting weight matrix Ay which
vary with the particular problem.

Among the standard “regularity conditions” on the moment function m(-) is an assumption that it is
“smooth” (i.e., continuously differentiable) in 0; then, if ; is assumed to be in the interior of the parameter
space O, then with probability approaching one the consistent GMM estimator 6 will satisfy a first-order

condition for minimization of S,

If the derivative of the average moment function m(#) converges uniformly in probability to its expectation

in a neighborhood of fy (which must be established in the usual way), then consistency of 0 implies that

0] e 28]

This, plus convergence in probability of A, to Ay, means that the first-order condition can be rewritten as
0 = M}y Agm(6) + o, (1 (0)).

Inserting the usual Taylor’s series expansion of m(@) around the true value 6y,
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yields

om(0)
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M) Agin(8o) + My Ao Mo (8 — 60) + gn,

0 = M)A [m(bo) + +0,(())

] (6 — 60) + 0,(116 — oll)

where ¢, is a generic remainder term. Assuming it can be verified that

w3

by the usual methods, the normalized difference between the estimator 0 and the true value Ay has the

asymptotically-linear representation
V(0 — o) = [M}AgMo) "L M} Ag - v/rim(8o) + 0p(1).

But /nm(fy) is a normalized sample average of mean-zero, i.i.d. random vectors m(w;,6p), so by the

Lindeberg-Levy central limit theorem,
Vm(6o) —* N(0, Vo),
where

Vo = Vag[m(w;,0o)]

= E[m(wi, Qo)m(wi, 90)/]7

and thus

V(0 — o) —% N(0, [M) Ag M)~ My AoV Ag Mo [ M) Ag Mo 1),

which has a rather ungainly looking expression for the asymptotic covariance matrix.

By definition, an efficient choice of limiting weight matrix Ay will minimize the asymptotic covariance
matrix of 0 (in a positive semi-definite sense). The same proof as for the Gauss-Markov theorem can be
used to show that this product of matrices will be minimized by choosing Ay to make the “middle matrix”

M{AoVoAgMy equal to an “outside matrix” M|{AoMp being inverted. That is,
[M{ Ao Mo) ™ M{ AoV Ao Mo [ M Ao M) ™t > [M{Vy * Mo] ™,

where the inequality means the difference in the two matrices is positive semi-definite; equality is obviously
achieved if Ag is chosen as

A5 =Vt = [Vaglm(wi, 60)]) "



up to a (positive) constant of proportionality.
A feasible version of the optimal GMM estimator requires a consistent estimator of the covariance
matrix Vp. This can be obtained in two steps: first, by calculation of a non-optimal estimator 6 using

an arbitrary sequence A, for which 0 is consistent (e.g., A, = 1), and then by construction of a sample

analogue to V,
n

Zm(wi, 0) [m(wi, 9)},

=1

V=
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The resulting optimal GMM estimator 0" will have asymptotic distribution
Vi(®" — 8o) = N(0, [MgVy ' Mo ™),
and its asymptotic covariance matrix is consistently estimated by [M 'WoLM 71, where

N 8m(wi,9*)
M=y AT )
n ; o0’

Inference on 6y can then be based upon the usual large-sample normal theory.

For the example of the linear model with endogenous regressors,

yi = i+ e,

0 = Eleiz] = E[(yi — 2300)2,
the relevant matrices for the asymptotic distribution of 0" are

My = E [8[(%—1‘;90)%]}

o0’
= b [zza:;]

and

Vo = Vaq[(yi — x}00)zi]

= E[(yi — 200)*2z]).

The first step in efficient estimation of 6y might be based upon the (inefficient) two-stage least squares



(2SLS) estimator
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which is a GMM estimator using m(w;, ) = (y; — x}0)z;,

]

o1 ,
=1
and
1 & -
A, = nZzzd] )
=1

With this preliminary, y/n-consistent estimator of 6y, the efficient weight matrix is consistently estimated

as

n —1
. 1 .
vl=1= i — {922'{
[n§(y w@)z%] :

and the efficient GMM estimator is

which has the approximate normal distribution
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If the error terms ¢; = y; — 2,09 happen to be homoskedastic,

Vagleilz:] = o*(z)
fry 0'(2)7
then
Vo = E[Efzzzﬂ
_ 2 /
= 0(2) plim A,,

and the 2SLS estimator 8 would be asymptotically efficient, and asymptotically equivalent to the efficient
GMM estimator 0.



